
U ..J

To be presented at the As sociation for
Computing Machinery Pacific 75
Conference, San Francisco, Ca.,
Apr il 1 7 - 1 8, 1 9 7 5 •

LBL- 360 1

('./

A SYNTAX-ANALYSIS APPROACH TO DATA RELIABILITY

F? r:- C ~~: I V E D
lAWRENCE

Gerry Litton, C. M. Lederer and Leo Vardas~\DIA Tin,,! I A!l()~.A.TORY

November 22, 1974

Prepared for the U. S. Atomic Energy Commission
under Contract W-7405-ENG-48

For Reference

Not to be taken from this room

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
ne~essarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
Califomia. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Govemment or any agency thereof or the Regents of the
University of California.

Q 0 u 0 6

A SYNTAX-ANALYSIS APPROACH TO DATA RELIABILITY
by

Gerry Litton, C. M. Lederer, and Leo Vardas

ABSTRACT

LBL-3601

A unique approach has been developed to check data for syntax

errors - a process that could well be likened to proofreading.

The key to the process is the use of:

(I) A syntax analyzer that was developed primarily

for use as a compiler parser.

(2) The associated language used to specify syntax.

The data checking proceeds in two steps. First, the syntax rules t9

which the data must conform are written in a syntax-oriented language.

They are then fed to a processor which produces a set of tables which are

. the encoded syntax rules. Second, the data to be check is fed to a syntax

analyzer, which checks it using the encoded syntax rules as a template.

The specific data for which this process has been developed is that

which constitutes the TABLE OF ISOTOPES, published periodically by the

Lawrence Berkeley Laboratory.

-2- LBL-3601

INTRODUCTION

The TABLE OF ISOTOPES is a compilation of information on the

properties and radiations of radioactive isotopes, which is published

periodically by the Lawrence Berkeley Laboratory. With each edition,

the magnitude of contained data has grown; the last edition contained

several hundred-thousand pieces of numeric data on approximately 1500

isotopes - this amounts to several million characters of print. Although

this amount of data presents no serious problem from the standpoint of

computer storage or handling, it does represent major problems in

abstracting, copying, input, and proofreading. The computerization of

the data collection system has been discussed elsewhere; (1,2) it is

the purpose of this paper primarily to discuss that aspect of the computer

system which deals with the proofreading problem.

The checking of data for syntax accuracy consists of two basic parts.

First, the syntax rules to which the data must conform are written in a

syntax-oriented language. Then, the data is fed to a program which checks

it against these syntax rules.

It is expected that this system will eliminate the need for manual

proofreading of data for the TABLE OF ISOTOPES project.

o 0 o {) 7

-3- LBL-3601

I. TABLE OF ISOTOPES DATA

The amassing of data for inclusion in the TABLE OF ISOTOPES begins

<t
with the abstracting from suitable references - such as journals and books -

or pertinent information. This data is massaged to conform to a standard

format and then entered on a special keyboard which is linked directly

to the Computer Center at the Lawrence Berkeley Laboratory. This key-

(1)
board, ~hich is described elsewhere, has a greatly expanded character

set (12 bits), including the Greek and Roman alphabets, upper and lower

cases, and a variety of special symbols. Figure 1 shows the input console

in use, and Figure 2 shows a schematic drawing of the keyboard layout. During

the data-entering process, the operator has a visual display and may

edit the data to correct errors and make any other necessary changes.

Finally, the data is sent to one or more of the mass-store devices

attached to the Computer Center. As it is stored, the data consists of

many items, each of which describes a particular piece of data for a

particular isotope. For example, a given item might contain a measure-

ment of the half-life of a particular isotope.

I I • THE PRE -PROCESSOR'

The general approach to the use of a table-based syntax analyzer is

as follows. First, the syntax rules for the text to be analyzed are

written in the language appropriate to the syntax compiler being used (the

name of the compiler used in this work is -Met a-) • These rules are then

fed to the compiler, and a set of syntax tables is produced. Finally,

the desired text, or character stream, is fed to the associated pa:r:ser along with

the syntax table.

-4- LBL-36ol

The parser scans the input stream and performs a comparison between

the stream and the rules embodied in the syntax table. A -true- or

-false- value is returned, depending on whether or not the character stream

conforms to the syntax rules. This complete process is shown schematically

in Figure 3.

The most direct approach to analyzing TABLE OF ISOTOPES data would

be to write down all of the possible syntaxes allowable for all of the

different types of data and then to generate one syntax table • Each item

of data could then be fed to the parser and tested for a valid match with

any of the "rules" encompassed in the syntax tables.

Although this method is the most direct, it is unfortunately also

extremely time-consuming; inasmuch as the TABLE OF ISOTOPES encompasses

many different types of data, the corresponding syntax table would be

huge, and on the average, something like one-half of these tables would

be scanned for each data item checked.

Therefore, a more complex, but much less time-consuming, method of

using the syntax analyzer has been developed; and the following section

describes this method.

Included with each TABLE OF ISOTOPES data item are several flags,

which supply key pieces of related information, such as the reference

number and the method of measurement. One flag of particular importance

is that which defines the type of data contained in that item; and it

is this flag which allows a computer program to identify a particular

data item and to choose the appropriate syntax table from a set of such

tables.

o 0 u o 8

-5- LBL-3601

Therefore, instead of ~onstructing one huge syntax table encompassing

all possible data types, a set of syntax tables is constructed - one table

for each type of data contained in the data bank. Furthermore, since each
.t

table describes only a single type of data, it is comparatively sinall.

To facilitate the handling of many different syntax tables, a syntax

pre-processor is utilized. Input to the pre-processor is a number of sets

of syntax rules, each set describing a particular type of data. For each

set of syntax rules input, the pre-processor calls the Meta compiler,

which processes the rules and returns a syntax table. This table is then

stored in a special random-access array containing all of the syntax

tables, and the address is stored in a syntax table index. Later, when a

particular piece of data is being checked for correct syntax, this index

will be used to find the appropriate syntax table.

A secondary function of the pre-processor is the processing of lists,

for use with the syntax analyzer (see Section III for a discussion of the

use of lists in syntax analysis). For each list input, the pre-processor

packs it and stores it in a special rartdom-access array reserved for

lists, and an entry is made in a list index. When a particular list is

to be used during syntax analysis, this index will serve to locate that

list array.

When the pre-processor is finished processing syntaxes and lists,

the random-access arrays, along with their indexes, are stored on one or

more of the mass storage devices at the LBL Computer Center for later use.

All input to the pre-processor -both syntax rules and lists- is done

via the input-editing system described in the previous section.

-6- LBL-3601

II I. THE SYNTAX LANGUAGE

In order to write down the syntax rules to which a given character

string must conform, the -Meta- language is utilized. This language was

designed specifically to treat syntax descriptions in a natural manner,

and as such it is vastly superior to the more scientifically oriented

languages such as FORTRAN.

The Meta compiler accepts as input a syntax description written

in the -Meta- language; as output, the compiler produces a set of tables

which may be used at some later time by a parser to scan a piece of data

(or character string) for correctness of syntax.

This section describes the highlights of the Meta language; it is

(4)
treated elsewhere in more detail.

Bg.sic Elements of the LanSU!fje

The Meta language description of a particular syntax is written

as a sequence of rules. Each rule consists of one or more of the following

basic elements.

(1) Terminals

A terminal is a basic unit of the input stream; a set

of terminals consitutes the language in which the input stream

is written. In this application, the set of terminals are

the set of 12-bit characters which are used to write TABLE OF

ISOTOPES data.

The term -literal- is defined to be a sequence of one or

more terminals. Literals are written in the Meta language simply

as the characters themselves; that is, with no special delimiters.

0',' U" . ;

-7- LBL-3601

All language elements other than terminals must eventually

boil down to terminals, since they are the units of information

which directly describe the input stream.

(2) Special Characters

The set of special characters is quite small; they are

used to indicate specific language elements, such as repetition,

etc. They are discussed further on in this section.

(3) Separators

Individual elements of the language are separated by one

or more blanks or by any of the special characters.

(4) Non-Terminals

In order to avoid unnecessary complexities, it is often

useful to write a portion of a syntax description in terms

other than the primary terminals. These might be groups

or sets of terminals in some particular order or they might

be complex prescriptions. Any such elements are denoted as

"non-terminals". As mentioned above, all non-terminals must

eventually boil down to terminals, although the distance between

the former and lat.ter might be long and complex.

(5) Rule Name

One example of a non-terminal is the reference, within

a rule, to another rule. In this case, the latter is enclosed

1n quotation marks.

A simple examples will help to show the usage of the Meta language.

Consider the following syntax rule to which a character stream, or portion

thereof, must conform:

-8- LBL-3601

RULE = A t BC

This states that the character string must contain either the literal

"A" or the literal "BC" ...•• the special character "t" denotes alternation.

It is worthwhile noting that for the purposes of this paper, literals

are denoted by capital letters, either singly or in groups. In actual

practice, the syntax rules are written using the TABLE OF ISOTOPES input

keyboard (see Fig. 2); the set of literals used is a subset of the 12-

bit character-set comprising the keyboard.

Repetition is indicated by the notation ~ a,b FACTOR>, where "a"

and "b" are integers. This notation indicates that FACTOR must appear

in the character string at least "a" times, but not more than "b" times.

Three special notations are used for the following special cases:

Cl) <FACTOR) is equivalent to ~l,l FACTOR~, and indicates that

FACTOR must appear exactly once.

(2) [FACTOR] is equivalent to~O,l FACTOR~, and indicates that

FACTOR may appear once.

(3) ~FII.CTOR> is equivalent to ~O,co FACTOR>.

An example of one rule referencing another is given as follows

RULE = A t "Rule2"

Rule2 = B [cn]

This states that the character string must contain either the

literal "A" or the literal "B", the latter possibly followed by the

literal "cn" (note that the brackets imply that the existence of "cn"

is opt ional).

-.

o 0 ".;

,J o {) 0 o

-9- LBL-36ol

Special Non-'l'erminals

So far, we have restricted the descriptive elements to literals -

that is, sets of one or more characters and to relatively simple non-
.'

terminals. Were these the only ways to specify syntax, the language would

be extremely restrictive. For example, there may be functional relation-

ships among a certain group of characters in the input stream that might

be more conveniently expressed in FORTRAN. One case in point might be

if the characters were to represent a floating-point number within a

specified range. Although this functionality night be extremely difficult -

if net impossible - to describe in the Meta language, it is obviously

simple to handle in FORTRAN.

Therefore, the Meta language incorprates a feature which allows

it to specify the calling of any number of FOTRAN subroutines. It should

be noted that although the specification for calling a subroutine is

made via the Meta language, the actual call will be made by the parser

at the time when the data is being analyzed.

, Consider the following example:

RULE =NUMS

This specifies that, at the current position in the input stream,

the characters must conform in syntax to whatever functionality is

specified by the subroutine NUMB. As indicated here, a subroutine is

specified by writing its name in boldface (on the 12-bit-character key-

board, -boldface- is one of the standard fonts).

Prior to execution, all such subroutines which are to be utilized

are assembled and attached to a driver program which will call the syntax

analyzer to check the desired data (see Section IV).

-10- LBL-3601

One special subroutine is treated in a slightly different manner

because of its particular requirements. Suppose that at some point in

the syntax description, one wishes to specify that the character string
I

must at that point be one of a large list of literals. One could write

the ::;yntax specificiations as follows .•• ', .•

Rule = Litl t Lit2 t Lit3 ..•. where Litl,Lit2,Lit3, etc. are the

items of the list.

If' the list is lengthy, and in particular, if the list occurs in

several different syntaxes, it is convenieht to remove it from the syntax

description itself and instead to call a FORTRAN routine which will perform

a table-lookup within the list, the list having been previously defined.

Consider the following example:

RULE = 'List

This specifies that at the current position in the character s~ring, the

characters must contain one item from the list -'List-. The Meta compiler

treats a string of italicized literals as a list name and sets up a

call to a special FORTRAN subroutine. This routine will find the list

from a previously-compiler group of lists and then perform a comparison

between the input stream at the current position and the list. A -true-

or -false- value will be returned, depending on whether or not a match is

found.

Again , it should be emphasized that the actual subroutine call is

made by the parser when the data-checking is performed.

All lists to be utilized by the parser are compiled prior to the

data-checking phase. They are entered via the input-editing system and

processed and stored by the Pre-processor (see Section II and Fig. 4).

O· or
~.; o 0 J

-11- LBL-36ol

IV. SYNTAX ANALYSIS

Data checking is performed by utilizing a driver program which

brings together and coordinates all of the miscellaneous parts necessary

for syntax analysis.

When execution begins, this driver first reads in, from one of the

local mass~~torage devices, the syntax tables and array of lists, both of

which were generated at some prior time by the pre-processor. Also read

in at this time are the indexes associated with the lists and the syntax

tables. The program next assembles, again from mass storage, whatever

group of data items for which syntax analysis is to be performed. Fol-

lowing these setup operations, the driver then proceeds to process the

data items one-by-one.
,

For each data item read ifuthe driver first identifies the exact

category of data contained in the item. With this piece of information,

the driver performs a table lookup and locates the appropriate syntax

table from the appropriate array. Next, the character pointer is

initialized to the first character of the data array. Finally, a call

is made to the parser. In this call Is supplied the location of the

appropriate syntax table to be used.

The parser then proceeds to check the data against the rules embodied

in the syntax table. It returns a value of "true" or "false", depending

on whether or not the data was found to conform to the table.

'l'he driver makes the appropriate output comments concerning the

data item and then proceeds to the next item.

-12- LBL-36ol

Other Subroutines

In the description of the Meta language (see Section III), reference

was made to two types of FORTRAN routines utilized in writing syntax

description, and which are callable by the parser. One of these routines

is designed to check the input data against a specified list. Other

routines are built to check the input data for various functionalities.

For example, one routine simply examines the pointer to see if the end­

of-data has been reached. Another routine checks the data for a valid

decimal number - still another routine checks the data for a valid

isotope symbol.

All of these rO'lltines are called by the parser during ,syntax analysis,

and they are therefore included as p~ ';of the driver package. Figure 4

illustrates the schematic flow of this process.

Character Pointer

At any time during the syntax analysis of a given character string,

a special pointer is used to point to the next character to be examined.

This pointer is contained within a special common block which is accessible

both to the parser and to the FORTRAN subroutines. Whenever any of the

latter are called, they begin their examination at the character specified

by this pointer . When they finish, they must increment the pointer by

the appropriate number.

Thus, suppose that the subroutine "ISOTOPE" is called at some point

in the analysis. The purpose of this particular routine is to look at

the data beginning at the current setting of the pointer and to ascertain

whether a valid isotope symbol exists there. Of course, the number of

"l

o (1 ~ .~ ,J fJ 'l, .. D 0

-13- LBL-36ol

characters to be examined is at the start indeterminate •.• that is,

/

it may range from one character to several. If the routine finds a valid

isotope symbol in the next three characters, for example, it increments

the pointer by that number and returns a "TRUE" value. Otherwise, a

"FALSE" value is returned, and the pointer remains unchanged.

-14- LBL-3601

CONCLUSION

Using the techniques presented in this paper, it is now possible

to produce machine-readable data with a high degree of accuracy in syntax.

As opposed to other languages which are more scientifically-oriented,

the use of the -Meta- language not only makes the description of a syntax

quite simple and straightforward, but also it greatly simplifies the

processes of debugging and syntax modification.

o 0 \) ~j
" . o 0

-15- LBL-3601

REFERENCES

1. C. Michael Lederer, Computerized Production of a Data Compilation -

Table of Isotopes, LBL-2319, October 1973.

2. C. M. Lederer, J. M. Hollander, and L. P. Meissner~ UCRL-18530,

October 1968.

3. T. E. Cheatham and K. Sattley, Syntax Directed Compiling, Pro-

ceedings of the Eastern Joint Computer Conference, AFIPS, Vol. 25,

1964.

4. Leo Vardas, A Parser for Syntax-Directed Translation, "LBL-36oo

(Unpublished) •

-16- LBL-3601

FIGURE CAPTIONS

Figure 1. The console of the input-editing system.

Figure 2. 'S~hematic layout of the keyboard.
",

Figure 3.'·S'implified schematic of a syntax-analysis system •
. .

Figure 4. A more complete schematic of the syntax~analysis system.

o

:' \ \
"~

; ~
\.J u U

-17-

Fig. 1

XBB 7211-5767

- 18-

C\J

bO
~

I

--

o o 0

-19-

Syntax
rules

,t
-Meta.-

Compiler

Syntax RulL .3

!

,

Pa.rser

,r
Yes/No

-- Figure 3--

J ..

User Input

Input­
Editing
System

-Meta­
Compiler

Parser

Input­
Editing
System

Syntax
rules

S tax
tables

e

Data
em

S tax
table

Yes/no

-20-

Lists
Syntaxes

Pre­
Processor

Driver

Mass
Storage

~ ____ -=P=a=Ck=e~d l~is~t~s~ ______ _
and tables

Mass
Storage

TAB1E-OF-ISOTOPES data items Mass
Storage

--Figure 4--

u ..;

r-----------------LEGALNOTICE-------------------,

This report was prepared as an account of work sponsored by the
United States Government. Neither the United States nor the United
States Atomic Energy Commission, nor any of their employees, nor
any of their contractors, subcontractors, or their employees, makes
any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness or usefulness of any
information, apparatus, product or process disclosed, or represents
that its use would not infringe privately owned rights.

TECHNICAL INFORMATION DIVISION

LAWRENCE BERKELEY LABORATORY

UNIVERSITY OF CALIFORNIA

BERKELEY, CALIFORNIA 94720

