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Abstract 

Correlation Function Analysis of the COBE 

Differential Microwave Radiometer Sky Maps 

by 

Charles Howe Lineweaver 

Doctor of Philosophy in Physics 

University of California at Berkeley 

Professor George F. Smoot, Chair 

The Differential Microwave Radiometer (DMR) aboard the COBE satellite has detected 

anisotropies in the cosmic microwave background (CMB) radiation. A two-point correlation 

function analysis which helped lead to this discovery is presented in detail. The results of a 

correlation function analysis ofthe two year DMR data set is presented. The first and second 

year data sets are compared and found to be reasonably consistent. The positive correlation 

for separation angles less than "' 20° is robust to Galactic latitude cuts and is very stable 

from year to year. The Galactic latitude cut independence of the correlation function is 

strong evidence that the signal is not Galactic in origin. The statistical significance of 

the structure seen in the correlation function of the first, second and two year maps is 

respectively > 90', > 100' and > 180' above the noise. The best x2 fit of the the model 

power spectra parameters nand Qrms-PS to the correlation function yields n = 1.2!~:~ and 

Qrms-PS = 17.3!~:~. 
The noise in the DMR sky maps is correlated at a low level. The structure of the 

pixel temperature covariance matrix is given. The noise covariance matrix of a DMR sky 

map is diagonal to an accuracy of better than 1%. For a given sky pixel, the dominant 

noise covariance occurs with the ring of pix.els at an angular separation of 60° due to the 

60° separation of the DMR horns. The mean covariance at 60° is 0.45%!8:i: of the mean 

variance. The noise properties of the DMR maps are thus well approximated by the noise 
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properties of maps made by a single-beam experiment. Previously published DMR results 

are not significantly affected by correlated noise. 

2 

•• ·. 



•• 

Contents 

List of Figures vi 

List of Tables viii 

Thesis Summary ix 

1 Cosmology and the Cosmic Microwave Background 1 
1.1 The Standard Hot Big Bang Model . . . . . . . . . . . 1 
1.2 CMB and the Surface of Last Scattering . . . . . . . . 4 
1.3 Anisotropy Mechanisms in a Perturbed Robertson-Walker Universe . 9 
1.4 Structure Formation and Anisotropy Predictions . . . . . . . . . . . 12 

2 The DMR Experiment 14 
2.1 COBE Mission . . . . . . . . . . . . . 14 
2.2 COBE Orbit and DMR Observing Strategy 18 
2.3 Galactic Foreground 18 
2.4 Instrumentation . 22 
2.5 Noise . . . . . 22 

3 Data Processing 25 
3.1 Differential Data . . . . . . . . . 25 
3.2 Map-Making Algorithm . . . . . 28 

3.2.1 Pointing and Pixelization 29 
3.2.2 Validation . . . . . . . . . 30 

4 Correlation Function: Theory versus Practice 
4.1 Introduction ........... . 
4.2 Legendre Polynomial Expansion . 
4.3 Model Power Spectra . 
4.4 Cosmic Variance . . . . . . . . . 
4.5 Beam Smoothing ........ . 
4.6 Correlation Function from DMR Maps 
4. 7 RMS Temperature Fluctuations from C( a) 
4.8 New Way to Estimate Qrms ...•.•... 

4.9 Bias Due to Multipole Subtraction and Galactic Latitude Cuts 

iii 

33 
33 
34 
35 
38 
38 
43 
43 
45 
46 



5 The First Year Results 
5.1 Introduction . 
5.2 Is It Noise? ..... . 
5.3 Is It Galaxy? . . . . . 
5.4 HIt's CMB, How Large is the Signal? 
5.5 First Year Dipole Results . . . . . . . 

5.5.1 Calibrator of Other Diffuse Backgrounds . 

6 Correlation Function Error Analysis 
6.1 Introduction . . . . . . . . . . . . . . 

48 
48 
49 
52 
54 
56 
57 

60 
60 

6.2 Error Bars and Covariance Matrices of C(a) . . . . . 61 
6.3 Separation Angle, Galactic Cut and Time Dependence 65 

7 Correlation Function Analysis of the Two Year Maps 67 
7.1 Channel Comparison, A+B and A-B Comparison . 67 
7.2 Galactic Latitude Independence . . . . . . 75 
7.3 RMS Temperature Fluctuations and Qrms . . . . . 76 

8 Correlation Function Comparison of the First and Second Year Maps 82 
8.1 Year One vs Year Two Data . . . . . . . . . . . . 82 
8.2 Channel Comparison, A+B vs A-B Comparison. 83 
8.3 Statistical Significance and Galactic Cuts 88 

9 Correlated Noise in the Maps 92 
9.1 Introduction . . . . . . . . . . 92 
9.2 Pixel Covariance Matrix A-1 93 
9.3 Correlated Noise Estimates . 96 

9.3.1 Correlated Noise Estimates from the Covariance Matrix 96 
9.3.2 Correlated Noise Estimates from Monte Carlo Simulations . 97 
9.3.3 Correlated Noise Estimates from DMR Maps 100 

9.4 Cosmological Implications 100 
9.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . 102 

10 Estimates of nand Qrms-PS from the Correlation Function 103 
10.1 The n and Qrms-PS Parametrization of the Power Spectrum 103 
10.2 X2 fitting for n and Qrms-PS 104 

10.2.1 Method . . . . . . . . . . . . . . . 104 
10.2.2 Results . . . . . . . . . . . . . . . 105 

10.3 Other Determinations of n and Qrms-PS 107 

11 Conclusions and the Future 111 
11.1 Conclusions . . . . . . . . . . . . . . . . 111 
11.2 Further DMR Analysis . . . . . . . . . . 112 
11.3 Experimental Assault on CMB Anisotropies 112 

11.3.1 Confirmation . . . . . 113 
11.3.2 Small Angular Scales . . . . . . . . . 113 

iv 



11.4 New Field of Astronomy 

Bibliography 

Appendices 

A DMR Publications 

B Thesis Notation 

C DMR Notation 

D Literature Notation 

E Software Versions: Pass 1 vs Pass 2 

F Friedmann Equation 

G Antenna Temperatur~ 

H Spherical Harmonic Coefficients alm and btm 

I Correlation Function Power Spectrum Expansion 

J Arbitrary Mean Value of Map Solution 

K Error on the Correlation Function 

L Relation to Density Contrast Two-Point Correlation Function 

Acknowledgements 

v 

114 

117 

125 

129 

131 

133 

135 

139 

140 

142 

145 

147 

150 

153 

155 



List of Figures 

1.1 CMB Spectrum Measurements ......... 5 
1.2 CMB Isotropy ................... 5 
1.3 Space-Time and the Surface of Last Scattering 6 
1.4 Monopole, Dipole and Structure 11 

2.1 COBE Satellite . . 15 
2.2 COBE's Orbit . . . 16 
2.3 Sky Coverage Map 17 
2.4 Galactic Foregrounds . 20 
2.5 DMR Heterodyne Receiver 21 

3.1 Effect of Noise Spike on the Map Solution: 1st Iteration 31 
3.2 Effect of Noise Spike on the Map Solution: 2nd Iteration . 31 
3.3 Effect of Noise Spike on the Map Solution: 5th Iteration . 32 
3.4 Effect of Noise Spike on the Map Solution: 30th Iteration 32 

4.1 Legendre Polynomial Expansion of Correlation Function 36 
4.2 Degeneracy of nand Qrms-PS 39 
4.3 Cosmic Variance ............... 40 
4.4 Beam Smoothing of Power . . . . . . . . . . 42 
4.5 Correlation Functions of Dipole and Galaxy 44 
4.6 Auto-correlation Multipole Subtraction Bias . 47 

5.1 Yr1 Separate Channels ............. 50 
5.2 Yr1 A+B vs A-B Comparison ......... 51 
5.3 Yr1 53 GHz Galactic Latitude Cut Independence 53 
5.4 Yr1 Galactic Latitude Cut Independence . 53 

1.1 

5.5 Yr1 Cross-correlation Function 55 
5.6 Nested Velocities .. 59 

Error Bars on C (a) 
w' 

6.1 64 

7.1 2 Yr Separate Channel Comparison . 68 
7.2 2Yr A+B vs A-B Comparison .... 69 
7.3 2Yr A+B Sky Map in Polar Projection . 71 
7.4 2Yr A-B Sky Maps in Polar Projection . 72 

vi 



.... 

-... 

7.5 2Yr Best Combinations A+B and A-B 
7.6 2Yr Cross-correlation of 53 GHz with 90 GHz 
7.7 2Yr Galactic Latitude Cut Independence ... 
7.8 Frequency Dependence of the Galactic Plane 
7.9 2Yr Correlation Functions with and without Quadrupole . 

8.1 Yr1 vs Yr2 Separate Channel Comparison ...... . 
8.2 Yr1 vs Yr2 A+B vs A-B Comparison ......... . 
8.3 Correlation Function Comparison of Yr1, Yr2 and 2Yr 
8.4 Yr1 Map .................. . 
8.5 Yr2 Map .................. . 
8.6 Yr1 Galactic Latitude Cut Independence . 
8. 7 Yr2 Galactic Latitude Cut Independence . 
8.8 Yr1 and Yr2 Correlation Functions with and without Quadrupole 

9.1 Covariance Matrix Inverse A .... . 
9.2 Covariance Matrix A-1 ....... . 

9.3 Pixel Temperature Covariance Matrix 
9.4 Correlation Functions of Correlated Noise 
9.5 Auto-correlation Function Bias in Real Sky Maps . 

10.1 X2 contours in n, Qrms-PS space ....... . 
10.2 Determinations of Power Spectrum Parameters 

11.1 Closure . . . . . . . . . . 

E.1 Pass 1 53A 2Yr Coverage 
E.2 Pass 2 53A 2Yr Coverage 
E.3 Separate Channels for Yr1 Pass 1 vs Pass 2 

vii 

73 
74 
77 
78 
81 

84 
85 
86 
87 
87 
90 
90 
91 

95 
95 
97 
98 

101 

109 
110 

115 

137 
137 
138 



'.' 

List of Tables ,. 

1.1 Anisotropy Mechanisms 13 

2.1 DMR RMS Noise Values . 24 

5.1 Nested Velocities ..... 59 

7.1 Frequency Dependence of Signal 75 
7.2 Statistical Significance as a Function of Frequency 76 
7.3 RMS Temperature Fluctuations and Qrms Estimates from VC{O). 79 

8.1 Statistical Significance as a Function of Galactic Cut 89 

10.1 nand Qrms-PS fits to the Correlation Function ... 105 
10.2 Other nand Qrms-PS Determinations from DMR Data 108 

11.1 Recent CMB Anisotropy Experiments ... 116 

D.1 Diversity of Correlation Function Notation. 134 

E.1 Pass 1 versus Pass 2 Processing . . . . . . . 136 

viii 



.,.. 

Thesis Summary 

Chapter 1 Cosmology and the Cosmic Microwave Background 

To provide a context for understanding the Differential Microwave Radiometer (DMR) 

measurements we discuss the standard hot big bang model, the cosnuc nucrowave 

background (CMB) radiation and the surface of last scattering. We review the 

mechanisms of anisotropy generation concentrating on the large scales relevant to the DMR 

measurements. Finally, we discuss CMB anisotropy predictions based on the gravitational 

instability model of structure formation. 

Chapter 2 The DMR Experiment 

The purpose of the D MR instrument is to detect large angular scale anisotropies in the 

CMB. We describe the COBE orbit and how the DMR experiment is designed to meet this 

goal. We discuss Galactic foreground. We review the instrumentation, noise properties and 

how a DMR measurement is made. 

Chapter 3 Data Processing 

The main goal of the data processing is to turn the differential measurements into a sky 

map. We provide an overview of the software pipeline in which the data flow from the 

satellite to the maps. We present a description of the calibration, baseline removal and 

correction of the data which are then used to make the maps. We concentrate on describing 

how the map-making code operates. 

Chapter 4 Correlation Function: Theory versus Practice 

The two-point temperature correlation function provides an important characterization of 

CMB anisotropies. We present several simple examples to illustrate the use and power of 

a correlation function analysis. We describe its relation to the power spectrum and the 

role played by cosmic variance. We compare the theory to· the nitty-gritty of the data 

analysis including incomplete sky coverage and the real DMR beam pattern. Additionally 

we describe a novel way to obtain the quadrupole amplitude of our observable Universe 

from the correlation function. 
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Chapter 5 The First Year Results 

We present a detailed correlation function analysis of the first year data set which 

contributed significantly to the DMR discovery of anisotropy and was partially reported 

in Smoot et al. (1992). We use the correlation function to help determine that the observed 

structure cannot be attri_buted to noise or Galactic foreground. As expected of a CMB 

signal, the correlation function signal is consistent with no frequency dependence and no 

Galactic latitude dependence. The dipole results from the first year maps are summarized 

and interpreted. 
' ' 

Chapter 6 Correlation Function Error Analysis 

We compute error bars for C( a) from a standard propagation of errors formula and compare 

the results with a calculation of the covariance matrix of the correlation function with and 

without cosmic variance. Approximations for the error bar dependence on separation angle, 

Galactic plane cut and time are given. 

Chapter 7 Correlation Function Analysis of the Two Year Maps 

We present a detailed correlation function analysis of the two year (2Yr) maps. The results 

support the conclusions based on the first year of data. The results of a novel method to 

obtain the rms quadrupole of our sky are given. 

Chapter 8 Correlation Function Comparison of the First and Second Year Maps 

Confirmation of the DMR first year results can be obtained from a comparison with the 

independent second year DMR results. We present a correlation function comparison of 

the first year (Yrl) and second year (Yr2) data. The Yrl and Yr2 data sets are reasonably 

consistent. The positive correlation for separation angles less than ....., 20° is robust to · 

Galactic latitude cut and is very stable from year to year. Some of the differences between 

Yrl and Yr2 are discussed. 

Chapter 9 Correlated Noise in the Maps 

The COBE DMR sky maps contain low-level correlated noise. We obtain estimates of the 

amplitude and pattern of the correlated noise from three techniques: angular averages of the 

covariance matrix, Monte Carlo simulations of two-point correlation functions, and direct 

analysis of the DMR maps. The results from the three methods are mutually consistent. The 
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noise properties of the DMR maps are well approximated by the noise properties of maps 

made by a single beam experiment. Published COBE DMR results are not significantly 

affected by correlated noise. 

Chapter 10 Obtaining nand Qrms-PS from the Correlation Function 

We obtain the power law spectral index nand the quadrupole normalization Qrms-PS from 

the correlation functions of Yrl, Yr2 and 2Yr DMR maps. We compare our results to other 

published nand Qrms-PS determinations. 

Chapter 11 Conclusions and the Future 

We summarize the thesis and draw useful conclusions about further analysis. We discuss 

the experimental assault on the power spectrum of CMB fluctuations. 
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Chapter 1 

Cosmology and the Cosmic 

Microwave Background 

Abstract 

To provide a context for understanding the Differential Microwave Radiometer (DMR) 

measurements we discuss the standard hot big bang model, the cosmic microwave 

background (CMB) radiation and the surface of last scattering. We review the 

mechanisms of anisotropy generation, concentrating on the large scales relevant to the DMR 

measurements. Finally, we discuss CMB anisotropy predictions based on the gravitational 

instability model of structure formation. · 

1.1 The Standard Hot Big Bang Model 

Cosmology is a scientific attempt to answer fundamental questions of mythical 

proportion: How did the Universe come to be? How did it evolve? How will it end? 

Over the past century progress has been made towards answering these questions and has 

resulted in a standard hot big bang model describing the evolution of the Universe. This 

model provides a consistent framework into which all the relevant cosmological data seem to 

fit and is the dominant paradigm against which all new ideas are tested. In this Chapter we 

review the basic ideas of the standard big bang model. For a more complete description see 

the introductory chapters of Peebles (1993), Padmanabhan (1993), Kolb & Turner (1990) 

and references therein. 
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The big bang model of the Universe is based on the following observations. 

1. The Universe is expanding 

2. On the largest scales the Universe is isotropic and homogeneous 

3. The Universe is filled with microwave photons coming from all directions 

4. The Universe is composed of~ 75% hydrogen and~ 25% helium 

Each observation and its implications are discussed separately below. 

1. The Universe is expanding 

In the early part of this century cosmology took a quantum leap when it was found that 

the nebulae are galaxies external to our Milky Way Galaxy and that curiously, they are all 

receding from us. This universal recession is interpreted as the expansion of the Universe 

and is codified in Hubble's law v = H d. That is, the recession velocity v of a galaxy is 

proportional to its distance d from us and His Hubble's constant. The implications of an 

expanding universe were profound. The Universe could no longer be considered static and 

it must have been smaller, denser and hotter in the past. A finite age for the Universe is 

postulated. Age determinations support this idea. So far no objects have been found with 

an age greater than 20 billion years. The dark night sky is also evidence for the the finite 

age of the observable Universe (Harrison 1987). A finite age however carries with it the 

notion of a creation event or a big bang. The origin of the Universe, t = 0, seems to be 

the Achilles heel of the model. Is there a singularity at t = 0? What· happens before that? 

Strictly speaking however, the big bang origin of the Universe at t=O is not part of the big 

bang model (Peebles 1993 p.6). 

2. On the largest scales the Universe is isotropic and homogeneous 

The Universe looks the same in all directions and the matter seems to be smoothly 

distributed. Observations of the cosmic microwave background radiation, the x-ray 

background and deep radio surveys provide solid evidence for the isotropy. Tests of 

homogeneity are more difficult since they require three-dimensional· information. The 

largest galaxy red-shift surveys may be beginning to see homogeneity, however the 

assumption of homogeneity is based as much on mathematical convenience as observational 

evidence. Einstein's equations have a simple isotropic and homogeneous solution known as 

Friedmann's equation. It is the dynamical equation relating a universal scale factor R to the 

matter in the Universe (Appendix F). This allows us to write Hubble's law without reference 
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to galaxies: R = HR, where the dot indicates differentiation with respect to time and we 

take R=l today. On small scales the Universe is not isotropic and homogeneous. There are 

lots of small scale structures in the Universe (galaxies, galactic clusters, voids, superclusters) 

and any model of the Universe needs to explain how they got there. Gravitational collapse 

of initially small density inhomogeneities is the standard big bang explanation. This is 

not very far-fetched since we are now falling at about 630 km/s towards the largest local 

overdensity. 

. 3. The Universe is filled with microwave photons coming from all directions 

This sea of photons is ~nown as the cosmic microwave background radiation (CMB). The 

photon wavelengths are about as big as these letters and there are about 415 of them in 

every cubic centimeter of the Universe. This thesis is about measurements of these photons 

and their slightly anisotropic distribution. 

4. The Universe is composed of~ 75% hydrogen and~ 25% helium 

This is true for the visible baryonic matter i.e., stars, dust and gas. In the big bang model 

this three to one ratio was determined during an epoch of nucleosynthesis in the early 

Universe. Big bang nucleosynthesis (BBN) occurred within the first few minutes after the 

big bang. The agreement of BBN predictions for the light nuclei abundances H, D,3He, 
4 He and 7Li provides the earliest solid evidence supporting the big bang model. The trace 

amounts of other elements were cooked up in stellar kitchens at much lower redshift. Since 

BBN occurred during the first three minutes after the big bang, it is often said that the 

big bang model has been tested that far back. In addition to this visible baryonic matter, 

there is much evidence that some kind of dark matter lurks about. The outlying parts of 

galaxies and galactic clusters are orbiting too fast to be contained by the visible matter. 

In the 1980's, theorists devised an important extension of the standard big bang model 

called in:fl.ation. In:fl.ation adds an early period of accelerating expansion to the history of 

the universe and also provides a mechanism (quantum :fluctuations) for the production of 

the initially small density inhomogeneities needed for gravitational instability theories of 

structure formation. The accelerating expansion solves two initial condition problems of 

the standard big bang model: 

(1) The horizon problem- the CMB has the same temperature in opposite directions yet 

the gas in those directions has never been in causal contact 
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(2) The flatness problem - the density of the Universe is near the critical value of a flat 

universe yet the Friedmann equation tells us that the initial deviation from :flatness would 

have had to be unbelieveably small for this to be the case today. Inflation solves these 

problems; it permits opposite sides of the observable universe to be in causal contact (i.e., 

in thermal equilibrium) before inflation and the expansion :flattens any pre-inflationary 

curvature, yielding n = 1. 

There are alternatives to the hot big bang model. See for example Layzer (1992) who 

advocates a cold big bang model. A critique of the hot big bang model is presented in 

Arp et al. (1990) while orthodoxy is well-defended and compared with other alternatives in 

Peebles et al. (1991). 

1.2 CMB and the Surface of Last Scattering 

The observable universe is expanding and cooling. Therefore in the past it was hotter 

and smaller. The cosmic microwave background ( CMB) radiation is the after glow of 

thermal radiation left over from this hot early epoch in the evolution of the Universe. 

The CMB is a bath of photons coming from every direction. These are the oldest photons 

one can observe and they contain information about the Universe at redshifts much larger 

than th~ redshifts of galaxies or quasars. The CMB is thus a unique tool for probing the 

early Universe. 

The prediction of the existence and the temperature of a CMB in 1948 (Alpher & 

Herman 1948) followed by its detection in 1964 (Penzias & Wilson 1965, Dicke et al. 1965) 

provides possibly the strongest evidence for the big bang. The CMB detection began the 

search for the determination of its exact spectrum and level of anisotropy. A CMB of truly · 

cosmic origin is expected to have a blackbody spectrum and to be extremely isotropic. 

COBE observations show that the CMB is very well approximated by an isotropic 

blackbody. The recently published COBE FIRAS result is that the CMB has the spectrum 

of a blackbody at a temperature of To = 2.726 ± 0.01 K (95%CL) (Mather et al.1994). 

Figure 1.1 shows how well the FIRAS measurements along with many other measurements 

agree with a blackbody spectrum at To = 2.726 K. Figure 1.2 displays the DMR 53 GHz 

two year map. Not only is the CMB blackbody, it is also highly isotropic. 
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Figure 1.1: CMB Spectrum Measurements. The spectrum of the CMB has been measured 

over 3 decades in frequency and found to be consistent with a blackbody at T0 = 2. 726 K. 
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Figure 1.2: CMB isotropy. DMR two-year 53 GHz full-sky map in galactic coordinates. 

The CMB is very well approximated by a perfectly isotropic blackbody. 
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Figure 1.3: Space-time and the surface of last scattering. The time axis is the world line of 

the stationary observer who is currently located at the apex of the light cone. CMB photons 

travel from the wavy circle in the surface of last scattering along the surface of the light 

cone to the observer. Points A and Care in opposite sides of the sky. If the angle between 

B and C is greater than a few degrees then B and C have not been in (post-inflational) 

causal contact. The unevenness of the circle represents potential fluctuations at the surface 

oflast scattering. The bottom two planes are at fixed times while the "NOW" plane moves 

upward. As it does, the size of the visible universe (wavy circle) increases. The object seen 

at C is currently at C'. 
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At approximately 10-2 seconds after the big bang the universe was about 101° K and 

nucleosynthesis began. At about 300,000 years after the bang, the universe had cooled down 

enough to allow the free electrons and protons to combine to form neutral hydrogen. This 

period is known as recombination or decoupling. This neutralization of the plasma allowed 

photons to free stream in all directions. 

Before recombination the universe was an opaque fog of free electrons, afterwards it was 

transparent. The boundary is called the cosmic photosphere or the surface oflast scattering. 

As its name implies, the surface of last scattering is where the CMB photons were Thomson 

scattered for the last time before arriving in our detectors (Figure 1.3). Except for the tiny 

(lo-9 ) contribution of one Lyman-a photon per hydrogen atom, the CMB photons were 

. not produced at this time, they were only scattered. 

The surface of last scattering can be described by several parameters. Here we derive 

the redshift Z£8 , the temperature Tts and the time tis of last scattering. As the Universe 

expands it cools. The CMB photons get redshifted and their blackbody temperature goes 

down. The fact that a redshifted blackbody remains a blackbody can be shown using the 

Lorentz invariance of l 11 jv3 or equivalently the mean photon occupation number. Since the 

expansion redshift z is defined by 

A0 1 
1 + Z = Ae = R(te) ' (1.1) 

(where thee and o stand for emitted and observed respectively), and since the temperature 

scales as T ex: 1/ Rex: 1 + z, the temperature as a function of redshift is 

T(z) = T0 (1 + z). (1.2) 

Recombination occurs when the CMB temperature has dropped to the point when 

there are no longer enough high energy photons in the CMB to keep hydrogen ionized; 

1 + H o-+ e- + p. Although the ionization potential of hydrogen is 13.6 eV (T "' 105 K) 

recombination occurs at T ~ 3000 K. The high photon to proton ratio ( 1J ~ 109 ) allows the 

high energy tail of the Planck distribution to keep the comparatively small number hydrogen 

atoms ionized until this much lower temperature. The Saha equation (e.g. Lang 1980) 

describes this balance between the ionizing photons and the ionized and neutral hydrogen. 

As the temperature decreases, an increasing Boltzmann factor suppresses ionization while 

the large photon to proton ratio, 1], maintains it. Recombination occurs when we have 

_.X.. 
e kT "' TJ, (1.3) 
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where x is the ionization potential. The large value of TJ allows T to get a~ low as 8000K. 

In addition, trapped Lyman-a photons keep much of the neutral hydrogen in an excited 

state making it easier to ionize (see e.g. Silk 1989)~ The result is that recombination occurs 

at Tts ~ 3000 K. Equation (1.2) then yields Zts ~ 1100. 

We get the time of last scattering using the time dependence of the scale factor R in 

the matter dominated regime. Inserting p ex R-3 in the Friedmann equation (see Appendix 

F) yields R(t) ex t 213 • Thus, 

(1.4) 

/ Therefore if the present age of the universe is t 0 "' 10x109 years, then tts "'3x105 years 

after the big bang. Thus the CMB photons have come to us from the surface of last 

scattering which can be described by the temperature, redshift and time 

Tts ~ 3000K 

Zts ~ 1100 

tts ~ 3x105years. 

(1.5) 

(1.6) 

(1.7) 

The surface of last scattering is at a fixed temperature and time after the big bang: 

tts = constant and Tts = constant. Thus from equation (1.2) we find that the surface 

of last scattering is receding from us with an ever-increasing redshift, Zts ex To
1(t). 

The size of a causally connected region on the surface of last scattering is important 

because it determines the size over which astrophysical processes can occur. A causally 

connected Hubble patch at last scattering is LH = 3ctts(1 + Zts) "' 200h-1 Mpc which 

subtends an angular size (}H 

(} ~ 1on1/2 Zts 
( ) 

-1/2 

H 0 1000 (1.8) 

Since the DMR beam averages over patches approximately 7° across, the smallest. spots 

detected by the DMR at the surface of last scattering are well into the causally disconnected 

(} > (}H regime. 

The thickness of the surface of last scattering is .6.z ~ 80 which corresponds to a length 

.6.L ~ 7n-112h-1 Mpc or an angular size of !:18 ~8' n-1/ 2 (Kaiser & Silk 1986). Anisotropies 

on scales smaller than about 8' are suppressed because they are superimposed on each other 

over the finite path length of the photon in the surface. It is possible that high redshift 

sources of ultraviolet photons reionized the hydrogen or kept it from recombining. This 
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reionization increases the effective thickness of the surface of last scattering and suppresses 

anisotropies on scales larger than 8' . For example for reionization Zreion > 200, anisotropies 

at scales less than "' 1° are suppressed while for Zreion > 20, anisotropies at scales less than 

"' 5° are suppressed (Bartlett and Stebbins 1992, Bond 1993). Notice however that the 

DMR results (scales > 7°) are uneffected by this reionization suppression, 

1.3 Anisotropy Mechanisms in a Perturbed Robertson­

Walker Universe 

To a very good approximation the CMB is a flat featureless blackbody; there are no 

anisotropies and the temperature is a constant T0 = 2. 726 K in every direction. This is seen 

in Figure 1.4 (top). When we remove the mean, the next largest feature visible at 1000 

times smaller amplitude is the kinetic dipple displayed in the middle panel of Figure 1.4. 

Anisotropies in the CMB are expected due to a variety of effects. The physical 

causes of the anisotropy can be conveniently attributed to pre-recombination, recombination 

and post-recombination epochs (Bertschinger, 1993). Pre-recombination anisotropies are 

due to photon "fluid compression", gravitational time delay, or entropy fluctuations. 

Recombination anisotropies are due to gravitational and Doppler red/blueshifts and 

post-recombination anisotropies are from differential gravitational redshifts in evolving 

potentials. Pre-recombination and recombination anisotropies are sometimes collectively 

referred to as primary anisotropies while post-recombination anisotropies are also known as 

secondary anisotropies. 

The differential temperature of the CMB in direction n, 8T 

expressed as 

T(n)- T0 , can be 

8T(n)_n·V0 _n·Vls(ii) <I?ls(ii) !j~n.( -)d 
T - + 3 2 + 2 &t ';l' t, n t, 

0 c c c c 
(1.9) 

where V0 is the Sun's velocity w.r.t. the CMB and Vts(ii) is the velocity of the surface of 

last scattering w.r.t. the rest frame of the CMB. The potential fluctuations <I? are related 

to the mass density by the Poisson equation # \72 <I? = 47rG8p. The first two terms in 

equation (1.9) are Doppler effects. The first produces the Great Cosine on the sky seen in 

the middle panel of Figure 1.4 (see also section 5.5). The second term causes sub-horizon 

fluctuations responsible for the Doppler peak in the power spectrum on degree scales. 
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The 7° DMR beam averages over many of these fluctuations and is not sensitive to this 

second term. The third and fourth terms are sometimes referred to as the Sachs-Wolfe and 

the integrated Sachs-Wolfe terms respectively (Sachs & Wolfe 1967). 

Consider the third term of equation (1.9), ?f!/3c2 , due to the gravitational redshift of a 

time independent-potential difference. The Pound-Rebka experiment used the Mossbauer 

effect to confirm the existence of a gravitational redshift of magnitude ?f! / c2 . So where 

did the 1/3 come from in the third term? Assuming adiabatic fluctuations the Stephan­

Boltzmann law yields ¥o = !8Prf Pr, where Pr is the radiation energy density. On super­

horizon scales 8pr/P = -~?f!jc2 (Stebbins 1993). Thus super-horizon adiabatic fluctuations 

produce 8T /To = - ~?f! / c2 , which cancels 2/3 of the gravitational redshift result leaving 

?f! f3c2 • Therefore although deep potential wells produce large gravitational redshifts, the 

photons coming out of them are not as redshifted as one would naively expect. 

The time-dependent Sachs-Wolfe effect, or Rees-Sciama effect, is caused by the time­

dependent potentials of collapsing over-densities (producing redshifts) and expanding voids 

(producing blueshifts ). These anisotropies are on very small scales and like the Doppler 

anisotropies on the surface of last scattering, are smoothed over by the DMR beam. Notice 

that all four terms in equation (1.9) are independent of the frequency of the radiation. This 

spectral flatness is used by observers to distinguish CMB anisotropies from. Galactic and 

extragalactic foregrounds. 

Figure 1.4 (bottom) is the smoothed full-sky two-year 53GHz A+B map. Some of the 

more prominent light and dark blurry spots above and below the horizontal plane of the 

galaxy are the largest and oldest structures ever detected. The spots are anywhere from a 

few degrees to a few tens of degrees across; too big to be causally connected at decoupling 

without invoking inflation. At these angular scales, the gravitational red- and blueshifts of 

the Sachs-Wolfe effect are believed to be the cause of the hot and cold spots, 

(1.10) . 

Since ?i!underdensity > ?f!overdensity we have 

T( iiunderdensity) > T( iioverdensity ). (1.11) 

Thus hot spots are mass underdensities and the cold spots are mass overdensities. By 

today these hot and cold spots, which we are seeing as they were about 15 billion y~ars 

ago, have become the largest voids and clusters of superclusters of galaxies that anyone has 
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Figure 1.4: Monopole, Dipole and Structure with Noise (top, middle and bottom) from the 

53 GHz smoothed two year maps. From top to bottom the greyscale limits are [0, 3.6 K], 

[-3.4, 3.4 mK] and [-150, 150 JLK]. 
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ever detected. The relevant equation giving the size in units of 100 Mpc and justifying this 

claim is 

- size today~ :
0
(noh)-1 100Mpc, (1.12) 

where () is the angular size of the structure in the maps. Plugging in a typical () of 20° one 

obtains 2000 (!!oh)-1 Mpc. Recall that 0.5::; h ::; 1, inflation predicts Q0 = 1 and that the 

size of the observable universe is ~ 3000 Mpc. 

For simplicity, in equation (1.9), we have assumed a Robertson-Walker metric and 

therefore do not consider differential expansion as a source of anisotropy. Additionally, we do 

not include the frequency dependent Vishniac (1987) and Sunyaev-Zel'dovich (1972) effects. 

These are post-recombination effects which contribute to small angular scale anisotropy to 

which the DMR is insensitive. We also do not include the more speculative anisotropies 

due to topological defects (monopoles, strings, walls, textures) or any contribution from a 

possible rotation of the Universe (Barrow, Juszkiewicz & Sonoda 1985). We also do not 

include polarization anisotropi,e~. Table 1.1 summarizes this larger array of CMB anisotropy 

mechanisms. 

1.4 Structure Formation and Anisotropy Predictions 

The galaxies around us are clustered on scales from 1 Mpc (our Local Group) up to 

"" 100 Mpc (great walls, sheets and voids). H these structures formed from overdensities 

which gravitationally collapsed, the overdensities must have been present at decoupling and 

must have produced temperature anisotropies on the surface of last scattering. Observers 

have been searching for the expected small temperature anisotropies ever since the discovery 

of the CMB. Predictions for the level of CMB anisotropy have decreased to keep pace with 

the observations: "We have estimated that anisotropies of order 1 per cent should occur 

in the microwave radiation" (Sachs & Wolfe 1967) and a year later, " ... that part of the 

temperature anisotropy in the microwave radiation at the present epoch which is due to 

primordial anisotropies should be less than 0.03 per cent (of 3 K)." (Misner 1968). 

Calculating the expected !:iT /To level from large scale structure cpf p levels 

without invoking dark matter leads one to the conclusion that these overdensities (and 

underdensities) should have been discovered 15 years ago. As experimenters found the 

surface of last scattering to be smoother and smoother, dark matter was invoked to keep 

the predicted level of temperature variations below experimental limits. Since dark matter 
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structures were able to start growing when the Universe became matter dominated at 

Zeq "' 104 , evoking dark matter reduces the predicted value of cT /To by about a factor 

of ZR.s/ Zeq "' 1/10. The DMR instrument aboard the COBE satellite was prudently 

constructed in the pre-dark matter epoch with enough sensitivity to probe the post-dark 

matter prediction levels for the expected anisotropies. 

Table 1.1: Anisotropy Mechanisms 

Name Angular Scale Source redshift cT /T ex: 
Doppler( Sun) large velocity of Sun 0 ex: V0fc 
Doppler( .f.s} degree velocity of surfacets Zf.s CX: Vis/ C 

swb large potential difference ;::;zR.s ~f3c2 

Integrated SW small time dependent potentials < Zf.s 2 fa~ dl C2 at 
Vishniacb < degree angular momentum < Zf.s 

szc "'arcmtn hot electrons < Zf.s J kTe dl 
mec2 

Topological Defects all phase transitions any z 
Q.J!:.d Gue 

CX: c2 ' Ho 
Rotation of Universe large vorticity > Zf.s 

a surface oflast scattering, b Sachs & Wolfe, c Sunyaev-Zel'dovich, d strings, e walls 
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Chapter 2 

The DMR Experiment 

Abstract 

The purpose of the DMR experiment is to detect large angular scale anisotropies in the 

CMB. We describe the COBE orbit and how the DMR instrument is designed to meet this 

goal. We discuss the Galactic foregrounds. We review the instrumentation, noise properties 

and how a DMR measurement is made. 

2.1 COBE Mission 

COBE is NASA's first cosmology satellite and was launched successfully Nov 18, 1989 

on a Delta rocket. The primary goals of the COBE satellite are to measure the CMB 

spectrum and anisotropy, and measure the diffuse infrared background from primordial 

objects forming in the early universe. The three instruments designed to achieve 'these· 

goals are the Far-Infrared Absolute Spectrophotometer (FIRAS), the Differential Microwave 

Radiometer (DMR) and the Diffuse Infrared Background Experiment (DIRBE). Secondary 

goals of the mission include measuring radiation from our local environment: interplanetary 

dust, interstellar electrons, starlight and other Galactic emission. These local sources can 

mask and limit the accuracy of the cosmological measurements. 

Soon aft~r launch FIRAS was able to report that the CMB was very nearly a perfect 

blackbody. The most recent FIRAS result is T0 = 2.726 ± 0.01 K (95% CL) (Mather 

et al.1994). The DMR has detected CMB anisotropies and the difficult job of detecting an 

infrared background behind the ecliptic and galactic dust foregrounds is still going on with 

the DIRBE data. 
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Diffuse Infrared Background Experiment 
Far Infrared Absolute Spectrophotometer DIRBE 

ARAS 

SU~Earth Shield 

Communications Antenna 
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__ ........ --··--- ... ---~-

-... ,... ..... -- .. -... : ~ .. ,_ .. - ., 

Figure 2.1: COBE satellite in orbit. COBE is about the size of a large van and weighs 

2270 kg (Boggess et al. 1992). All three instruments are shielded from the Sun and Earth 

by a conical shield providing thermal stability. The Sun-Earth shield has been partially cut 

away to display the three DMR instrument modules mounted to the periphery of the liquid 

helium dewar. Looking down on the instruments, the spacecraft rotates counter-clockwise. 

The solar panels provide 750 Watts of power of which the DMR uses about 15%. The 

low gain antenna visible at the bottom is used to communicate with the TDRSS satellite 

system. Viewed from the COBE orbit, the Earth subtends 1r steradians or 1/4 of the full 

sky. 
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Figure 2.2: COBE's Orbit. The Earth is shown at both the winter and summer solstices. 

COBE's orbit is the thick line inclined 9° from the north celestial pole (NCP). The COBE 

satellite is represented by the small white icon on the most northern and southern points 

of the orbit. The short arrow attached to COBE indicates the spin axis. During the eclipse 

season (2 months centered around the summer solstice) the satellite enters the Earth's 

shadow once per orbit in the south ('S'). In the north ('N'), keeping the Sun-spin axis angle 

of 92° allows the limb of the Earth to appear a few degrees above the shield in the anti-solar 

direction. The arrow on the orbit indicates the direction of COBE's 7.4 km/s velocity. The 

satellite ·was launched south at dawn. Every orbit, the spin axis passes within 2° to 4° of 

the north ecliptic pole (NEP). Figure 2.3 displays the resultant sky coverage pattern. 
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21526 81271 

Figure 2.3: Full sky map in Galactic coordinates of the number of observations per pixel 

for the two year 53A map. The regions of maximum observation are two 60° diameter rings 

centered on the north and south ecliptic poles. The minimum observation regions near the 

ecliptic equator are caused by the scanning strategy and the Moon cuts. The cuts required 

by the Earth limb appearing over the shield during the the eclipse season are evident in 

low values in the otherwise heavily sampled northern ring. Each maximum ring is split into 

two concentric rings because the direction of the spacecraft spin axis does not pass over 

the ecliptic poles but passes 2° to 4° from it (Figure 2.2). Notice that the maximum and 

minimum differ by a factor of four. There are 6144 pixels in the map. 
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2.2 COBE Orbit and DMR Observing Strategy 

COBE is in a 900 km altitude, near-terminator orbit with a 103 minute period. The 

combination of the 99° inclination of the orbit, 900 km altitude and the quadrupole moment 

of the Earth results in a torque on the plane of the orbit causing it to precess ~ 1° per 

day. This precession rate keeps the orbital plane as close to perpendicular as possible to 

the Earth-Sun line. The relative positions of the Earth, Sun and orbital plane during the 

winter and summer solstices are displayed in Figure 2.2. The satellite spins with a 73 second 

period (0.815 rpm). The spin axis points away from the Earth and 92°- 94° away from 

the Sun. This spinning, orbiting and precessing, combined with the fairly large 7° FWHM 

beams, enables the DMR to sample the entire sky in :::::: 5 months. Figure 2.3 is a map of 

the sky coverage (number of observations per pixel) after two years of observation. 

There are two channels at each frequency denoted 31A, 31B, 53A, 53B, 90A and 90B. 

Each channel (with the exception of 31A and 31B which share a pair of horns) has two 

corrugated aluminum horns. Their pointing directions are 60° away from each other and 

30° away from the satellite's spin axis. Every half second the DMR measures the difference 

between the power entering the two horns, hence these are differential rather than absolute 

measurements. 

The horn separation of 60° was chosen as a compromise. A small opening angle 

minimizes problems with the Earth limb and Sun in the sidelobes however each pixel is 

differenced with only a small number of nearby pixels and complete sky coverage takes 

longer. Increasing the number of pixel-pairs enhances the ability of the map-making 

algorithm to find a stable solution. The maximum number of pixel pairs occurs at a horn 

separation of 90° but a 90° separation would cause more sidelobe difficulties. 

2.3 Galactic Foreground · 

The DMR has several advantages over ground and balloon based measurements: it 

can see the full sky with no atmospheric foreground and with very little Earth emission in 

the sidelobes. Galactic foreground however does not go away in orbit. Galactic emission 

from synchrotron radiation, bremsstrahlung and interstellar dust are the most problematic 

foregrounds for the DMR. The three DMR frequencies, 31.5, 53 and 90 GHz, were chosen to 

be near the peak of the 2. 7 K Planckian CMB spectrum, to occupy the region between the 

higher frequency dust foreground and the lower frequency bremsstrahlung and synchrotron 
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emission and to be in officially protected frequency bands (Smoot et al.1990, Bennett 

et al. 1992b ). 

At low frequencies synchrotron emission dominates. Synchrotron radiation is emitted 

by relativistic electrons spiraling in the ""' 1 pG magnetic fields of the Galaxy. The 

synchrotron antenna temperature signal is 

Tsync(v) ex vf3•ync. (2.1) 

The exponent f3sync ~ -2.8 and is v dependent at DMR frequencies varying in the range 

-2.75 to -3.2. At frequencies near 31 GHz the bremsstrahlung emission is at approximately 

the same level as the synchrotron emission. Bremsstrahlung is emitted by non-relativistic 

free electrons as their paths are deflected by the E-fields of protons (e.g. Longair 1992). 

The bremsstrahlung antenna temperature sign~ is 

(2.2) 

The exponent f3JJ ~ -2.1 and is very weakly v dependent at DMR frequencies varying in 

the range -2.07 to -2.15. The HII regions around groups of 0 and B stars in the arms of 

our Galaxy are strong emitters of bremsstrahlung. The hot regions in the Galactic plane 

visible in the Cygnus (£""' 80°) and Vela regions (i""' -80°) are due to the superposition 

of several 0-B associations. Cygnus is a superposition of 5 large HII regions and is about 

7° across. At higher frequencies, cold interstellar dust (T ""' 20K) becomes the dominant 

foreground, 

(2.3) 

where f3dust ~ 1.5. 

Figure 2.4 summarizes the frequency dependence of these three types of Galactic 

foreground. Notice how the DMR frequencies span the minimum. The grey bands reflect 

the degree of variation in the signal in the Galactic latitude range 15° :5 lbl :5 60°. The 

Galactic longitude dependence of the signals can not be represented in such a diagram. 

The width of the bands in Figure 2.4 indicate which foreground is most confined to the 

Galactic plane. The thin synchrotron band for example shows that relativistic electrons 

are less confined to the Galactic plane than are the non-relativistic electrons in HII regions. 

The slight frequency dependence of the exponents, f3sync, f3JJ, f3dust cause the valley of 

minimum emission at ""' 60 GHz to be slightly lower than a linear extrapolation would 

produce. Bennett et al. (1992b) describe three techniques to model and remove these three 

Galactic foregrounds. 
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Figure 2.4: Intensity of the Galactic foregrounds as a function of frequency. The dotted 

lines denote the DMR frequencies. The width of the bands refer to the range of longitudinal 

averages for the latitude range 15° ::; lbl ::; 60°. A quadrupole Qrms-PS = 17pK is shown 

for reference. Figure adapted from Bennett et al. (1992b ). 
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Figure 2.5: DMR heterodyne receiver. The mixer combines the local oscillator frequency 

with the Dicke switched signal to create intermediate frequency (IF) beats. These are then 

amplified, filtered and finally detected by the lock-in amplifier. This schematic of the 53 

and 90 GHz radiometers from Smoot et al. (1990). 
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2.4 Instrumentation 

The three frequencies of the DMR, 31.5, 53 and 90 GHz, were chosen to span the 

minimum in the foreground seen in Figure 2.4 and to obtain the largest ratio of CMB signal 

to Galactic foreground. The bandwidths are 550, 850 and 850 MHz respectively. The DMR 

instruments are heterodyne receivers with diode detectors. Heterodyne refers to the fact 

that the signal is converted to an intermediate frequency before it is amplified. Figure .2.5 

is a schematic of the 53 or 90 GHz radiometers. 

Consider a single measurement. Start at time t = 0 with one horn observing a hot 

spot of temperature T1 while the other horn is pointed at a cooler spot of T2 • One two­

hundredth of a second later the Dicke switch changes the input to let the signal from the 

lower temperature T2 through. The Dicke switch alternates between the two horns at 100 Hz. 

The mixer combines the stable local oscillator frequency with the alternating horn signals 

creating lower beat frequencies. These beats are then rectified by a diode and processed 

through a low-pass filter with a DC block isolating beat frequencies in the range 1 to 1.8 

GHz (40-560 MHz for the 31 GHz channels). They are then amplified, rectified and passed 

through a band pass filter. A lock-in amplifier (square wave detector) with a synchronous 

filter measures the series of voltage differences, dl/i, integrates for half a second and then 

outputs the mean voltage difference which is proportional to the antenna temperature 

difference seen by the two horns. A half second integration time is a compromise between 

good pointing (smaller integration the better) and more accurate output. The output is 

..6. V = 2:: dVi ex: ..6.Tant = T1 - T2. 
i=l,50 

(2.4) 

The lock-in amplifier is found to leave a 3.2% correlation from one half second integration to 

the next and is corrected for (Kogut et al.1992, Bennett et al.1994). See Smoot et al. (1990), 

Bennett et al. (1992a) and Janssen et al. (1994) for more on the instrumentation. 

2.5 Noise 

To a very good approximation, the noise variance in a single pixel of a map from a give 

channel can be represented by 

(2.5) 

where u;h is the channel dependent instrument noise variance per observation and Ni is 

the number of observations of that pixel (see Chapter 9). The accuracy of equation (2.5) 
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and correlated noise is treated in depth in Chapter 9. Noise simulations require eTch as an 

input. Table 2.1 summarizes various estimates of eTch· The "nominal" rms values in Table 

2.1 are based on ground calibrations, while the "flight" rms values are based on the value 

of eTch which make the x2 jdof of the differential data equal to 1 (see equation (3.6)). The 

factors used to convert antenna temperature differences to thermodynamic temperature 

differences for v = 31.5, 53, 90 GHz are respectively 1.026, 1.074, 1.226 (see Appendix G 

for details). If the variances of two maps are ur and (T~ respectively, then the rms of the 

unweighted sum maps is computed from u2 = u?!u~. For weighted sums, u 2 = I/ur!I/u~ 
is used. This assumes that the number of observations for the resultant map is defined as 

Ni = (N1,i + N?-.,i)/2 and the resulting pixel variance is then u[ = u2 /Ni. 

The DMR calibration is described in Bennett et al. (1992a & 1994). There are three 

possibilities for calibration: 

1) the noise source firings every 2 minutes 

2) the dipole seen in the maps based on the precisely known velocity of the Earth 

3) the Moon. 

The noise source firings are controlable and are used to find the calibration constant to 

convert voltage output to antenna temperature. 

Although the Dicke switches were carefully covered in J.L-metal to shield out magnetic 

fields, the largest systematic error in the DMR maps is the magnetic susceptibility of the 

Dicke switches as the satellite moves around in the magnetic field of the Earth (Kogut 

et al. 1992, Bennett et al.1994). The effect of magnetic susceptibility is fit for and partially 

corrected (equation (3.1 )). 
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Table 2.1: DMR RMS Noise Valuesa 

Nominal RMS" Flight RMSC(YR1) Flight RMS (YR2) 
Map T:nt T Tant T Tant T 

(mK) (mK) (mK) (mK) (mK) (mK) 
31A 55.0 56.4 59.2 60.7 58.1 59.6 
31B 58.4 60.0 60.8 62.4 60.0 61.6 
53 A 22.5 24.2 23.2 24.9 23.2 24.9 
53B 24.9 26.7 27.1 29.1 27.1 29.1 
90A 40.3 49.4 40.0 49.0 39.4 48.3 
90B 28.3 34.7 29.9 36.7 30.5 37.4 

31A+B 40.1 41.1 42.4 43.5 41.7 42.8 
31A+Bwe 40.0 41.0 42.4 43.5 41.7 42.8 

53A+B 16.8 18.0 17.8 19.1 17.8 19.1 
53A+Bw 16.7 17.9 17.6 18.9 17.6 18.9 

90A+B 24.6 30.2 25.0 30.7 24.9 30.6 
90A+Bw 23.2 28.4 24.0 29.5 24.1 29.6 

a The variance per observation is the square of these rms values. 

b "Nominal" rms values are based on ground calibrations. 

Flight RMS (2YR) 
Tant T 
(mK) (mK) 
58.6 60.1 
60.4 62.0 
23.2 24.9 
27.1 29.1 
39.7 48.7 
30.2 37.0 
42.1 43.2 
42.1 43.2 
17.8 19.1 
17.6 18.9 
25.0 30.6 
24.0 29.4 

c "Flight" rms values are based on the value of O'ch which will make the x2 fdof of the 

differential data equal to 1 (see equation (3.6)). 

d The factors used to convert antenna temperature differences to thermodynamic 

temperature differences for v = 31.5, 53,90 GHz are respectively 1.026, 1.074, 1.226 (see 

Appendix G for details). The single channel rms values have been provided by Phil Keegstra. 
e "w" indicates a weighted sum. 
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Chapter 3 

Data Processing 

Abstract 

The main goal of the data processing is to turn the differential measurements into a sky 

map. In this chapter we provide an overview of the software pipeline in which the data 

flow from the satellite to the maps. We present a description of the calibration, baseline 

removal and correction of the data which are then used to make the maps. We concentrate 

on describing how the map-making code operates. 

3.1 Differential Data 

The measurements are stored on the satellite on magnetic tapes. Once a day for ten 

minutes as the satellite passes over the east coast of the United States, the stored data is 

relayed to a ground station on Wallops Island and then to Goddard Space Flight Center. 

The DMR data is stripped from the COBE telemetry stream and merged with attitude and 

orbit information. Data known or suspected to be erroneous are flagged. 

During the mth half second observation (1 ~ m ~ mtot, where ~ot is the the total 

number of observations for the channel under consideration), the positive horn is pointing 

in a direction indexed by m +, while. the negative horn is pointing 60° away in a direction 

indexed by m -. The mth uncalibrated and uncorrected raw measurement can be modeled . . 

(Kogut et al.l992) as 

S(m) = Y(~) [aT(m) + .<l(m) + O(m) + ~ W,(m) + ~E,fmo] , (3.1) 
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where g( m) is the true instrumental gain factor in digital units per antenna temperature, 

.6.T( m) is the true temperature difference T( m+) - T( m- ), .6.( m) is the instrument noise 

with a variance of 0'!, 0( m) is the offset produced by small imbalances in the differential 

radiometer and the Wk(m) are a series of "well-known" time-dependent non-cosmological 

signals including the Doppler effect of the satellite's velocity as well as the Earth's velocity. 

Less well known instrumental effects such as the effect of the Earth's magnetic field on 

the DMR are represented by the Eq/mq 's. The amplitudes Eq are poorly known but the 

time-dependences, fmq, are fairly well known (m is a function of time). 

We are only interested in .6.T( m) so the other factors need to be estimated and removed 

as accurately as possible. We remove the offset 0( m) by subtracting the derived "~?aseline 

B(m). We calibrate the measurement by multiplying by a gain Q'(m) derived from the 

data (Bennett et al.1992a, 1994). To remove the effect of the well known Wk, we compute 

Wk,( m) from pointing information and a knowledge (satellite velocity, Earth velocity) and 

subtract it. To summarize, we calibrate and correct for the true unknown Q(m), O(m), 

and Wk(m)'s with values Q'(m), B(m) and W£,(m)'s derived from the data and a priori 

knowledge. We can therefore represent the calibrated, offset removed, corrected data as 

D(m) = Q'(m) [S(m)- B(m)]- L Wk,(m) (3.2) 
k' 

combining equation (3.1) and (3.2) and regrouping yields 

g'(m) [ ""' l [Q'(m)""' ""' '] 1 [O(m) ] D(m) = Q(m) .6.T(m) + 7 Eq/mq + .6.(m) + Q(m) ~ Wk - 11 Wk' +Q (m) Q(m)- B(m) . 

(3.3) 

We treat the last two terms as residual noise. The gain estimate is good to a few percent 

(Bennett et al.1994) i.e., 0.97::S ~f;;:? ::S 1.03. We are left with 

D(m) = .6.T(m) + L Eq/mq + .6.(m). (3.4) 
q 

This procedure has turned the raw measurements S( m) into the calibrated, baseline removed 

and well-known systematic corrected differential measurements D(m) ready for input into 

the map-making algorithm. If there are any errors in those procedures that correlate with 

position on the sky, they will create spurious signals in the maps. The list of Wk,( m) and 

Eq are given in Appendix E. 

One can conveniently represent the mtot dimensional vector D from equation (3.4) in 
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matrix form as 

+-6144+Q-
DI 0 1 0 0 0 -1 0 0 0 fn hQ TI 

D2 1 0 0 0 0 0 -1 0 0 hi hQ T2 

D3 0 0 -1 0 0 1 0 0 0 hi hQ 
D4 = • T6I44 + 

Ds • EI 

Ds • 
• EQ 

or 

iJ = Vf+ 3., (3.5) 

where V is an mtot x (6144 + Q) design matrix containing the pointing information and f 

contains the sky map and the Q coefficients we want to solve for. Notice that the 1, -1 pairs 

in each row of V create temperature differences out of the temperatures. 
' 

We solve for the coefficients Eq at the same time we solve for the temperatures by 

minimizing the x2 • Thus fitting for the Eq 's removes the best-fit signal from the maps 

which is consistent with the assumed time dependence fmq (see Janssen & Gulkis 1992). 

We refer to the Wk 's as corrections and the Eq 's as fits. So typically we "correct" 

for the satellite's velocity and "fit" for magnetic susceptibility coefficients. The dichotomy 

between corrections and fits is not fundamental. Once we have Eq 's we trust, we can use 

them as corrections the next time we run the program. Additionally we can choose not to 

correct for a known effect or we can fit for it. The code is set up to handle multiple output 

maps also known as multiple right hand sides, i.e., the sums over q and k' in equation (3.3) 

and (3.4) can be varied to yield maps with or without certain corrections and fits. For 

diagnostic purposes we have run 40 right hand sides for pass 1 and 68 right hand sides for 

pass 2 (see Appendix E for a description of pass 1 and pass 2). The advantage of this is 

that we can compare two maps, for example one corrected for the magnetic effect and one 

not corrected. The difference is an estimate of the size of the effect. Figure 2 of Kogut 

et al. (1992) is an example of a magnetic systematic error correction found in this way. See 

Appendix E and Bennett et al. (1994) for the corrections and fits which were performed on 

the pass 1 and pass 2 maps. For convenience in the following section we specialize to the 

case in which no fits for systematic errors are made. There is no loss of generality in this 

since good fits can be treated as corrections in the subsequent processing of the data. 
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3.2 Map-Making Algorithm 

· We form a map by minimizing x2 defined as 

2- mtot (D(m)- ~T(m))2 
X= L 2 • 

m=l O'm 
(3.6) 

Setting ~¥: = 0 yields the normal equations 

ATobs = M, (3.7) 

where fobs is the least-squares estimate of the true temperatures f, A = yT~y where ~ 

is an mtot X mtot diagonal matrix with :Emm = 1/a!, and M = yT~jj is the measurement 

vector. Since O'm is stable and varies only slightly with time we use a! = a~h: the 

measurement variances are equal to the channel dependent variance of the instrument noise. 

The effect of using a time independent O'ch instead of am is that each measurement for that 

channel has the same weight. A measure of the year to year variation in O'm can be obtained 

by comparing co.lumn 4 with column 6 in Table 2.1. The percentage changes of the flight 

rms from year 1 to year 2 are -1.8, -1.3, 0.0, 0.0, -1.5, and +2.0 for channels 31A, 

31B, 53A, 53B, 90A and 90B respectively. Thus the variation in am is less than 2% for all 

channels and negligible for the 53 A and B maps. Thus am ~ ach and the multiplicative 

factor lfa;h 'cancels in equation (3.7). This permits the convenient redefinition of A to the 
. I 

dimensionless A = yTy. 

The matrix A is 6144 x 6144, symmetric, sparse, positive semi-definite and formally 

singular due to the differential nature of the observations. We solve the normal equations 

by augmenting the diagonal terms of A by a small positive number £. This does nothing 

more than impose an arbitrary mean level on an otherwise unique solution. This point is 

discussed in detail in Appendix J. A Gauss-Seidel procedure finds an iterative solution to 

the normal equations and gives the desired best-fit sky map fobs· Gauss-Seidel iterative 

procedures are particularly well suited to invert large sparse matrices since the number 

of stored parameters and computations required depends only on the number of non-zero 

matrix elements. The Gauss-Seidel procedure used is a modified Jacobi iterative technique 

in which the new solutions computed during an iteration are used in later computations 

within the same iteration. Each iteration provides a solution vector which converges toward 
/ 

the best fit solution to the data (see Figures_3.1- 3.4). For further details on how the maps 

are made see Torres et al. (1988), Smoot et al. (1990), Keegstra et al. (1991), Jackson et 

al. (1991) Janssen & Gulkis (1992) and Wright (1994b). 
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We combine equations (3.5) and (3.7), with the definition 8 = yT E to write the best-fit 

temperatures as a function of the true temperatures plus a noise term n, 

- - - 1-Tobs = T + n = T + A- 8. (3.8) 

Although the components of 8 individually come from Gaussian distributions of variance 

Ni u~h, those separated by 60° from each other are anticorrelated because the same 

b.( m) contributes positively to one pixel and negatively to the other. The analysis of the 

correlations in the DMR maps due to the noise term n = A - 18 is the subject of Lineweaver 

et al. (1994). Chapter 9 is an extended and more detailed version of this paper. 

3.2.1 Pointing and Pixelization 

There are two sets of attitude which determine the accuracy of the pointing (Kumar 

et al.1991, Wright et al.1991b ). Coarse attitude is derived from Sun and Earth sensors on 

the spacecraft and has a nominal accuracy of better than 0.5°, however a typical accuracy of 

0.1° is achieved for the two year data. DIRBE fine aspect attitude is the result of matching 

DIRBE stars to a star catalogue and has a nominal accuracy of 0.1 °. 

Pixelization of the COBE data sets are standardized using the quadrilateralized 

spherical cube discussed in Chan & O'Neil (1975), Hon (1991) and White & Stemwedel 

(1992). The paradoxical neologism "spherical cube" can be simply understood. Place a 

32x32 (=1024) pixel grid on each of the six faces of a cube (6 faces x 1024 pixels = 6144 

pixels). Place the cube inside a sphere. A point source of light at the center of the cube 

projects each of the cube pixels onto the sphere. An appropriate deformation of the pixel 

grid on the cube faces produces pixels of approximately equal area on the sphere. 

There are 41,253 square degrees in the 471" steradians of the sky. With 6144 pixels, the 

average pixel size is J41253/6144 = 2.59°. The areas of the largest and smallest pixels 

are about 3% larger and smaller than average with a rms area fluctuation of about 1%. 

The FIRAS and DMR instruments both have approximately 7° FWHM beams, while the 

DIRBE instrument has a square 0.7°X0.7° field of view. The FIRAS and DMR beams are 

oversampled by the chosen standard 2.59°X2.59° pixels. Thus the DMR maps oversample 

the DMR beam by factor of about 3 ( ~ 7° n.6°). The number of pixels in a map, Npix, is 

easily increased or decreased by changing the "resolution" of the map defined by 

Npix := 6x[2(resolution-l)t (3.9) 

29 



Setting resolution = 6 produces 6144 pixels and is the most common DMR format. 

Conversion to different resolutions is often done for analysis purposes. In the pass 2 version 

of the map-making algorithm a split resolution was chosen. In the Galactic plane where the 

signal to noise is high, the resolution of the map is increased by one and thus the number 

of pixels in the lbl < 20° region is four times larger. The region lbl < 20° is (100xsin 20°)% 

of the sky. Therefore DMR split resolution maps have 4032 (:::::l (1- sin20°)X6144) pixels 

outside the cut and 8448 (:::::l 4xsin 20°x6144) pixels in the Galactic plane for a total of 

12480 pixels. 

No pixelization is assumed in the data processing until the pointing matrix V in 

equation (3.5) is constructed by the map-making algorithm. 

3.2.2 Validation 

There may be spikes in the data which could come from noise or from an instrument 

glitch. As an example of one of many tests performed to validate the map-making procedure 

Figures 3.1-.3.4 show how a large spike in the data is handled by the map-making algorithm 

at various stages of the iteration procedure. The central pixel was given a value of 10000 

mK during one observation. Other observations of the same pixel were left unchanged. 

Figures 3.1- 3.4 are snap shots after the 1st, 2nd, 5th and 30th iterations of the map 

making algorithm. The data processed here contain full sky coverage from only 16 days of 

obserVations chosen from moonless periods at different times of year. 

The six cube faces are apparent in Figures 3.3 and 3.4. The cube faces are indexed 0 

through 5. Face 0 and 5 cover the north and south poles respectively. Face 1 is in the center, 

face 2 is centered at£= +90, face 3 is centered at£= 180 and face 4 is centered at£= -90. 

The contrast between faces 0 and 4 and faces 1 and 5 is due to the Gauss-Seidel procedure 

which continually updates the solutions during an iteration; whenever the solutions for the 

temperatures are changing by a noticeable amount during an iteration, the first faces can 

have mean levels different from the later faces. This can be seen in the maps when the 

greyscale interval is appropriately small. 
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-60.0 mK 40.0 mK 

Figure 3.1: Effect of Noise Spike on the Map Solution: 1st Iteration. 

-30.0 mK 20.0 mK 

Figure 3.2: Effect of Noise Spike on the Map Solution: 2nd Iteration. 
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-4.4 mK -4.0 mK 

Figure 3.3: Effect of Noise Spike on the Map Solution: 5th Iteration. 

-0.21,uK +0.21,uK 

Figure 3.4: Effect of Noise Spike on the Map Solution: 30th Iteration. Note the presence 

of the broken cool ring at 60° and 120° angular separation from the central pixel (compare 

this to Figure 9.2). The breaks in the rings are due to the unevenness of the sky coverage 

in the 16 days of data used. In contrast to the previous three figures, the mean level of the 

map ( -4.19254 mK) has been subtracted to show the variation around the mean. 
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Chapte~ 4 

Correlation Function: Theory 

versus Practice 

Abstract 

The two-point temperature correlation function provides an important characterization of 

CMB anisotropies. We present several simple examples to illustrate the use and power of 

a correlation function analysis. We describe its relation to the power spectrum and the 

role played by cosmic variance. We compare ·the theory to the nitty-gritty of the data 

analysis including incomplete sky coverage and the real DMR beam pattern. Substantial 

underestimates for the true rms fluctuations and for C( a < 10°) result if a Gaussian 

approximation to the DMR beam is used. The error in C(O) is ~ 150 p,K2 • Biases in the 

auto-correlation due to multipole subtractions are in the range 20 to 70 p,K2 • Additionally 

we describe a novel way to obtain the quadrupole amplitude of our observable Universe 

from the correlation function. 

4.1 Introduction 

The two-point angular correlation function C(a) is a powerful way to analyze the 

statistical properties of a two-dimensional sky map. If the temperatures of the cosmic 

microwave background sky T(O,¢) are from a random phase Gaussian distribution then 

the quadratic statistic C( a) completely describes the statistical properties ofT( 0, 4> ). This 

follows from the fact that all odd moments of a Gaussian distribution disappear, while all 
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. . . ( 
even moments are functions of the second moment. The results of Smoot et al. (1994) are 

consistent with the temperatures being Gaussian. If T(O, </>) is non-Gaussian, C(a) tells 

us the second moment while the third moment is provided by the three-point correlation 

function (Hinshaw et al.1994). 

The correlation. function is a multipurpose statistic. Correlation functions of the DMR 

data can be easily compared with cosmological models or with the correlation functions of 

other data sets (e.g. Ganga et al. 1993). The power spectrum parameters n and Qrms'-PS can 

be determined from the cross-correlation functions. Various Galactic latitude cuts can be 

used to estimate the contribution of the Galaxy to the observed signal (Section 5.3). The 

instrument noise can easily be compared to the signal and can yield the signal to noise 

detection level. The sky rms :fluctuation level, possibly the most important statistic, is a 

subset of the correlation function: u;ky = C(O) (Section 4.7). Correlation functions can be 

used in the systematic error analysis (Kogut et al. 1992). The correlation functions can also 

be used to obtain the quadrupole of the observable sky Qrms, as described in Section 4.8. 

4.2 Legendre Polynomial Expansion 

The two-point correlation function of a sky map is the average product of sky 

temperatures separated by a given angle a 

C(a) =< oT(i)oT(]) >, (4.1) 

where oT(z) = Tobs,i - T and the brackets indicate average over all pairs of directions U, 
separated by aij = a. Any arbitrary sky temperature map can be expanded in spherical 

harmonics, 

(4.2) 

Using equation (4.2) in equation (4.1) and employing the addition theorem of spherical 

harmonics (Appendix I) one obtains 

1 lmaz lmaz 

C(a) = 
4

1!" L lalm 1
2 Pl(cosa) = L t:J.Tj Pl(cosa) (4.3) 

lmin lmin 

1 lmaz lmaz -

< C(a) > = 
4

1!" L < latm 1
2 > Pt(cos a)= L < f::J.Tj > Pt(cos a), (4.4) 

lmin lmin 

where the angle brackets is an ensemble average over all possible model skys, while no 

brackets refers to the observed values. In equations (4.3), (4.4) and in this thesis we use 
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the power spectrum notation 

1 l 1 l 

411" L laem 1
2 = 411" L bem 

2 

m=-l m=-l 
(4.5) 

< b..Tf > 
1 l 1 l 

= 411" L < laem 1
2 

>= 411" L < bem 
2 

> . 
m=-l m=-l 

(4.6) 

See Appendix H for the relation between the complex coefficients aem and the real 

coefficients bem . For the particular case of the quadrupole we have 

2 2 
2 1"" 2 1""2 2 

b..T2 = 411" LJ la2,ml = 411" LJ b2,m = Qrms· 
m=-2 m=-2 

(4.7) 

Appendix D documents the much wider range of notation found in the literature e.g., Ce, 

a~, ( b..T /To )I and €h. The Pe( cos a:) in equation ( 4.3) are the Legendre polynomials. The 

first six Legendre polynomials are plotted in the top panel of Figure 4.1. 

4.3 Model Power Spectra 

We are interested in modeling anisotropies on the largest scales down to the f'V 7° scales 

probed by the DMR. At large angular scales where the Sachs-Wolfe or isocurvature effects 

are important, the CMB power spectrum as a function of the mass-density power spectrum 

P(k) is 

(4.8) 

where k is the co-moving wavenumber, T is the conformal time, V is the volume 

normalization and je are the spherical Bessel functions. . This integral· is the result of 

considering only the dominant term for large wavelengths (ex t) in the solution to the 

collisionless Boltzmann equation (Efstathiou 1990). It is therefore an approximation valid 

at scales in which the Sachs-Wolfe term dominates other contributions to the anisotropy 

(£::::40). Terms that contribute to the mean and dipole were also ignored and thus we are 

considering £ > 1 solutions. 

If we assume a power law for the mass over-density power spectrum 

P(k) = Akn (4.9) 

where n is the power spectral index and A is a normalization constant with dimensions 

lengthn+3 to insure that the power spectrum P(k) has the dimensions of volume. We can 
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Figure 4.1: Legendre Polynomial Expansion of the Correlation Function. The Legendre 

polynomials for£ = 0 to 5 are labelled in the top panel. Harrison-Zeldovich weightings of 

the same Legendre polynomials are shown in the bottom panel. The thick solid line is the 

sum for 2 ::; £ ::; 5. The thick dashed line is for 2 ::; £ ::; 70. Notice that C( a ~ 30°) is well 

approximated by only the first four £ values. 
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evaluate the integral of equation ( 4.8) and obtain 

( 4.10) 

This is the exact solution of the integral provided n < 3. For n ~ 3 equation ( 4.8) diverges 

for high values of k since limk ..... oo li~(kr)l2 = t. We can write equation (4.10) in terms of 

the quadrupole moment flTi = Q;ms-PS 

(4.11) 

but here the singularity at n;:: 3 is not explicit. Thus the mass-overdensity power spectrum 

can be used to derive the CMB power spectrum as a function of n, f and amplitude 

Q;ms-PS (Bond & Efstathiou 1987). 

The power spectra P( k) and ilTJ are close analogs (Appendix L ). The scales are 

determined by k and £, and the normalization constants are A and Qrms-PS . Equation 

( 4.11) can be taken as the defining equation for n and Q rms-PS , the two parameters of the 

radiation power spectrum. 

For the important n =1 Harrison-Zeldovich (HZ) case equation (4.11) reduces to 

2 6 2£+1 2 1 
flT~ = S £(£ + 1) Qrms-PS CX: f + 1" ( 4.12) 

Figure 4.1 (bottom) shows a simple example of using equation ( 4.12) in the Legendre 

polynomial expansion of the correlation function (equation (4.3)). 

If the data set is not sensitive to the quadrupole, one can still obtain Qrms-PS from 

the data since it is .a normalization constant for all the f multipoles. The normalizing 

amplitude Qrms-PS is a parameter of the model and is not to be confused' with the actual 

quadrupole Qrms of our small observable Universe. In Section 10.2 we discuss obtaining 

nand Qrms-PS by fitting theoretical correlation functions Cn( a) to the observed correlation 

function Cd(a). 

A large number of recent articles has dealt with the determination of nand Qrms-PS . 

All of the methods used suffer from a near degeneracy when fitting for both n and Qrms-PS . 

Some workers even quote a line in [n, Qrms-PS ] space rather than a point or an error 

ellipse (see Figure 10.2). This degeneracy is independent of whether n and_ Qrms-PS are 

determined from the correlation function, the power spectrum or the genus of the maps. 

Figure 4.2 displays the simple reason for this degeneracy: the effect of increasing n is 
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very similar to the effect of increasing Qrms-PS· Thus larger n values require smaller 

Qrms-PS values and vice versa. Observations at smaller angular scales will help to break 

this degeneracy. 

4.4 Cosmic Variance 

Cosmologists are interested in the entire Universe, not just our Hubble volume. The 

surface of last scattering which we observe is one sample of the entire Universe. Cosmological 

models do not make predictions about our particular surface of last scattering; they cannot 

predict where a hot or cold spot will be. They make predictions about an ensemble of 

observable universes i.e., about the parent distribution. If we are interested in comparing 

the DMR measurements to cosmological models we have to take cosmic variance into account 

(see Figure 4.3). 

In a popular class of cosmological models, the alm in equation (4.5) are drawn from 

Gaussian parent distributions with £-dependent dispersions. There are 2£ + 1 m values for 

each £, thus t:lTj is a x2 distributed variable of 2£ + 1 degrees of freedom. The cosmic 

variance is 2 < t:lTJ >2 /(2£ + 1) (Smoot et al.1992). 

The smaller the .e value, the more sparse is our sample of the parent distribution and 

therefore the larger the cosmic variance. The CMB quadrupole is not as accurate a measure 

of the ensemble quadrupole as the CMB octopole is a measure of the ensemble octopole and 

so on. We denote the measured quadrupole of our surface of last scattering by Qrms while 

Qrms-PS is based on the better sampled£ > 2 terms of the power spectrum and is therefore 

a measure of the rms quadrupole of the ensemble: Thus even though the quadrupole of the 

DMR two year data set is Qrms = 6 ± 3 (Bennett et al.1994) the "COBE normalization", 

Qrms-PS, is in the range [17pK, 20pK] (see Figure 10.2). 

4.5 Beam Smoothing 

Thus far we have ignored the complication of the beam smoothing on C(a) . Beam 

smoothing lowers the amplitude of C(a) for small a. If the temperatures of the true sky 

expanded in real spherical harmonics are (Appendix H) 

( 4.13) 
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Figure 4.2: Degeneracy of nand Qrms-PS . The effect of varying n in equation (4.11) is 

very similar to the effect of varying Qrms-PS . With Qrms-PS fixed at 17JLK (top panel), 

C(a) for n = 0, 0.5, 1.0, 1.5, 2.0 is shown. The lines of n = 0, 1 and 2 are labeled. With 

n fixed at 1 (middle panel), C(a) for Qrms-PS = 9, 13, 17, 21, 25 is shown. The lines of 

Qrms-PS = 9, 17 and 25 t-LK are labeled. The two curves in the bottom panel refer to the 

extreme values allowed by the two year data from the 68% confidence levels in Figure 2 of 

Gorski et al. (1994): [n,Q] = [1.55, 13.5] (thick) and [0.43, 30.5] (thin). 
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variance ~ 
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filter function 

frequency 

Figure 4.3: Cosmic variance. Cosmological models of the Universe are not specific to 

our observable Universe. Comparison of cosmological models with experiments necessarily 

includes cosmic variance. Since all experiments sample the same observable universe, they 

can be compared with each other without considering cosmic variance. 
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then the beam-smoothed sky is 

(4.14) 

where W£ are the Legendre polynomial expansion coefficients of the DMR beam gains 

(Wright et al. 1994a.); 

Gain( 8) L ( 2£: 1) W£ P£( cosB) 
£ 

W£ = J:
1 

Gain(fJ) P£(cos8) dcosfJ. 

The correlation function including the effect of beam smoothing is 

lmaz 

C(a) = L D.Tf WfP£(cosa), 
£=2 

( 4.15) 

(4.16) 

( 4.17) 

where Wf is the window function which accounts for the beam smoothing. For Gaussian 

beams WJ = e-£(Hl)/£~ where fb cuts off the small angular scale power for f ~ fb because 

the beam averages over those scales (Wilson & Silk 1981 ). This cutoff is related to the 

FWHM and the beam dispersion CTb by 

fb ~ 1800 v'8In2 = 2._. 
1r FWHM CTb 

( 4.18) 

where FWHM is in degrees and CTb is in radians. A somewhat more precise formula. is given 

by Bond (1994), 

( 4.19) 

When combined with the smearing due to the 0.5 second integration time, the 2.6° 

pixeliza.tion and the 2.6° correlation function binning, the effective DMR beam is well 

approximated by a. CTb = 3.2° or fb = 17.9 (Smoot et al.1992). The Smoot et al. (1992) 

correlation function results used a. Gaussian approximation to the beam and included 

corrections for the 1.3° integration time, 2.6° pixeliza.tion and the 2.6° C(a) binning. More 

careful beam patterns were developed by Wright et al. (1993) and Kneissl & Smoot (1993). 

We use the latter in our analysis. 

The importance of the beam and the contribution of the high f terms of the power 

spectrum is attested to by the results of Wright et a.l. (1994b) who report best fit n values 

of n = 1.46 for 3 ~ f ~ 19 and n = 1.25 for the larger range 3 ~ f ~ 30. This implies that 

in the top panel of Figure 4.4 the power in the thick dotted line in the f > 19 region can 

change the value of n substantially. We typically run simulations out to f = 39 to include 

the effects of high £ terms. 
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Figure 4.4: Beam Smoothing of Power and the Correlation Function. The solid line in 

the top panel is the power spectrum b..Tf(n = 1, Qrms-PS = 17~tK). When convolved 

with the DMR window function (thin dotted), it becomes the thi~k dotted line. When 

convolved with the Gaussian approximation to the DMR beam (thin dashed), it becomes 

the thick dashed line. The unsmoothed HZ power spectrum and the two beam-co:nvolved 

power spectra were used to produce the correlation functions of the same line style in the 

bottom panel. C( a < 10°) is dramatically changed. Notice the 150~tK2 lower C(O) value 

for the actual beam pattern when compared to the Gaussian approximation. The Gaussian 

beam uses·.eb = 17.9 (crb = 3.2°) while the "DMR beam" is essentially the Gp_'s from Wright 

et al. (1994a) with small corrections (see Kneissl & Smoot 1993). The correlation functions 

have had the best fit mean, dipole and quadrupole removed from the maps. 
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4.6 Correlation Function from DMR Maps 

The two-point auto-correlation function of a pixelized DMR map is the weighted 

average product of temperatures separated by angle a 

(4.20) 

where the sum is over all sky pixel pairs ij whose separation angle aij lies within half a bin 

width of a. We use the weights Wi = 1/var(Tobs,i) and we approximate var(Tobs,i) by u~h/Ni, 

where u;h is the channel specific pixel noise variance per observation. The normalization 

factor is W = l:i,j WiWj. Setting Wi = Wj = 1 yields an unweighted correlation function. 

For cross-correlation functions, i refers to one map and j to the other. To avoid Galactic 

contamination, we usually exclude from the sum all pixels close to the Galactic plane. 

We remove best fit means, dipoles and optionally quadrupoles from the maps before 

the correlation function is accumulated. We are interested in anisotropies around the mean 

level so we do not consider the monopole f = 0 term. We subtract the best-fit dipole(£= 1) 

since it is dominated by the kinetic dipole. The best fit quadrupole is sometimes removed, 

thus lmin = 2 or 3. 

Figure 4.5 shows the correlation function of the actual dipole in the DMR maps as well 

as the influence of the Galaxy. For small a, the correlation function of the dipole is three 

orders of magnitude above the signal detected. The effect of the Galaxy is two orders of 

magnitude above the signal so these effects must be handled carefully. 

4.7 RMS Temperature Fluctuations from C(a) 

The rms temperature is one of the most important statistics of the DMR maps and it 

is a subset of the correlation function. The auto-correlation function at zero lag is the rms 

temperature fluctuation in the map. The weighted auto-correlation function is 

~ON~T2b 0 

C (O) = L...-t t o s,t = 2 
w ~ON~ uw 

L...-t t 

( 4.21) 

and the unweighted version is 

'2:0 T2b 0 
Cu(O) = Eio

1
s,t = u;. (4.22) 

Thus the sky signal can be extracted from auto-correlations of the (A+B)/2 and (A-B)/2 

maps (equation 4.24) or even more simply from the cross-correlation function of map A 
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Figure 4.5: Correlation Functions of Dipole and Galaxy. The dipole (thick) is a pure f = 1 of 

amplitude ""' 3000 pK2 • After removing the best fit dipole in the Galactic latitude lbl > 20° 

region but keeping the Galactic plane during the computation of the correlation function, 

one obtains (thin) a Galaxy dominated curve which is dominated by a quadrupole but has 

other structure. The correlation function of the Galaxy has been multiplied by a factor of 

10 to make its shape visible on this scale. 
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with B (equation ( 4.25) 

2 2 2 
a sky a A+B - a A-B 

a;ky CA+B(O)- CA-B(D) 

a;ky = CAxB(O), 

( 4.23) 

(4.24) 

(4.25) 

where a;ky can be either from weighted or unweighted correlation functions. The last two 

equations follow from equation ( 4.20) when we express the observed map temperatures as 

the sum of signal plus noise: Tobs,i = Ti + ni in map A and Tobs,j = Tj + nj in map B. We 

have used the fact that all the cross products have zero expectation values except the signal 

TiTj. If only one map is available and the noise values in neighboring pixels are nearly 

independent, a good estimate of the temperature fluctuations a;ky cail be obtained from 

the first non-zero bin of the correlation function. Smoothing the maps before calculating 

C( a) would destroy this nice property by spreading the noise into the neighboring pixels. 

The relative merits of the various weightings of rms statistics ( LiT?, Li WiT?, 

Li wrT? or for two maps Li=j WiWjTiTj) will not be discussed here except for the remark 

that the square root of the weighted auto-correlation function at zero lag (Li wrTl) 

minimizes the variance due to the noise in the map pixel temperatures while unit weighting 

minimizes the effect of cosmic variance (see Smoot et al.1994, Bennett et al.1994, Banday 

et al. 1994). 

Because of the importance of C(O), Monte Carlo simulations were performed to monitor 

the behaviour of C( a ~ 15°) as a function of bin choice. The pixel size bin of 2.6° minimized 

oscillations of the output C( a ~ 15°) around the known input. Thus we chose 2.6° to bin 

the correlation function and it is the standard used in this thesis. 

4.8 New Way to Estimate Qrms 

We routinely subtract the mean and dipole (md) or the mean, dipole and quadrupole 

( mdq) from each map before computing the auto or cross-correlation function 

l,.,.a:z: 

Cmd(O) = L tl.Tj wj 
2 

e,.,.= 
Cmdq(O) L tl.Tj wj 

3 

Cmd(O)- Cmdq(O) b..Ti Wi = Q~ms Wi. 
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We have W2 

correction: 

0.9855 (Wright et al.1994a) thus the beam smoothing requires a 1.5% 

Qrms = 1.015VCmd(O) - Cmdq(O). ( 4.29) 

In equation ( 4.29) the correlation functions can be either auto or cross-correlation functions. 

We can also use unweighted or weighted correlation functions. For cross-correlations, the 

Qrms solved for is not associated with an individual map. It is a· "cross" quadrupole, i.e., 

the actual sky quadrupole which is shared by the two maps which went into the cross­

correlation functions. Table 7.3 are the results for Q rms computed from equation ( 4.29) 

with both weighted and unweighted cross-correlation functions. 

4.9 Bias Due to Multipole Subtraction and Galactic 

Latitude Cuts 

It is often the case that best-fit multipoles are removed from the map before the 

analysis. The DMR is not sensitive to the mean level of the CMB sky (Appendix J), so 

it is reasonable to remove the mean in the region in which C(a) is computed. The kinetic 

dipole is so large (,...., 3363 J.LK) and inseparable from any possible intrinsic dipole that we 

subtract it out before the analysis. We also often remove the best-fit quadrupole because 

any residual Galactic foreground will be primarily quadrupolar and the biggest term in the 

systematic error budget is the quadrupolar pattern of the magnetic susceptibility errors. 

Removal of the mean and dipole (and quadrupole) after the Galactic cut removes some of 

the .e = 3 and .e = 4 power of the true sky power as well as the model input. The Galaxy 

is a strong source of foreground emission (Figure 4.5) which must be removed or corrected. 

Correcting for the Galaxy is a difficult task and is the subject of Bennett et al. (1992a). 

Typically we make a straight Galactic latitude cut and remove all pixels with lbl < 20° 

leaving 4016 pixels or 2/3 of the sky. 

To investigate the possible biases in the correlation function introduced by the multipole 

subtractions and Galactic cut we have made noise simulations of 53A and 53B and 

applied the two most common multipole subtraction options: mean+dipole (md) and 

mean+dipole+quadrupole (mdq) for 0° and 20° Galactic cuts (Figure 4.6). We find that 

cross-correlations are immune to any bias from either the multipole subtraction or the 

Galactic latitude cut when no sigal is present. Any bias in the cross-correlation is less than 

10% of the 68% noise confidence level in that bin. This result is true for both 0° and 20° 
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Galactic cuts. 

The auto-correlations suffer from a bias. In Figure 4.6 both multipole subtraction 

options are plotted for a 20° Galactic latitude cut on 53A noise simulations. The range of 

bias is seen to be "' 20 to "' 70 J,.LK2 and the bias in small a bins is the largest. Comparisons 

with the 53B simulations indicate that !~asc A(<>l ~ q.. where u~ and uiJ are the noise 
1ascB(a) uB 

variances per observation in maps 53A and 53B respectively. Thus these biases scale as the 

noise variance in the map u;h. 

100 

50 

0 30 

liD sub no galcut 

IIDQ sub no galcut 
liD sub 20 galcut 

NDQ sub 20 galcut 

60 90 120 
a(degrees) 

150 180 

Figure 4.6: Auto-correlation Multipole Subtraction Bias. Comparison of 20° Galactic plane 

cut with no cut. Comparison of removal of best fit mean and dipole (md) with the removal 

of the best fit mean, dipole and quadrupole (mdq). Weighted correlation functions are 

plotted and unweighted multipole fits have been subtracted as indicated. Mean of 1500 

simulations of year one 53A with noise variance (24.9 mK) 2 per observation. 
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Chapter 5 

The First Year Results 

Abstract 

We present a detailed correlation function analysis of the first year data set which 

contributed significantly to the DMR discovery of anisotropy and was partially reported 

in Smoot et al. (1992). We use the correlation function to help determine that the observed 

structure cannot be attributed to noise or Galactic foreground. As expected of a CMB 

signal, the correlation function signal is consistent with no frequency dependence and 

no Galactic latitude dependence. The correlation function of t'he first year data shows 

statistically significant (> 7u) structure. The power spectral index n obtained from fits to 

the correlation function is consistent with the Harrison-Zeldovich value. The dipole results 

from the first year maps are summarized and interpreted. 

5.1 Introduction 

The COBE collaboration reported the detection of anisotropies in the cosmic microwave 

background radiation (Smoot et al.1992, Bennett et a1.1992b, Wright et al.1992l Kogut 

et al. 1992). These anisotropies cannot be attributed to systematic errors (Kogut et al. 

1992) or any known Galactic foreground (Bennett et al. 1992b ). 

Smoot et al. (1992) and Wright et al. (1992) presented preliminary correlation function 

results from the COBE DMR first year skymaps. Since then, the correlation function 

has become an important standard tool for comparing data to models (Adams et al.1992, 

Scaramella & Vittorio 1993, Seljak & Bertschinger 1993, Bennett e~ al.1994) and data 

-' 
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to data (Ganga et al. 1993). We provide a more complete presentation of the correlation 

function analysis of the first year DMR sky maps than was presented in Smoot et al. 1992. 

In Section 5.2 we describe the ways the correlation function is used to determine the 

noise level and identify a signal. We present separate channel as well as A+B vs A-B 

comparisons. In Section 5.3 we establish the Galactic latitude independence of the signal 

and in Section 5.4 we present our best 53 x 90 cross-correlation function, the statistical 

significance of the signal and the rms temperature fluctuations. In Section 5.5 we briefly 

summarize and interpret the dipole results. 

The data analyzed in this chapter are from the first year "pass 1" processing. It differs 

from the first year released data set only in that the Galactic coordinate system was used 

rather than the ecliptic coordinate system. The "pass 1" data set is described and compared 

with the "pass 2" data set in Appendix E. 

5.2 Is It Noise? 

The first year of DMR observations produces the correlation function data sets in 

Figure 5.1 for the separate channel auto-correlations and Figure 5.2 for the A+B and A-B 

auto-correlations. The relative noise levels of the six channels are easily seen: the 53 GHz 

channels have the least noise while the 31 GHz channels have the most. In Figure 5.2 

the most sensitive 53 GHz plots display a marked difference between the A+B and A-B 

versions. The signal ( the positive correlation for 0 < a ~ 20 ) stands out clearly above 

the A-B noise. The 31 GHz and 90 GHz A+B correlation functions are consistent with 

the signal defined by the 53 GHz channels. The individual channel correlation functions 

are also consistent with the signal however the 31 GHz channels are very noisy and some 

of its signal is emission from the Galaxy. The 90A channel is anomalous in that there is 

no signal except in the first non-zero bin and this first bin signal is much larger than one 

expects based on the other channels. Curiously, 90A-B indicates that 90A and 90B are 

anti-correlated in the first bin. The second year 90A is not as anomalous (see Figure 8.1) 

and the anti-correlation between 90A and 90B is not noteworthy in the Yr2 data (Figure 

8.2). \ 

All curves in Figure 5.1 and 5.2 are auto-correlations. The zeroth bin of auto­

correlations contains the noise squared and is not shown. Cross-correlations do not have 

this problem because of the independent pixel noise in the two maps being cross-correlated. 
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Figure 5.1: Yrl Separate Channels in Galactic and Ecliptic Coordinates. These are weighted 

correlation functions for lbl > 20° and have had the best-fit means, dipoles and quadrupoles 

removed from each map. 
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Auto-Correlations 1990 Pass1 vs 1990 Pass1 Eel 
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Figure 5.2: Yrl A+B vs A-B comparison in Galactic and ecliptic coordinates. These are 

weighted correlation functions for lbl > 20° and have had the best-fit mean, dipole and 

quadrupole removed from each map. 
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In Figures 5.1 and 5.2 both traces for each channel are from the same DMR data 

however the pixelization grid used to bin the data has been oriented in two ways: using 

Galactic and ecliptic coordinate systems. The first-year released DMR maps have been 

pixelized with the ecliptic grid however most DMR analysis has been done with the Galactic 

maps. The amount of variation seen between the two grids is the same as one gets when 

one shifts the bin centers by about half a bin when calculating the correlation function. 

The region within ±20° of the ecliptic plane seems to contain most of the visible 

structure in the DMR maps. This region is also the most undersampled part of the maps 

due to the DMR observation strategy and Moon cuts (compare Figures 2.3 & 1.4). The 

ratio of the number of observations in highly sampled regions to the number in sparsely 

sampled regions is ~ 5/1 (Table E.1). Concerned that a disproportionately large amount of 

the signal seen in the correlation function might be coming from this region, we calculated 

C (a) for ecliptic plane cuts of 10°, 20°, 30° and 40° and found that this was not the case. 

5.3 Is It Galaxy? 

The source of the signal could be Galactic foreground (Bennett et al. 1992b ). There 

are simple but powerful. ways to use the correlation function to determine the extent to 

which Galactic foreground is causing the signal. One is the frequency dependence of the 

signal and the other is the Galactic latitude dependence. The frequency independence of 

CMB anisotropy distinguishes it from the three major Galactic foregrounds (see Section 

2.3). Thus a comparison of the signal seen in the plots of C( a) for the three frequencies can 

characterize the spectrum of the source. All three A+ B curves of Figure 5.2 are consistent 

with the signal as defined by the 53 A+ B correlation function (see Table 7.1). 

If the observed signal were produced by some combination of synchrotron, dust and free­

free emission from our Galaxy we would expect to find that the signal would vary with the 

frequency of the radiation and would depend strongly on the Galactic latitude cut applied . 
(see Section 7.2). Figures 5.3 and 5.4 show Galactic latitude cuts of 10°, 20°, 30° and 40° 

for the auto-correlation of 53A+B and the cross-correlation of 53A+B with 90A+B. The 

similarity of the 20°, 30° and 40° galactic in the a < 20° region is evidence for the Galactic 

independence of the signal. 

Besides the fact that Figure 5.3 shows auto-correlations while Figure 5.4 shows cross­

correlations there is a procedural point worth mentioning. For Figure 5.3 the subtracted 
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Figure 5.3: Yrl Galactic Latitude Cut Independence of the 53 GHz A+B auto-correlations 

for cuts lbl > 20°. For each cut, the best-fit mean, dipole and quadrupole to the region 

outside the cut was removed (Figure 2 of Smoot et al.1992). 
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Figure 5.4: Yrl Galactic Latitude Cut Independence. Cross-correlations of Yrl A+B 53 

GHz with 90 GHz. Notice that the signal is very stable for 20°, 30° and 40° cuts. 
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best :fit mean, dipole and quadrupole were fit to the region lbl > galcut for the four galcuts 

shown while for Figure 5.4 the subtracted best fit mean, dipole and quadrupole were fit 

to the region lbl > 20° independent of the galcut. The signal is slightly more robust to 

Galactic latitude cuts when this more correct procedure is used. 

Based on Figures 5.1 and 5.2 one can conclude that there is a signal in the first 

year DMR data. It does not have the frequency dependence or spatial dependence of any 

known Galactic foreground (Figures 5.3 and 5.4). Thus it is consistent with the expected 

frequency independence of CMB anisotropies which should show no particular fondness for 

the Galactic plane. The source of the signal could be systematic errors, correlated noise, or 

extra-galactic sources such as a hot inter-galactic medium. Systematic errors are discussed 

in detail in Kogut et al. (1992) and Bennett et al. (1994). Correlated noise is the subject of 

Lineweaver et al. (1994b) (see Chapter 9 for the unabridged version of this work). Galactic 

foreground is treated in Bennett et al. (1992) while known extra-galactic sources are found 

not to be causing the signal (Bennett et al. 1993). We conclude that the most economical 

explanation is that the signal is CMB. This conclusion is reinforced by the correlation 

function analysis of the 2Yr data set (Chapter 7) and comparison of the Yr1 with the Yr2 

(Chapter 8). 

5.4 If It's CM~, How Large is the Signal? 

One can obtain a measure of the statistical significance of the correlation function 

signal by computing the x2 of C(a) (equation (8.1)). The statistical significance is then 

.Jx2 - DOF as described in Section 8.3. Using the best first year cross-correlation of 53 

GHz with 90 GHz (Figure 5.5) we obtain a statistically significant (> 7o-) detection of 

structure. The "conservative" error bars used to obtain this result are described in Section 

6.2. The first zero-crossing of C( a) is the characteristic size of the hot and cool spots in 

the map. The grey band is the 68% confidence region of a theoretical Harrison-Zeldovich 

n = 1 correlation function of amplitude Qrms-PS = 15.4 p,K. This is from a x2 fit using 

a Gaussian approximation to the DMR beam. For a more detailed discussion of n and 

Qrms-PS fits see Chapter 10. 

Smoot et al. (1992) and Wright et al. (1992) discuss the rms temperature fluctuations 

on a 10° scale, O"sky(10°). As pointed out in Section 4.7, CAxB(O) = o-2(7°)sky when identical 

weighting and multipole subtraction techniques are used. 
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Figure 5.5: Yr1 Cross-correlation Function of 53 GHz with 90 GHz for lbl > 20°, plus the 

68% confidence level cosmic variations from a scale-invariant-spectrum correlation function 

with an expected Qrms-PS = 15.4 J.LK. Top is for the sum maps, and bottom is for the 

difference maps (Smoot et al. 1992, Figure 3). 
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The first year unweighted 53 Ax B correlation functions from galcuts of 20°, 30° and 40° · 

(weighted average) yields an rms temperature fluctuation of JCmd(O) = 46 ± 6 pK, where 

"md" means that the best fit mean and dipole were removed before C( a) was accumulated 

and the error bars are noise-only. The weighted correlation function yields 39 ± 8 pK. See 

Table 7.3 for a more complete comparison of rms values derived from JC(OJ. 

5.5 First Year Dipole Results 

The two largest features in the DMR skymaps are the dipole and the Galaxy. The 

Galaxy is complicated and difficult to remove while the dipole is simple, at least in principle. 

Observers with velocity iJ = vjc through a Planckian radiation field of temperature T0 will 

measure directionally dependent temperatures, 

(5.1) 

where JL =cosO and 8 is the angle between iJ and the direction of observation as measured 

in the observer's frame (Peebles & Wilkinson 1968). We expand this through order /33 to 

show that the dipole is the largest member of a family of kinematic anisotropies, 

(5.2) 

The six DMR channels are consistent with a Doppler-shifted isotropic blackbody 

radiation field with a dipole amplitude f).T = 3.365 ± 0.027 mK toward direction ( zii, bii) = 
264.4° ± 0.3°, 48.4° ± 0.5° (Kogut, Lineweaver et al. 1993). The errors on the amplitude are 

dominated by the absolute calibration uncertainty while the errors on the direction are 

dominated by the uncertainty of the Galactic model. Next in importance are the magnetic 

susceptibility corrections and the noise. Compared to the previous DMR value (Smoot 

et al.1990) the amplitude increased by 5 pK and the error bars on the amplitude decreased 

by a factor of 3. The direction changed by half a degree and the errors in the direction 

improved by half a degree. Better modeling of the Galaxy has led to this improvement. 

Interpreting this dipole as purely kinematic and using T0 = 2. 73 K, the derived velocity 

of the Sun with respect to the CMB is 369.5 ± 3.0 km s-1 . In Table 5.1 we decompose the 

velocity of the observer (i.e., the COBE satellite) with respect to the CMB into a sum 

of nested velocities associated with structures of increasing size (see Kogut, Lineweaver 

et al.1993, Table 3). The velocities quoted have been used to derive the Local Group velocity 
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with respect to the CMB: iha = 627 ± 22 km s-1 toward (III, bll) = 276° ± 3°, 30° ± 3°. 

Figure 5.6 is a map of the directions and velocities in Table 5.1. 

Equation (5.2) predicts a dipole pattern with no frequency dependence. H the 

observed dipole were larger at 31 GHz than at 90 GHz one could eliminate the kinematic 

interpretation in favor of Galactic synchrotron and/ or inhomogeneity in the inter-stellar 

medium or inter-galactic medium. Modelling the frequency dependence of the DMR dipole 

amplitudes as vP we obtain p = 0.004 ± 0.017. Thus the frequency independence of both the 

FIRAS (Fixsen et al. 1994) and DMR results represents a successfully passed consistency 

test of the Doppler-shifted Planckian assumption of equation (5.2). 

During the past decade studies of bulk motion (Bertschinger et al. 1990) as well as 

cumulative acceleration analyses in theIR, optical and X-ray have produced consistent and 

independent support for the standard kinematic interpretation of the CMB dipole (e.g. 

Strauss et al.1992). The broadstroke picture is simple. Virgo-centric infall with a bulk 

velocity towards the "Great Attractor" (Dressler et al.1986) can account qualitatively and 

within certain limits quantitatively for both the direction and the magnitude of the velocity 

of the Local Group as inferred from the CMB dipole. 

The inferred velocity of our Local Group is consistent with the peculiar velocity 

distribution of other groups. This velocity distribution is the result of the influence of 

potential :fluctuations like those which have been measured on the surface of last scattering 

by the DMR (Smoot et al.1992). These fluctuations (Qrms-PS ~ 17 J.LK, n ~ 1) are at a 

level consistent with the production of the velocity distributions observed (see Gorski 1991, 

Scaramella 1992, and Kogut, Lineweaver et al.1993). 

5.5.1 Calibrator of Other Diffuse Backgrounds 

The standard model predicts that the rest frame of the distant sources of other diffuse 

backgrounds will coincide with the rest frame of the CMB. H the CMB dipole is kinematic 

then it can serve as a calibrator for the expected dipoles in these other. backgrounds. 

The generalization of equation (5.2) for motion through an isotropic but not necessarily 

Planckian radiation field of intensity ! 0 ( v) is the observed intensity anisotropy 

D..I( 8) = Iobs(v, 8)- l 0 (v) 
[

0 
v, · I

0
(v) ' (5.3) 

where v is the frequency in the observer's frame and [0 is the intensity in the rest frame of 

the radiation. The result to third order in f3 is 
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(5.4) 

where an · i(:) a;~l"). A pedagogical check of this formula can be made by noticing 

that for a Planckian spectrum 1:11/10 = l:iTa.ntfTant = e;:-1 !:iT /T0 , where Tant is antenna 

temperature and x = hvfkT0 (Appendix G). In the Rayleigh-Jeans limit, a1 = a 2 = 2, 

a3 = 0 and one obtains 1:11/10 = !:iT /T0 • An analogous simplification does not occur in 

the Wien limit because of the v dependence of the derivatives an. Another check is that an 

I <X v 3 non-Planckian spectrum yields no -kinematic anisotropy (1:11 /10 = 0) since Ifv3 is a 

Lorentz invariant. For this case, a1 = 3 and a2 = ri3 = 6. 

A measurement of the dipole anisotropy from the DMR first-year skymaps implies 

a Local Group velocity with respect to the CMB rest frame of via = 627 ± 22 km s-1 

toward (III, bll) = (276° ± 3°, 30° ± 3°). The relevant data is consistent enough to define 

a testable "standard kinematic interpretation" of this dipole (Lineweaver et al.1994a). A 

confirmed detection of an X-ray background dipole at the level determined by equation 

(5.4) in agreement with the CMB dipole would provide a substantial confirmation of the 

standard interpretation. 
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Figure 5.6: Full-sky map in Galactic coordinates showing the velocities from Table 5.1. The 

size of the dot is roughly proportional to the magnitude of the the velocity. The motion of 

the Sun around the Galactic center as well as the motion of the Galaxy with respect to the 

Local Group are "' 180° away from the "' 370 km s-1 SUN-CMB dipole apex. The circle 

labeled "L&P" is the Lauer & Postman (1992) result. "GA" is the Great Attractor. 

Table 5.1: Nested Velocities 

Object Frame Velocity Direction(l11 , b11 ) Reference 
(km s-1 ) (degrees) 

COBE Earth 7.4 ± 0.1 "'J.. ecliptic plane 
Earth Sun 29.8± 0.5 ecliptic plane Astronomical Almanac, 1990 
Sun LSR 20.0 ± 1.4 57± 4,23 ± 4 Kerr & Lynden-Bell, 1986 
LSR GC 222.0 ± 5.0 91.1 ± 0.4, 0 Fich, Blitz & Stark, 1989 
GC LG 112.3 ± 24 145.7 ± 6,-23.8 ± 5 combine rows 3,4,8 
LG CMB 627 ± 22 276 ± 3,30± 3 combine rows 7,8 
Sun CMB 369.5 ± 3.0 264.4 ± 0.3, 48.4 ± 0.5 Kogut et al. 1993 
Sun LG 308 ± 23 105± 5,-7± 4 Yahil et al. 1977 

(LSR: Local Standard of Rest, GC: Galactic Center, LG: Local Group) 
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Chapter 6 

Correlation Function Error 

Analysis. 

Abstract 

We compute error bars for C( a) from a standard propagation of errors formula and compare 

the results with a calculation of the covariance matrix of the correlation function with and 

without cosmic variance. Approximations for the error bar dependence on separation angle, 

Galactic plane cut and time are given. 

6.1 Introduction 

Since 1992 when Smoot et al. (1992) and Wright et al. (1992) presented preliminary 

correlation function results from the COBE DMR first year skymaps, the correlation 

function has become· an important standard tool for testing models (Adams et al.1992, 

Scaramella & Vittorio 1992, Seljak & Bertschinger 1993, Bennett et al.1994) and comparing 

data (Ganga et al.1993). The errors on C(a) can be important factors in determining the 

power spectrum parameters n and Qrms-PS . We are thus motivated to present a closer 

look at the errors on the correlation functions of the DMR maps. 

First we need to specify what exactly we want error bars for. The measured C(a) can 

be construed as an estimate of the correlation function of either (i) our horizon volume, . 
or (ii) the ensemble average of all horizon volumes < C(a) >. For (i) the error bars on 

C (a) are from the uncertainty in our estimation of the true temperatures Ti of our observed 
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sky. These are the temperatures which would be measured in a perfect noiseless instrument 

and cosmic variance plays no role. For (ii) the error bars on C( a) need to include the 

additional uncertainty due to cosmic variance. Case (i) is useful when comparing data sets 

while case (ii) is useful when comparing data with models but depends on the ensemble 

average < C (a) > of the model one is trying to specify. 

When we apply error bars without including cosmic variance to C(a), we are implicitly 

interpreting C( a) as an estimate of our sky's C( a) , not < C( a) >. When we include cosmic 

variance we have to assume the presence of structure at a chosen level. When formulae 

for the errors are derived from covariance matrices without cosmic variance, the results 

are dependent on the unknown true temperatures of the sky Ti· With cosmic variance, 

the results are dependent on the unknown ensemble average < C(a) >. The standard 

propagation of error formula discussed below has the advantage of depending only on the 

actual temperatures in the observed map and, for reasonable values of the parameters n and 

Qrms-PS , yields a result in between noise-only error bars and error bars including cosmic 

variance (see Figure 6.1). 

6.2 Error Bars and Covariance Matrices of C(a) 

Unless specifically described as noise-only, the errors on the correlation functions in 

this thesis were derived from the standard propagation of errors formula, 

( )

2 
2 &C(a) 

uc(a) = L &T. Um , 
m obs,m 

(6.1) 

where the sum is over all pixels in both maps and u; = 1/wm = u;h/Nm is an estimate of 

the pixel noise. N m is the number of times pixel m has been observed. This leads to (see 

Appendix K) 

u;(a) = L [wiT;bs,i + WjT;bs,j], (6.2) 
w 

where the operator Lw = ~ Li,j 8(a- aij)WiWj and W = Li,j 8(a- aij)WiWj. The delta 

function forces the sum to run over all pixel pairs i j whose separation angle aij lies within 

half a bin width of a. It is important to notice that this is a function only of the observed 

temperatures Tobs,i and we make no assumptions about an underlying CMB temperature 

field Ti. 

Equation (6.2) can be compared to the variances contained in the diagonal elements of 
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the covariance matrix 

(6.3) 

where a and f3 are separation angles, ~C(a) = Cr(a)- < Cr(a) > and the angle brackets 

are averages over the ensemble of realizations indexed by r. The Ti-dependent diagonal of 

the covariance matrix is u 2( a) = Oaf3 u2( a, /3). For the case where cosmic variance is not 

included, after lengthy algebra, we obtain 

u~(a) = L [1 + WiTl + WjTJ + L o(a- ajk)WkTi Tk + L o(a- ail)wlTj Til ' 
w k,k=/:i 1,1=/:j 

(6.4) 

where i and k are indices for map 1 and j and l are indices for map 2. Equation ( 6.4) is a 

function of the true but unknown temperatures Ti. The "1" is the noise-noise term while 

the others are noise-signal terms. For each angle a:, the angles aik and ail take on all values 

in the range (0,2a]. Therefore the last two terms pick up positive contributions from that 

part of the sum where aik and ail are ;::: 15° (using the approximation that C(a) averaged 

over the range 15° < a < 2a equals zero). These last two terms are responsible for the 

bumps and wiggles in the no-cosmic-variance results of Figure 6.1. 

To compare equation (6.2) with (6.4) we write the map temperatures as a sum of the 

true temperatures plus noise: Tobs,i = n + ni where ni is from a normal distribution of 0 

mean and variance u[ 

Thus equation (6.2) becomes 

ni E N(O, u[), u[ = u~h/Ni 

Ti E N(O, u;ky)· 

w 

(6.5) 

(6.6) 

. (6.7) 

where we have used the fact that averaged over i, niTi ~ 0 and n[ ~ u[. With these 

approximations equation (6.7) has a "noise-noise" term twice as large as the corresponding 

term in the no-cosmic variance covariance expression of equation (6.4). 

As a pedagogical check we can also compare equations ( 6.4) and ( 6. 7) with the diagonal 

of the covariance matrix when cosmic variance is included 

u~(a) '= ~ [ 1 + w;C(O) + w;C(O) + k~i w,C,. + ,t,;:; w,C;l +~?(a- <>k!)WkWICikC;ll , 

(6.8) 
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where the C(O) terms are unweighted correlation functions at zero lag. The first term in 

the square bracket is the noise-noise term. The next four are the noise-signal terms and 

the last is the signal-signal term unique to simulations with cosmic variance. Notice that 

the wC(O) terms correspond to the wT2 in equations (6.4) and (6.7) and the wCik terms 

correspond to the wTT terms in equation (6.4). Notice that neither the map temperatures 

(Tobs,i) nor the true sky temperatures (Ti) appear since the ensemble average correlation 

function for a given angular separation Cij =< C( aij) > is specified by the model but the 

temperatures are not. Thus, both the "noise-signal" and "signal-signal" error terms are a 

function of Cij. 

In this thesis, the displayed correlation function errors are from 

2 
Lij 8(a- aij) [u;h1NjN?T.;bs,i + u;h2NiN]T.;bs,j] 

uc(a) = ('L ·8( - ··)N·N·)2 ' iJ a a~3 t 3 

(6.9) 

which is derived from the standard error propagation formula in Appendix K. In Figure 6.1 

the curve labeled 'conservative' comes from equation (6.9). It is symmetric about a = 90° 

and shows no bumps or wiggles. When the error bars are described as noise~only they are 

computed from (Appendix K) 
0"2 0"2 

u;(a) = ch1 ch2 • 
Lij NiNj 

(6.10) 

The noise-only error bars of equation (6.10) are also displayed in Figure 6.1. Simulations 

of n =1 and Qrms-PS =17J.LK without cosmic variance (equation (6.4)) and with cosmic 

variance (equation (6.8)) yield respectively the dashed and dot-dashed curves in Figure 6.1. 

For .auto-correlations the results are identical to those presented above except the variance 

is twice as large u; -+ 2u;. 

In summary, the error bars displayed on C( a) depend on what exactly one wants 

to represent. Analogous "noise-noise" and "noise-signal" terms are present in the three 

methods discussed. Error bars derived from covariance matrices of Monte Carlo simulations 

are necessarily model dependent. The standard propagation of error formula has the 

advantage of depending only on the actual temperatures in the observed map and, for 

reasonable values of the parameters nand Qrms-PS , yields a result in between noise-only 

error bars and error bars including cosmic variance (see Figure 6.1). 
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Figure 6.1: Error bars on the 2Yr cross-correlation 53 GHz x 90 GHz from the standard 

propagation of errors formula (labeled 'conservative' and computed from equation (6.9)), . 
compared with noise-only error b~rs (equation {6.10)). Also shown are error bars derived 

from 68% confidence levels on C(a) from 2000 simulations of n = 1,Qrms-PS = 11J.LK 

structure + noise, with and without cosmic variance (CV). A 20° Galactic plane cut has 

been made and the best fit mean, dipole and quadrupole have been subtracted. 
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6.3 Separation Angle, Galactic Cut and Time Dependence 

The most obvious feature of o"c( a) is that it has a maximum at small and large values of 

a and a minimum at intermediate a values. This is due to the relative number of pixel pairs 

as a function of separation angle a. For the dominant noise-noise term, the a dependence 

is, 
1 

a-c(a) <X :L <X J . c r 
w szn a 

(6.11) 

The errors on C(a) also depend on the sky coverage. Typically, Galactic latitude cuts 

of lbl < 10°, 20° and 30° are used to remove Galactic contamination. The Galactic cut 

determines the number of pairs i, j to sum over. Therefore 

a-;( a, lbl) <X L <X ~, 
w 

where n is the solid angle of sky coverage. Since n <X (1 - sin(b)) we have, 

1 
<1c(a) <X yl1- sin(b) 

(6.12) 

(6.13) 

Monte Carlo simulations at various Galactic cuts have verified this analytic result. For 

example a 30° Galactic cut increases o-~( a) by a factor of two over the no Galactic cut 

values. 

One can make a crude estimate of the time dependence of the error bars. Consider 

the time dependence of each of the terms in equation (6.8). The number of observations of 

a pixel Ni increases linearly with observation· time Ni <X t. Since Wi = ~ = .§... <X t, we 
U; qeh 

have, Ew <X 1/t2 • The "1" is the noise-noise term. The correlations C(O) and Cik are time-

independent constants: C(O) ~ lOOOJ.t K and and the wCik sums are about three times the 

wC(O) terms. Assuming uncorrelated noise and 2 years of observation o-i = j5!t; ~ 100j.tK. 

Therefore the sum ofthe noise-signal terms is 8 c~o) rv 1. The rough t dependence of o-~( a) 
. (Ti 

from equation (6.8) is then 

1 t t 
a-;( a) <X 2 [1 + (-) + x(-)2

], 
t t2yr t2yr 

(6.14) 

where x rv 1 and has an a dependence which modulates the signal-signal cosmic variance 

error bars. This modulation can be seen as the variation of the width of the grey band in 

Figure 7.6. 

For small t, the noise-noise terms dominates and o-c(a) <X 1/t. When the noise­

signal term dominates, o-c(a) <X 1/.../i and when the signal-signal term dominates, o-c(a) ~ 
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constant. After two years of operation, the error bars on C (a) from the best combination 

maps are no longer dominated by the 1/t behavior of the noise regime but are decreasing 

more slowly with time. The size of the error bars in the final two years decreases even more 

slowly. 

This time-dependence approximation is very crude because we have glossed over the a 

dependence of the noise-signal and signal-signal components. For example look at the errors 

in Figure 6.1. At a:::::::: 90° and 150° the effect of cosmic variance is very small compared to 

the noise while at a:::::::: 10° cosmic variance is very large_. 

.. 
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Chapter 7 

Correlation, Function Analysis of 

the Two Year Maps 

Abstract 

We present the results of a detailed correlation function analysis of the two year (2Yr) maps. 

The six separate DMR channels are mutually consistent. The A+B and A-B comparison for 

each frequency indicates a CMB signal that is approximately frequency independent. The 

signal is very robust to Galactic latitude cuts of 20°, 30° and 40°. These results support 

the conclusions based on the first year of data. The statistical significance of the detection 

in the two year correlation function is > 18u. The rms temperature fluctuations obtained 

from JC(O') for both weighted and unweighted cases as a function of Galactic latitude cut 

are tabulated in Table 7.3. Although the technique used to obtain them differed, our results 

are consistent with the Bennett et al. (1994) results. We find for the two year data set cross­

correlation of 53 GHz with 90 GHz rms temperature fluctuations of JC(O') = 35 ± 4 J.LK. 

The results of a novel method to obtain the rms quadrupole of our sky are given. The Qrms 

obtained from the two year 53 x 90 correlation function is 9 ± 8 J.LK. 

7.1 Channel Comparison, A+B and A-B Comparison 

It is important that the reported CMB signal be seen consistently in each channel and 

consistently from year to year. The signal should show no frequency dependence or Galactic 

latitude cut dependence. These properties can be conveniently checked and quantified using 

67 



4000 

3000 

2000 

;;-' 4000 
:::0:::: 

~ 3000 

-2000 
e; u 1000 

Separate Channels 2Yr 

Channel A Channel B 

31A 31B 

mm f1 ~~ 
ill 

ffiJl ll rn 
53 A 53B 

or-~~~~~~~~~~~~ 

-1000 

90B 

3000 

0 30 60 90 120 150 0 30 60 90 120 150 180 

Separation Angle ex[ degrees} 

Figure 7.1: 2Yr Separate Channel Comparison. Each channel is consistent with a small 

angular scale positive correlation. These are auto-correlations in the region lbl > 20° and 

have had the best fit mean, dipole and quadrupole removed. 
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Figure 7.2: 2Yr A+B vs A-B Comparison. As expected of a true CMBsignal, the A+B 

versions display a signal at approximately the same level for each frequency while the A-B 

versions are consistent with no signal. These are auto-correlations in the region lbl > 20° 

and have had the best fit mean, dipole and quadrupole removed. 
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correlation functions. In the following correlation function analysis of the 2Yr data we will 

use only maps from the pass 2 software processing (Appendix E). 

Figure 7.1 is a comparison ofthe 2Yr.separate channel auto-correlation functions. The 

traces in each channel are consistent with a slowly rising positive correlation as a decreases, 

peaking at a C ( 0) "' 1000 J.LK2• 

For each frequency, Figure 7.2 compares the auto-correlations of A+B and A-B maps. 

As expected for true CMB structure, the C(O) "' 1000 J.LK2 signal is present in each of 

the A+B plots at approximately the same level and is absent in the A-B plots. The fact 

that the level is approximately frequency independent is important. If we were observing 

Galactic synchrotron or free-free emission the 31 GHz signal would be >9 times higher than 

the 53 GHz signal. Figure 7.2 shows that this is clearly not the case. 

In antenna temperature we have Ti(v) <X vf3; where the three main components 

of Galactic foreground (subscript i) are synchrotron, free-free and dust with f3sync ~ 

-2.8, f3JJ ~ -2.1 and f3dust ~ 1.5 (see Section 2.3). Since C(a) <X T 2 , we can obtain 

the frequency dependence of the signal by fitting each bin of the correlation function to the 

model 

C(a,v) = Av2f3 (7.1) 

using the values from the A+B 31 GHz, 53 GHz and 90 GHz correlation functions. 

The signal in the small a region where the correlations functions are positive yields 

{3 = -0.1 ± 0.5 (see Table 7.1). A non-frequency dependent signal in thermodynamic 

temperatures corresponds to {3 = -0.17 for fits to correlation functions at the DMR 

frequencies in units of antenna temperature squared. Thus the frequency dependence of 

the signal in the correlation functions is consistent with the frequency independence of· 
CMB anisotropies. 

Figures 7.3 and 7.4 are polar projections of unsmoothed weighted combinations of 31, 

53 and 90 GHz maps. Figure·7.3 is the A+B version (signal+ noise) while Figure 7.4 is the 

A-B (noise) version. Structure is easily visible in Figure 7.3 but not in Figure 7.4. These 

unsmoothed maps can be compared to the smoothed 53 A+B map in Figure 1.4. 

Figure 7.5 displays the A+B and A-B versions of the data combined and correlated 

in three different ways. The presence of the signal in the A+ B versions and its absence 

in the A-B versions is obvious. These combinations are not independent but do show that 

the correlation function signal is not strongly dependent on how maps are combined and 

correlated. 
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North 

South 

+150fLK 

Figure 7.3: 2Yr A+B Sky Maps in Polar Projection. The northern Galactic hemisphere is 

on the top, southern Galactic hemisphere is on the bottom. They touch at the Galactic 

center. The Galactic longitude l = 90° is at 9 o'clock. The map is an unsmoothed weighted 

combination of 31, 53 and 90 GHz A+B maps and thus contains signal and noise. It can 

be compared with the A-B (noise only) version in Figure 7.4 
71 



North 

South 
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Figure 7.4: 2Yr A-B Sky Map in Polar Projection. The northern Galactic hemisphere is on . -

the top, southern Galactic hemisphere is on the bottom (same orientation as Figure 7.3). 

The map is an unsmoothed weighted combination of 31, 53 and 90 GHz A-B. 
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Figure 7.5: 2Yr Best Combinations, A+B and A-B versions. These combinations are not 

independent but do show that the correlation function signal is not strongly dependent on 

how maps are combined and correlated. These correlations were computed in the region 

lbl > 20° and have had the best fit mean, dipole and quadrupole removed. All plots are 
cross-correlations except for the auto-correlations in the bottom panels. 
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Figure 7.6: 2Yr Cross-correlation of 53 GHz with 90 GHz plus the correlation function for 

the best fit n = 1.2, Qrms-PS = 17.3 J.LK spectrum: the gray band indicates 68% confidence 

levels from cosmic variance. These cross-correlations were computed in the region lbl > 20° 

and have had the best fit mean, dipole and quadrupole removed. The x2 for each of these 
curves is given in Table 7 .2. 
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Table 7.1: Frequency Dependence of Signal 

data f3a 

Yr1 -0.6 ± 0.9 
Yr2 -0.1 ± 0.4 
2Yr -0.1 ± 0.5 

Ideal CMBb -0.17 

a From fits of C ex v213 to the small a positive bins of the correlation functions of A+ B 

maps at the three DMR frequencies. 

b No frequency dependence yields f3 = -0.17 when correlation functions are in units of 

antenna temperature squared. 

Figure 7.6 is the 2Yr 53 A+B x 90 A+B cross-correlation function. It is a weighted 

correlation function for lbl > 20° with the best fit mean, dipole and quadrupole subtracted. 

The error bars are noise only and the grey band is the 68% confidence region defined by 

the cosmic variance of the best x2 fit power spectrum parameters n=1.2, Qrms-PS =17.3 

pK (see Section 10.2.2). 

7.2 Galactic Latitude Independence 

If the observed signal were produced by some combination of synchrotron, dust and free­
free emission from our Galaxy we would expect to find a Galactic latitude dependent signal 

varying strongly with the frequency of the radiation~ Figure 7. 7 displays cross-correlations 

for 53 A+ B x 90A +B. The similarity of the 20°, 30° and 40° cuts in the a < 20° region is 

evidence for the Galactic independence of the signal. The x2's of these curves (Section 8.3) 

are a measure of Galactic latitude independence (and the statistical significance of structure 

detection) and are tabulated as a function of Galactic cut in Table 7.2. 

Figure 7.8 shows the correlation function of the Galactic plane in the lbl < 20° region 

for 31, 53 and 90 GHz 2Yr maps. Notice the strong frequency dependence (logarithmic 

y-axis!). C(O) at 31 GHz is ten times as large .as C(O) at 53 GHz. This behaviour is not 

expected of a CMB signal and it is not what is seen in Figure 7 .2. 

We can use the correlation function of the Galaxy to quantify the frequency dependence 

of Galactic emission between any two frequencies. Since C( a) ex T2 we can define an 
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Table 7.2: Statistical Significance as a Function of Frequency 

A-B A+B 
Data Galcut xz xz/DOF a xz x 2 /DOF SignificanceD 

31 20° 62 0.89 171 2.5 10.1 
53 20° 114 1.6 1248 17.8 34.3 
90 20° 128 1.8 348 5.0 16.7 

53x90 100 60 0.84 4350 61.3 65.4 
20° 74 1.0 947 13.3 29.6 
30° 65 0.9 576 8.1 22.5 
40° 85 1.2 408 5.7 18.4 

a The number of degrees of freedom DOF is equal to the number of correlation function 

bins:· 71 for cross-correlations and 70 for auto-correlations. 

bStatistical significance in units of noise-only standard deviations is Jxz- DOF, see 

equation (8.1). 

exponent f3v1 jv2 by the equation 

(7.2) 

Values for f3vJ/vz are plotted in the lower panel of Figure 7.8. The exponent f33I/53 ~ -2.3 

suggests that free-free emission (with some synchrotron) is predominantly responsible for 

Galactic plane emission at these frequencies. 

7.3 RMS Temperature Fluctuations and Qrms 

The rms temperature :fluctuations are a subset of the correlation function results. We 

u,se the fact pointed out in Section 4.7, that the rms temperature fluctuations Usky = JC(O). 
When C(O) is from a cross-correlation function the Usky can be called the cross rms values. 

Frequency dependent Usky values have also been computed (Smoot et al.1992, Bennett 

et al. 1994) using 

(7.3) 

When the weighting used to compute u~+B and u~-B is the same as used to compute 

the cross-correlation C(O) of channel A with channel B and when multipole subtraction is 
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Figure 7.7: 2Yr Galactic Latitude Cut Independence. Cross-correlations of 53 GHz A+B 

with 90 GHz A+B. For all cases, the best-fit mean, dipole and quadrupole to the region 

lbl > 20° was removed. Notice that the Galactic cut independence of the signal is even 

more pronounced than in the corresponding plot of Yrl data (Figure 5.3). The x2 for each 

of these curves is given in Table 7 .2. 
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Figure 7.8: Frequency dependence of the Galactic plane of the A+B maps for lbl < 20°. 

In the top panel the thin, medium and thick lines are 31, 53 and 90 GHz respectively. 

No multipole subtraction has been performed. In the top panel, if a 10° cut is used 

instead of 20°, the correlation functions are higher, for 30° they are lower. The amplitude 

of the 31 GHz curve is 10 times larger than the 53 GHz. The (3 values shown in the 

bottom panel are related to the spectral shape of Galactic emission (equation (7.2)). The 

(J3l/S3 ~· -2.3 suggests that free-free emission (with some synchrotron) dominates Galactic 

emission between 31 and 53 GHz. 
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Table 7.3: RMS Temperature Fluctuations and Qrms Estimates from JC(O)a 

Unweightedb C(a) Weightedc C(a) 

Data bcut JCmd(o/ Cmdq(O) Q!ms )Cmd(O) Cmdq(O) Qrms 
(0) (JlK) (JlK) (JlK) (JlK) (JlK) (JlK) 

53x90 Yr1 10 40.0 ± 5.1 37.6 ± 5.4 13.7 ± 6.8 49.3 ± 4.3 48.9 ± 4.3 5.8 ± 16.8 . 
20 28.4 ± 8.0 26.4 ± 8.6 10.8 ± 9.6 35.5 ± 6.4 34.8 ± 6.6 7.3 ± 14.5 
30 25.1 ± 10.3 22.7 ± 11.4 11.1 ± 10.9 31.3 ± 8.3 30.0 ± 8.7 9.0 ± 13.5 
40 22.1 ± 13.8 17.0 ± 17.9 14.3 ± 9.8 33.4 ± 9.1 31.7 ± 9.6 10.9 ± 13.0 

Yr2 10 56.8± 3.6 55.4 ± 3.7 12.6 ± 7.5 55.7 ± 3.8 55.3 ± 3.9 7.1 ± 14.0 
20 45.6± 5.0 45.1 ± 5.1 7.1 ± 14.8 39.9 ± 5.8 39.7 ± 5.8 4.5 ± 24.0 
30 42.7 ± 6.1 41.8 ± 6.2 8.6 ± 13.7 39.6 ± 6.6 39.2 ± 6.6 6.0 ± 20.1 
40 43.0 ± 7.1 42.3 ± 7.2 7.7 ± 18.0 39.0 ± 7.8 38.5 ± 7.8 6.7 ± 20.8 

2Yr 10 46.7 ± 3.2 44.8 ± 3.3 13.3 ± 5.1 50.4 ± 2.2 50.0 ± 2.2 6.7 ± 7.6 
20 35.7 ± 4.6h 34.4 ± 4. 7 9.3 ± 8.0 35.1i ± 3.3 34.5 ± 3.4 6.3 ± 8.5 
30 33.5 ± 5.6 31.9 ± 5.8 10.4 ± 8.2 33.9 ± 3.9 32.9 ± 4.1 8.3 ± 7.5 
40 35.4 ± 6.2 33.5 ± 6.5 11.8 ± 8.6 35.3 ± 4.4 34.0 ± 4.6 9.6 ± 7.5 

53AxB3 Yr110 53.0 ± 4.1 50.5 ± 4.3 16.4 ± 6.1 56.7 ± 4.7 55.3 ± 4.8 12.8 ± 9.6 
20 45.2 ± 5.4 44.0 ± 5.5 10.5 ± 10.7 40.1 ± 7.2 39.5 ± 7.3 7.3 ± 18.5 
30 47.0 ± 5.9 46.5 ± 6.0 7.0 ± 18.1 40.3 ± 8.2 39.8 ± 8.3 6.4 ± 24.1 
40 45.9 ± 7.2 44.4 ± 7.4 11.9 ± 12.9 37.7 ± 10.3 36.1 ± 10.8 11.1 ± 16.2 

Yr2 10 64.6 ± 3.4 62.3 ±.3.5 17.3 ± 5.8 60.4 ± 4.5 59.9 ± 4.5 
20 58.9 ± 4.1 57.9 ± 4.2 11.2 ± 10.0 49.3 ± 6.0 48.9 ± 6.0 
30 54.2 ± 5.1 53.4 ± 5.1 9.7 ± 13.0 46.4 ± 7.2 45.7 ± 7.3 
40 53.8 ± 6.0 52.3 ± 6.1 12.8 ± 11.5 44.1 ± 8.8 42.5 ± 9.1 

2Yr 10 55.2 ± 2.8 52.6 ± 3.0 16.9 ± 4.3 54.7 ± 2.5 53.6 ± 2.6 
20 44.4 ± 3.9 43.0± 4.0 11.2 ± 7.2 38.1 ± 3.9 37.4 ± 4.0 
30 43.9± 4.5 42.8± 4.6 9.6 ± 9.6 37.1 ± 4.6 36.3 ± 4.6 
40 50.1 ± 4.6 48.4 ± 4.8 13.2 ± 8.1 40.5 ± 4.8 38.9 ± 5.0 

a C(O) are cross-correlations with noise-only error bars 

b Unweighted correlation function and multipole subtraction (see Section 4.6) 

c Weighted correlation function and multipole subtraction 

d best-fit mean and dipole for lbl > 20° subtracted 

e best-fit mean, dipole and quadrupole for lbl > 20° subtracted 

f defined by equation 4.29 

g 53A + B X 90A + B 

h Bennett et al. (1994) value is 36 ± 5 

i see Figure 7.9 

i 53Ax53B 
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handled identically then the two techniques are equivalent 

(7.4) 

Table 7.3 tabulates cross-correlation results of 53 x 90 and 53A x 53B for Yrl, Yr2 

and 2Yr maps. Two important quantities are computed as a function of Galactic cut: 

rms temperature fluctuations JCmd(O) and the quadrupole moment of our observable sky 

Qrms (md denotes that the mean and dipole have been removed, while mdq denotes that 

in addition the quadrupole has been removed). We find for the two year data set weighted 

cross-correlation of 53 GHz with 90 GHz JCmd(O) = 35 ± 4 p,K. This is the weighted 

average from Galactic latitude cuts of 20°, 30°, and 40° and the error bar is from noise 

only. The unweighted cross-correlation yields ·the same value with a larger uncertainty 

JCmd(O) = 35 ± 6 p,K. 

The relative merits of the various weightings of rms statistics ( L:i Tl, L:i WiTl, 

Ei w'fTl or for two maps L:i=i WiWjTiTj) will not be discussed here except for the remark 
that the square root of the weighted auto-correlation function at zero lag (L:i w'fTl) 

minimizes the variance due to the noise in the map pixel temperatures (see Smoot et al.1994, 

Bennett et al.1994). 

Qrms is the actual quadrupole of our horizon as estimated from observations of the 

high Galactic latitude CMB ·sky and should not be confused with the power spectrum 

normalization Qrms-PS • Estimates of the observed quadrupole Qrms are computed from 

equation (4.29) and the JCmd(O) and Jcmdq(O) values listed in Table 7.3. Weighted 

averages of the results for Galactic latitude cuts of 20°, 30°, and 40° from the 2Yr 53 x 

90 weighted correlation function yields Qrms = 8 ± 8 p,K while the unweighted correlation 

functions yield Qrms = 10 ± 8 p,K. Averaging these two yields Qrms = 9 ± 8 p,K. 
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Figure 7.9: 2Yr Correlation Functions with and without quadrupole. Cross-correlation 

function of 53 GHz with 90 GHz for lbl > 20°. The difference in C(O) values is used to 

compute Qrms· 
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Chapter 8 

Correlation. Function Comparison 

of the First and Second Year Maps 

Abstract 

Confirmation of the DMR first year results can be obtained from other experiments but also 

from a comparison with the independent second year DMR results. We present a correlation 

function comparison of the first year (Yr1) and second year (Yr2) data. The Yr1 and Yr2 

data sets are reasonably consistent. The positive correlation for separatiol). angles less than 

"' 20° is robust to Galactic latitude cut and is very stable from year to year. The detected 

structure in the correlation functions has a statistical significance of > 9 u and > 10 u for 

Yr1 and Yr2 respectively. Yr2 has higher rms temperature fluctuations. For example, the 

weighted 53 x 90 correlation functions at zero lag yield 40 ± 7 J.LK for Yr2 and 33 ± 8 J.LK 

for Yr1 but the difference is not statistically significant. The cross-correlation of the 53 

GHz and 90 GHz maps yields cross-quadrupole values (Section 4.8) and indicates that the 

second year data has a lower quadrupole than the first year but the error bars are not small 

enough to claim inconsistency. 

8.1 Year One vs Year Two Data 

In the following correlation function comparison of Yr1 with Yr2 we will use only maps 

from the Pass 2 software processing (see Appendix E). On October 4, 1991 the 31B channel 

noise increased dramatically and we do not use 31B data after this date. A comparison of 
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the noise levels in the Yr1 and Yr2 maps can be obtained by comparing column 4 and 6 of 

Table 2.1. The percent changes in the rms noise values from Yr1 to Yr2 in channels 31A, 

31B, 53A, 53B, 90A, 90B are -1.8, -1.3, 0.0, 0.0, -1.5 and +2.0 respectively. 

8.2 Channel Comparison, A+B vs A-B Comparison 

The signal seen in the DMR map correlation functions is essentially an increasing 

positive correlation as the separation angle a decreases. Thus the "signal" is the slope 

leading up to a C(O)"' 1000 f.LK2
• This signal is apparent in the separate channels for Yr1 

and Yr2 which are compared in Figure 8.1. Notice the consistency from year to year in each 

pair of curves. The correlation functions of channel 90A do not seem to show the expected 

signal. However when the maps are combined the noise fluctuations average out and the 

result is reasonably consistent with the other channels (see Figure 7.1). 

In Figure 8.2 the signal of the A+B correlation functions can be compared with the 

noise of the A-B correlation functions. Here again the consistency of Yr1 and Yr2 is evident 

by the similarity of the two curves in each panel. The A+B curves for 31, 53 and 90 GHz 

have a slope leading up to C(O) "' 1000 f.LK 2 • The 31 GHz A+B curve is very noisy and the 

20° galcut is not enough to prevent Galactic synchrotron contamination. All curves are for 

lbl > 20°. The frequency dependence of the correlation function signal is consistent with 

a CMB signal and is tabulated in Table 7.1. Notice that 90A-B has an anomalously high 

C(O) for Yr1 but for Yr2 the value comes down to an acceptable level (compare Figure 7.2). 

Figure 8.3 displays the cross-correlation of 53A+B with 90A+B in the top panel and 

53A-B with 90A-B in the bottom panel. Correlation functions from Yr1, Yr2 and 2Yr 

are superimposed. In this very sensitive test the signal is present in the A+B but not. 

in the A-B traces. The signal from Yr2 is consistent with the signal from Yrl. This 

consistency is further verified by permutations of these cross-correlations. For example the 

cross-correlations of 53A ± B (Yr1) with 90A ± B (Yr2) and 53A ± B (Yr2) with 90A ± B 

(Yr1) yield results very similar to those seen in Figure 8.3. 

The Yrl and Yr2 maps can be compared in Figures 8.4 and 8.5. The weighted 

combination of all the channels are displayed using a !:iT /T = ±10-4 greyscale. The 

maps have 2.6° pixels and have not been. smoothed. Away from the Galactic plane, several 

cool spots are recognizable in both maps. 
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Separate Channels 1990 Pass2 vs ·1991 Pass2 
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Figure 8.1: Yrl vs Yr2 Separate Channel Comparison. Notice that the signal (the slope 

leading up to C(O) ,...., 1000 pK2 ) can be seen in each of the channels with the exception 

of the 90A. The 31 GHz signal is noisy and contaminated by Galactic synchrotron. The 

signals are reasonably consistent from year to year. All curves are for lbl > 20° and have 

had best fit means, dipoles and quadrupoles removed. 
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Auto-Correlations 1990 Pass2 vs 1991 Pass2 
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Figure 8.2: Yrl vs Yr2 A+B vs A-B Comparison. The signal is apparent in the A+B 

correlation functions and absent in the A-B correlation functions. 90 GHz A-B has an 

anomalous first bin. All curves are for lbl > 20° and have had best fit means, dipoles and 

quadrupoles removed. 
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Figure 8.3: Correlation Function Comparison of Yrl, Yr2 and 2Yr. Cross-correlation 

function of 53 GHz with 90 GHz for lbl > 20°. The best-fit mean, dipole and quadrupole 

have been removed. Top is for the sum maps, and bottom is for the difference maps. 
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-270JLK 

Figure 8.4: Yr1 Map. Weighted combfnation of A+B 31, 53 and 90 GHz. 

+270JLK 

Figure 8.5: Yr2 Map. Weighted combination of A+B 31, 53 and 90 GHz. Away from the 

Galactic plane several cool spots are recognizable in both maps. 
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8.3 Statistical Significance and Galactic Cuts 

The correlation function computed with different Galactic latitude cuts is an important 

tool used to establish that the signal observed is not of Galactic origin. Galactic cut 

independence of the Yrl and Yr2 signal is indicated by the similarity of the curves for 

a::; 20° in Figures 8.6 and 8. 7. There is consistency from year to year. These plots should 

be compared with the corresponding 2Yr curves in Figure 7.7. 

We can quantify the Galactic latitude cut independence of the detected signal by 

computing x2 values of the correlation function as a function of Galactic cut angle. For 

each of the correlation functions Yrl, Yr2 and 2Yr (Figures 8.6, 8.7 and 7.7 respectively), 

we compute 

x2 = f (C(~i))2' 
i=I a, 

(8.1) 

. where 71 is the number of correlation function bins and the number of degrees of freedom 
(DOF) and ai is the noise-only standard deviation .of the i th bin of the correlation . 

function. The statistical significance of the detection above the noise in units of noise­

only standard deviations is then Jx2 - DOF and is listed in the last column of Table 8.1. 
The statistical significance of the signal detection in the Yrl and Yr2 correlation functions 

is > 9a and > lOa respectively. The Yrl statistical significance was reported as > 7a 

in Smoot et al. (1992) but the error bars on C(a) used to compute that value were more 

conservative than the noise-only error bars used here (see Figure 6.1). 

Values for the rms temperature fluctuations in Yr1 and Yr2 maps can be derived in 

several ways from the correlation functions as described in Section 4. 7. The results are listed 

in Table 7 .3. The average of 20°, 30° and 40° Galactic latitude cuts from the weighted cross­

correlation function of 53 GHz with 90 GHz yields 33 ± 8 JLK and 40 ± 7 JLK for Yr1 and Yr2 

respectively. Analogous numbers for the case of the unweighted cross-correlation functions 

are 25 ± lOJLK and 43 ± 6JLK for Yr1 and Yr2 respectively. Thus Yr2 seems to have a higher 
rms fluctuation level but one which could still be described as reasonably consistent with. 

Yrl. 

One difference between the Yrl and Yr2 data is the size of the quadrupole. The 

likelihood curves of the subtraction technique of. Bennett et al. (1994) yield Qrms = 10 ± 4 

for Yrl, Qrms rv 1 ± 9 for Yr2, and Qrms = 6 ± 3 for 2Yr. The relatively small Yr2 Qrms is 
evident in Figure 8.8 which compares the best-fit mean and dipole removed (md) correlation 

functions with the best-fit mean dipole and quadrupole removed (mdq) correlation functions. 

There is obviously a bigger difference between the md and mdq curve in Yrl than there is in 

Yr2. The Qrms values of Table 7.3 also reflect this tendency but less strongly: the weighted 
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Table 8.1: Statistical Significancea as a Function of Galactic Cut 

A-Bb A+Bb 
Year Gal cut x2 x2/DOF c x2 x~/DOF Significance 
Yr1 100 79 1.1 1040 14.6 31.1 

20° 76 1.1 235 3.3 12.8 
30° 64 0.91 168 2.4 . 9.9 
40° 66 0.93 152 2.2 9.0 

Yr2 100 67 0.94 1260 17.8 34.5 
20° 61 0.87 349 4.9 16.7 
30° 75 1.1 216 3.0 12.0 
40° 74 1.0 187 2.6 10.8 

2Yr 100 60 0.84 4350 61.3 65.4 
20° 74 1.0 947 13.3 29.6 
30° 65 0.9 576 8.1 22.5 
40° 85 1.2 408 5.7 18.4 

11 Statistical significance in units of noise-only standard deviations IS Jx2 - DOF, see 

equation (8.1). 

b Cross-correlations of 53 GHz with 90 GHz. 

c The number of degrees of freedom DOF is 71 and is equal to the number of correlation 

function bins. 

average of the results for Galactic latitude cuts of 20°, 30°, and 40° from the unweighted 

53 X 90 correlation function yields Qrms = 11 ± 10 for Yr1 and Qrms = 8 ± 15 for Yr2. 
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Figure 8.6: Yrl Galactic Latitude Cut Independence. Cross-correlation functions of Yrl 

A+B 53 GHz with 90 GHz. Notice that the signal is very stable for 20°, 30° and 40° cuts. 

N :::.:: ...:; 
tS 

u 
~ 
.8 ....... 

c.> 
~ 
::I 

""' 
~ 

. 8 ....... 
ell 

Q) 
1-o 
1-o 
0 

u 

1500 

1000 

500 

0 

0 

\. 

"\ 

~\ 
,,_.···· ....... ·?··· ... . 

zo 40 60 80 
Separation Angle 

················ 

------
-·-·-·-·-· 

100 1ZO 
cxfdegrees! 

140 

lbl 
lbl 
lbl 
lbl 

> 10° 
> zoo 
> 30° 
> 40° 

160 180 

Figure 8. 7: Yr2 Galactic Latitude Cut Independence. Same as previous figure except with 

Yr2 data. The signal is very stable for cuts of 20°, 30° and 40°. 
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Figure 8.8: Yrl and Yr2 Correlation Functions with and without quadrupole. These cross­

correlation functions of 53 GHz with 90 GHz are for lbl > 20°. Notice the relatively smaller 
quadrupole in Yr2 when compared with Yrl. 
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Chapter 9 

Correlated Noise in the Maps 

Abstract 

The COBE DMR sky maps contain low-level correlated noise. We obtain estimates of the 

amplitude and pattern of the correlated noise from three techniques: angular averages of the 

covariance matrix, Monte Carlo simulations of two-point correlation functions, and direct 

analysis of the DMR maps. The results from the three methods are mutually consistent. 

The noise covariance matrix of a DMR sky map is diagonal to an accuracy of better than 

1%. For a given sky pixel, the dominant noise covariance occurs with the ring of pixels 

at an angular separation of 60° due to the 60° separation of the DMR horns. The mean 

covariance at 60° is 0.45%~8J: of the mean variance. Additionally, the variance in a given 

pixel is 0.7% greater than would be expected from a single beam experiment with the same 

noise properties. Auto-correlation functions suffer from a"' 1.5 u positive bias at 60° while 

cross-correlations have no bias. Published COBE DMR results are not significantly affected 

by correlated noise. 

9.1 Introduction 

The COBE collaboration has reported the detection of anisotropies in the cosmic 

microwave background radiation (Smoot et al. 1992, Bennett et al. 1994). These anisotropies 

cannot be attributed to known systematic effects (Kogut et al. 1992) or any known Galactic 

or extragalactic foreground ·(Bennett et al. 1992b, 1993). Concern about the magnitude of 
I 

correlated noise in the sky maps has led to this investigation. 
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The DMR measures temperature differences across the sky using pairs of horn antennas 

with a fixed 60° separation angle (Smoot et al.1990). The construction of a DMR 

temperature map from measurements of temperature differences involves a least-squares fit 

during which essentially uncorrelated measurement errors become correlated temperature 

errors in the sky map. The structure of this correlated noise is fully described by the 

pixel temperature covariance matrix which depends only on the 60° horn separation angle 

and the details of the sky coverage. In this Chapter we quantify the amplitude and 

angular dependence of the correlated noise. To first order, the noise in the DMR maps 

is uncorrelated. The dominant correlation in each pixel is· due to the average noise in a 

ring 60° away. The mean covariance at 60° is 0.45% of the mean variance. This level of 

correlation will slightly bias auto-correlation functions and their derivatives but previously 

published DMR results are not significantly affected by correlated noise. The dominant 

correlated noise term in the DMR maps was discussed briefly in Wright et al. (1994a) and 

Wright (1994). 

In this chapter we examine the noise in the DMR maps. In Section 9.2 we describe the 

covariance matrix and its inverse. In Section 9.3 we use three methods to obtain estimates 

of the correlated noise in DMR maps and in Section 9.4 we discuss the effect of the auto­

correlation bias on determination of the cosmological parameters n, Qrms-PS and the rms 

temperature fluctuation amplitude. 

9.2 Pixel Covariance Matrix A -l 

In Section 3.2 we described how maps were made from the differential data and we 

sketched the role of the matrix A .in producing a map. The noise in the maps is explicit in 

equation 3.8: 
- - - 1-Tobs = T+n = T+A- 8. (9.1) 

In this Section we describe A and discuss how its properties determine A -l. A is 

known as the cross-products matrix, the moment matrix and/or the curvature matrix since 

Aij = -t a~;x;Ti. A is a 6144 by 6144 symmetric, sparse and singular matrix. We make A 

non-singular (invertible) by augmenting the diagonal terms by some small number £. This 

does nothing more than impose an arbitrary mean level on an otherwise unique solution 

(see Appendix J). 
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The 6144 diagonal elements of A are the number of observations ( Ni) of the 6144 pixels. 

N1 0 -N1,3 0 0 0 0 

0 N2 0 0 0 0 0 

-N1,3 0 N3 0 0 0 0 

0 0 0 N4 0 0 -N4,7 
A= (9.2) 

0 0 0 0 Ns 0 0 

'0 0 0 0 0 N6 0 

0 0 0 -N4,7 0 0 N1 

A column of A is plotted as a map in Figure 9.1. For one year, the average value of Ni 

is N ~ 17,500. Nij is the number of times pixel i and j have been differenced. When 

aij ~ 60° Aij = Aji = -Nij, otherwise Aij = 0. The average number of coupled pixels, i.e., 

the average number of non-zero off-diagonal elements in a row or column of an A from one 

year of observations, is Nref = 273. This is the number of pixels in the "reference ring" at 

60° ± 3° separation from the diagonal pixel. The average value of these 273 off-diagonal Nij 

elements is Nij = -J:L = 64. Only 4%( = (Nref + 1)/6144) of A is non-zero. A has very 
Href 

little channel dependence. Since A is symmetric, A - 1 is symmetric. Since A is diagonally 

dominant we expect A - 1 to resemble the form below (as Nij--+ 0, A - 1 --+ diagonal). 

1 0 N13 0 0 0 0 N1 N1N3 

0 1 0 0 0 0 0 N2 
N1,3 0 1 0 0 0 0 N1N3 N3 

0 0 0 1 0 0 N41 

A -1 "' 
N4 N4N1 

(9.3) 
0 0 0 0 1 0 0 Ns 

0 0 0 0 0 1 0 Ns 

0 0 0 N41 0 0 1 
N4N7 N1 

A column of A - 1 is plotted as a map in Figure 9.2. A - 1 is the covariance matrix of the 

fitted temperatures. The diagonal elements are the variances of the fitted temperatures: 

< o'toti >= A£:?. Notice that the dominant off-diagonal terms at 60° from the diagonal 

are all positive. Therefore we expect a positive correlation between pixels separated by 60°. 

A column of A and A - 1 are displayed as- skymaps in Figures 9.1 and 9.2. 
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-100 100 

Figure 9.1: Column 1448 of the matrix A from 90A first year data. The central pixel (pixel 

1448) and its reference ring, at ~ 60° angular separation, are the only non-zero elements. 

-0.0005 0.0010 

Figure 9.2: Column number 1448 of the matrix A - 1 (xN) (same column as above). The 

greyscale has been chosen to show the structure in the off-diagonal terms at the expense of 

saturating the central pixel (value=1.005) and the reference ring (values ~ 0.003). 
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The approximate radial symmetry of both maps about the diagonal pixel loc~ted 
at the center of the map is apparent. The central pixel has been observed 11,933 times 

(N1448 = 11, 933). 

9.3 Correlated Noise Estimates 

9.3.1 Correlated Noise Estimates from the Covariance Matrix 

The covariance matrix of the sky map temperatures fully describes the noise properties 

of the map. The diagonal elements are the variances of the fitted temperatures while the 

non-zero off-diagonal elements represent correlated noise in the maps. We use equation (9.1) 

and the uncorrelated nature of the measurement errors to obtain the covariance matrix of 

the sky map temperatures, 

Thus, the diagonal elements of u;h A - 1 are the variances of the fitted temperatures. For 350 

randomly chosen values of i we find that u~hAii1 = (u~h/Ni)(1.007±0.003), where Ni is the 

number of times pixel i was observed. Thus, the solution of the normal equations produces 

a 0.7% increase over the variance expected from a single-beam experiment u~h/Ni. 

The matrix A - 1 is symmetric and non-sparse. Since a column of A - 1 has 6144 

elements, it can be conveniently viewed as a pixelized map of the correlations of each pixel 

with the central pixel (i.e. with the diagonal element). Figure 9.2 shows that the pattern 

of the correlations is approximately radially symmetric around the central pixel. For each 

of the 350 randomly chosen columns, we calculate normalized averages of annular regions 

of the off-diagonal elements 

(9.5) 

where all pixels in the annuli have constant angular separation from the central pixel and 

W = I;~ik=a 1. The 2.6° pixel size is used as a binning width. Figure 9.3 shows the average 

< A-1(a) > and 68% confidence levels of the 350 randomly chosen columns. The mean 

covariance at 60° is 0.45%~g:~! of the mean variance. Thus the noise correlations in the 

DMR maps are small and the noise properties resemble those of a single-beam experiment. 

The value of the zero lag bin is off scale; < A-1 (0) >= 1.007, and is the source of the 0.7% 

excess variance reported above. This analysis is based on the normal equations from the 
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Figure 9.3: The average radial structure of the pixel temperature covariance matrix A -l 

(see equation 9.5). The shaded band marks the 68% confidence levels. 

first year data of channel 53A. Since the sky coverage and the 60° horn separation are only 

weakly channel dependent, the covariance matrices of the other channels are essentially the 

same and time independent. 

9.3.2 Correlated Noise Estimates from Monte Carlo Simulations 

The two-point auto-correlation function of a pixelized DMR map is the weighted 

average product of temperatures separated by angle a 

(9.6) 

where the sum is over all pixel pairs ij whose separation angle aij lies within half a bin 

width of a. We use the weights Wi = 1/var(Tobs,i) and approximate var(Tobs,i) by u;h/Ni. 

The normalization factor is W = Li,j WiWj. For cross-correlation functions i refers to one 
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Figure 9.4: a) The 2-point auto-correlation of 1000 simulated 53A single-year noise maps. 

A 20° Galactic cut has been made. The best-fit mean, dipole and quadrupole have been 

removed from each simulation. Weighted C( a)'s were used. The shaded band marks the 

68% confidence levels. b) Cross-correlations from the same simulated noise maps as (a). No 

bias is evident. 
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map and j to the other. Using equation (9.1) the auto-correlation function is defined as 

1 
Olij=OI 

C(a) = W ~ WiWj(Ti + ni)(Tj + nj)· (9.7) 
'3 

The signal-noise cross-terms in equation (9.7) contribute to the uncertainty in C(a) but 

do not contain a bias. Auto-correlation functions of DMR maps are biased only by the 

noise-noise cross-term. To examine these biases we insert only instrument noise into the 

measurement vector M of the normal equations. We then compute the ensemble average of 

the correlation functions of the resulting noise maps and obtain, 

<C(a)> = (9.8) 

(9.9) 

Figure 9.4 shows the bias in the auto-correlation function from 1000 simulations of single-

. year 53A noise maps. One can see a positive bias of "' 1.5 q at 60°, where q is the 

half-width of the gray band, and a smaller positive bias close to 0°. The bias does not 

change substantially when a signal is included in the simulations. Figure 2b shows that 

cross-correlations do not suffer from the pixel-pixel noise correlations. 

The positive correlation between noise in pixels separated by 60° can be explained as 

follows: the total noise in each pixel includes contributions from the off-diagonal elements of 

the covariance matrix Ej Ai/8j, j -:f; i. These contributions are dominated by the average 

temperature of the noise in the reference ring at 60° angular separation. Thus the central 

pixel is positively correlated with the reference ring. 

The bias at 60° in Figure 9.4 can be approximately related to the the mean covariance 

at 60° obtained in the previous Section. Although the two methods differ in weighting and 

normalization we find C(60°)/C(0°) = 0.41%± 0.22. The size of the biases in Figure 9.4 

scale with the variance of the noise in the maps. For example, the sizes of the biases in the 

auto-correlations of two year maps are half the sizes of the biases in the one year maps. 

The bias at 60° is not obvious in any single realization of the 1000 used to make Figure 9.4. 

Similarly the bias is not apparent in the auto-correlations of Figure 2 of Smoot et al. (1992) 

or Figure 2 of Wright et al. (1992). 
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9.3.3 Correlated Noise Estimates from DMR Maps 

An estimate of the bias can be obtained using only the data. We take advantage of 

the previous result that the auto-correlations contain the bias while the cross-correlations 

do not. Their difference is then an estimate of the bias. We introduce the quantity B( a) 

as an empirical estimate of the bias defined as 

B(a) = _!.. t [CA,m(a)- CAxB,m(a) + CB,m(a)- CAxB,m(a)l , 
12 m=l O"A,m(a) CTB,m(a) 

(9.10) 

where CA,m, CB,m and CAxB,m are respectively, the auto-correlation of channel A, auto­

correlation of channel B and their cross-correlation, for six values of m (2 years X 3 

frequencies). These correlation functions are computed using equation (9.6). The empirical 

bias B( a) is expressed in dimensionless units of noise-only standard deviations of the auto­

correlations and is plotted in Figure 9.5. The bias at 60° is evident. 

9.4 Cosmological Implications 

The bias in Figure 9.4 near a = 0° increases the amplitude of rms temperature 

fluctuations determined from the first non-zero bin of auto-correlations. The C(0)112 = 
36 ± 5 · J.LK quoted in Bennett et al. (1994) is from the zeroth bin of the 53 X 90 GHz 

cross-correlation and is not susceptible to noise correlation bias. The correlated noise near 

a = 0° does not correlate across channels and therefore contributes the same to both 

the (A+B)/2 and (A-B)/2 maps. Th~refore CTsky = Jcr~+B - cr~-B is unbiased and the 

previously published values of rms temperature :fluctuations (Smoot et al. 1992, Bennett 

et al.1994) are not affected by correlated noise. 

The noise correlations at 60° put additional small angular scale (£ .z 6) power into 

the maps and can bias determinations of the power spectral index n and amplitude 

Qrms-PS from auto-correlations. We estimate the magnitude of this effect by adding many 

realizations of correlated noise to a simulated sky, and comparing the values for n and 

Qrms-PS from x2 minimization of the auto- and cross correlation functions, analogous to 

the treatment in equation (9.10). For noise equivalent to the 53A one-year map the fitted 

values are nbias = 0.04 ± 0.04 and Qbias = 1.6 ± 0.4. The bias on n is negligible and the 

small bias on Qrms-PS is probably due to the slight increase in the autocorrelation function 

seen in Figure 9.4 at angles smaller than 10°. The biases are even smaller when analyzing 
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Figure 9.5: The auto-correlation function bias with respect to the corresponding cross­

. correlations. B(a) is computed from twelve independent DMR data sets (2 years x 3 

frequencies x 2 channels). See equation (9.10) of text for the definition of B(a). The 

shaded band marks the 95% confidence levels from 250 simulations with uncorrelated noise. 
I 

The best~fit mean, dipole and quadrupole have been removed before B( a) was calculated. 

The result is not strongly dependent on which multipoles are removed. Weighted C(a)'s 

were used. 
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multi-channel and multi-year DMR data. Thus, the published COBE DMR results are not 

significantly affected by correlated noise. 

9.5 Summary 

We have investigated the structure and magnitude of the correlated noise in DMR 

maps using the covariance matrix of the pixel temperatures, two-point correlation functions 

of Monte Carlo simulations and the output maps themselves. The noise in the DMR maps 

resembles that from a single-beam experiment in that the pixel-pixel noise correlations are 

small. The approximately radial structure of the pixel noise covariance matrix is shown 

in 9.3. ·The dominant correlation in each pixel is from the average noise in a ring 60° 

away. The mean covariance at 60° is 0.45% of the mean variance. The noise variance is 

0.7% larger than the a;h/Ni value expected from a single-beam experiment. At a= 60°, 

auto-correlations suffer from a bias whose magnitude is 1.5 times the uncorrelated noise 

uncertainty. Cross-correlation functions are not affected by noise correlations and should 

be used for n, Qrms-PS and C(0)112 determinations, thus previously published DMR results 

are not significantly affected by correlated noise. 
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Chapter 10 

Estimates of nand Qrms-PS from 

the . Correlation Function 

Abstract 

We obtain the power law spectral index nand the quadrupole normalization Qrms-PS from 

the correlation functions of Yr1, Yr2 and 2Yr DMR maps. A x2 fit to the 2Yr correlation 

function excluding the quadrupole yields n = 1.2~~:g and Qrms-PS = 17.3~;} Including 

the quadrupole raises n by::::::: 0.5 and lowers Qrms-PS by::::::: 4J.LK. Excluding the quadrupole, 

the best fit n = 1 normalization is Qrms-PS = 18.6~t~. We compare our results to other 

published n and Qrms-PS determinations. 

10.1 The n and Qrms-PS Parametrization of the Power 

Spectrum 

The large angular scale solution to the collisionless Boltzmann equation gives a power 

spectrum parametrized by two numbers: the shape n and the amplitude Q~ms-PS (see 

Section 4.3) 

2 _ 2 (2£+1)f(£+~)r(¥)-
< .D.T.e(n ,Qrms-PS) >- Qrms-PS 5 f(£+ s;n)retn)" (10.1) 

Equation (10.1) is often used to normalize models and data. The DMR is sensitive enough 

to high £ values to be effected by Fourier components which were excluded from the integral 

(equation ( 4.8)) used to derive equation (10.1). For a broad class ofreasonable models, the 
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wings of the Doppler peak extend into the£ space sampled by the DMR. This produces a 

tilt in the apparent power spectral index relative to what one would measure if one were 

sensitive to only the first few £ components. Wright et al. (1994b) refer to a "primordial" 

npri and an "apparent" napp· For the DMR, the standard CDM tilt or bias consists of 

~n = 0.15 (Bond 1994). In other words, if the mass-overdensity power spectrum were a 

perfect n pri = 1 (P(k) ex k), the DMR would measure n app = 1.15. In this Chapter, we 

fit the DMR correlation function to the ~TJ of equation (10.1) and we find an apparent 

n. We are fitting a model function that is appropriate in low£ space to an observed power 

spectrum which is presumably slightly affected by model dependent effects at higher £. We 

do not correct for this model dependent bias. 

10.2 X2 fitting for n and Qrms-PS 

10.2.1 Method 

A model correlation function can be expressed in terms of the n and 

Q;ms-PS dependent power spectrum of equation (10.1) 

lma.z 

Cn(a) = L < ~TJ > Wj Pt(cosa), (10.2) 
l=2 

where Wt are Legendre expansion coefficients of the DMR beam. We want to find the 

nand Q;ms-PS values which produce the correlation function Cn(a) that most closely fits 

the measured Cd(a). One simple method is a x2 fit to the data 

(10.3) 

where Cd( i) and ud( i) are the correlation function and noise-only error bar of the ith bin of 

the data, Cn is from equation (10.2) and u~(i) is the cosmic variance (Section 4.4). Since 

. Cn(ai) is linear in Q;ms-PS we set 

(10.4) 

and solve for Q;ms-PS . Plugging this Q;ms-PS back into equation (10.3) we obtain a value 

for x~. We do this for a range of n values and at the end choose the lowest x~. That gives 
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us a best fit Q;ms-PS and a best fit n. Schematically 

n1 - x;1 

n2 - x;2 
n3 - x;3 

10.2.2 Results 

choose lowest= X~in ---+best fit n, Qrms-PS . 

Figure 10.1 shows the contours for the best x2 fit power spectrum parameters n and 

Qrms-PS to the 2yr 53A+B x 90A+B cross-correlation with mean, dipole and quadrupole 

excluded. The minimum x2 is at n = 1.2:!tg and Qrms-PS = 17.3:!:~J The best fit n = 1 

normalization for this case is Qrms-PS = 18.6:!:~:~. When the quadrupole is included the 

resultis n = 1.7:!:8:~ and Qrms-PS = 13.3:!:~:~ and the best fit n = 1 normalization for 

this case is Qrms-PS = 17.1:!:U. These values along with corresponding results from Yr1 

and Yr2 are given in Table 10.1. The relatively low value of the observed quadrupole in the 

Table 10.1: n and Qrms-PS fits to the Correlation Function 

Data n Qrms-PS x2 . x2 /DOF 
Yr1, NQ 0 8+1.0 . -1.5 18.9:!:~~8:> 57 0.84 

Q 1 6+0.6 . -1.1 12.7:!:~:~ 73 1.07 
Yr2, NQ 1.1:!:~:~ 19.0:!:~~01 59 0.87 

Q 1 8+0.6 . -1.0 13.3:!:~:: 93 1.36 
2Yr, NQ 1 2+U.b . -1.0 17.3:!:~:~ 38 0.56 

NQ = 1.0 18.6:!:~:~ 39 0.57 
Q 1 7+0.5 . -0.9 13.3:!:~:~ 80 1.17 
Q = 1.0 17.1:!:~:~ 92 1.33 

Notes: NQ: no quadrupole, Q: mcludes quadrupole 

DMR maps produces the difference between the quadrupole included ("Q") and quadrupole 

excluded ("NQ") results. 

The x2 fits of equation (10.3) have the virtue of simplicity )ut the correlation function 

models Cn( a) cannot account for the shifts in power due to the 20° Galactic latitude cut, 

the numerator (Cd- Cn) is not expected to be a perfect Gaussian (Cay6n & Martinez­

Gonzalez 1991, White, Krauss & Silk 1993) and the cosmic variances are correlated: O"n( ai) 

is not independent of the O"n from a different a bin (see Scaramella & Vittorio 1993, Seljak 
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& Bertschinger 1993). Thus Monte Carlo calibration of this procedure is necessary to check 

its validity and obtain error bars. We simulated 2Yr 53 GHz and 90 GHz sky maps with 

n = 1 and Qrms-PS = 11J.LK structure, including cosmic variance, DMR noise and DMR 

sky coverage. We subtracted the best fit mean, dipole and quadrupole in the lbl > 20° 

region and computed the cross-correlation function for the same region. We plugged this 

C(a) into equation (10.3) in place of Cd(a) and solved for n and Qrms-PS as described 

above. These simulations were used to estimate the confidence level contours of Figure 10.1 

and projected onto the nand Qrms-PS axes, give the error bars quoted in Table 10.1. 

For 2000 simulations of n = 1 and Qrms-PS = 17J.LK, the output distribution of n 

values is asymmetric with a longer tail in the low n direction. The mean, rms, median and 

mode ofthe distribution are 0.91, 0.77, 1.1 and 1.2 respectively. The output distribution of 

Qrms-PS values is asymmetric with a longer tail in the high Qrms-PS direction. The mean, 

rms, median and mode of the distribution are 20. 7, 8.2, 19.0 and 14.0 J.LK respectively. 

Notice that the input values are straddled by the mode and the mean of the distributions. 

If one uses mean values to estimate a bias one obtains an n bias of -0.09 ± 0.02 and a 

Qrms-PS bias of +3.7±0.2 J.LK. One could argue that the median is a more robust indicator 

of central tendency when a distribution is skewed. Using median values one obtains an 

n bias of +0.1 ± 0.02 and a Qrms-PS bias of +2.0 ± 0.2 J.LK. The n and Qrms-PS values in 

Table 10.1 do not include bias corrections. 

The elongated error ellipse of Figure 10.1 is the result ofthe nand Qrms-PS degeneracy 

seen in Figure 4.2: increasing nand increasing Qrms-PS have a very similar effect on C(a), 

especially in the high signal to noise, small a region. The lines of degeneracy as determined 

respectively by this analysis, Adams et al. (1992), Seljak & Bertschinger (1993), Smoot 

et al. (1994), Bennett et al. (1994) and Gorski et al. (1994) are 

Qrms-PS 18.6 exp[0.38(1- n)] (10.5) 

Qrms-PS 14.9 exp[0.31(1- n)] (10.6) 

Qrms-PS = 15.7 exp[0.46(1- n)] (10.7) 

Qrms-PS = 15.7 + 6.6 (1- n) (10.8) 

Qrms-PS 18.2 exp[0.58(1- n)] (10.9) 

Qrms-PS = (19.08 + 0.95n) exp[0.74(1- n)] (10.10) 

and are plotted in Figure 10.2. 
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10.3 Other Determinations of n and Qrms-PS 

A variety of methods have been devised to extract n and Qrms-PS from the DMR 

data. Smoot et al. (1992) obtained nand Qrms-PS by fitting the correlation function of the 

DMR skymaps to equation (10.2) and to Monte Carlo simulations. Scaramella & Vittorio 

(1993) also performed x2 fits. Both of these fits used the Gaussian approximation to the 

DMR beam. A maximum likelihood method has been used by Seljak & Bertschinger (1993) 

and Bennett et al. (1994) where the quantity minimized is 

(10.11) 

where 6.Ci = Cd( i) - Cn( i) and the covariance matrix M was obtained by Monte Carlo 

simulations for a matrix of n and Qrms-PS values. Orthogonal functions on a Galactic­

plane-removed sphere were used to obtain power spectrum :fits for n and Qrms-PS by 

Wright et al.(1994b) and by Gorski et al. (1994). A technique involving RMS as a function 

of smoothing was used by Adams et al. (1992) and Smoot et al. (1994). A topological 

measure called the genus was used by Torres (1994) and Smoot et al. (1994). 

Published values for n and Qrms-PS are listed in Table 10.2 and plotted in Figure 

10.2. The best-fit quadrupole is sometimes removed before nand Qrms-PS are determined. 

Because ofthe low quadrupole in the DMR data and the degeneracy of nand Qrms-PS (see 

Figure 4.2), quadrupole included determinations are shifted to the lower right compared to 

quadrupole excluded determinations. This quadrupole shift depends on the technique used 

but is in the approximate range (0.2, 0.5] for n and (2, 4] J,LK for Qrms-PS . The three points 

in the lower right include the quadrupole. The variety of methods used to determine n and 

Qrms-PS yield consistent results (see Figure 10.2). 

The n values obtained are consistent with the prediction of inflation that n ~ 1. It 

is interesting to note, however, that an n = 1 power spectra was discussed and motivated 

ten years before inflation (Harrison 1970, Zeldovich 1972, Peebles & Yu 1970). Global 

monopoles and texture models for structure formation also seem to be consistent with 

n ~ 1 (Bennett & Rhie 1993). 
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Table 10.2: Other nand Qrms-PS Determinations from DMR Data 

I Reference Method n Qrms-PS [JiK] I 
Smoot et al. (1992) Yr1,CF,NQ,GB,NCV,Yr1 1.1 ± 0.5 16±4 

::1 16.7 ± 4 
cv 115+0.45 

. -0.65 16.3 ± 4.6 
all data,Q,CV LO ± 0.6 17±5 

Adams et al. (1992) Yr1,CF,GB =1 14.9 ± 0.5 
Scaramella & Vittorio (1993) Yr1,CF,GB 1.1 14.2 

::1 14.5 ± 1.7 
Seljak & Bertschinger(1993) Yr1,CF ::1 15.7 ± 2.6 

NQ 1.2 14.8 
Q 0.9 16.1 

Wright et al. (1993) Yr1,DMRB =1 ~ 15( < 16.7) 
GETSKYRMS =1 ~ 16.7 
DMRSMUTH ::1 ~ 17.8 

Torres (1994) Yr1,G 1.2 ± 0.3 = 16 
Smoot et al. (1994) Yr1,G,Q,DMRB 1 7+1.;:s 

. -1.1 15.7 ± 2.2 
RMS 1 7+0.3 . -0.6 13.2 ± 2.5 

Wright et al. (1994b) Yr1,0F,NQ,DMRB 1.69:!:~:i~ -
2Yr,3~£~ 30 1 25+0•4 -. -0.45 
3~£~ 19 1 46+0.41 -. -0.44 
53,3~£~ 30 ::1 20.8 ± 2.8 
53+90 ::1 19.8 ± 2.0 
NG ::1 16.1 ± 3.3 

Bennett et al. (1994) 2Yr ,CF ,DMRB,Q 142+u.4~ . -0.55 14.3:!:~:; 
::1 18.2 ± 1.5 

marginal n 1.42 ± 0.37 -
NQ 111+0.60 . -0.55 17.4:!:;:~ 

=1 18.6 ± 1.6 
marginal n 1.11 ± 0.40 -

Gorski et al. (1994) 2Yr,OF,DMRB,Q 1.22:!:~:i~ 17.0:!:~:~ 
=1 19.9 ± 1.6 

marginal n 1.10 ± 0.32 -
NQ 1 02+0.53 . -0.59 20.0:!:~?55 

::1 20.4 ± 1.7 
marginal n 0.87 ± 0.36 -

Ban day et al. ( 1994) 2Yr,RMS,DMRB =1 19.4:!:~:f 

Notes: CF: Correlation Function, OF: Orthogonal Functions, G: Genus, NQ: No 

Quadrupole, Q: Quadrupole Included, GB: Gaussian Beam, DMRB: DMR Be~m, CV: 

Includes Cosmic Variance, NCV: No Cosmic Variance Included 
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Figure 10.1: x2 contours in n , Qrms-PS space of fits to the 2Yr A+B 53 GHz x 90 GHz 

correlation function. The best fit is marked by the dot at n =1.2 and Qrms-PS =17.3 J.LK. 
Contours correspond to the 68% and 95% confidence regions. 
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Figure 10.2: Determinations of Power Spectrum Parameters nand Qrms-PS . The best-fit 

quadrupole is sometimes removed before nand Qrms-PS are determined. Because of the low 

Qrms in the DMR data and the degeneracy of nand Qrms-PS (see Figure 4.2), quadrupole 

excluded determinations are shifted to the upper left compared with quadrupole included 

determinations. The three points in the lower right include the quadrupole. 
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Chapter 11 

Conclusions and the Future 

The history of cosmology shows us that in every age devout people believe that 
they have at last discovered the true nature of the Universe. 
(E. Harrison, Cosmology 1981) 

Abstract 

We summarize the thesis and draw useful conclusions about further analysis. We discuss 

the experimental assault on the power spectrum of CMB fluctuations. 

11.1 Conclusions 

In this thesis we have presented in detail a two-point correlation function analysis 

which helped lead to the DMR discovery of CMB anisotropies. The Galactic latitude cut 

independence of the correlation function is strong evidence that the signal is not Galactic 

in origin. As expected of a CMB signal, the correlation function is consistent with no 

frequency dependence. The statistical significance of the structure seen in the correlation 

function of the first, second and two year maps is respectively > 9cr, > !Ocr and > 18cr 

above the noise. A simple x2 fit of the model power spectra parameters nand Qrms-PS to 

the correlation function yields n = 1.2~~:~ and Qrms-PS = 17.3~~J 
The noise in the DMR sky maps was found to be correlated at a low level. The structure 

of the pixel temperature covariance matrix was determined. The noise covariance matrix 

of a DMR sky map is diagonal to an accuracy of better than 1%. Thus the noise in the 
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DMR maps can be well approximated as noise from a single-beam experiment. Previously 

published DMR results are not significantly affected by correlated noise. 

11.2 Further DMR Analysis 

After completing four years of successful operation, the monitoring of the DMR 

instruments was stopped as scheduled in the last week of December, 1993. The two-year 

DMR data was released to the public in June, 1994, and the full four-year data set is 

scheduled to be released in 1995. The consistency of years 3 and 4 with the first two years 

will be checked. 

The correlation function will continue to play an important role in both the DMR 

analysis and in the comparison of the DMR maps with other data sets. As more data is 

included the noise contribution to the error bars goes down as 1/time but the unavoidable 

cosmic variance remains constant. Cross-correlations with other data sets are not limited 

by cosmic variance and so benefit correspondingly more from a larger signal to noise ratio. 

The DMR team has published about two dozen papers based on the DMR data 

(Appendix A). Papers in preparation include cross-correlations of the DMR data with 

other data sets, isolation and definition of particular spots in the maps and polarization 

limits derived from the data. 

11.3 Experimental Assault on CMB Anisotropies 

Table 11.1 is a compilation of recent CMB anisotropy experiments. The range of 

angular scales is from f. = 2 to several thousand. The main goal of these experimental 

efforts is to confirm or refute the DMR results at large angular scales and to determine 

the complete CMB power spectrum at a high enough accuracy to rule out some contending 

models and large chunks of parameter space. The data on small angular scales is more 

comparable with the structures we see around us. In contrast to the clean normalization 

at DMR scales, small angular scale anisotropies are strongly model dependent. The DMR 

normalization supports the need for dark matter but cannot say exactly how much or what 

kind. Small scale anisotropy experiments should be able to discriminate between hot and 

cold dark matter and may provide a more direct detection of dark matter. 

A knowledge of the complete power spectrum will answer questions like: Is there a 
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Doppler peak? At what angular scale? Are the perturbations only scalar or are there also 

tensor perturbations? At what angular scale does the finite thickness of the surface of last 

scattering cut off the anisotropies? Was there an epoch of reionization? At what level is 

the CMB polarized? Can the shape of the inflaton potential be determined by the CMB 

power spectrum? 

11.3.1 Confirmation 

The DMR results have been most directly confirmed by the Ganga et al. results (1994). 

from the balloon-borne 170 GHz FIRS experiment. It covered ~ 25% of the sky but much 

of it was in the Galactic plane. Further flights of the same instrument to cover the rest 

of the sky will soon complete the full-sky survey. Another experiment with a comparable 

angular size is Tenerife. A dozen detections at small angular scales have recently been 

announced all at approximately the level expected from the DMR normalization. These 

detections can therefore be construed as indirect confirmations of the DMR result. The 

Russian instrument RELICT II may be launched next year or in 1996. It should have the 

sensitivity to check, refine or refute the DMR result most directly. 

11.3.2 Small Angular Scales 

One of the main goals of the small angular scale experiments is to locate the expected 

large Doppler peak. This will be a major milestone on the way to determining the power 

spectrum in the range 50 < £ < fewxlOOO. There are now about a dozen groups 

trying to focus in on the small angular scale anisotropies. The proposed European Space 

Agency COBRAS/SAMBA flight("" 2001) may have something to say about half degree 

anisotropies over a large fraction of the sky. 

Progress in CMB research is hindered by our ignorance of the Galactic and extra­

galactic foregrounds at radio, millimetric and IR frequencies (Banday 1991). Multifrequency 

maps of the Galaxy are needed to identify and subtract these unwanted effects from CMB 

data (DeAmici et al.1993). Radio galaxies seem to be particularly problematic foreground 

for small scale experiments. 

The range of angular scales in Table 11.1 is from £ = 2 to several thousand. Notice 

the string of upper limits on the smallest angular scales while in the half degree to DMR 

scales there have been many claimed detections. The detections of small angular scale 

measurements refer to the f::..T /T from C(O) of a Gaussian auto-correlation model. The 
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beam size of the instrument is not usually the angular scale of the best I),.T jT detection or 

limit. The results quoted are for the coherence angle in parenthesis, not the actual size of 

beam. The results do not differ by more than a factor of two or three. 

There is a wide range of workers building a coherent picture of structure formation 

from Galaxy surveys ( 6pj p ), from bulk velocity determinations (Vbulk) and from CMB 

. anisotropies. We have seen in Section 4.3 how the power spectrum of mass over-densities 

can be related to the large scale power spectrum of CMB :fl.uct:uations. The level of CMB 

anisotropy can also be predicted by assuming that the velocity distribution of field galaxies is 

the direct result of over-densities still in the linear regime. In fact, fairly accurate predictions 

of the anisotropy normalization amplitude Qrms-PS were made for example by Abbott and 

Wise (1984), Silk (1986), Gorski (1991) and Scaramella (1992). This close relationship 

between CMB :fluctuations 6T /T, mass :fluctuations 6pj p, and bulk velocities Vis depicted 

in Figure 11.1. The process of piecing the data together to form a consistent picture ·of 

structure formation can be called closure. 

The DMR discovery of large scale inhomogeneities verifies the basic gravitational 

instability picture of structure formation. The evolution of structure is being tracked down. 

Cosmology seems to be making progress. However the DMR normalization level of CMB 

anisotropy seems to require the existence of non-baryonic dark matter (Wright et al. 1992). 

The question of the existence and nature of dark matter appears increasingly urgent. The 

recent additions of inflation and dark matter to the big bang model are beginning to be 

tested. 

11.4 New Field of Astronomy 

Until the COBE DMR detection, the absence of anisotropy in the CMB was taken to 

be one of the important failings of the big bang model (Narlikar 1983). In 1980 Burbridge 

pointed out, "If no :fluctuations can be found, we have no direct evidence at all that galaxies 

are formed at early epochs through gravitational instability". Thus the DMR discovery 

of CMB anisotropies can be interpreted as direct evidence that gaJ.axie~ formed through 

gravitational instability. If the DMR results stand, a whole new class of objects has been 

found. Along with quasars, pulsars and black holes we now have hot and cold spots on the 

surface oflast scattering. Bumps, spots, pips and blobs are now being analyzed as individual 

objects, not just being averaged over to determine the statistical level of :fluctuation (e.g. 
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correlation functions). Their study and detailed characterization will establish a new branch 

of astronomy. There will be catalogs with names and numbers. The DMR maps have pushed 

us into the "bump" era of CMB cosmology. 

Closure 

3T/T 

3p/p v 

Figure 11.1: Closure. The data from CMB fluctuations (6TfT), mass fluctuations (6pfp) 

and bulk velocities (V) are closely linked. The process of piecing the data together to form 

a consistent picture of structure formation can be called closure. 
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Table 11.1: Recent CMB Anisotropy Experiments 

Experiment Beam a Frequency Result 11 Reference 
(

0 )(8c,feJJ) (GHz) [~T fTx10- 6 ] CL 
Chop, Sub Coverage/Date 

DMR 7°(13.5°,6) 31 53 90 [16 ± 3] Bennett94 
satellite 60°, D* mixer [11 ± 1] @10° . 100% 89-93 
Relikt 1 5.8°(6) 37 [< 73] 90% Strukov88 
satellite 90°, D* para amp 85%, 83-84 
FIRS/MIT 3.8°(20) 170 230 480 680 [< 16] 95% Meyer91 
balloon 0°, D* bolometer 33%89 
Tenerife 5.1 °( 4° ,23) 10 15 33 [2o!:J Hancock94 
mountain 8.1°, DD HEMT 10%, 88-94 
SP91 1.4°(1.5° ,45) 26 28 31 34 [82:f] Schuster93 
South Pole 3°, D HEMT [< 14] 95% Gaier92 

< 1%91 
Saskatoon 1.5°(1.2° ,55) 27 30 33 [15~~] Wollack94 
ground 2.5°, D bolometer < 1%92 
Argo 52' (30' '70) 150 250 375 600 [14,30] 90% deBernardis94 
balloon 1.8°, D bolometer < 1%93 
Python 50' (1°,70) 100 [30 ± 10] Dragovan94 
South Pole 2°.75, DDD bolometer < 1% 92-93 
MAX 40' (25' ,110) 90 180 270 360 [< 24] 95% Meinhold93 
balloon 1.3°, D bolometer [42~UJ 95% Gunderson93 

[32~g] 95% Clapp94 
[35~i~1 95% Devlin94 

< 0.1% 92-93 
MSAM1 28' (30' ,100) 170 270 500 680 [6, 22] 90% Cheng94 
balloon 40', D bolometer < 0.1% 6/92 
MSAM2 18' (200) [11, 31] 90% 

DD 
White Dish 12' (9' '300) 90 [<23]95% Tucker93 
South Pole 24', D < 0.1%93 
OVRO 1.8' (2.6' ,1800) 20 [< 19]95% Readhead89 
valley 7', DD radio telescope < 0.1%88 
OVRO RING 1.8' (1800) 20 [< 45] 95% Myers93 
valley radio telescope < 0.1% 91 
VLA 18" (80" ) 8.4 [< 19] 95% Fomalont93 
ground interferometer < 0.1%92 

a FWHM of beam, (fJc: coherence angle of the best fit Gaussian auto-correlatiOn functiOn, 

fef 1: effective £ of experimental window function.) 

D: single difference, D*: single difference but equivalent to a single-beam experiment, 

DD: double difference, DDD: triple difference 

b Results at the (Jc angular scale except for D* experiments whose results are at the FWHM 
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Appendix A 

DMR Publications 

Coauthored DMR Publications 

COBE Differential Microwave Radiometers: Calibration Techniques 

Bennett, C. L., Smoot, G. F., et al.1992, ApJ, 391, 446 

Structure in the COBE Differential Microwave Radiometer First Year Maps 

Smoot, G. F., Bennett, C. L., et al.1992, ApJ, 396, 11 

Interpretation of the Cosmic Microwave Radiation Anisotropy Detected by the 

COBE Differential Microwave Radiometer 

Wright, E. L., Meyer, S. S., et al.1992, ApJ, 396, 113 

COBE Differential Microwave Radiometers {DMR): Preliminary Systematic 

Error Analysis 

Kogut, A., Smoot, G. F., et al.1992, ApJ, 401, 1 

Dipole Anisotropy in the COBE Differential Microwave Radiometers First-Year 

Sky Maps 

Kogut, A., Lineweaver, C., et al.1993, ApJ, 419, 1 

Comments on the Statistical Analysis of Excess Variance m the COBE 

Differential Microwave Radiometer Maps 

Wright, E. L., Smoot, G. F., et al.1994, ApJ, 420, 1 

Limits on Three-Point Correlations in the COBE DMR First Year 

Anisotropy Maps 

Hinshaw, G., Kogut, A., et al.1994, ApJ, in press 
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The Cosmic Microwave Background Dipole Anisotropy: Testing the Standard 

Model 

Lineweaver, C. H., Smoot, G. F., et al.1994, Astrophys. Lett. and Comm., in press 

Cosmic Temperature Fluctuations from Two Years of COBE DMR 

Observations 

Bennett, C. L., Kogut, A., et al.1994, ApJ, 436, in press 

Correlated Noise in the COBE DMR Sky Maps 

Lineweaver, C. H., Smoot, G. F., et al.1994, ApJ, 436, in press 

On the RMS Anisotropy at 7° and 10° Observed in the COBE-DMR Two Year 

Sky Maps 

Banday, A. J., Gorski, K. M., et al.1994, ApJ, submitted 

Conference Proceedings 

COBE Differential Microwave Radiometer (DMR) Data Processing Techniques 

Jackson, P. D., Smoot, G. F., Bennett, C. L., Aymon, J., Backus, C., DeAmici, G., Hinshaw,· 

G., Keegstra, P. B., Kogut, A., Lineweaver, C., Rokke, L.A., Tenorio, L. 1991, in P.A.S.P. 

Conf. Series 25, Astronomical Data Analysis Software and Systems I, ed. D. M: Worrall, 

C. Biemesderfer, & J. Barnes (San Francisco:ASP) 382 

Daily Quality Assurance Software for a Satellite Radiometer System 

Keegstra, P. B., Smoot, G. F., Bennett, C. L., Aymon, J., Backus, C., DeAmici, G., 

Hinshaw, G., Jackson, P. D., Kogut, A., Lineweaver, C., Rokke, L. A., Santana, J. 

1991, in P.A.S.P. Conf. Series 25, Astronomical Data Analysis Software i:md Systems I, ed. 

D. M. Worrall, C. Biemesderfer, & J. Barnes (San Francisco:ASP) 530 

The COBE Differential Microwave Radiometer Anisotropy Detection 

Lineweaver, C. H. 1993, in Proc. of 1992 Trieste Summer School in High Energy Physics 

and Cosmology ICTP Series in Theoretical Physics, Vol 9, ed. E. Gava, K. Narain, S. 

Randjbar-Daemi, E. Sezgin, & Q. Shafi (World Scientific:Singapore) P·. 722 

Comm~nts on the COBE DMR Quadrupole Estimation 

Tenorio, L., Smoot, G. F., Lineweaver, C., Hinshaw, G., Banday, A. 

1994, Proceedings of the Santander Workshop on the Present and Future of the Cosmic 

Microwave Background 
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Other Recent DMR Publications 

Non-Cosmological Signal Contributions to the COBE DMR Anisotropy Maps 

Bennett, C. 1., Hinshaw, G., et al.1994, ApJ, in press 

Search for Unresolved Sources in the COBE-DMR Two-Year Sky Maps 

Kogut, A., Banday, A. J., et al., 1994 ApJ, submitted 

Angular Power Spectrum of the Microwave Background Anisotropy seen by the 

COBE Differentail Microwave Radiometer 

Wright, E. 1., Smoot, G. F., et al.1994, ApJ, 436, in press 

On Determining the Spectrum of Primordial Inhomogeneity from the COBE 

DMR Sky Maps: I. Method 

Gorski, K. M. 1994, ApJ, 430, 185 

On Determining the Spectrum of Primordial Inhomogeneity from the COBE 

DMR Sky Maps: II. Results of Two Year Data Analysis 

Gorski, K. M., Hinshaw, G., et al.1994, ApJ, 430, 189 

COBE Differential Microwave Radiometers: Instrument Design and 

Implementation 

Smoot, G. F., Bennett, C., et al. 1991, ApJ, 354, 137 

Preliminary Results from the COBE Differential Microwave Radiometers: 

Large-Angular-Scale Isotropy of the Cosmic Microwave Background 

Smoot, G. F., Bennett, C. 1., et al.1991, ApJ, 371, 11 

Preliminary Separation of Galactic and Cosmic Microwave Emission for the 

COBE Differential Microwave Radiometer 

Bennett, C. 1., Smoot, G. F., et al.1992, ApJ, 396, 17 

Statistics and· Topology of the COBE DMR First Year Sky Maps 

Smoot, G. F., Tenorio, 1., et al. ApJ, in press 

The COBE Mission: Its Design and Performance Two Years After Launch 

Boggess, N. W., Mather, J. C., et al.1992, ApJ, 397, 420 

DMR Software User's Guide 

Version 6.1 May, 1994, NASA, Cosmology Data Analysis Center (CDAC) 

DMR Project Pipeline 

Version 1.0 May, 1994, NASA, Cosmology Data Analysis Center (CDAC) 

DMR Science Pipeline 

Version 1.0 May 1994, NASA, Cosmology Data Analysis Center (CDAC) 
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I 

Feasibility Study of a Quadrilateralized Spherical Cube Earth Data Base 

Chan, F. K., O'Neill, E. M. 1975, Computer Sciences Corp., EPRF Technical Report 2-75 

Extended Studies of a Quadrilateralized Spherical Cube Earth Data Base 

O'Neill, E. M., & Laubscher, R. E., 1976, Computer Sciences Corporation, NEPRF 

Technical Report 3-76 Prepared for the Naval Environmental Protection Research Facility, 

Monterey, California 
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Appendix B 

Thesis Notation 

i,j,k,f: indices of map pixels, 1~i,j,k,f~Npix 

Npix: number of pixels in a DMR map, usually Npix = 6144 

m: index of differential measurements, 1 ~ m~ mtot 

mt0 t: total number of measurements for the channel under consideration, mtot ~ 2x108 ( = 
6x107 jyr x 4 yrs) 

T: model temperature map of the CMB sky, Npix dimensional vector with components Ti 

Tobs: a DMR skymap, least squares estimate ofT, Npi:r: dimensional vector with components 

Tobs,i where Tobs,i = Ti + Ai:?ci 
aii: is the separation angle between pixels i and j 

a: independent variable, argument of the correlation function C( a). 

Ni: number of times pixel i has been observed 
- I N· 
N: average number of observations, Npiz 'L:i~t Ni ~ 17,500 for one year maps 

Nij: number of times pixel i has been differenced with pixel j, approximated by (N;~Nz)/2 
ref 

N ij: average number of times that the central pixels are differenced with reference ring 

pixels, N 
1
N . 'L:i 3· Ni j ~ 64 

rej p':r t ' 

Wi: weight given to Tobs,i, usually Wi = 1/CTf = Ni/CT;h 

W(a) = L:f~"=a WiWk, if the weights equal one, then W is the number of pixel pairs i,j 

with aii within half a bin width of a 

Nref: average number of pixels in the reference ring of a given pixel, ~ 273 

~m: detector noise in the mth differential measurement; comes from a Gaussian distribution 

of zero mean and variance CT! 

CT!: channel (and measurement) dependent variance of a given differential measurement 
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u;h: channel (but not measurement) dependent variance of the differential measurements 

u;ff: the effective variance of the temperatures in a combined map, i.e., A+B, or the 

weighted average of 53+90 

u[: the variance of pixel temperature Tobs,i, usually u[ = u;h/Ni 

n~0t: total noise in map temperature Tobs,i 

ni: ~pproxi.mation and leading term of n~ot, usually assumed to coi:ne from a Gaussian of 

zero mean and variance u[ = u;h/Ni. ni = Aii18i = 8i/Ni 

D( m ): mth calibrated and corrected differential measurement 

V: mtot by Npix matrix containing the pointing information; Numerical Recipes calls this 

the design matrix of the normal equations 

l: Npix dimensional vector, l = yT ..&, a component 8i is a random walk of differential 

measurement errors, from a Gaussian distribution of zero mean and variance ug; = Niu~h. 
A: Npix by Npix dimensional normal equations matrix referred to as the cross-products 

matrix, the moment matrix or curvature matrix. A= vT:EV and sometimes redefined to 

h di · n1 (- vTv) A·. - 1~ t e mensxo ess - . ,3 - - 2 fJT;fJTi • 

A -l: inverse of A, Npix by Npix dimensional covariance matrix or error matrix of the fitted 

temperatures; Ai:/ =< 8Tobs,i8Tobs,j > 
M: measurement vector = VT:EfJ. When combined with the dimensionless A we ignore 

the :E. M can be decomposed into a signal and a noise term: vT b..T + vT b.= f +A-Il 
:E: mtot by mtot matrix. Each element in the mth row equals + 

Um 

L~~k=a: sum over all pixel pairs ik whose separation angle O'.ik lies within half a bin width 

of a 

Cv.: uniformly weighted correlation function 

Cw: weighted correlation function 

Cmd: correlation function of mean and dipole subtracted maps 

Cmdq: correlation function of mean, dipole and quadrupole subtracted maps 
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Appendix C 

DMR Notation 

We expand the skymap temperatures in spherical harmonics 

(C.1) 

where the convention used for the spherical harmonics ltm ( 0, </>) and the real valued spherical 

harmonics F.e,m(O,</>) are defined in Appendix H. The sky can be approximately written in 

terms of the monopole, dipole and quadrupole expressed in "unit" normalization 

T( a, 8) T0 + Dxcos8cosa + Dycos8sina + Dzsin8 + Q1 ~(3sin28 - 1) 

+ Q2sin28cosa + Q3sin28sina + Q4 cos28cos2a + Q5cos28sin2a (C.2) 

where a and 8 are right ascension and declination respectively. Also 

or in "rms" normalization 

·D2 
rms 

2 
1 "' b2 

411" L..J 2,m· 
m=-2 
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(C.6) 



The conversions between the coefficients in equation (C.2) and the Legendre polynomial 

coeffcients btm are 

To 
1 

(C.7) = --boo 
y41r 

Dx ·a (C.8) = - -bn 
47r 

Dy = -a bt-l (C.9) 
47r 

Dz = +ablO (C.10) 

Q1 +.Jf; b2o 47r 
(C.ll) 

Q2 {!l; - b21 
16 

(C.12) 

Qa = {!l; - b2-1 (C.13) 

Q4 = {!l; + 16 b22 (C.14) 

Qs {!l; + 6 b2-2· (C.15) 

There is some variation in the notation used in DMR publications depending on who is the 

lead author: The following notation is equivalent 

"Tt2 2 1 ~ 2 1 ~ 2 ~ = Tt = 47r L...t btm = 47r L...t latml 
m=-l m=-l 

< ~Ti > = . < Qks >, 

(C.16) 

(C.17) 

and Q;ms-PS is an estimate of < Q'kMs >. The beam pattern expanded in a Legendre 

polynomial expansion has been expressed both as Wt and as Gt. 
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Appendix D 

Literature Notation 

This Appendix has been compiled to ease comparison between the notation for the 

correlation function and power spectrum used in this thesis, the DMR publications and the 

rest of the literature in this field. See Scaramella and Vittorio 1990 for a less comprehensive 

compilation. If the sky temperature T( (}, <P) = I: aem l'lm ( (}, ¢>) then using the addition 

theorem of spherical harmo~cs (Appendix H) we can express the correlation function as 

a Legendre polynomial expansion with coefficients denoted by a variety of symbols (Table 

D.1). 

In DMR notation, the correlation function has the dimensions of temperature squared 

C(a) =< 6T,oT > while the others are dimensionless C(a) =< 6TfT0 ,6TfT0 >. It 

should be noticed that the a; of Abbot and Wise is not equal to Peebles' a;. When we 

write a; we are using Peebles' notation. Notice that Ct is not squared. A shift in Bond's 

notation should be noticed: Bond et al. (1991) has Ct =< laeml 2 > while Bond (1994) has 

Ct = Crt = £(£ + 1) < latml 2 > /27r Some authors do not distinguish clearly between the 

observed quantities in our horizon and the ensemble averaged quantities of a model. 

The relation between the various power spectra is 

< ~Tl > - 2£ + 1 c - 2£ + 1 2 - (~T) 2 
- 2£ + 1 I 12 - 2£ + 1 21r

2 
2 

To2 - 47r l- 47r al- To l- 47r < alm >- 47r £(£+ 1)EH 
(D.1) 

For the important f. = 2 case which is often used to normalize we have 

< ~T:f > _ Q;ms-PS _ ~C _ ~ 2 _ (/)..T) 2 
_ ~ I 

1
2 _ ~ 7r2 

2 

T 2 . - T 2 - 4 2 - 4 a2 - T - 47r < a2,m >- 4 3 EH· o o 1r 1r o2 1r 
(D.2) 

For the primordial density power spectrum 

P(k) = Akn (D.3) 
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Table D.1: Diversity of Correlation Function Notation 

Observed a Observedb Theoreticalc Reference 
-i,. .Let lbtm 1

2 Pf .Lb..TfPt L: < b..Tf > Pt DMR publications 
-}; L lalm l:t Pt ;/;. L;(2l + 1)CtPt ;/; L;(2l + 1)CtPt Bond, Efstathiou 
-}; L lalm 1

2 Pt i;r L:(2l + 1)aiPt i; L;(2l + 1 )aiPt Peebles 
;/; L latm l:t Pt li_L;(2l + 1)I:iPt ;/; L: < Qi > Pt Scaramella, Vittorio 

4~ L ,lalm 1
2 Pt 4

1
,. .La]Pt 4~ L;(2l + 1)£~a&~"i)Pt Abbot,Wise, Schaeffer 

J;r L latm 1
2 Pt i;r 2:::(2£ + 1)latm 1

2 Pt i; L;(2l + 1) < latm 1
2 > Pt Kolb & Turner 

1,. L latm 1
2 Pt E ( ~;),Pt L: < ( ¥ot > Pt Russians 

;f:; L lalm l:t Pt .Lcrf
1
Pt L;crf

1
Pt Adams92 

a Observed refers to our honzon volume, this first column IS expressed m terms of the 

spherical harmonic coefficients and the sum is over l and m. 

b This second Observed column is in terms of the power spectrum and the sum is over l 

only. 

c Theoretical or ensemble average over all horizon volumes 

d Sum is over the explicit indices, e.g., L = Ll=l.m;n,l.maz(L:~~-l) 
e Pt = Pt(cosa)WJ where Wf = e-t(Ht)/4 or Wf = Gl from Wright et al.1993 . . 

one obtains the radiation power spectrum (equation ( 4.10)) 

b..T2 = (2'. + 1) I~ (Ho)n+3 
r(3- n) r(£ + ~). 

l 411" 16 c r2(\ n) r(£ + 5;n) 
(D.4) 

For the n =1 case the relation between normalization factors (A, H0 , fH) is 

A = (9611"
2
) (~)4 Q~ms-PS = S 3 (~) 4 

2 5 H T2 11" H £H. 
0 0 0 

(D.5) 
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Appendix E 

Software Versions: Pass 1 vs Pass 

2 

Currently there are two incarnations of the software: pass 1 and pass 2. Pass 1 produced 

the first year maps that were released in June 1993. The pass 2 software was used for the 

2 year results (Bennett et al.1994, Wright et al.1994, Gorski et al. 1994). The 2 year maps 

were released in June 1994. 

The one year released ecliptic coordinate maps were made with "pass 1" software 

processing. The 2 year results are based on the upgraded "pass 2" software processing. 

Pass 1 and pass 2 software processing are contrasted in Table E.l. The most noticeable 

difference is the Moon cut angle. Pass 2 corrects for Moon emission when the Moon is 

> 21° from a beam center. The pass 1 correction is > 25°. The data processing speed 

was increased due to the 7 to 4 block data structure conversion. Figures E.1 and E.2 are 

2 year sky coverage maps from 53A for pass 1 and pass 2. The decreased Moon cut is 

primarily responsible for the increase in the number of observations in pass 2 however the 

overall pattern is essentially the same. Figure E.3 compares the Yr1 channel auto-correlation 

functions from pass 1 and pass 2. The differences are small. On October 4, 1991 the 31B 

channel noise increased dramatically and we do not use 31B data after this date. 
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Table E 1: Pass 1 versus Pass 2 Processmg Software 
Quality Pass1 Pa~2 

1Yr Dataa 
2Yr Data 
Data type 
outlier cut 

89356-90355b 89356-90355 

data used( 53&90) 
Moon cut 
Earth cut(53&90) 
Earth cut(31) 
N maxi N min ( 53&90 )Yr1 
N maxi N min {31 )yr1 
NmaxiNmin(53&90)2Yr 
NmaxiNmin(31)2Yr 
Galactic flag 
coordinate system 
map resolution 
Pixel number (size) 
baseline 
satellite velocity 
Earth velocity 
Sun Velocity 
Moon emission 
Magsusf 
Memoryh 
Planets 

90356-91355 
7 blockd 
>50" 
87% 
25°(5% of data) 
1° below shield or higher 
3° below shield or higher 
4.7 
7.4 
4.1 
6.6 
100 
Galactic 
6 
6144 (2.6°)2 
50 min (cubic spline) 
corrected 
corrected 
not corrected 
corrected (> 25°) 
corrected (fit9) 
not corrected 
Jupiter corrected 
removed (fit) 

90356-91355c 
4 block 
>50" 
90% (more moon, less eclipse) 
21°(4.5% of data) 
1° below shield or higher 
3° below shield or higher 
4.3 
6.9 
3.8 
6.7 
15° 
Galactic 
split 617; 7 lbl < 20° 
4032(2.6°)2 + 2112*4 (2.6° 14)2 
206 min=2 orbits, running mean 
corrected 
corrected 
correctede 
corrected ( > 21°) 
corrected (fit) 
corrected 
Jupiter, Saturn, Mars corrected 
removed (fit) 

a Launch was Nov 18, 1989 or "89322", 332nd day of 1989 

b December 22, 1989 to December 21, 1990, released in June 1993 

c minus the eclipse season cut (May 21-July 24), released in summer 1994 

d refers to the size of the data record structures, the 7 to 4 block conversion saved disk 

space and lowered the processing time 

e Nominal Dipole removed: 3.325 mK in direction J2000 RA= 11 h12m57s .6, Dec 

-6° O' 3611 

f magnetic susceptibility, Chapter 2 

g See Chapter 3 for difference between corrected and fit 

h also known as the "LIA" effect, see Section 2.4 

i Mean of time ordered data was fitted and removed 
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19308 78519 

Figure E.1: Pass 1, 53A 2Yr Sky Coverage 

21526 81271 

Figure E.2: Pass 2 53A 2Yr Sky Coverage 
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Separate Channels 1990 Pass1 vs 1990 Pass2 
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Figure E.3: Separate Channels for Yr1 Pass 1 vs Pass 2. The amount of variation is a small 

fraction of the noise error bars. 31 GHz shows the largest pass1/pass2 difference. These 

weighted auto-correlations are for lbl > 20° and have had the best fit mean, dipole and 

quadrupole removed. 
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Appendix F 

Friedmann Equation 

Einstein's equations of general relativity provide a theoretical framework capable of 

describing the dynamics of the Universe. Friedmann's equation is a solution to Einstein's 

equations for an isotropic and homogenous universe and is a differential equation relating 

the time dependence of the scale factor R to the matter content of the Universe. A useful 

formulation which explicitly expresses the R dependence of various types of mass density 

is: 

H 2 = n; [nrez,oR-4 + nnrez,oR-3 + ncv.rv,oR-2 + nvac,oR0
] (F.1) 

I 

where the ni,O 's are the present dimensionless densities in units of the present critical density 

for relativistic, non-relativistic particles, curvature and vacuum densities respectively. 

Specifically ni,O = £.!.&.. where PiC2 is the energy density of the ith component and PcC2 
. Pe,O 

is the critical energy density ( = 81rGc2 /3H 2). flcv.rv o = -Hkr{ where the curvature constant 
' 0 

k = +1, -1,0 for a closed, open and Euclidean universe. The vacuum energy density 

nvac,O = :~ and A is the cosmological constant. no = nre/,0 + nnrel,O + nvac,O and 
0 

no = 1- ncv.rv,o (Bond 1993). In a flat universe, k = 0 and no = 1. For a closed universe, 

k = +1, and no> 1. For an open universe, k = -1, and no< 1. The initial ingredients for 

all cosmological models are the ni parameters. The popular Einstein-deSitter model has 

no cosmological constant and is flat: A= 0 and k = 0. In the matter dominated epoch the 

Friedmann equation (F.1) then simplifies to 

2 81rG 
H - -

3
-Pnrel = 0 (F.2) 

and can be understood as a statement of energy conservation. Ekin - Epot = 0. 
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Appendix G 

Antenna Temperature 

The spectral brightness of a blackbody is a function of only one parameter, the 

temperature 

Bv(T) = 2hv3 _1_ 
c2 ex-1 

where x = hvfkT. In the Rayleigh-Jeans region x << 1 and thus 

· 2v2 

Bv(T) = - 2 kT. 
c 

(G.1) 

I (G.2) 

The generalization of equation (G.2) to any x defines the antenna temperature of a 

blackbody 
2v2 

Bv(T) = - 2 kTant(v). 
c 

(G.3) 

Rewriting equation (G.3) yields the relation between antenna and thermodynamic 

temperature 
hvfk x 

Tant(v) = --
1 

= T--
1

. ex- ex-
(G.4) 

Notice that in the Rayleigh-Jeans portion of a blackbody spectrum the antenna temperature 

and the thermodynamic temperature are equal (Tant = T). 

The antenna temperatures of the CMB, the kinetic dipole and the normalizing 

quadrupole amplitude Qrms-PS are plotted in Figure 2.4. Taking the derivative of equation 

(G.4) one obtains the relation between antenna and thermodynamic temperature differences 

(G.5) 

where here x = hvfkT0 • Notice that the temperature difference conversion depends on a 

knowledge ofT0 while equation (G.4) does not. Plugging 31.5, 53 and 90 GHz into equation 

(G.5) with T0 = 2.73, we get the conversion factors 1.026, 1.074, 1.226 respectively. 
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In the more general case of non-Planckian spectra Iv we can define an equivalent 

antenna temperature by 

(G.6) 

which when combined with equation (G.5) yields 

~I ~Tant ~T xex 
-=--=- ' 
fo Tant To (ex- 1) 

(G.7) 

where ! 0 is an isotropic but not necessarily Plarickian radiation field as seen by an observer 

in the rest frame of the field. 
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Appendix H 

Spherical Harmonic Coefficients 

a,em and b,em· 

We derive an af.m crossing relation due to the reality of CMB temperatures and then 

define analogous real valued quantities labelled btm which have the desirable qualities of the 

af.m . We use the spherical harmonic definition (see e.g. Press et al.1993 or Jackson 1975) 

where 

Yl,m(B,¢) = Nt,mP£(cos8)eim4>, 

Nt,m= 
(2£ + 1)(£- m)! 

411"(£ + m)! 

(H.1) 

' (H.2) 

and P£( cos 8) are the associated Legendre polynomials (Libo:ff 1986). We will use the 

following orthonormality and 'crossing' relations: 
. 4 

1 dfl Y£im,(8, <P)Yem(O, ¢) = bt,f.'bmm' 
41r 

(H.3) 

(H.4) 

One can expand any real or complex valued function of 0 and <P as a sum of spherical 

harmonics, 
oo H 

T(O,¢) = L L af.m Ylm(O,¢), (H.S) 
f.=Om=-f. 

where the set of af.m 's completely describes T(O,¢). Since T(O,¢) is a real quantity the 

af.m 's are not independent. A crossing relation exists: 
.. 

(H.6) 
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Proof: 

Since, T(O, <P) E R we have 

T* = T 

L:a£m ¥£~ 
lm 

L:a£m ¥£~ 
lm 

Lalm Y£m 
lm 

L( -l)malm 1'£7-m· 
lm 

(H.7) 

(H.8) 

(H.9) 

Convolve both sides with f dil Y£•m• and use the orthonormality of the Y£m 's ( eq H.3) to 

get 

L a£m j dil Y£•m• 1'£~ L( -l)malm j dQ Y£7-mYl'm' (H.lO) 
lm lm 

L:a£m Ot,i'Omm' L) -l)malm Ot,l'Lm,m' (H.ll) 
lm lm 

a£'m' = ( -1)-m'al',-m'· (H.12) 

Removing unnecessary primes, multiplying by ( -1 )m and taking the complex conjugate of 

both sides one obtains the crossing relation equation (H.6). 

Since we want to avoid making measurements of correlated quanities we introduce real 

orthonormal spherical harmonics Ftm with independent coefficients btm . These are the 

functions defined in Smoot et al.1991 except note the typo: (1-m)! should be (£- m)!. 

Note that the Ft,m of Wright et al.1994 differ by a factor of J4;r from those used here. 

(H.13) 
lm lm 

where 

Ftm(O, <P) = kNt,lmiP)ml(cos 0) { c~s(m¢) m~ O } , 
sm(m<P) m < 0 

(H.14) 

where k = v'2 for m 1 0 and k = 1 otherwise. The normalization toggle ensures the 

orthonormality of the Ftm 's: 

{ dil Ft'm'(O, <P)Ftm(O, ¢) = 6t,e6mm'· 
1411" 

Equation (H.13) leads to the following relation between the aim and the btm , 

.J2 Re(atm ) form > 0 

-.J2 Im(atm) form< 0 
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(H.15) 

(H.16) 

(H.17) 

(H.18) 



from which one obtains 

(H.19) 
m m 

./ 
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Appendix I 

Correlation Function Power 

Spectrum Expansion 

One finds the addition theorem of spherical harmonics in Jackson (p. 101) in the 

following form 

~ V* (~),:/ c··)- (2£ + 1)Pe(cos a) 
L.J l em 2 l em J - 47r ' 

m=-e 
(1.1) 

where the angle aij between the directions i and J is fixed; aij = a. Drop the sum on m 

and consider any one of the 2£ + 1 terms on the left hand side. When averaged over all 

pairs of directions i and J separated by a one obtains, 

V* (~)v c··) - Lij8(a-aij)Ye~(i)Ytm(])- Pe(cosa) 
< l lm 2 l em J > = " .. S:( - .. ) - 4 . 

i...J 1; u a a 1; 1r 
(1.2) 

When the indices of Y*(i) are different from those of Y(]), the sum over all pairs is zero. 

To generalize to this case, we prime the Y(J) indices and introduce delta functions, 

''* (~)v c··) - Lij 8(a- aij)yt~(i)Ye'm 1 (])- Pe(cos a) s: s: 
< 1em 2 l('m' J >= "·· s:( _ . ·) - 4 Ul('Um,m'· 

i...J~u a a~ 1r 
(1.3) 

We will use the addition formula of spherical harmonics in this form . 

The two point correlation function of a sky map is defined as 

C(a) =< 8T(i)8T(]) >, (1.4) 

where 8T(i) = Ti - T and the average is over all pairs ij with aij = a. Since T = aooYoo 

and 8T E R we have 
oo e oo e 

8T(i) = 2:= 2:= aem Yem(i) = 2:= 2:= aim Ye~(i). (1.5) 
l=l m=-e l=l m=-l 
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Equation (1.4) then becomes 

(I. 7) 
lm.t'm' 

""I l2 Pt( cosO) 
L..J alm 4 ' 
lm 7r 

(1.8) 

where we have used equation (1.3). Taking the ensemble average we obtain 

1 lma:~: 

< C(a) > = 
4

7r 2: < latm 1
2 > Pt(cos a)= 2: < ~Tj > Pt(cos a). (1.9) 

lm lmin 

•· 
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Appendix J 

Arbitrary Mean Value of Map 

Solution 

The normal equations we want to solve are (equation (3.7)), 

AT= M. (J.1) 

Since A is singular, we need to know the rank and nullity of A to determine a meaningful 

solution. Since A = yTy, the dimension of the null space of A is the same as that of V. 

Referring to the structure of V in equation (3.5), one can see that VT = 0 if and only if 

Ti - Tj = 0 for all i and j. Thus the constant vector ( 1, ... , 1) spans the nulls pace of both A 

and V and nullity(A)=nullity(V)=l. Therefore solutions of the normal equations are all 

of the form 

T = ~ + Tconstant, (J.2) 

where~ is a particular solution and Tconstant is any element of the nullspace of A. Therefore 

any two solutions of the normal equations differ only by a mean value in the maps. 

How much does adding € to the diagonals change the solution? 

The DMR inversion algorithm breaks the singularity of A by adding a small positive number 

€ to the diagonal elements of A. 

(J.3) 

We would like to know how much this E perturbation changes the solution. Using singular 

value decomposition we can write the symmetric matrix A as 

(J.4) 
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where A is a diagonal matrix whose diagonal values are the eigenvalues (singular values) 

>..[ of A. U is an n by n orthonormal matrix whose ith column is the eigenvector of the 

'eigenvalue >..[. Thus, 

(A+ d)= UAUT + d = U(A + d)UT (J.5) 

Plugging equation (J.5) into (J.3) yields, 

(J.6) 

A measure of how different i. is from a desired solution f is needed. Make an orthonormal 

transformation expressing Te in the basis given by the columns of U 

(J.7) 

(J.8) 

- 1- 1- -2 -2 where te = u- Te and m = u- M. Also ltel = ITel since orthonormal transformations 

are norm preserving. Using equation (J.3) we obtain a measure ofthe difference between f 
and i. 

1Afe-ATI2 = I(M- £i.)- Ml2 (J.9) 

= l£il2 (J.10) 

£21t:l2 (J.ll) 
n I: € 2 2 (~)mi. 

i=l i + € 

( J .12) 

Since the rank of A is n ~ 1 ("rank + nullity =n"), only one of the eigenvalues, >..[,is zero. 

Without loss of generality let >..i = 0, then 

(J.13) 

Since the ith column of U is the normalized eigenvector corresponding to >..[, we have 

u-1
1,j = ()n, ... , )n ). Therefore, 

But 

1 n 

ml = t.;:;"LMi. 
yn i=l 

n n Nobs 

LMi = L(L Vi]Dj) = 0 
i=l i=l j=l 
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(J.15) 



(see equation (3.7)). Therefore m1 = 0 and the measure of our solution error becomes 

n 
- -2 "" f. 2 2 !AT(- AT! = L....-( ~) mi • 

. i=2 ""i +f. 
(J.16) 

We can make f. arbitrarily small such that f. < < .X~ for aJl i. We obtain the desired result 

( J .17) 

where f is a solution (equation (J.2)) of the normal equations . 

• 
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' Appendix K 

Error on the Correlation Function 

We derive the errors on the cross-correlation function of two maps using the standard 

error-propagation formula. The weighted correlation function is 

1 
C(a) = W ~ 8(a- aij)WiWjTobs,iTobs,j, (K.1) 

'J 

where Tobs,i and Tobs,j are the temperatures of two different maps and Wi and Wj are their 

respective weightings. The Eii 8( a - aii) is the sum over all pixel pairs ij with separation 

angle aii = a and W = Eii 8( a - aii )wiwi. The standard propagation of errors formula 

for the dispersion of C (a) is 

2 2Npiz ( aC(a)) 2 2 
o"c(a) = L aT CTm, 

m=l obs,m 
(K.2) 

where Npix is the number of pixels in each map and CT~ = 1/wm. Notice that the index m 

runs over all the pixels in both maps. To evaluate this we need the derivative 

aC(a) 1 ""' . · 
aT = W LJ8(a- aii)wiwj(Tobs,i8mi + Tobs,j8mi), (K.3) 

obs,m ij . 

where m can never be equal to both i and j so we cannot combine the two last terms into 

one term with a coefficient of 2. We can use the delta functions to reduce the sum if we let 

the index k run over all the pixels in the map in which m isn't, 

aC(a) Wm""' . 
aT = W LJ 8( a - amk )wkTobs,k· 

obs,m k 
(K.4) 

Squaring this we get 

( aC(a) )
2 

w~ [""' 2 2 ""' · ""' ·] aT = W2 LJ8(a- amk)wkTobs,k + 2 LJ8(a- amk)wkTobs,k LJ 8(a- amj)WjTobs,i , 
obs,m k k j;j>k · 

(K.5) 
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where the second term consists of cross-terms which we will ignore since we are primarily 

interested in the first noise-noise term. Also since Tobs,i = Ti + ni, the cross terms cancel 

each other except for the TiTj terms with small CXij (this comes from the large values of 

C(a) for small a and small C(a) elsewhere). Thus we are left with 

(K.6) 

where we have used 0'! = 1/wm. We can write this as 

We are free to rename the indices such that in the first sum m -t i and k -t j and in the 

second sum m -t j and k -t i. Thus we are left with 

(K.8) 

which is equation (6.2). Since the map temperatures can be represented as a signal plus a 

noise term, Tobs,i = Ti + ni equation(K.8) has the advantage of depending only on the input 

map temperatures Tobs,i· Covariance matrix formulae depend on some assumed signal and 

are not expressed in terms of Tobs,i. Also notice that although we have ignored the cross­

terms in equation (K.5), equation (K.8) is not just the noise-noise error since 

(K.9) 

The "conservative" errors (i.e. larger than just the noise-noise term of the covariance matrix) 

plotted for example in Figure 3 of Smoot et al.1992, were computed by using 

(K.10) 

(K.ll) 

in equation (K.8), where the channel dependent rms values O'ch are given in Table 2.1. The 

result is 

(K.12) 

(K.13) 
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where we have used equations (K.lO) and (K.ll) to evaluate the noise-noise term in equation 

(6.8). The analogous variances for the auto-correlations are the conservative 

(K.14) 

and the noise-only 

(K.15) 
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Appendix L 

Relation to Density Contrast 

Two-Point Correlation Function 

The derivations of the density contrast correlation function and the temperature 

correlation function expressed in terms of power spectra are analogous. We use notation to 

make this parallelism explicit 

oT(n) =I: at.m l'lm(n) -+ C(a) =< oT(n)oT(n +a)> (1.1) 

o(x) = .!.. I: oke-ik·x - ~(f)=< o(x)o(x + T) >x, (1.2) v ~ 
k 

where the angle brackets in equation (1.1) denote an average over all directions n and for 

each n an average over all directions which are a degrees from n. 

C(a) < <L:at.m Yim(n))(L:a£,m'Y£im,(n+ a))> 

~(f) = ~2 < (~ 8;; e-ik·x)(~o~, e+ik'·(x+r')) >x 

C(a) = 

k k' 

I: at.m a£'m' < Yim(n) Y£i'm,(n +a)> 
U'mm' 
_!..._ "o~o! eik'·r < ei(k'-k)·x > ~ 
V2 L....J k k' X 

k,k' 
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(1.3) 

(1.4) 

(1.5) 

(1.6) 



C(a) 1 :L 2 4 laem I Pe(cosa) 
1r lm 

(1.7) 

~(T) = ~2 ~ l8kl2eik·r (1.8) 
k 

Thus the correlation functions are the Fourier transform and Legendre expansion of the 

power spectra 

C(a) = L~T[Pe(cosa) 
l 

~( r) = j d3 kP( k )eik·r, 

where r = lf'l, and the power spectrum analogs as a function of nand scale k(i) are 

P(k) = Akn 

~Tt 2 2.e + 1 r(.e +!!:.f) rc¥) 
" = Qrms-Ps-5-r(i+ s;n)retn)' 

where A and Qrms-PS are normalization constants. 
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(1.10) 
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(1.12) 
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