LBIL-3601
c./

To be presented at the Association for

Computing Machinery Pacific 75
Conference, San Francisco, Ca.,

April 17-18, 1975.

A SYNTAX-ANALYSIS APPROACH TO DATA RELIABILITY

RECT
LAWRENCE
Gerry Litton, C. M. Lederer and Leo Vardas?AMATiny VARMRATORY
:;‘q 3(‘, ;gl;,s
November 22, 1974 mD{:;;ﬁ:‘m’\‘Y AN

=NTS szenon

Prepared for the U, S. Atomic Energy Commission
under Contract W-7405-ENG-48

a)
For Reference

Not to be taken from this room

\- ‘ J

)

109¢-T197T1

)

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

*r

.5

i

LBL-3601

A SYNTAX-ANALYSIS APPROACH TO DATA RELIABILITY

‘ by
Gerry Litton, C. M. Lederer, and Leo Vardas

ABSTRACT
A unique approach has been deveioped to check data for syntax
errors - a process that could well be likened to proofreading.
The key to the process is the use of::
(1) A syntax analyzer that was devéloped primarily
for use as & compiler péréer.

(2) The associated language used to specify syntax.

The data checking proceeds in two steps. First, the syntax rules to
which the data must conform are written in a syntax-oriented language.
They are then fed to a processor which produces a set of tables which are
. the encoded syntax rules. Second, the data to be check is fed to a syntax
analyzer, which checks it using the encoded syntﬁx rules as a template.

The specific data for which this process has been developed is that

which cénstitutes the TABLE OF ISOTOPES, published periodically by the

Lawrence Berkeley Laboratory.

oo LBL-3601

INTRODUCTION

The TABLE OF ISOTOPES is a compilation of information on the

properties and radiations of radioactive isotopes, which is published
periodically by the Lawrence Berkeley Laboratory. With each edition,

the magnitude of contained data has grown; the last edition contained
several hundred-thousand pieces of numeric data on approximately 1500
isotopes ~ this amounts to several million characters of print. Although
this amount of data presents ho serious prbblem from the standpoint of
computer storage or handling, it does represent msjor problems in
abstracting, copying, input, and proofreading. The computerization of
the data collection system has been discussed elsewhere;(l’Q) it is
the.purpose of this paper primarily to discuss that asbect of the computer
system which deals with the prdofreading problen.

The checking of data for syntax accurasy consists of two basic parts.
First, the syntax rules to which the data must conform are written in a
syntax-oriented language. Then, the data is fed to a program which checks
it against these synteaex rules. |

It is expected that this system will eliminate the need for manual

proofreading of data for the TABLE OF ISOTOPES project.

3= LBL-3601

I. TABLE OF ISOTQPES DATA

The amassing of data for inclusion in the TABLE OF ISOTOPES begins

with the abstracting from suitable references - such a§ Journals and books -

or pertinent information. This data is massaged to conform to a standard

format and then entered on a special keyboard which is linked directly

to the Computer Center at the Lawrence Berkeley Laboratory. This key-

board, which is described elsewhere,(l) has a greatly expanded charaeter

set (12 bits),'including'the Greek and Roman alphabets, upper and lower

cases, and a variety of special symbols. Figure 1 shows the input console

in use, and figure 2 shows a schematic drawing of the keybéard layout. During

the data-entering process, the operator has a visual display and mﬁy |

edit the data to correct errors and make any other necessary changes.
Finally, the data is sent to one or more of the mass-store devices

attached to the Computer Center. As it is stored, the data consists of

man& items, each of which describes a particular piece of data for a

particular isotope. For example, a given item might contain a measure-

ment of the half-life of a particular isotope.

11, THE PRE -PROCESSOR

The generél approach to the usé of a table-based syntax analyzer is
as follows. Firsf, the syntax rules for the text to be analyzed are
written in the language appropriate to the syntax compiler being usedA(the
namé of the compiler used in this work is -Met#—), These rules are then
fed io the compiler, and a set of ;yntax tables is produced; Finally,

the desired text, or character stream, is fed to the associatied parser along with

the syntax table.

e ~ LBL-3601

The parser scans the input stream and performs a;comparison between
the stream and the rules embodied in the syntax table. A —true- or
-false- value‘ié returned, depending on whether or not the character stream
conforms to the synﬁax rules. This complete process is shown schematically
in Figure 3. |

The most direct approach to analyzing TABLE OF ISOTOPES data would

be to write down all of the possible syntaxes allowable for all of the
different types of data and then to generate one syntax table. Each item
of data could then be fed to the parser and tested for a valid match with
any of the "rules" encompassed in the syntax tables.

Although ihis method is the most direct, it is unfortunately also

extremely time-consuming; inasmuch as the TABLE OF ISOTOPES encompasses

many different types of data, the corresponding syntax table would be
huge, and on the average, something like one-half of these tables would
be scanned for each data item checkéd.

Therefore, a more complex, but ﬁﬁch less time-consuming, method of
using the syntax analyzer has been developed; and the following section

describes this method.

Included with each TABLE OF iSOTOPES data item aré several flags,
which supply key pieces of related information, such as the reference
number and the method of measurement. One flag of particular importance
is that which defines the type of data contained in that item; and it
is this flag which allows a computer program to identify a particular
data item and to choose the appropriate syntax table ffom a set of such

tables.

>

0
-
<
o,
.

oF
u
- ama
A’
L.
g
5

El
s
e

~5- . LBL-3601

Therefore, instead of tonstructing one huge syntax table encompassing
all possible data types, a set of syntax tables is constructed - one table
for each type of data contained in the data bank. Furthermore, since each
table describes only a single type of data, it is comparatively small.

To facilitate the handling of many different syntax tables, a syntax
pre-processor is utilized. Input to the pre-processor is a number of sets
of syntax rulés,each set describing a particﬁlar type of data. For each
set of syntax rules input, the pre-processor calls the Meta compiler,
which processgs the rules and returns a syntax table. This table is then
stored in a special random-access array containing all of the syntax
tables, and the address is stored in a syntax table index. Later, when a
particular piece of data is being checked for correct‘syntax, this index
will be used to find the appropriate syntax table.

‘A secondary function of the pre—procéssor is the processing of lists,
for use with the syntax analyzer (see Section III for a_discussion of tﬁe
use of lists in‘syntax analysis). For each list input, the pre-processor
packs it and stores it in a special random-access array reserved for
lists, and an entry is made in a list ‘index. When é particular list is
to be used during syntax analysis, this index will»serve to locate that
list array.

Whéﬁ the pré;processor is finished prpcessing syntaxes and lists,
the random-access arrays, along with their indexes, Are stored on one or
more of thevmass stofage devices at the LBL Computer Center for later'usef

All input ﬁo the pre-processor -both syntax rules and lists-'is ddne

“via the input-editing system described in the previqus section.

6= | LBL-3601

ITI. THE SYNTAX LANGUAGE

In order to write down the syntax ruies to which a given’chgracter
string must conform, the -Meta- language is utilized. This language was
designed specifically to treat syntax descriptions in a natural manner,
and as such it is vastly superior to the more scientifica;ly oriented
languages such as FORTRAN.

The Meta compiler accepts as input a syntax description written
in the -Meta- language; as output, the compiler produces a set of tables
which may be used at some later time by a parser to scan a piece of data
(or character string) for correctness of syntax.

This section describes the highlights of thé'Meta langpage; it is

)
treated elsewhere() in more detail.

quic Elements of the Language
The Meta language description of a particular syntax is written
as a sequence of rules. Each rule consists of one or more of the following
basic elements.
(1) Terminals
A terminal is a basic unit of the input stream;Aa set
of terminals consitutes the language in which thevinput stream
is written. 1In this application,vthe set‘of terminals are
the set‘of 12-bit characters which are used to write TABLE OF"
ISQTOPES data. |
The term -literal- is defined to be a sequence of one or
more terminals. Literals are written in the Meta language simply

as the characters themselves; that is, with no special delimiters.

LBL-3601

All language elements other than terminals must eventually
boil down to terminals, since they are the units of information
which directly describe the input stream.

(2) Special Characters

The set of special characters is quite small; they are
used to indicate specific languagé elements, such as repetition,
ete. They are discussed further on in this section.

(3) Separators

Individual elements of the language are separated by one

or'ﬁore blanks or by any of the speciai characters. |

(4) Non-Terminals

In order to avoid unnecessary complexities,.it is often
useful to write a portion of a syntax description in terms
othér than the primary tefminals.. These might be groups
or sets of terminals in some particular order or they might
be*cémplex prescriptions. Any such elehehts‘are denoted as
"non-terminals". As mentioned‘above, ali noh-terminals must
evehtually boil down té termin#ls, although the distance between
the former and latter might be long and cﬁmplex.

(5) Rule Name

One example of a non-terminalvis the reference, within
a rule, to another rule. In this case, ﬁhe laiter is enclosed
iﬁ quotation marks. | |

- A simple examples will help to show the usage of the Meta ianguage.
ConSider the following syntax rgle to which a character stream, or portion =

thereof, must conform:

-8 - LBL-3601

RULE = A ¢+ BC

This states that the character string must contain either the literal
"A" or the literal "BC"..... the special character "+" denotes alternation.

It is wofthwhile noting that for the purposes of this paper, literals
are depoted by capital letters, either singly or in groups. In actual

practice, the syntax rules are written using the TABLE OF ISOTOPES ihput

keyboard (see Fig. 2); the set of literals used is a subset of the 12—
bit character-set comprising the keyboard.

Repetition is indicated by the notation <a,b FACTORZ, where "a"
and "b" are integers. This notation indicates that FACTOR must appear
in the character string at least "a" times, but not more than "b" times.
Three special notations afe used for the following special caées:

(1) <FACTOR) is equivalent to <1,1 FACTOR >, and indicates that

FACTOR must appéar exactly once.
(2) [FACTOR] is equivalent to<0,1 FACTOR >, and indicates that
FACTOR may appear once. |
(3) <FACTOR> is equivalent to <0, FACTOR>.
An example.of one rule referencing another is given aé follows :
RULE = A 4+ "Rule2"
Rule2 = B [CD]
This states that the character string must contain either the

literal "A" or the literal "B", the latter possibly followed by the

literal "CD" (note that the brackets imply that the existence of "CD"

is optional).

00 :veadad3u08s5op

-9~ | LBL-3601

Special Non~Terminals

So.far, we have restricted the descriptive elements to literals -~
that is, sets of one or more characters and to relatively simple non-
terminals. Were these the only ways to specify syntax, the language would
be extremely restrictive. For example, there may be functionsl relation;
ships among_a certain group of characters in the input stream that might
be more conveniently expressed in FORTRAN. One case in point might be
if the characters were to represent a floating-point number within a
specified range. Although this functionglity mght be extremely difficult>-‘
if not impossible - to describe in the Meta language, it is obviously
simple to handle in FORTRAN;

Therefore, the Meta language incorprates a feature which allows
it to specify the calling of any number of FOTRAN subroutines. It should
Pé ﬁdtéd tﬁat although the specification for calling a subroutine is
made via the Meta language, the actual call will be made by the parser
at theitimé'Vhen the data is being analyzed.

"Consider the following example:
ruLE = NUMS

This specifies that,'at the current position in the input stream,
the character; must conform in syntax to whatever fﬁnctionality is -
specified by the subroutine NUMS. As indicated here, a subroutine is
specified by‘writing its name in boldface (on the 12-bit—¢haracter key-
board, -béldface- is oné of the standard fonts).

Prior to exeéution,.all such subroutines whigh are to be utilized
are assembled.and attéched to a driver program whicﬁ will cgll the syntax

analyzer to check the desired data (see Section IV),

- -10- ‘ - LBL-3601

One special subroutine is treated in a elightly.different manner
becapse of its particular requirements. Suppose that -at some point in
the syntax description, one wishes to Epecify that the character string
must at that.point be one of a la}ge list of literals. One could wfife
the syntax sﬁecificiations as follows.....

Rule ? Litl + Lit2 % Lit3 where Litl,Lit2,Lit3, etc. are the
items of the list.

It the list'is lengthy, ana in particular,'if the list occurs in
several different syntaxes, it is convenient to remove it from the syntax
description itself an& instead to call a FORTRAN routine ﬁhich wili perform
a table-lookup within the list, the list having been previously defined.

" Consider the follewing example:

| RULE = list

This specifies that at the current position in the character string, the
characters must contain one item from the list -li{gt-. The Meta co;piler
ﬁreatska string of italicized_litefals as a‘list name and sets up a
call to a special FORTRAN subroutine. This routine will find the list
from a previouslj-compiler group of lists and_then perform a comparison
between the inpﬁt’stream at the current position and the 1list. A —tfue-
. of -false~ value will be returned; dependingbon whether Qr-ﬁot a match is
found. |

Again, it should be eﬁphesized that the actual subroutine call is
made by the ﬁarSer when the data-~checking is performed.

All lists to be utilized by the parser are compiled prior to the‘
data-checking phase. They are entered via the inpuf;editing‘system and‘

processed and stored by the Pre-prdcessor (see Section II and Fig. 4).

IV. SYNTAX ANALYSIS

Data chegking is performed by utilizing a driver program which
brings together énd coordinates all of the miscellaneous parts necessary
for syntax analysis.

When execution begins, this driver first reéds in, from one of the
local mass-storage devices, the syntax tables and arrsy of lists, both of
which were generated at some prior time by the pre-processor. Also read
in at this time are the indexes associated with the iists and the syntax
tables. The program next assembles, again from mass storage, whatever
group of data items for which syntax analysis is to be performed. Fol-
iowing these setup operations, thg drivef'thén‘proceeds.to process the
data items one-by-one.

For eachvdata item read in, the driver first idéntifies the exact
' category of data cantained in the item. With this piece of information,
the driver performs a table lookup and locates the appropriate syntax
tabie from the:appfopriéte array. Next, the charaéfer pointer is
initialized to the first character of the data array. ‘Finally, a call
is made to the parser. Ip-this.call‘is sqppliéd the location of the
appropriate syntax table to be used.

 The pafser then proceeds to chequthe data égain3€-the rules embodie@
in the syntax table. It returns a value of "true" or "false", depending
oﬁ whether or not thé data was found to conform to the table.

The drivef makes the appropriate outpuf comments concérning the

data item and then proceeds to the next item.

-12- | LBL-3601

Other Subroutines

In'the description of the Meta language (see Section III), reference
' was made to two types of FORTRAN routines utilized iu writingréyntax
description, and which are callable by the uarser. dne of these routines
is- designed to check the inbut data againét a specified list, Otuer
routines are built to check the.input deta for varieus functionaiities.
For'eXample;ione rautine simply examines the pointer.to see if the end-
of—data.ﬁas been reached. ‘Another routine checks'the data for a valid
decimal number - still another rouﬁine checks the data for a valid -
isotope symboi;

All of these routines are called by the parser dur1ng _syntax analysis,
and they are therefore included as part of the drlver package. Figure h

‘illustrates the schematic flow of thls process.

Character Pointer

At any time during the syntax analysis of a given chargcter striug;
a epecial pointer is used to'point to-the'uextvcheracter to be examined.
This pointer is contained within a special common block which is accessible
both to‘the pérser and te the FORTﬁANVsubrqutines. Wﬁenever any of the
latter are called, they begin their eiamination gt'the characfer specified
by tuis pointer. . When they finish, they must iucrement'the pointer by
the appropriate number. | . |

Thus, suppose that the subroutine_"ISOTOPE" is- called at 'some point
in the enalysis. The purpose of this particular routine is to look at
the data beginning at the.current setting of the pointer and to ascertain

whether a validvisotope symbol exists there. Of‘course, the number of

-13- E R LBL-3601

characters to bé examined is at the start indetennihate;.. that is,

it may range from one character tovseveral. If the routine finds a valid
isotope symbol in the next‘three qharacters, for’example, it increments
the pointer by that number and retufns a "TRUE" value. Otherwise, a

"FALSE" value is returned, and the pointer remains unchanged.

-14- : _ LBL-3601

CONCLUSION
Using the»techniques presented in this paper, it is now possible
to produce machine-readable data with a high degree of accurﬁcy in syntax.
As‘opposed to other languages vhich are more scientifically-orienﬁed,
the use of the -Meta- lanéuage not only makes fhe description of a syntéx
quite simple and straightforward, but also it greatly simplifies the

processes of debugging and syntax modification.

3{3%;9-@5{}{3@53

-15-< LBL-3601

REFERENCES

C. Michael Lederer, Computerized Production of a Data Compilation -

Table of Isotopes, LBL-2319, October 1973.
C. M. Lederer, J. M. Hollander, and L. P. Meissnef; UCRL-18530,
October 1968.

T. E. Cheatham and K. Sattley, Syntax Directed Compiling, Pro-

ceedings of the Eastern Joint Computer Conference, AFIPS, Vol. 25,
196k,

Leo Vardas, A Parser for Syntax-Directed Translation, LBL-3600

(Unpublished).

-16- LBL-3601

FIGURE CAPTIONS

Figure 1. The console of the iﬁput-editing system, |

Figure 2. ‘Schematic layout of the keyboard.

Figure 3. lSlmplified schematic of a syntaxfanalysis system.

Figure L. ‘A more complete schematic of the syntax-analysis system.

XBB 7211-5767

-18-

2 ‘8ig

oo 3
aojx N EOETANEE
DA 0rleHaNRENNRRRMES
08aR 2 aa0RRNNRRRRRE
HOEEOE OOOEEEEEHEED

d0S4dNnd

d (G
so 321 | [1dway | [Kojd abod | [ebod 0, |[+p2 g paay
C@ th o3y Tw_mo:>u< _ <1pay 5o | | pran) |°1 %2 s) [Bosa)) (2ury) ™
0099 ‘ : : Koy — quis — '102 — : 19us) (1duos D}0p w\\h\\\w 260d
DWWW UQeee E zﬂo xww._w U_Om Om_O«H »Oﬂsw QSW MOQ_U Q\\& 3@2

&)
J v AZI
I

b
‘)
T

lxm_'
-
>~

-19-

Syntax
rules

-Meta-~
Compiler

Syntax | Rulcs

- Parser

Yes/No

--Figure 3 -- =

User Input -20-

Mass
Lists Storage
Syntaxes
Syntax 1
-Meta- rules Pre-
Compiler Processor Packed lists
Syntax , and tables
tables
‘ Sui;ou‘;ge
Calls
Data
item o
Parser : : Driver
Syntax _ j—
nd _ table f
Yes/no
Input- ' _
- Editing __TABLE-OF-ISOTOPES data items v Mass

Storage

--Figure kL--

S v e d oW od D

LEGAL NOTICE

This report was prepared as an account of work sponsored by the
United States Government. Neither the United States nor the United
States Atomic Energy Commission, nor any of their employees, nor
any of their contractors, subcontractors, or their employees, makes
any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness or usefulness of any
information, apparatus, product or process disclosed, or represents
that its use would not infringe privately owned rights.

TECHNICAL INFORMATION DIVISION
LAWRENCE BERKELEY LABORATORY
UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA 94720

