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Abstract 

Buttke's [1] Lagrangian formalism expressing the equations of motion for 
incompressible fluid flow in terms of localized magnetization variables, is ex
tended to the problem of bounded viscous flow. The approximate equations 
of motion for magnetization in the neighbourhood of a solid boundary are 
developed. A strategy for evolving magnetization from the boundary con
sistent with the no-slip condition is derived, which amounts to a boundary 
condition for magnetization. A hybrid method is also suggested which ex
ploits the vortex sheet description of flow near a boundary. The methods are 
investigated in the context of a two-dimensional problem: viscous flow over 
a circular cylinder. 



1. Introduction 

Buttke [1,2], and others, have reformulated the equations of motion which 
govern incompressible in viscid flow (the Euler equations) in terms of the 
"velicity" (or the "magnetization variable"). In these variables, the Euler 
equations in three dimensions admit a discrete Lagrangian approximation 
which is Hamiltonian and in which the discrete invariants of the flow can be 
preserved. Specifically Buttke [1] has presented a numerical method based 
on this reformulation and its discretization. 

The Lagrangian discretization of the Euler problem is the foundation 
upon which rests a family of solution procedures for the Navier-Stokes equa
tions. These are collectively called Vortex Blob methods, and were intro
duced by Chorin [3] and have been widely analyzed and applied [4]. Vortex· 
blob methods are based on the kinematics of the ensemble of vortex elements 
(i.e. 'blobs') which results from a particle discretization of the vorticity field 
of a flow. Typically the elements are ameliorated by high-order smooth
ing kernels [5] and the contribution of viscosity to the motion is introduced 
through stochastic modelling of diffusion (i.e. by applying random walk to 
the particles) or through some deterministic representation [6]. 

The particle system arising out of the vortex blob method - namely a 
system of interacting vortex elements, each element translated in the veloc
ity field induced by the particle ensemble - applied to the two-dimensional 
Euler problem is, in itself, naturally Hamiltonian. It is this simplicity of 
the underlying dynamics that contributes to the robustness and efficiency of 
vortex blob methods applied to two-dimensional viscous problems [2] .. 

The three-dimensional Euler problem is significantly more complicated 
than the two-dimensional case; specifically the phenomenon of "vortex stretch
ing" obtains in three-dimensions whereas it does not in two-dimensions. 

Nevertheless there have been a number of generalizations of the vortex 
method to three dimensions introducing various three-dimensional analogues 
to the two-dimensional blob element. The closest in concept to the two
dimensional case is the spherical blob [5]; also vortex tube-segments have 
been introduced [7] and closed vortex filaments or loops [8]. In the context 
of Euler flow such a collection of elements will not be necessarily Hamil
tonian, nor will they preserve flow invariants. Furthermore, in the case of 
spherical blobs or segments, the solenoidal character of vorticity is not en
forced, a situation which may lead to serious growth of error in the numerical 
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procedure. 
It is for these reasons that Buttke's development of a Hamiltonian for

mulation of the discrete three-dimensional Euler problem (and one which 
respects the solenoidal character of vorticity) is important. 

The question of applying the magnetization formulation to the case of 
viscous flow was addressed briefly by Buttke [1]. He presents the equations 
of motion in magnetization variables, and these can be shown to be equivalent · 
to the projection form of the Nayier-Stokes equations [2]. Buttke's discussion 
concentrates on problems of unbounded flow. 

Closely allied to the question of viscous flow, is the representation of the 
no-slip condition and the generation of vorticity that this condition implies. 

The work presented here is an attempt to express vortex creation in 
terms of magnetization variables and then to embed this strategy into a 
blob method applied to bounded viscous flow. An important motivation for 
this is to establish a creation algorithm consistent with a treatment of inte
rior flow in which renormalization can be applied [2]. The approximations of 
the equations of motion appropriate to the neighbourhood of a solid bound
ary are determined. Hence the nature of a "magnet generation" analogue to 
"vortex generation" at a solid boundary is introduced. 

To illustrate some of the issues which accompany such an implementation, 
the strategy is applied to the frequently studied two-dimensional problem of 
slightly viscous flow around a cylinder. 

2. The equations of motion 

The equations of motion for incompressible viscous flow, expressed m 
primitive variables, are the Navier-Stokes equations: 

ou 
-+u·Y'u =v~u-V'p at (1) 

where u is the velocity satisfying the condition V' ·u = 0, and pis the pressure 
(we assume uniform unit density). The paramter vis the kinematic viscosity. 
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Vorticity is defined as the curl of velocity, 

~=V'xu (2) 

The magnetization variable (or velicity) m is then defined as ~ = \7 x m. 
The equality \7 x u = \7 x m implies the equivalence of u and m up to an 
additive gradient, i.e. 

m=u+\7¢> (3) 

where ¢> is a scalar function. This amounts to a gauge condition: neither m 
nor ¢> is unique. Given a vector field m, the velocity can be determined by 
taking the divergence of (3), 

(4) 

Hence we can express the velocity in terms of the velicity as 

(5) 

where D. -l represents the inverse Laplacian operator. 
Considering the curl of the N avier-Stokes equation (1 ), and invoking vec

tor identities and the equivalence \7 x u f-+ \7 x m, we verify the following 
evolution equation for m, 

am 
at + u. V'm + m. V'u = vD.m, (6) 

is equivalent to (1) . .It is in fact the gauge invariant form of (1). The evolution 
of m in an unbounded medium is determined by (6) upon prescribing an 
initial field m(r, 0). Equation (6) can be written in terms of the material 
derivative, D / Dt = aj at+ u · \7, as 

Dm 
Dt = -m · V'u + vD.m. 

Equation (6) bears some formal resemblance to the vorticity transport equa
tion in three dimensions. 

The vector u in a region n can be interpreted as the orthogonal projection 
of min n on the space of solenoidal vectors parallel to the boundary an. This 
is to emphasize that (obviously) m is not generally s?lenoidal. Also there 
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exists a unique operator (upon specifying gauge) to project back down from 
minto the space of u. The space of m is a more general (i.e. less constrained) 
space, and admits gauge freedom, which facilitates a localization principle. 

A localization for the magnetization field can be conceived, analogous to 
that developed for the vorticity field in the context of vortex blob methods. 
Suppose vorticity vanishes outside a ball S of radius r. Since velocity is 
irrotational exterior to S there exists there a scalar potential such that u = 
- '\l'lj;. Thus one can consider outside the ball that 

The choice of gauge <P = -'1/; outside the sphere makes m vanish there, and 
hence m has compact support to correspond with that of vorticity. This 
choice is not unique, and Buttke discusses situations where the support of 
magnetization and that of voriticity do not coincide. 

In the case where m has compact support, the impulse 

can be written 

I= f (r X e)dv 
}R3 

I= f (r x '\1 x m)dv 
}R3 

which, after vector integration by parts, can be written 

I= f mdv 
}R3 

This shows that velicity in the case of m of compact support can be identified 
as an impulse density. 

Buttke offers a specific strategy for constructing a discretization of the m . 
field in close analogy to that introduced to the vortex blob formulation. A 
smoothing function, fs is defined, 

1 
fs(r) = 

8
P!o(rj8) 

where fo is a smooth function whose first p- 1 moments vanish and has unit 
mass. A number of such functions of various order have been described in 
the literature [1, 5]. 
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The discretization of m at time t can be expressed in terms of an ensemble 
of N particles as 

N 

m.(r, t) = :L Js(r- r;)m;(t) 
i=l 

where each particle location translates according to 

and the magnetization strength itself evolves according to 

dm· 
dt ~ = -m; · Vu(r;) 

with the velocity approximated in terms of m as 

(7) 

(8) 

(9) 

and V · fi = 0. fi is as spatially smooth as fs, therefore we expect of a 
successively-refined discretization (characterized by discretization parameter, 
h) to show convergence of the form 

and 

limm = m 
h-+0 

lim ii = u 
h-+0 

as established in the case of vortex methods [9]. From (5) and (7) the velocity 
can be constructed explicitly as 

N 

ii = L {mds(r- r;)- (m; · V)(V ~-I fs(r- r;))} (10) 
i=l 

We have now the ingredients of a Lagrangian particle representation of 
incompressible viscous flow. We have a strategy for representing magneti
zation of compact support, an evolution equation which can describe the 
subsequent motion of an ensemble of such particles from a prescribed initial 
distribution. It remains to show how these equations can be approximated 
in a boundary layer, and to describe a magnetization generation strategy 
consistent with the physical conditions which exist at a solid boundary. 
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3. Flow Near a Solid Boundary 

In the neighbourhood of a solid wall, dimensional considerations allow us 
to determine approximate equations of motion analogous to the boundary 
layer equations discussed, for example, by Schlichting [10]. Following this 
example, consider a solid boundary at z = 0 (where r = (x, y, z) represents 
the Cartesian position vector). The region z > 0 is occupied by a fluid with 
viscosity v and a velocity field u = (ux, uy, uz). We conceive of a thin layer 
of fluid over the boundary of thickness 8 such that the following dimensional 
considerations hold. Lateral length scales are taken to be of order 1, i.e. 
(x,y) "" 0(1); the normal length scale is taken to be 0(8). This implies 
the following: auxlat"" 0(1); Ux,...., 0(1); auxlax,...., 0(1); (similarly for Uy 
and auylay). The continuity condition implies that auzlaz "' 0(1), hence 
Uz""' 0(8). 

From these considerations we can infer the corresponding dimensional 
orders of the components of vorticity ~. Specifically we determine: ~x ,..., 

0(1 1 8) and ey ,...., O( 11 8) and from the solenoidal property of vorticity we infer 
ez ,...., 0(1). From the relationship e = \7 X m we can infer the dimensional 
order of the components of m, namely mx ,...., 0(1), my ,...., 0(1), and mz ,...., 
0(118). 

We can now examine the three component" equations of motion and de
termine the relative orders of these. Writing equation (6) in component form 
we have 

amx amx amx amx at + Ux ax + Uyfii + Uz& = 

aux aux aux ( a2mx a2mx a2mx) " 
-mx ax - my ay - mz az + 1/ ax2 + ay2 + az2 

(lla) 
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amz amz amz amz 
8t + Ux ax + Uy ay + Uz az = 

auz auz auz (a
2
mz a

2
mz a

2
mz) 

-mx ax - my ay - mz az + 11 ax2 + ay2 + az2 

(11c) 
Retaining the leading terms of 0(1/h) in equations (11) only equation (11c) 
survives, i.e. the scalar equation: 

Dmz ( ) a
2
mz Dt' = - m · \7 Uz + 11 az2 . (12) 

This equation resembles in form the three-dimensional Prandtl equation. 
At z = 0, the velocity component normal to the wall, Uz, is zero (the 

impermeability condition). Also, in view of equation (12), we could, by 
way of boundary layer approximation, neglect the dimensionally lower-order 
components of m, effectively letting mx = my = 0. These approximations 
allow us to express a boundary condition for mz at the wall. Since we have 

(where z is the unit vector normal to the boundary) we can invert this to 
determine a condition for mz on the boundary, namely 

(13) 

where the integration is taken along the boundary. This expression is pre
cisely that developed in [11] - this is to say the normally-directed vector 
Hertz potential described in [11] can be identified with the normal compo
nent of a magnetizati\m vector. 

A particular discussion in reference [12] (pp 74-75) is relevant also to 
equation (12). We could choose a region of interest above the solid surface 
to be sufficiently thin, specifically we could choose it to be 0(1/a) where 
a > .Jile, with Re the Reynolds number. Within such a close proximity 
of the surface the transport is predominantly diffusive, and the convection 
terms in (12) could, as a first approximation, be neglected. 
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The no-slip condition at the wall can be approximated by introducing 
there a vortex sheet of vortex intensity "'' with component values given for
mally by the limit in the velocity discontinuity there, i.e. 

1. lod auyd 
Kx = 1m -a z ~ uy 

d-+0 0 z 

and 

1. lod auxd 
Ky = 1m -a z ~ ux 

d-+0 0 z 

If this sheet were partitioned into tiles of dimension h x h we could associate 
with each tile a circulation r = h( -uy, ux) and a vorticity~ = h-1

( -uy, ux)· 
If we consider equation (13) to be a discretized line integral we could express 
it as 

(14) 

with C a path taken in the surface. For a closed path in the surface the line 
integral represents the circulation through the area spanned by the path; due 
to impermeability, and for sufficiently simple geometries, this should be zero 
(for example, if C were in a simply-connected convex surface). 

It will be noted that, to equations (13) or (14), attaches an arbitary 
additive constant of integration. This reflects the non-uniqueness of m. 

The level curves of mz should have a physical significance. The vorticity, 
~, in the boundary layer approximation, is tangential to the boundary. At 
any point of the boundary we have 

Thus~ must be both normal to '\lmz and to the normal vector z. If we define 
a unit vector aligned to the local vorticity, i.e. S = ~/1~1, then 

This is to say the level curves of mz are lines of equivorticity. They are 
lines along which one might wish to generate vortex filaments in a three
dimensional vortex filament method . 

. Equation (13) can be used to evolve magnetization from a no-slip surface 
in response to the developing dynamics of the flow. Let us say that at some 
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time t the no-slip condition fails to be satisfied. The "slip field", i.e. the non
vanishing velocity field tangential to the surface, can be integrated in (13) to 
achieve a numerical value of mz at every point of the surface. Equation (12) 
represents an equation of motion for mz (and this equation may be further 
simplified to a diffusion equation within an appropriately small distance from 
the surface). 

4. Matching Boundary Flow to the Interior 

The principle of localization introduced for velicity in the context of in
terior flow (see Section 2) can be similarly applied in the boundary layer. 
The analogy is drawn with the vortex sheet construction [7]. We conceive 
of a magnetization mz determined at each point of the surface. The surface 
can be partitioned into tiles, each tile can bear the appropriate local value of 
magnetization, and this tile will interact with other tiles according to equa
tion (12). This is predominantly a diffusion proceeding vertically from the 
solid surface. When the sheet leaves this neighbourhood of the wall, it can 

. simply be re-designated as a magnetization blob element with equations of 
motion given by (8), (9) and (10). 

This would constitute a "magnetization version" of the hybrid blob-sheet 
algorithms developed in the context of vortex methods. In fact, other strate
gies are also available, these stemming from the fact that there is a clear 
relationship between an element of magnetization and a closed vortex fila
ment . 

. Consider a uniform partition of the solid boundary in terms of a mesh, 
each element having dimensions h x h. Consider a h x h "tile" coincident 
with a particular mesh element. We integrate over this surface according to 
equation (13), using appropriate quadrature to establish the magnetization 
at each point. Over the particular h x h tile in question, (say the j th tile) this 
value of magnetization is given by an integral of the form (taking integration 
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in x to be generic), 

m; = t. f+> (,dx 

where j < M - 1 and M indicates the closure node of the line-integral in 
the surface. The quantity mi is here to be understood as a magnitude of a 
vector normal to the surface. 

The question of how one transforms this created surface field, { mi}, of 
magnetization into interior elements can be addressed in a number of ways. 
We can, for example, make an equivalence [2] between the impulse of a vortex 
loop of circulation r and that of a magnetization of compact support: this 
leads to 

m 'Vmag = rloop' aloop {15) 

where rloop represents the circulation of the loop, a1oop represents the area 
spanned by the loop, and Vmag represents the volume of the support of the 
magnetization element. Recalling the relationship between circulation and 
vorticity, 

rloop = 1 u. d£ = Ji e. ft ds' J/ oop Haloop 

the line integration {13) can be expressed in terms of sheet circulation (since 
e = r I h2 and r = K,h, where K, is the sheet intensity). This circulation, in 
turn, can be expressed in terms of the local slip velocity over the tile (since, 
"'= u). With these considerations we have 

(16) 

Consider again tile 'j' on a partitioned "sheet of magnetization". This can 
be made to diffuse normally from the surface and ·at some stage become an 
interior magnetization element. We can reconstruct a loop of circulation rloop 

and area aloop from this magnet by using (15) and (16). The magnetization of 
the tile can be related to the loop circulation, its spanned area, the support 
volume of the interior magnetization element, i.e. 

] 

r h-1 ~1 JO Vmag 
loop = LJ Ui • u.t. • --

i=l a/oop 
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In itself, this does not define a unique strategy. Among many possibilities 
we could, for example, choose an area of loop to correspond with the tile 
dimensions (in other words the discretization parameter of the solid surface 
partition, h2

) and choose the support of m to correspond to these tile di
mensiOns. The jth loop circulation in this case would be 

j 

floop = L: J Ui • d£ = hmj. 
i=l 

(17) 

Buttke and Chorin [2] suggest an algorithm for transforming from vortex 
loops into magnetization variables, and vice versa. 

We could similarly place the hybrid vortex sheet-blob method into the 
framework of the present surface partition. In this case the tiles have sheet 
intensity "' = ui and the blob will have a corresponding circulation, 

fblob = h Ui (18) 

The fact that the same dynamics is being represented by the two for
malisms suggests that it should be possible to combine the two approaches. 
For example, one can easily create a layer of vortex tiles (diffusing and in
teracting according to the usual vortex methods discussed in [4]), but which 
also carry the magnetization expressed in (13). When such a tile leaves the 
sheet layer, it may become: 

1. a vortex blob with circulation rblob from (18); 

2. an element of localized magnetization with strength given by (16); or 

3. an interior vortex loop with circulation fzoop from (17). 

In this same spirit we can construct, at the boundary, sheets in different 
ways. For example we can consider the surface partition to coincide with an 
assembly of polygonal "loops" in the boundary, these loops cancelling each 
other along mutual interfaces in such a way that they sum to the resultant 
required sheet-intensity. These polygonal loops can be represented as either 
vortex sheet clusters, or magnetization sheet. clusters, and can be subject 
to the appropriate equations of motion, either the Prandtl equation in the 
case of vortex sheets, or equation (12) in the case of magnetization sheets. 
(This approach resembles the algorithm described in [11] in which a covering 
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of loops over the surface conforming to the level-curves of the vorticity is 
pursued.) 

5. An Example in two Dimensions 

To explore how such strategies of "magnetization creation" might func
tion (and contriving to avoid the added complications of three-dimensional 
geometry) we consider a standard two-dimensional problem: flow around a 
cylinder. (See Cheer [13] for a hybrid sheet-blob modelling of this problem.) 

In two dimensions equation (10) for magnetization consisting of a col
lection of variables of compact support mU> = ( m,V>, mV>), has the explicit 
form: 

u =I: m(i) is(r- r ·)- m(j)..£_ (.!..._~ -1 is) - mu>!_ (.!..._~ -1 is) 
X X J X OX OX y Oy OX 

uy =I: m(j) is(r- r·)- m~)..£_ (.!..._~ -1 is) - m(j)..£_ (!.._~ -1 is) 
y J ox oy y oy oy 

These equations have been expressed in a very useful and convenient form 
by Cortez [14]. The inverse Laplacian of the radially symmetric function is 
is denoted as t/J(r). The functions are formed: F'(r) = ris(r) and t/J'(r) = 
r-1F(r), where F(r) = J;r'is(r')dr'. With this definition, we can write 

ii = ~{ m(j) [rF'(r)r~ F(r)]- xU>(m<i). xU>) [rF'(r) r~ 2F(r)l} (19) 
J . 

Herem absorbs a constant pre-multiplier. This reveals explicitly the role 
of the smoothing function in the equations of motion. Since is is smooth we 
expect the integral to exist; since the first moment of is vanishes, we expect 
t/J'(r) to tend to zero far from the support. 

Buttke [1] has used, for his two dimensional example (the evolution of an 
initally radial velicity field) the support function: 

fo(r) = .!._ { 1-10r
3 

+15r
4

- 6r
5 

r < 1 
2~ 0 r > 1 
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.. 

It is not clear that the first moment of this vanishes since 

l oo 7 {r2 r5 r6 r7}I 
rf0 (r)dr =- --10- + 15--6-

o 271" 2 5 6 7 0 

6 
= - 271" =1- 0 

This implies that the solutions for '1/J(r) inside and outside the support may 
have a discontinuity in gradient. This could present problems for the magne
tization evolution equations (9) since they require gradients of u and hence 
of F(r). It would seem the differential structure of the smoothing function, 
and in particular their moments and derivatives, enter into the equations of 
motion. 

Another polynomial example of a smoothing kernel of order 4 is that due 
to Hald [9]: 

fo(r) = _!_ { -140(1- r? + 420(.1- r)4
- 252(1- r)5 r ~ 1 

271" 0 r > 1 

In practice the fourth-order Beale-Majda [5] kernel based on gaussians 
seems to be the most unproblematic for the present application. This is 

1 ( 2 1 2) fo(r) = 271" 4e-r - e2r (20) 

To apply boundary conditions to the cylinder problem we simply per
form at each time-step of the evolution the ( discretized) integral over the 
circumference: 

1 [9 
mr(Oj) = h Jo J Ue•rdfJ' 

where the discretization parameter, h, is the arc length h = rM and Oi = j80. 
The resulting magnetization can be combined simply with the usual vor
tex sheet calculation. Fig. 1 illustrates the initial magnetization distribu
tion on a cylinder of radius 1, specifically is plotted the quantity h mr( 0) = 
-2f~ sinfJ'dfJ'. For a 200-fold partition of the circle, h = 71"/100 ~ 0.0314. 
Thus mr assumes a maximum at the windward stagnation where the initial 
velocity is a minimum. At t = 0 the closed-path integration over (0, 271") 
is zero as expected. As flow evolves, numerical error will compromise this 
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latter condition at any particular time, although hopefully it could remain 
established in time-average. 

One can treat the sheets themselves like "magnetization sheets", i.e. each 
partition arc of the cylinder circumference is to consist of a radially-directed 
magnetization m~i). This is interpreted as two half-overlapping vortex sheets 
with opposing sense of vorticity, and each centred at opposite edges of the arc. 
Thus, when the effect of each sheet is added to that of the sheet coinciding 
in location but belonging to the adjacent arc, in sum the required net sheet 
intensity to establish no-slip at the edge is achieved (although the two sheets 
taken individually may have relatively large strength). 

Limited success with this strategy was achieved: establishing no-slip was 
subject to greater numerical noise than that expected in vortex sheet meth
ods. At any time step the no-slip could be established at the nodes, i.e. at 
the location of the center of the sheets, but this deviated considerably away 
from the nodes, for example at the mid-point of the arc. This was particu
larly a problem at the incident stagnation point of the cylinder, for reasons 
alluded to earlier. Fig. 2 shows the (static) no-slip achieved after 1 time-step 
with the strategy just described: at nodes no-slip is achieved, between nodes 
it is not. The static comparison is of marginal interest since the boundary 
conditions are to be achieved in time-average. 

An alternative strategy to creating "magnetization sheets" is suggested 
by Chorin [15]. The suggestion is to create vortex sheets at the boundary, 
but also to evaluate the magnetization at each point of the boundary and 
to attach this value to the parameter list associated with each sheet. As 
the sheet enters the flow interior it can become an element of magnetization 
of compact support and be transported according to equation (8) and its 
strength evolve according to (9). The growth of magnetization implied by 
(9) makes the latter calculation difficult, and strategies must be applied in 
the interior to model this (see Cortez [14]). 

For present purposes we neglect equation (9) since our aim is to illustrate a 
strategy for evolving vortices from the boundary into the interior, rather than 
a comprehensive modelling of interior flow using magnetization variables. 

Fig. 3 illustrates the "slip velocity" at step 10, i.e. the tangential field to 
be extinguished at the next time step. The particle distribution consists of 
1016 sheets and 971 magnet elements. This velocity was computed by using 
the "vortex blob" information in the elements' parameter list (i.e. using 
a Biot-Savart kernel), and alternatively using equation (8) with (10). A 
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smoothing parameter of 0.2 was used, and a time step of 0.1. The sheet 
elements are made to undergo random walk in the sheet layer in a radial 
direction; the interior elements undergo a two-dimensional random walk. The 
sheet layer was chosen to have thickness of three mean-free path lengths. 

To use equation (10) in the context of bounded flow, the impermeability 
condition must be enforced at each time step. For particle models such as 
blob methods, the most efficient way to do this is to use images (if geometry 
permits). There are well known circle- and sphere- theorems (see [16, 17] 
) for irrotational flow problems. Matching impulse would suggest that an 
image magnetization element could be placed at the reciprocal point inside 
the circle, with opposite sign to the element itself, and of a strength enhanced 
by a factor b where b > 1 is the position of the interior element from the· 
origin. However with magnetization the problem seems to be complicated by 
the fact that part of the velocity formula (19) -or more obviously in (10) 
-is not harmonic in character (namely the support kernel). The question 
at this stage is not fully resolved, although a procedure was found which 
effected the impermeability condition by use of a magnetization 'image'. If 
a radially oriented magnet were at a position b > 1, then an image magnet 
could be placed at the reciprocal postion 1/b. The image would be of opposite 
sign. The summation for the velocity calculation (19) was simply extended 
to include the images. However in the case of the images, the harmonic-type 
terms, i.e. the image terms deriving from tf;(r ), are multiplied by the factor 
b2. 

In a sense the problem of images is less .awkward in the context of the 
three-dimensional problem. We can make the association (through impulse) 
between magnetization of compact support and a vortex loop. For a vortex 
loop outside a sphere there is a Sphere Theorem [17] to serve our needs. 

Cortez [14] shows the relationship between magnetization of compact 
support in two dimensions and vortex pairs. The problems of imposing im
permeability in the context of Biot-Savart interactions is well understood, 
so an interesting exercise is to transform vortex sheets into vortex pairs (via 
Cortez' analysis) upon entering the flow interior. 

We perform this exercise choosing the discretization param~ter h as the 
pair separation (a choice which is arbitrary and unlikely to .be optimal). A 
magnet of strength m is replaced by a pair of two opposing vortices on a line 
parallel to the nearest tangent to the cylinder, and separated by a distance 
h, and each having vortex strengths ±mj/2h. These vortex pairs were kept 
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coupled, and continued to serve as interior elements as pairs. 
Fig. 4 shows the slip velocity for this model over 8, 9, and 10 time 

steps (dt = 0.1,b' = 0.3,h = 7r/100). Although this shows that no-slip 
is being imposed successfully, such a model does not represent an adequate 
calculation of interior flow: coupled vortex pairs are essentially an expression 
of magnetization and this must be subject to evolution equivalent to (9). 
When the centroid' of the coupled vortex pairs re-enter the sheet layer, they 
simply revert to being a sheet and resume an radially outward diffusion into 
the interior. 

Fig. 5 indicates how (for the coupled vortex pair model) the closed-path 
integration over the entire cylinder 

departs from zero as a function of time-step. Leaving aside the questions of 
the adequacy of the interior model, and the choice of numerical parameters, 
the evolution of integral deficit seems to oscillate in an encouraging way, i.e. 
in a way which .tends to average out over time. 

A more legitimate procedure results if, upon leaving the sheet layer, the 
element becomes a coupled vortex pair which is promptly de-coupled. We do 
not pursue an investigation of optimal (in respect of accuracy or efficiency) 
numerical parameters; rather, for purposes of illustration, we again choose h 
to serve as initial separation. Fig. 6 shows the slip velocity that results in 
steps 8, 9, and 10; for the same parameters as Fig. 4, with the exception that 
the time-step has been halved (specifically dt = 0.05). The interior model no 
longer requires any evolution of magnetization (or its equivalent), however 
the matter of dealing with the re-entry of de-coupled elements into the sheet 
layer becomes more intricate: this operation was not pursued. 

Figs. 7 and 8 are an indication of the location of interior elements af
ter some 30 time-steps (albeit for different step sizes). The distribution of 
particles is quite different, reflecting perhaps the short-comings of the treat
ment of elements in the interior, and the quite different interaction we can 
expect of cpupled pairs (essentially magnets) and vortex blobs. Nevertheless 
when complete interior solution strategies are available (see Cortez [14]) one 
should be able to expect the respective different Lagrangian kinematics to 
converge (in the appropriate statistical sense) to the common dynamics of 
the flow. 
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6. Conclusions 

It has been demonstrated that a rationale exists for creating magnetisa
tion at a solid boundary consistent with viscous boundary conditions. An 
(approximate) equation of motion appropriate for the neighbourhood of a 
solid boundary has been developed whereby created magnetization can be 
transported to the flow interior. The results allow the extension of But
tke's [1] Lagrangian formalism to problems of bounded incompressible vis
cous flow. Furthermore the present work places in a more general context 
the loop-generation algorithm of Summers [11]. 

A strategy can also be offered for evolving divergence-free vorticity from 
a solid surface which exploits vortex sheet methods in the neighbourhood of 
the solid wall. 

The ability to generate divergence-free vorticity at a boundary opens 
up the prospect of applying renormalization strategies to challenging flow 
regimes, for example turbulent boundary layers or turbulent wakes. 
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Fig. 1 Initial magnetization h mr-( 0) at t = 0. 
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· slip velocity at t = 0 
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3 
theta 

4 5 

Fig.2 No slip established after introduction of "sheet Inagne
tization" at t = 0, evaluated at the nodes of integration, 
and at n1.id-points of integration interval 
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Fig. 3 Using magnetization variables (but with vortex blob in
formation carried also) in the interior. Vortex sheets are 
used near the boundary. No n1agnet strength evolution. 
Tangential velocity on cylinder at step 10 -·the 'slip' to 
be extinguished during next tin1e step -evaluated using 
1.) magnetization fornntla, or 2.) Biot-savart formula 
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Fig. 4 Using Coupled Vortex pairs in the interior, vortex sheet 
near the boundary. The slip velocity over the cylinder for 

time steps 8, 9 and 10 
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Number of Time Steps 

Fig. 5 Result of c01nplete line-integration over the cylinder, 
the deficit evolving in tin1e. 
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Slip Velocity with De-coupled Vortex Pairs 
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Fig. 6 Using De-coupled Vortex pmrs In the interior, vortex 
sheets near the boundary. Steps 8, 9 and 10. 
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Fig. 7 After about 30 steps, the location of coupled vortex 
pmrs. 
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Fig. 8 After about 30 steps, the location of de-coupled vortex 
pairs 
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