Usage Pattern-Driven Dynamic Data Layout
Reorganization

Houjun Tang '3, Surendra Byna 2, Steven Harenberg '*, Xiaocheng Zou -, Wenzhao Zhang '3,
Kesheng Wu 2, Bin Dong 2, Oliver Riibel 2, Kristofer Bouchard 2, Scott Klasky ®, Nagiza F. Samatova **

! North Carolina State University, 2 Lawrence Berkeley Laboratory, ® Oak Ridge National Laboratory

* Corresponding author: samatova@csc.ncsu.edu

Abstract—As scientific simulations and experiments move
toward extremely large scales and generate massive amounts
of data, the data access performance of analytic applications
becomes crucial. A mismatch often happens between write
and read patterns of data accesses, typically resulting in poor
read performance. Data layout reorganization has been used
to improve the locality of data accesses. However, current data
reorganizations are static and focus on generating a single (or
set of) optimized layouts that rely on prior knowledge of exact
future access patterns. We propose a framework that dynamically
recognizes the data usage patterns, replicates the data of interest
in multiple reorganized layouts that would benefit common read
patterns, and makes runtime decisions on selecting a favorable
layout for a given read pattern. This framework supports reading
individual elements and chunks of a multi-dimensional array of
variables. Our pattern-driven layout selection strategy achieves
multi-fold speedups compared to reading from the original
dataset.

I. INTRODUCTION

Large-scale scientific simulations and experiments produce
massive volumes of data. This data is typically stored on a
parallel file system in an organization (layout) that is optimal
for writing and remains fixed afterwards. However, scientific
data is often written once and read many times and the
organization of the written data may not be efficient for the
read patterns used in data analysis operations. For example,
scientific simulations such as S3D combustion [5] and GTS
core plasma fusion [24] write the data of all variables by time
steps, yet analysis and visualization applications often read
a subset of variables within a specific region over a number
of time steps. Such mismatches between a write layout and
a read pattern lead to poor read performance due to a large
number of seek and read operations to hard disk-based file
systems. This issue is exacerbated by the advancement towards
exascale computing, leading to ever-increasing dataset sizes
and thus presenting challenges to data management and I/O
optimization for efficient data access.

To address this data layout mismatch issue, many layout
reorganization methods have been proposed to increase the
number of contiguous I/O accesses. For instance, space-
Jilling curves, such as Hilbert-curve and Z-curve, are used
to reorganize the original data [23]; array transposition is
applied to create multiple full replicas [15] of data; and
merging of multiple non-contiguous data blocks to a single
contiguous chunk to create partial replicas [27], [13]. Each

of these techniques has its own characteristics. Space-filling
curves bring performance benefits to sub-region accesses by
reorganizing the dataset and they require no additional storage
when only the original data is reorganized. Array transposition
leads to better performance for accesses that have significantly
larger sizes along one dimension. However, transpositions may
require multiple replicas of the data. Specialized merging
with partial replication results in better performance, as the
previously non-contiguous data accesses become contiguous.

Despite various advantages of reorganization, none of the
strategies alone can provide near-optimal read performance
for heterogeneous patterns of analytic applications. To support
multiple read patterns, there is a need for managing different
layout strategies. These organizations shall facilitate com-
monly used spatial selections defined by multi-dimensional
bounding boxes as well as by element (point) selections. As
storage space for managing multiple full replicas is expensive,
support for managing partial replicas considering the storage
budget is necessary. Transparent redirection of accesses to
the data with preferable layout that may match fully or
partially are required as well. To the best of our knowledge, a
framework supporting these requirements is absent in scientific
data management.

In this paper, we present the dynamic data reorganization
framework that performs dynamic data access pattern tracing
and identification functions, efficient storage of partial replicas
to support multiple read patterns, and redirection of read
accesses to a favorable layout at runtime. Ultimately, the layout
decision making (Section III-B) and layout reorganization
(Section III-D) methods of our framework will be integrated
as services into our recently proposed Scientific Data Services
(SDS) [26], [8]. Our data reorganization framework shows a
broader applicability compared to existing methods, enabled
by the following contributions.

Dynamic pattern identification. Our framework automati-
cally traces read accesses and identifies the data usage patterns
during an applications’ runtime. The current implementation
supports the HDF5 [22] library in tracing bounding box selec-
tions, known as hyperslabs in HDF5, and element selections.

Flexible multi-layout management with storage budgets.
Instead of using only one layout reorganization technique, we
provide more flexibility by supporting multiple layout reorga-
nization techniques among those shown in Figure 1. Based on
the user-specified storage constraint and current usage patterns,

—_— olilals o [1]][2]3
e L 31516 11 4 | s)|le’] 7
el EREECEL 8 [, 2]|[0] 17
12473 laalys MBIRARS 'Ekm 14]15
(a) (b) (c)
i | o 9 215 ol1]2]3
Eps| 7 X | ey 4516 |4
satsh | yopH1 g | 8| ¢ |07
18| 1 5 ® | fes<% 12| %14 %

(d) (e) (f)

Fig. 1. Data reorganization techniques that our framework supports. The
numbers in each cell are the starting offsets of original data, and the arrow
lines are the order of the reorganized offsets: (a) (original) row-major layout,
(b) column-major (transposition) layout, (c) blocked (chunking) layout, used
as a pre-processing step before applying (d) and (e), (d) z-curve, (e) Hilbert-
curve, (f) custom merging of a subset (data at offsets 5,9,13,7,11, 15).

our framework evaluates the costs of reorganization and the
benefits with accessing the reorganized data to select the most
suitable technique.

Runtime decision making with partial match and redi-
rection. By allowing partial matches between read patterns
and the reorganized replicas, we extend the usability of exist-
ing layouts compared to the exact match strategy from previ-
ous work [13]. For a more accurate cost estimation, a page-
level (instead of byte-level) cost model is used for estimating
data access cost during the decision making process. Further,
we enabled automatic read redirection to the model-selected
layout for improved performance.

The remainder of this paper is organized as follows: We
briefly discuss the related work in Section II. In Section
III, we present a high-level overview of the proposed data
reorganization framework and describe the functionality of
different components. We demonstrate the application of the
framework in Section IV using read patterns from multiple
real applications and conclude our discussion in Section V.

II. RELATED WORK

The linearization and organization of the extreme-scale
datasets on parallel file systems are crucial to the scientific
application’s performance. SciDB [2] addresses sub-volume
access patterns by applying array slicing, joining operations,
and array division into regular/irregular chunks for multi-
dimensional scientific data. EDO [23] optimizes sub-plane and
sub-volume access patterns for spatial locality through Hilbert
space-filling curves reordering and sub-chunking. However,
SciDB and EDO both reorganize the original data layout
and provide average performance for sub-region accesses. In
contrast, we present a framework that maintains replicas with
layout optimized for the common access patterns in scientific
data explorations.

Chunking is another layout optimization technique that
splits the dataset into multiple chunks and improves perfor-
mance when operating on a subset of the data [12]. However,

current approaches [20], [17], such as those supported by
HDF5, are not flexible enough to meet the need for the
dynamic patterns discussed in this work. The chunking is
applied with fixed chunk dimensions and cannot be modified
afterward, limiting its applicability for non-regular spatial
patterns. OpenMSI [19] adopted chunking, compression, and
data replication to improve the data access efficiency for MSI
datasets. While it focuses on a specific domain and pre-
generates all the reorganized replicas, our framework covers
broader types of data usage patterns and dynamically adapts
to the change of patterns.

MLOC [11] proposed a parallel layout optimization frame-
work to achieve better performance for queries on scientific
datasets with heterogeneous access patterns. Though multiple
layouts are discussed, it focuses on one layout at a time and
does not provide either runtime decision making or layout
management. In contrast, our work supports multiple layouts
chosen based on the users’ specification as well as runtime
decision making.

Given additional storage, creating multiple partial replicas,
each optimized for a specific kind of access pattern, can greatly
improve the read performance and meet the need of heteroge-
neous access patterns of scientific applications. PDLA [27]
explored data replication for patterns with high regularity
and selected from three layouts: 1-DH, 1-DV, and 2-D on
the parallel file system. Earlier we introduced RADAR [13],
which maintains partial replicas and selects the most optimized
one for current access pattern during run-time. However, both
approaches are limited to regular spatial patterns, with no
optimizations for patterns induced by element selection.

The Scientific Data Services (SDS) system proposes to
apply data management optimizations transparently without
placing burden on scientific application developers [26], [8],
[9]. One of the services SDS proposes is to reorganize and to
replicate data on parallel file systems. SDS has a client-server
architecture. The server would analyze the access patterns
of I/O read calls, identify the data layouts that benefit the
read patterns, perform data reorganizations, and manage the
metadata of the reorganized datasets. SDS requires to traces
the accessed files, variables, and the offsets (data locations)
of the application’s reads and pass them to access pattern
analyzers for identifying read patterns. The analyzed results
can then be stored as metadata and managed by SDS Metadata
Manager, which is implemented using Berkeley DB. With the
identification of the data usage patterns, the layout reorganizer
will create replicas with optimized layout for the patterns.
These replicas will be used for future accesses that have
same or similar patterns. While SDS has capabilities and a
framework to perform reorganizations and to redirect data
accesses to suitable layout, several components are yet to be
developed. For instance, components for capturing data ac-
cesses, for analyzing and detecting read patterns dynamically,
and for estimating costs and benefits are still missing in SDS.
The methods developed in this study, i.e., trace capturing and
analyzing, layout decision making, and layout reorganization
methods, are planned to be integrated into SDS to provide a
broader applicability than its current implementations.

User's
Directive

request

Pattern
and Layout
Knowledge
Base

| Pattern
History

Data
Reorganization
Manager

Trace
Analyzer

Pattern Parallel
- - File System
ayou
Decision e —
_ —
" Redirection

Fig. 2. At runtime, the framework traces and detects patterns of I/O and
decides on optimal data layouts. The layout management, i.e., replica creation
according to the optimal layouts is performed offline. When optimal layouts
are available, redirection of file read calls to the replicated data is performed
at runtime using binary instrumentation. The right side of the figure shows
the components of the dynamic reorganization framework.

III. DYNAMIC DATA REORGANIZATION

We present an overview of the proposed dynamic data
reorganization framework in Figure 2. The main components
of the framework are Trace Analyzer, Layout Decision Maker,
Pattern and Layout Knowledge Base, and Data Reorganization
Manager. The Trace Analyzer uses a binary instrumentation
method to trace I/O read calls and to identify data access
patterns. Our current implementation supports the HDF5 li-
brary to trace hyperslab (a subset of a multi-dimensional array)
definitions that access bounding box and element selections.
We have developed in this work a cost model (Section III-B)
to predict the number of disk drive page accesses by a
read access pattern. The Layout Decision Maker analyzes
the cost of accessing data using the available layouts of
the requested data and selects a layout that would give the
best access performance. The supported layout reorganization
techniques, as shown in Figure 1, are designed as plugins
so new layouts can be easily added for more specialized
optimization. The Data Reorganization Manager uses the
suggestions of improved layouts to reorganize and replicate
data with optimized layouts. An advanced user can initiate
a request to the Data Reorganization Manager to reorganize
data. When multiple replicas of the data in different layouts are
available, the Layout Decision Maker dynamically redirects
the read calls to the selected replica for obtaining the best
performance. The metadata related to the available layouts
and data access pattern history are managed in the Layout and
Pattern Knowledge Base. We discuss each of these components
in detail in the following subsections.

A. Trace Analysis and Pattern Detection

The first step to understand the data usage of applications is
tracing the I/O read calls and identifying patterns. Motivated
by existing work [27], [13], [21], we characterize data usage

patterns in accessing a particular dataset, by focusing on three
major aspects: (1) variables within a dataset being accessed,
(2) accessed region (one or more sub-planes or whole plane,
one or more sub-volume or whole volume, scattered points)
of variables, and (3) the size of the requests.

The runtime pattern detection operation is performed first
by extracting the relative information from HDFS5 read calls
issued by the running application. Similar to our previous
work [21], this operation is performed within each MPI
process and we keep the related information in an auxiliary
data structure. We then analyze the data selection information
to identify patterns. For HDF5 and other I/O libraries such
as NetCDF and ADIOS, element (point) and bounding box
selections are the two typical types of data selection provided
to users that result in different patterns. We use a compact
representation for the identified patterns, as shown in Sec-
tion III-C.

To identify different patterns induced by element and hyper-
slab selection, our framework first checks the selection type
and then records the data selection information during runtime.
This information is then used for selecting a high performant
layout (Section III-B) and if necessary for creating an addi-
tional replica in offline layout management (Section III-D).

1) Bounding Box Selection: Many analysis applications
read data from a variable that is bounded by spatial locations
defined by multi-dimensional array coordinates. As catego-
rized by Lofstead et al. [16], in a 2D array, this bounding
box region is referred as sub-plane or a whole plane and
in a 3D dataset, the region is called sub-cube. In HDFS5,
the bounding box selections are called hyperslabs. A HDF5
hyperslab selection can be regarded as a complex bounding
box selection. It allows users to select multiple bounding boxes
with arbitrary regions using set operations (e.g. intersection,
union, etc.). Such flexibility simplifies users effort to read their
interested data regions in one read function call. Dealing with
complex definitions of hyperslab challenges the existing work
(such as [23], [27], [13]), which deals with one bounding
box selection at a time. One such example is when accessing
a labeled dataset, where the data is partitioned into chunks
and each chunk has a different label. The data of one label
is scattered in a file and is determined by an auxiliary index
(See Section IV-E for more details).

2) Element Selection: Element selection is commonly used
when a query library is involved, where the coordinates of
typically scattered elements are given and the corresponding
data need to be read from file. The coordinates can often be
obtained fast with indexing techniques such as FastBit [25] and
ISABELA-QA [14]. However, reading the data often results in
extremely low I/O throughput due to the large number of non-
contiguous reads with small request sizes. The capability to
optimize for such patterns would bring huge read performance
improvements and thus motivates us to explore the methods
for such optimization.

To optimize data reads, we only assume the coordinates of
the data selected as input, specifically, we do not require that
the high level criteria on which the selection was based (e.g.,
range query) is known. As a result, our optimization is generic
and can benefit the existing indexing techniques directly.

Type Eligibility
‘ Re(;ue;t Request Replica
: Replica .: or or Request Yes
Fig. 3. The eligibility for a replica to be a candidate is determined by how

much overlap it has with the read request. A replica is not eligible with no
or partial overlap region while eligible in other cases.

For example, in the analysis and visualization of the VPIC
dataset [3], only the particles with high energy are of interest.
And thus a small subset of elements would be repeatedly
accessed in a sequence of queries with value constraints such
as Energy > 1.3, Energy > 1.5, Energy > 1.8, etc. By
clustering those scattered elements with an intrinsic correlation
into a contiguous chunk of data in file, and storing their
original offsets, a large amount of time can be saved when
future accesses include these elements. More details about the
“clustering” part will be elaborated in Section III-D.

B. Layout Decision Making

The layout decision maker uses the pattern information
recorded in the detection process and attempts to find the
best matching replicas. The layout decision making process
consists of two main steps:

1) Step 1: Candidate Selection: The layouts that cannot
satisfy the request are first pruned to avoid the potentially
large overhead of iterating through all layouts and loading
their metadata. To be I/O efficient, a storage-lightweight
catalog containing the start and end offsets for each existing
layouts is maintained and used for the first round of coarse-
grained pruning. The coarse-grained pruning prevents loading
all metadata files. Another round of fine-grained pruning is
performed, which loads the rest of metadata (the exact regions
of data that a replica contains) of the remaining layouts and
compared them with the requested data regions. A candidate
set of potential replicas is generated using the following rules
shown in Figure 3.

Note that we consider replicas that partially overlap with the
requested data as not eligible. This is because the overlapping
regions cannot be estimated accurately without loading the
metadata of a replica. Accessing the metadata, especially for
element selections (mappings to the original dataset), results
in non-negligible I/O time as the size of metadata grows
linearly with the data. Though it is best when the data of a
replica is exactly the same as a request, we found performance
improvements using the replica in two cases: 1) when the
request region is larger than the replica, splitting the read
request to read the entire replica and the rest is still beneficial
especially when the overlapping region is relatively large (see
Section IV-B); and 2) when the replica contains more data
than the request, using the replica results in more contiguous
accesses than using the original dataset and is expected to

TABLE 1
PARAMETERS IN THE COST ANALYSIS MODEL.

Symbol Meaning

Ny, Number of I/O client processes accessing OST ¢
Niy ccessd withn 08T 1o

Ni Number of non-contiguous chunks need to be

chk accessed within OST 14

Average cost of reading contiguous blocks of

Trg data per page

Cost of reading non-contiguous chunks on one

Tenk
chk storage node

provide better read performance before a specific replica for
that pattern is created.

2) Step 2: Layout Ranking Via Cost Model: The candidate
replicas are ranked and the final decision is made via our
page-level cost model. Inspired by the previous research work
from [27], [13], we adopt a similar model with adjustments
that better estimate the costs. As opposed to byte-level cost
model, we chose to use a page-level cost model as it more
accurately reflects the file read cost, especially in cases of
element selection. The estimated read time 7. for replicas with
different layouts is defined as follows (parameters defined in
Table I):

T, = max{(N}, - T,y + Nops. - Topi)NZ, | Vie O} (1)

where O is the set of Object Storage Targets (OSTs). Based on
the request and the layout, we “flatten” the requested region
into linear space and calculate N, and N’,, within the data
stored on each OST. This cost model estimates the total time
needed when reading data across multiple OSTs, and assumes
each OST offers the same I/O rate as well the network and
storage latency. T}, T;;) are measured beforehand and vary
in different systems. The network and storage latency are
considered as constants when comparing between the cost
of different layouts, and are not included in the model. We
compare the cost for all eligible replicas and the one with
smallest 7} is selected.

3) I/0 Redirection in HDF5: Once the layout decision is
made, our framework automatically directs the read to the
chosen replica. The replica’s metadata such as the file and
variable’s path and name and the mapping of the layout to the
original dataset is stored as part of the metadata, and becomes
effective for the actual read. We have modified the related
HDFS5 read functions with our data selection procedure. When
no replica is available, the normal HDF5 read process is used.
If any replica is selected by our framework, the normal HDF5
read is skipped and the corresponding data in the replica is
read instead.

C. Pattern and Layout Knowledge Base

To prepare the information needed for layout reorganization,
our framework performs historic usage pattern analytics each

time new patterns are discovered during runtime. It is an offline
incremental analysis process that extracts and analyzes data
usage patterns. It is based on the previous results from runtime
pattern analysis (Section III-A) with two more aspects added:
(1) when and how many processes are issuing read requests
together, (2) total size and I/O throughput. These are obtained
after a read call completes. Based on the above aspects,
our framework adopts a data usage patterns representation
as {variable name/path, selection type and spatial region,
process IDs, start/end time, total size, /O rate} Each
read request results in one such record and is inserted into
the pattern history and the most important aspect is the spatial
region.

A pre-processing step is performed to generate global
patterns by merging the local patterns of each MPI process.
The global pattern provides necessary information for the later
data placement among OSTs (Section III-D3). Analysis of
these patterns produces new information such as the “hot” data
regions and pattern frequency for a dataset. This information,
together with the metadata from existing layouts (replicas),
is maintained in the “Knowledge Base”. The layout metadata
includes the replica’s original file and reorganization infor-
mation. Our framework automatically loads information from
the knowledge base when the application starts. For offline
layout management, the knowledge base supplies information
to layout manager for layout creation and deletion.

D. Data Layout Reorganization

Layout management includes three tasks crucial to read
performance: replica creation (when and how to create a new
layout), replica eviction (which to remove when exceeding
a user’s storage budget), and replica placement (how the
data is distributed among OSTs). This management occurs in
an offline fashion, when the application terminates, to avoid
runtime I/O contention. We assume that the data resides in
parallel file systems such as Lustre, and the replicas with
their metadata are stored in a special directory under the same
directory with the original dataset.

1) Replica Creation: The layout manager makes the deci-
sion of when and how to create a new layout given the in-
formation from the knowledge base. This knowledge base can
initialized with two options: (1) our framework can “learn” and
decide what and how to perform layout optimizations, which
takes effect after a few runs; or (2) users can instrument our
framework with the patterns from their knowledge, allowing
performance improvements at the first use. Three common
replica creation scenarios are considered with the correspond-
ing strategy that our framework automatically selects:

1) The original dataset can be reorganized and limited
additional storage space is allowed: “Concatenation”
is used to create partial replicas when existing replicas
cover none of a trivial portion of the request (e.g.,
Section IV-B).

2) The original dataset cannot be modified, but unlimited
storage space is allowed: “Concatenation” is used to
create as many as possible replicas (e.g., Section IV-E).

3) The original dataset can be reorganized but no addi-
tional storage is allowed: Transposition or space-filling
curves are used (e.g., D2 scenario 1 of Section IV-C).

The use of transposition and space-filling curves is thor-
oughly discussed in existing research [15], [23]. We pro-
vide more information on concatenation, which was explored
in [27], [13], but only for single bounding box selection with
high regularity of spatial patterns (kd-strided). To complement
their work, our method adds support for both hyperslab
selection with non-regular spatial patterns as well as element
selection. We describe concatenation as follows: with a data
selection that contains multiple chunks of non-contiguous
data, the data between the chunks are removed and all the
chunks are concatenated into one big contiguous chunk. By
storing this big chunk as a partial replica, when the same
(or overlapping subset) data selection occurs, the big chunk
can be read all at once and thus brings read performance
improvements.

2) Replica Eviction: Storage efficiency is achieved through
the analysis of overlapping regions between new patterns and
existing ones, and the deletion of old, less frequently used
replicas. When the additional storage reaches the user-defined
budget, the replicas are ranked according to a combination
of their recent usage, size, and effectiveness (performance im-
provement time g/ timeneq); older and less effective replicas
are dropped to make space for new ones. As with maintaining
layouts, each replica is associated with one “metadata” file
containing the mapping to the original file. A separate “range”
file is maintained for each dataset and stores the start and
end offset of each replica for fast pruning as discussed in
Section III-B.

3) OST-Aware Replica Placement: Even when the right
layout organization technique is selected, read performance
can still be far from ideal when treating the parallel file
system (PFS) as a black box. Popular PFSs, such as Lustre
and PVES, use striping for data distribution among multiple
storage devices. In Lustre file system, Object Storage Targets
(OSTs) are for storing data. The data distribution on Lustre

Process

(a) (b)

Fig. 4. Two bad cases where each OST is accessed by multiple processes.
(a) Each process access data from all OSTs. (b) Each process access data

from a subset of OSTs.
Process

LYYy

Fig. 5. Two ideal cases where each OST is only accessed by minimal number
of processes. (a) The number of processes equals to that of OSTs. (b) The
number of processes is larger than that of OSTs.

is decided by the stripe count (how many OSTs to use) and
the stripe size (size of data to write to one OST before
moving to the next). Even with manual adjustment, such
simple striping strategy can not provide efficient read accesses.
IO contention [10] is yet another important factor that affect
overall read performance. Processes reading contiguous data
with size comparable to stripe_count * stripe_size would lead
to the scenario where one OST is accessed by many processes,
yielding contention (see Figure 4) that significantly degrades
the overall read performance.

To avoid OST contention, the best practice is to make each
OST be contacted by as few processes as possible—a guiding
principle in our framework. Our framework analyzes the usage
patterns (Section III-C) and rearranges the data so that future
accesses that are the same, or similar, will have low read
contention, as shown in Figure 5.

IV. RESULTS
A. Overview of Evaluation

To demonstrate the effectiveness of our framework, we
evaluated the read performance of kernels extracted from
five different scientific applications or datasets from various
science domains. We ran all our experiments on a Cray
XC30 supercomputer named “Edison” at the National Energy
Research Scientific Computing Center (NERSC). The data was
stored on a Lustre file system equipped with 36 Object Storage
Servers (OSSs) and 144 Object Storage Targets (OSTs). All
available OSTs were used for storing data and each experiment
was repeated multiple times to obtain consistent performance
results. To avoid effects of caching, multiple copies of the data
were created to guarantee that the same file is not accessed
by any two consecutive experiments.

I/O kernels from five different real scientific applications
were used in our experiments. These include: (1) querying a
188 billion particle plasma physics data produced by Vector
Particle-In-Cell (VPIC) simulation of magnetic reconnection
phenomenon [3] to demonstrate the support for element selec-
tion and partial match (Section IV-B); (2) accessing climate
model and observation data, used for detecting atmospheric
rivers (AR) [4], to demonstrate the ability of applying histor-
ical optimization strategies on new datasets (Section IV-C);
(3)accessing Electrocorticography (ECoG) data [1] to demon-
strate the support for non-regular patters with an ability to per-
form optimizations for different data regions (Section IV-E);
(4) accessing data from Mass Spectrometry images [19] to
show that our framework is able to support and manage
different layout reorganization techniques at the same time
(Section IV-D); and (5) accessing block-structured adaptive
mesh (AMR) data [6] to show that our framework supports
AMR data in addition to uniform grid data and point-based
data (Section IV-F). These kernels represent the read accesses
of several scientific data analysis applications. All datasets
used HDFS5 file format [22].

For each experiment, we compare the I/O time between
accessing the data in its default layout (row-major), with
unmodified HDFS5, and that of the reorganized layout selected
by our framework. In the climate and mass-spectrometry

imaging accesses, we further compare the performance with
two scenarios: with and without the availability of addi-
tional storage. In the case of no additional storage available,
our framework selects one from transposition, Z-curve, and
Hilbert-curve based on the pattern. This new layout replaces
the original data file.

We demonstrate replica creation only in the AR detection
experiment, and omit this process in the other experiments.
Our framework initially creates replicas in an aggressive way,
as the allowed storage space is sufficient. That is, data is
replicated with the selected layout even if it is accessed once.
When the total available storage becomes low with the increase
of replicas, only the more frequently accessed data regions
are reorganized and replicated. The oldest and less frequently
accessed replicas are replaced. This entire process yields a
shorter initial “training time”, while maintaining good read
performance for the true frequent patterns in the long run.

B. VPIC: Plasma Physics Particle Data

The VPIC dataset is generated from the first principles 3D
electromagnetic relativistic kinetic particle-in-cell code [3], to
simulate collisionless magnetic reconnection phenomenon of
two trillion particles. It contains properties of particles that
include the location (X, Y, Z), kinetic energy (Energy),
and individual components of particle velocity (U,, U,, and
U.). We used a subset of the trillion particle dataset based on
the condition of Energy > 1.1. Four variables are retrieved:
“Energy,” “X,” “Y,” and “Z,” using 4096 MPI processes. Each
variable contains about 188 billion elements with a size of 700
GB and each stored as a 1D-array.

In our experiments, we use the queries similar to those of
a previous analysis of this data [3] for visualizing the highly
energetic particles. The corr