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Abstract 

This paper consists of four parts. Part one deals with an investigation of the 
properties of beta-equilibrated, electrically charge neutral quark-star matter at 
zero and finite temperatures, and the determination of its equation of state. 
In part two, the properties of sequences of quark stars, divided into strange
and charm-quark stars, depending on quark-flavor content, are investigated. 
The strange starsare constructed for absolutely stable strange-quark matter, 
whose energy per baryon number lies below the one in 56Fe. In part three, 
the electrostatic potential of electrons inside and in the close vicinity outside 
of strange stars, which is of decisive importance for the possible existence of 
nuclear crusts on the surfaces of such stars, is computed. It is found that fi
nite temperatures lead to a considerable reduction of the electrostatic electron 
potential at the surface of a strange star, which is accompanied by a strong
reduction of the Coulomb barrier associated with the difference of the electro
static potential at the surface of the star's strange-matter core and the base of 
the crust. This finding is of great importance for the stable existence of crusts 
on strange stars, since the Coulomb barrier plays the important role of prevent
ing atomic nuclei bound in the nuclear crust from coming into contact with the 
star's strange-matter core, where atomic matter by hypothesis would be con
verted into strange matter. The structure and stability of quark stars against 
radial oscillations is discussed in part four, where it is found that charm-quark 
stars are unstable against radial oscillations. Thus no charm-quark stars (and, 
as is demonstrated too, no q1,1ark-matter stars possessing still higher central 
mass densities) can exist in nature. 
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Structure and Stability of Strange and Charm 
Stars at Finite Temperatures 

Ch. Kettner, F. Weber, M. K. Weigel 

and 

N. K. Glendenning 

1 Introduction 

The hypothesis that strange quark matter may be the absolute ground state of the 
strong interaction (i.e., absolutely stable with respect to 56Fe) has been raised by 
Bodmer [1] and Witten [2]. On theoretical scale arguments, it is as plausible a 
ground state as the confined state of hadrons [2, 3, 4]. Even to the present day 
there is no sound scientific basis on which one can either confirm or reject Witten's 
hypothesis, so that it remains a serious possibility of fundamental significance and 
for rare but exotic phenomena [5, 6, 7, 8, 9, 10, 11, 12]. (For a review of recent work, 
and a complete bibliography up to 1991, see Ref. [13].) If the hypothesis is true, 
then the very intriguing possibility of the existence of so-called strange-quark matter 
stars [2, 4, 11, 14, 15, 16, 17], made up of 3-flavor strange-quark matter whose energy 
per baryon number lies below the one of 56Fe, i.e. 930 MeV, opens up. They form a 
distinct and disconnected branch of compact stars, and are not part of the continuum 
of equilibrium configurations that include white dwarfs and neutron stars [2, 4, 14, 15]. 
More than that, some (in the most extreme case all) neutron stars could actually be 
strange stars. If so, pulsars are to be interpreted as rotating strange stars (strange 
pulsars) rather than rotating neutron stars [13]. Possible signatures of such objects 
could be rotational pulsar periods that lie significantly below one millisecond [9, 18], 
since the rotational periods of gravitationally bound neutron stars, constructed for a 
broad collection of realistic models for the nuclear equation of state, seem to lie above 
that limit [19, 20, 21, 22]. 

This paper deals with an investigation of the properties of quark-star matter 
at zero as well as non-zero temperatures, and the determination of the equation of 
state (i.e., pressure versus energy density relation) associated with it. The notion of 
quark-star matter comprises strange-quark star matter made up of u, d and s quarks 
[2, 4, 11, 14, 15, 16, 17] and charm-quark star matter [23], in which charm-quark states 
are populated in addition. Subsequently, the properties of the families of strange- and 
charm-matter stars, henceforth referred to, for brevity, as strange and charms stars, 
constructed for these equations of state are analyzed. There exist a few investiga-
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tions dealing with the properties of strange stars that have been performed earlier 
than this one (for an overview, see, for example, Ref. [13]). Some of the major new 
aspects treated in this work concern the investigation of the structure and stability 
of strange and charm stars, being at zero as well as non-zero temperatures, against 
radial oscillations. Furthermore the influence of temperature on the electron chemical 
potential inside and outside of bare strange stars, which is of decisive importance for 
the possible existence of nuclear crusts on the surfaces of strange stars, is explored 
and its implications for strange pulsars are pointed out. The investigation is based on 
a systematic determination of a model for the equation of state of quark-star matter 
at finite temperature, whose properties are studied in great detail. 

Our investigation is organized as follows. In Sect. 2 the description of quark-star 
matter, i.e. beta-equilibrated three- (u,d,s) and four-flavor (u,d,s,c) quark matter, 
at zero as well as finite temperatures is introduced. For the purpose of illustration, 
the special cases of cold quark matter made up of massless as well as massive quarks 
are discussed. A value for the bag constant of B 114 = 145 MeV, for which 3-flavor 
strange-quark matter is stable, has been chosen. For a strange quark mass of 150 MeV, 
this bag constant corresponds to an equilibrium energy per baryon number of strange 
matter of about 880 MeV. In other words, this choice represents strange matter being 
absolutely bound, by about 50 MeV, with respect to 56Fe. Sequences of strange- and 
charm-quark stars are constructed in Sect. 3. In particular the impact of temperature 
on the structure of such objects is investigated. In Sect. 4 the electrostatic potential 
of electrons interior and exterior of strange stars is determined and its temperature 
dependence studied. Most important for the possible existence of a nuclear crust on 
the surface of a strange star, the width of the gap that exists between the surface 
and the base of the crust is determined for a variety of representative temperatures 
and electrostatic crust potentials. As a byproduct, the possibility of the conversion 
of hadronic matter (light atomic nuclei, like hydrogen and helium) that is accreted 
onto the surface of a bare strange star into strange matter is considered. Section 5 
deals with an investigation of the stability of such stars against radial oscillations 
(acoustical modes). Our findings are summarized in Sect. 6. Mathematical details 
concerning the determination of the equation of state at finite temperature are given 
in the Appendix. 

2 Description of Quark-Star Matter 

In the following we present briefly the description of electrically charge neutral quark
star matter in equilibrium with respect to the weak interactions (i.e., beta-stable 
matter) at zero as well as finite external pressure and non-zero temperature. By 
quark-star matter we m~an a Fermi gas of 3A quarks which together constitute a single 
color-singlet baryon with baryon number A. The dynamics of quark confinement is 
approximated by the bag model [24], 

p+B = Pi , (1) 
i=u,d,c,s;e- ,J.L-
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i = (2) 
i=u.,d,c,s;e- ,J.L-

where p, t: and B refer to external pressure, total internal energy density, and bag 
constant, respectively. The condition of electric charge neutrality reads 

0= (3) 
i=u.,d,c,s;e- ,JJ-

The expressions for internal pressure, energy and number density of the quarks and 
leptons contained in the bag, Pi, ii, and ni respectively, are determined by the ther
modynamic potentials, d!!i = -SidT- PidV- NidJ.li, from which one obtains ( contri
butions of antiparticles are neglected. This is well justified for antiquarks since their 
chemical potentials are much larger than the considered temperatures (see also [25]). 
The situation is somewhat more delicate for the positrons, which too were found to 
contribute only very little.) 

8!!i = - giT {oo dk k2 ln [1 + e-(E;(k)-,..;)/T] ' 
av 271"2 lo 

(4) 

(5) 

(6) 

where Ef( k) = P + mr (For the evaluation of the thermodynamic potential of a 
quark gas of Nc colors and N1 flavors to fourth order in the quark-gluon coupling, we 
refer to Ref. [26, 27].) The quantity mi denotes the quark's mass. The expression for 
the energy density of the system reads 

(7) 

The phase space factor 9i is equal to 2 (leptons) or 6 (quarks). The quantity fi 
denotes the Fermi-Dirac distribution function, fi(E) = 1/[1 +exp((E- J.li)/T)]. The 
baryon number density is given by 

(8) . 
i=u,d,s,c 

Chemical equilibrium between the quark flavors and the leptons is maintained by 
the following weak reactions (and their inverse), 

The reactions 

d ~ u + e- + iie- , 

s ~ u + e- + ii e- , 

s ~ c + e- + iie-

s+u f---4 d+u, 

c+d f---4 u+d 

3 
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(10) 

(11) 

(12) 

(13) 



contribute to the equilibration of flavors. The loss of neutrinos by the star implies' 
that their chemical potential is equal to zero. Hence, one gets from Eqs. (9)-(13) 

/lc = Jlv. ' 

Finally, the conservation of electric charge implies that 

The third of Eq. (14) motivates defining 

J1 = /ld = Jls · 

For later purpose, we introduce the additional definitions 

{ 

1- X 
/li 

T/i = -;; = ; 

where 

and 

if i = u, c' 
if i = d, s' 
ifi=e-,p-, 

Zi - -

2.1 Cold matter consisting of massless quarks 

(14) 

(15) 

(16) 

(17) 

(18) 

It is illustrative to apply, in a first step, the equations of the previous section to quark 
matter at zero temperature, assuming that all quark species are massless particles. 
Zero temperature implies that 

fi(E) ~ E>(Jli- E) , 

and Eqs. (4)-(7) lead to (gi = 6) 

9i 4 4 1 
Pi 2471"2 J1 T/i - t:· 3 t 

ni 
9i 3 3 

671"2 J1 1Ji 

(19) 

(20) 

(21) 

One thus obtains from Eqs. (1) and (2) for the system's equation of state the well 
known expression 

E-4B 
p= 

3 

The condition of charge neutrality, Eq. (3), reads 

4 

(22) 

(23) 



(no leptons are necessary to make the system electrically charge neutral). Finally, 
for zero external pressure, p = 0, one derives from Eq. (1) B = 3J.t4 /47r2

, and for the 
energy per baryon number in strange matter [11] 

EA 
f 4B 

-
(nu + na + ns)/3 nA 

4B 4B1r2 

(24) - ----
nu j.£3 

From this relation one finds, for example, that bag constants of B = 57.5 MeV /fm3 

(B114 = 145 MeV) and B = 85.3 MeV /fm3 (B114 = 160 MeV) place the energy per 
baryon number of strange matter consisting of massless u, d, and s quarks at 829 MeV 
and 915 MeV, respectively. In other words, these values represent strongly ("" 100 
MeV) and weakly (""' 15 MeV) bound strange matter, at zero external pressure, and 
in all cases correspond to strange matter being absolutely bound with respect to 56Fe. 
(More details will be given in connection with the discussion of Figs. 1 and 2.) 

2.2 Cold matter consisting of massive quarks 

In the case of massive quarks, Eqs. (4)-(7) lead to (i = u,d,c,s;e-,J.t-) 

Pi = 
g·j.t4 ry 4 [v 5 3 1 + . /1 - z'f] 

' i 1 - z7 (1 - -z~) + -z~ In __ V....__ __ 
247r2 a 2 ' 2 ' Zi ' 

3 3 
n,· 9iJ1 "li (1 - ~)t 

- 67r2 z, ' 

g ·u4n4 1 z4 1 + . /1 - z7 
fi - ar "ti [· /1 - z7 (1 - -z~)- ..i.. ln V '] 

87r2 v a 2 I 2 Zj 

The condition of electric charge neutrality, Eq. (3), reads now 

0 
2 1 
J(nu + nc)- J(na + ns)- (ne- +nil--) 

- 2(1 - x3 )[1 + (1 - z;)t] - [1 + (1 - z;)%] 

-x3 [1 + (1- z~- )%] , 

and Eq. (1) leads to 

(p+ B) 4
1r

2 
= (1- x4 )[1 + · /1- z2(1- ~z2 ) + ~z2 In 

1 + J1
- z~] 

j.£4 V c 2 c . 2 c Zc 

[ 1 2 
5 2 3 2 1 + )1 - z;] 

+ 1 + y 1 - z s (1 - 2 z s ) + 2 z s ln z s 

x4 
[ 1 5 2 ) 3 2 1 + J1 - z~] +- 1 + y 1- z2(1- -z + -z ln---'---3 11- 2 11- 2 11- zll-
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(26) 

(27) 

(28) 

(29) 



· The expressions of energy and baryon number density are given by 

(30) 
i=s,c,p.- i=s,c,J.t-

- 3p+4B 

+ I: 
(31) 

and 

1 
nA - 3 (nu + nd + ns + nc) 

- ;:2 [(1- x3 )(1 + (1- z;)~) + (1 + (1- z;)~)] 
(32) 

The first two terms on the right hand $ide of Eq. (31) represent the equation of state of 
massless-quarks, given by Eq. (22). The third term accounts for the finite masses of 
the muons, and the strange and charm quarks. 

Figure 1 shows the energy per baryon number, EA = f./nA, of strange matter at 
zero external pressure [3, 25], computed from Eq. (31). The influence of temperature 
is demonstrated for T = 30 MeV, which is typical for a newly formed neutron star 
in a supernova explosion (28, 29, 30]. (The equation of state of quark-star matter at 
finite temperature will be discussed in detail in Sect. 2.3.) The energy per baryon 
number of cold matter ranges from 830 to 950 MeV. For the purpose of comparison, 
we recall that the energy per baryon in 56Fe amounts M(56Fe)c2 /56 = 930.4 MeV, 
where M( 56Fe) is the mass of the 56Fe atom. Thus, with exception of the 950 MeV 
contour, all these curves correspond to strange matter that is absolutely stable, at 
zero external pressure, with respect to 56Fe. For a representative mass of the strange 
quark, m 8 = 150 MeV, which was used in this work together with m 8 = 0, this is 
the case for bag constants smaller than 75 MeV /fm3 (B114 = 155 MeV). The lower 
bound on B, given by 57 MeV /fm3 (B 114 = 145 MeV), is determined by the fact that 
the energy per baryon number of 2-fiavor quark matter must be higher than the one 
of 56Fe. Otherwise 56Fe would be made up of u and d quarks rather than nucleons. 
This condition also determines the termination points of these contours, which are 
located at those points where the contours cross the vertical line at B =57 MeV /fm3 

[3]. Finite temperatures (like finite quark masses, or external pressures, cf. Eq. (31)) 
increase both the energy density f. ofthe bag as well as the baryon number density, nA. 
The impact of these increases are such that the energy contours are shifted toward 
smaller bag constants. This shift in B, as can be seen in Figs. 1 and 2, is quite large 
and amounts N 20%, depending on the mass of the strange-quark. The impact of 
finite external bag pressures, p, on the energy contours is illustrated in Fig. ·2. A 
comparison with Fig. 1 shows that the energy contours are shifted toward smaller B 
values, too, which can be understood mathematically by means of combining Eqs. 
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Figure 1: Contours of fixed energy per baryon number (figures attached to these 
curves) of strange quark matter at zero external pressure. The solid and dashed 
curves refer to T = 0 and T = 30 MeV; respectively. The strange quark mass is 
plotted on the y-axis and the bag constant, B, on the x-axis. The conversion of B 
from MeV /fm3 into units of MeV is accomplished by means of multiplying the former 
with powers of 1 = 197.3 MeV fm. 
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Figure 2: Same as Fig. 1, but for a finite external bag pressure of 50 MeV /fm3
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Figure 3: Relative densities of quarks (q = u,d,c,s) and leptons (l = e-,,.c), ndn 
where n = Ei=q,l ni, in cold, beta-stable, electrically charge neutral quark-star matter 
as a function of energy density. (Here and in all subsequent calculations a bag constant 
of B 114 = 145 MeV has been chosen.) 

(22) and (24) to B = (nAEA- 3p)j4. (In the case of finite temperatures, or masses, 
the corresponding relation is obtained from Eq. (36).) From the physical point of 
view, this becomes clear by remembering that finite p values increase the pressure 
which acts on the bag from the outside, Eq. (1). SoB can be reduced on the account 
of p. 

The relative quark/lepton composition of quark-star matter at zero temperature 
is shown in Fig. 3. All quark flavor states that become populated in such matter up 
to densities of 1019 g/cm3 are taken into account. Since the Coulomb interaction is 
so much stronger than the gravitational, quark-star matter must be charge neutral 
to very high precision [8]. Therefore, any net positive quark charge must be balanced 
by a sufficiently large number of negatively charged quarks and leptons present in the 
system, as shown in Fig. 3. An enlargement of the upper portion of this figure is ex
hibited in Fig. 4. One sees that at lower densities the number of d quarks is somewhat 
larger than the one of s quarks, which is due to the finite mass of the latter. The be
havior of nd/n and ns/n can be understood qualitatively from Eq. (25), which reveals 
that nd/ns = (1- m 8 / J.ls)-312. Since ms/ J.ls < 1 it follows that nd > n 5 at all densities, 
and, secondly, nd ~ n 8 from above since m 5 /J.Ls ~ 0 (cf. Fig. 9). (Strange and 
charm quark masses of respectively 0.15 GeV and 1.2 GeV are assumed.) In contrast 
to the sensitive density dependence of lepton number, the abundances of u, d, and s 
quarks in strange matter vary only rather weakly with density. The situation is dif
ferent for the c quarks whose concentration increases at threshold density extremely 
rapidly. At still higher densities it tends against the concentration of u quarks, and 
charge neutrality is nearly achieved by appropriate concentrations of quarks of both 
charge states only. The slight deficit of negative quark charge is delivered to the 
system by electrons and muons, whose concentrations increase monotonically for all 
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Figure 4: Enlargement of the upper portion of Fig. 3. 

densities larger than the threshold density of the positively charged c quarks. 

2.3 Quark matter at finite temperature 

To derive the equation of state of quark-star matter at finite temperature, up to 
about T ,...,_,50 MeV, we perform a perturbation expansion of pressure Pi = Pi(J.l, x, T) 
and baryon density ni = ni(J.t, x, T) about their zero-temperature values, Pi,o = 
Pi(J.to, x 0 , To) and ni,o = ni(J.to, x0 , T0 ), where T0 = 0 [25]. By means of writing these 
functions in the form Xi(J.l, x, T) = Xi(J.to- I::!.J.t, Xo + .D.x, To+ .D.T), where Xi stands 
for Pi and ni, expanding them in a Taylor series and keeping only the lowest order 
terms, one obtains 

OXi I I::!.J.t OXi I A OXi I T
2 

Xi(J.t, x, T) ~ Xi,O + f)!:i.J.L - + -- Ll.X + -T-2 -2 ' 
~ J.LQ,xo,To /-lO fJ/:).x J.Lo,xo,To 0"""/l[ J.Lo,xo,To Jlo 

(33) 

with Xi,o = Xi(J.to, xo, To). Above, the definitions I::!.J.t = J.to - J.l and .D.x = x -
x0 have been introduced, where J..to = J.t(To) and xo = x(T0 ). The major problem 
encountered now consists in calculating the expansion coefficients occurring in Eq. 
(33), oxtfo(I::!.J.t/J.to), fJxdfJ.D.x, and oxi/&(T/J.to)2

• Their determination is outlined 
in detail in the Appendix. It should be noticed that since oxd fJ(T I J.to) = 0, which 
is shown in Ref. [31], both pressure and particle density depend in lowest-order only 
quadratically on temperature. After considerable algebra one arrives for pressure, 
particle density, and total energy density at the relations (the quantities a and b are 
defined in the Appendix) 

Pi = 1 2 2[ 4 2) 3 3( 2) 3 

Pi,o + 6giT J.lo -aTJi (1 - zi 2 + bctTJi 1 - zi 2 

1 2 1 2 +-n. (1 - -z. )] 2 '/t 2 I l 
(34) 
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Figure 5: Pressure isotherms versus mass density of electrically charge neutral quark
star matter. The impact of temperatures T :::; 50 MeV, which is significant at low 
nuclear densities only, is exhibited in Fig. 6. 

(35) 

f - 3p+4B+ 2: 9iJL5rd ( JL517l 2 (v 2 2 _1 _+_).:...__1 _-_z_'f) --z. 1- z. - z. ln 
2 2?r2 ' ' ' Zi i=s,c,p.-

with the definition 

{ 

+ 1 if i = e-, p,- , 
Cj = 0 if i = d, S , 

-1 if i = u, c. 
(37) 

The comparison of these relations with the corresponding ones obtained for zero
temperature and massless quarks, derived in Sect. 2.1, immediately reveals the impact 
of finite temperatures and masses on the equation of state. Notice that in the limit 
of T --+ 0, the zero-temperature equation of state (31) is obtained from Eq. (36). 
Furthermore, as outlined just above, the temperature dependence in the lowest-order 
expansion enters only quadratically in T. 

The equation of state of strange matter at non-zero temperature, computed for 
Eq. (36), is shown in Fig. 5. There is a noticeable influence of temperature on the 
equation of state only near the saturation density off"' 4B, as can be seen from Fig. 
6. 

The expressions for particle density and pressure of electrons are given by (recall 
that x(T) = Jle-(T)jp,(T), which reads at zero temperature x0 = Jle-,o/JLo) 

Jl3X3 1 
.....Q._Q + T 2 

11 [-ax3 + bx2 + -x ] 
3?r2 rO 0 o 3 0 (38) 
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Figure 6: Enlargement of the left portion of Fig. 5. The numbers associated to these 
pressure isotherms refer to temperature (in MeV). The value of the bag constant (here 
and for all other calculations) is B = 1 x 1014 g/cm3 (=57 MeV /fm3

). 

J.Lcix ci 1 2 2 [ - 4 3 1 2] 
Pe- = 127r2 + 3 T J.lo -ax0 + bx0 + 2x0 , (39) 

which follow from Eqs. (34) and (35) applied to (massless) electrons, rather than 
massive quarks (7Je- = Xo, Ze- = 0, Ce- = 1, according to Eqs. (17), (18), and (37)). 
The temperature dependence of ne- for zero and finite external bag pressures, p, 
is exhibited in Fig. 7. Because finite p values increase the system's total energy 
density ( cf. Eq. (36) ), fewer electrons are necessary in order to achieve electric charge 
neutrality and therefore the ne- isobars move downward with increasing pressures. 
Temperatures, typical for newly formed massive stars, increase ne- by roughly two 
orders of magnitude, depending on external pressure. The quadratic dependence of 
ne- on T, Eq. (38), is significant at lower temperatures. For larger T, the implicit 
temperature dependence of the expression in square brackets weakens the increase of 
ne- with temperature. The variation of electron chemical potential, J.Le-, along the 
ne- isotherms is shown in Fig. 8. One sees that J.Le- deviates for temperatures T ~ 50 
MeV from its zero-temperature value by at most 1 MeV (~:"' 4B). The decrease of 
J.le- with density reflects the fact that fewer electrons are needed in strange-quark 
matter at higher densities ( cf. Fig. 3). Furthermore we notice the downward shift of 
the J.le- isotherms, for a fixed density, with increasing temperature, which is due to 
the momentum tail of the Fermi-Dirac distribution function for T > 0. 

The density and temperature dependence of the chemical potential of d and s 
quarks, J.L, is graphically depicted in Fig. 9. The former can be inferred qualitatively 
from Eq. (25), from which one gets J.L = ms(1 - ns/nd)-213. Slightly below the 
threshold density of s quarks one has ns = 0, and therefore J.ls = ms there. The 
other extreme, highs quark densities, is characterized by ns --+ nd, as is known from 
Figs. 3 and 4. This implies that .J.L becomes very large in the high-density regime. In 
Sect. 3 it will be shown that stable strange stars possess central densities of at most 
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Figure 8: Chemical potential of electrons, 1-le-, versus energy density in electrically 
charge neutral quark-star matter at temperatures T = 0, 30, and 50 MeV, which are 
constant along these curves. ' 
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Figure 9: Same as Fig. 8, but for the chemical potential, J1 ( = Jld = Jls), of d and s 
quarks (cf. Eq. (16)). 

"'2 x 1015 gfcm3
. Therefore, from Fig. 9, J1 n_ever exceeds "'500 MeV in such stars. 

This value is considerably smaller than the mass of the charm quark. Concerning 
the impact of temperature on Jl, it is most significant at densities € "' 4B for the 
same reasons as already outlined in connection with the discussion of Figs. 5 and 6. 
Finally, finite temperatures reduce J1 below its zero-temperature value. The reason 
is, again, the occurrence of the Fermi-Dirac function in Eq. (5) instead of the step 
function, leading to smaller chemical potentials for a fixed density. For the selected 
temperatures, this reduction amounts at most "'100 MeV. 

3 Hydrostatic Equilibrium Sequences of Quark 
Matter Stars 

The masses of the two f~milies of quark-matter stars, strange and charm ones, as 
a function of central density are shown in Fig. 10. The latter family begins at a 
density of about 1017 g/cm3 and ends at 4 x 1018 g/cm3

• It should be noticed that 
higher-density families are obtained too for stars made up of matter that is purely 
gravitationally bound [32, 33]. One of the most significant differences between both 
species of stars concerns the existence of a minimum-mass configuration, of about 
rv 0.1 M 0 [34], for the neutron star. In sharp contrast to this, the sequence of bare 
strange stars (no nuclear crusts), being bound by the strong interaction and not the 
gravitational force (the latter makes them only denser), does not possess a minimum
mass star. In fact, strange-matter objects can exist with baryon numbers in the 
enormous range of 102 $A$ 1057 [3, 35]. The lower bound is determined by finite size 
effects, and the upper one is set by the gravitational interaction, which increases with 
A, and therefore makes strange stars possessing too large central densities unstable 
against gravitational collapse ( cf. Sect. 5). (The situation is the same as for the purely 
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Figure 10: Gravitational mass of quark stars (in units of solar mass) of zero and 
finite temperature (T = 30 MeV) versus central energy density. The two mass peaks 
labeled 'S' and 'C' denote the maximum-mass star of the strange- and charm-quark 
star sequence, respectively. 

gravitationally bound neutron stars.) 
Temperatures typical for newly formed pulsars influence the bulk properties of 

quark stars, such as mass and radius, only rather weakly, as can be seen from Figs. 10 
and 11. Shown are star sequences that are obtained as solutions of the Oppenheimer
Volkoff equations (36], thus being in hydrostatic equilibrium. As is well known (32], 
hydrostatic equilibrium alone does not guarantee stability of a compact star. The still 
missing ingredient is a stability analysis against radial oscillations (acoustical modes), 
which will be performed in Sect. 5. There it will turn out that the charm-star sequence 
IS 

unstable against radial oscillations. Thus we are left with the possible existence of 
strange-quark stars only. The mass-radius relations!_J.ip of the quark stars of Fig. 10 
is shown in Fig. 11. For masses larger than ""'"'0.5 M 0 it too bears a strong similarity 
with the one of neutron stars. Temperatures T $ 50 MeV modify the properties 
of the more massive stars of the sequence only slightly. According to above, all 
stars possessing central densities larger than model 'S' are unstable against radial 
oscillations. The same inwardly-directed spiraling behavior was also obtained for 
stars constructed for baryon matter equations of state that were extrapolated to the 
super-high density regime [32], which shows again that this behavior is not specific 
to self-bound stars but Tather manifests the dominant role of gravity at such high 
densities. 

4 Electrons in Strange Stars 

As shown in Sect. 2, because the strange-quark mass is larger than that of the u 
and d quarks, equilibrium strange matter contains an approximately equal mixture 
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Figure 11: Gravitational mass (in units of solar mass) versus radius of the strange
and charm-quark star sequences exhibited in Fig. 10. The symbols 'S' and 'C' again 
denote the maximum-mass model of each sequence. 

of all three, with a slight deficit of s quarks. A relatively small number of electrons 
is necessary to make the system electrically charge neutral. The electrons, being 
bound to the system by the electromagnetic interaction and not by the strong force, 
extend several hundred fermis beyond the boundary of the strange star [14], which 
itself has a surface thickness of the order of the strong interaction range. Associated 
with this electron layer at the surface of hypothetical strange stars is a strong electric 
field, which is radially outwardly directed. Most importantly for the glitch behavior 
and probably the cooling of strange pulsars (pulsars interpreted according to Witten's 
hypothesis as rotating strange-matter stars) [4, 17], this layer can carry a solid nuclear 
crust suspended out of contact with the pulsar's strange-matter core [14], which 
prevents the ion-quark matter reactions by which (atomic) crust matter would be 
converted into the true ground-state, strange matter. In the following, the behavior 
of the electrostatic potential of the electrons inside and in the close vicinity outside of 
strange stars is determined and, specifically, its temperature dependence studied. This 
analysis serves also to investigate, as a byproduct, the temperature dependence of the 
Coulomb barrier, associated with the difference of the electrostatic potential at the 
surface of the strange core and the base of the inner nuclear crust. (This constitutes 
an extension to finite temperatures of the zero-temperature analysis performed in 
Ref. [14].) 
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Figure 12: Electrostatic potential, eV(r), of electrons inside (r < R) strange stars of 
masses MfM0 · 1 (dotted curves), 1.4 (dashed), and 1.6 (solid). The temperatures 
in each case are T = 0, 30, and 50 MeV. Notice that the termination points of these 
curves, marked with solid dots, actually lie several hundred fermi inside of R (see Fig. 
13). 

4.1 Impact of finite temperatures on the electrostatic po
tential of electrons 

4.1.1 Inside strange stars 

Firstly, the electrostatic potential of electrons, V ( r), inside a bare strange star is 
determined. For this purpose we recall that locally the energy of an electron sitting 
at the fermi surface is given by £(r) = J.le-(r)- eV(r) [14, 25], where J.le-(r) denotes 
the electron's radially dependent chemical potential. In equilibrium, d£( r) / dr = 0. 
From the boundary conditions V(r) ~ 0 and f.le-(r) ~ 0 [14] it follows that 
eV(r) = J.le-(r) [25]. The density dependence of the latter quantity has already been 
determined in Sect. 2. Plotting it as a function of radial distance, from the star's 
origin to its surface, leads to Fig. 12. It exhibits the behavior of V(r) inside of 
strange stars, which possess representative gravitational masses, of (1 - 1.6)M0 (see 
Fig. 11 ), and temperatures. Since f.le- decreases with density, Fig. 8, the electrostatic 
potential of electrons increases monotonically from the center toward the surface of 
strange stars. Finite temperatures influence the eV(r) isotherms more significantly 
in the vicinity of the surface of strange stars than at their centers because the density 
is smallest there. For the heavier stars, which possess larger central densities, the 
isotherms are shifted downward, which is a consequence of the decreasing behavior 
of f.le- with density (Fig. 8). Another noteworthy feature is that independent of star 
mass (and thus, central star density), all isotherms referring to the same temperature 
terminate at the same value of eV(R). This is indicated by the solid dots, which 
possess the same height for the same temperature. This independence of mass, or, 
in other words, of central star density, becomes clear from Fig. 8, which shows that 
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the value of Jle- at the star's surface is determined only by the values of bag constant 
and temperature. It also explains the shifts of the termination points for increasing 
temperatures toward larger radii. 

4.1.2 Surface region 

In the second step, the behavior of V(r) several hundred fermi inside and outside of 
the surface of a strange star is determined. For this purpose we recall that due to the 
rearrangement of electron charge there, the net positive charge of the quarks will be 
balanced locally by electrons only up to radial distances r :::; Rm (star's bulk matter 
part), where Rm is only slightly smaller than the star's radius, Rm $ R. Beyond 
Rm, in the region Rm :::; r :::; oo, the condition of electric charge neutrality is a global 
(rather than a local) one. In order to determine Rm, we note that from Poisson's 
equation for radii in the range Rm < r < oo, 

(40) 

(the dVjdr term can be neglected here; 3nq = 2nu - ni- n5 , nq - ne- = 0 for 
r < Rm) it follows that 

{R dr nq(r) = {
00 

dr ne-(r) , (41) 
}Rm }Rm 

since dV(Rm)/dr = dV(oo)jdr = 0. The first relation follows from the fact that 
V(r) attains a maximum at Rm. The upper boundary in the second integral reflects 
the circumstance that the electrons extend beyond the surface of the strange star. 
Equation ( 41) can be transformed to 

~V(R) loo 
dV.nq = dV ne- . 

V(Rm) V(Rm) 
(42) 

Using edV = dp,e- and ne- = 8pe-f8p,e- (cf. Eq. (5)), Eq. (42) can be written as 

~
V(R) 

dV n 
V(Rm) q 

(43) 

Because Rand Rm differ only by a few hundred fermi (14], the density nq(r) in that 
range can be treated as being independent of r. Its value is therefore given, to a very 
good approximation, by nq(r) ~ ne-(Rm)· One thus obtains from Eq. (43) 

(44) 

By means of the approximation 1-le-(Rm, T) ~ 1-le-(R, T) and substituting Pe- /ne
with Eqs. (38) and (39), one obtains for Eq. ( 44) (recall that the zero-temperature 
chemical potential of electrons, 1-le- ( T = 0), is abbreviated 1-le- ,o) 

. 1-L!-,o(R) + 41r 2T2!-L~(R)[-ax~(R) + bx6(R) + ~x~(R)] 
eV(R, T) = Jle-(R, T)- 4!-L~-,0 (R) + 121r2T 2!-L5(R)[-ax5(R) + bx6(R) + ~x5(R)] ,(45

) 
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where, according to Eq. (18) and Eq. (84) of the Appendix, the electron chemical 
potential at finite temperature is given by 

Pe-(R, T) _ p,(R, T) x(R, T) 

(Jlo(R)- a7r
2
::) 

(46) 

(47) 

In the special case ofT = 0 one immediately obtains from Eq. ( 45) the simple relation 
[14] 

e V(R, T)l = ~ Jle- o(R) , 
T=O 4 ' 

(48) 

from which it follows that the electrostatic potential of electrons at the surface of 
the star's strange-matter core is reduced relative to its value obtained by imposing 
the condition of local (instead of global) charge neutrality [14], which, due to the 
rearrangement of electron charge, holds only for radii r ~ Rm ( cf. beginning of this 
section). As will be shown below (cf. Fig. 15), finite temperatures lead to an even 
stronger reduction of the electrostatic electron potential, which amounts at most 50% 
for T ~ 50 MeV. From Eq. (45) one sees that this decrease has its origin in the 
reduction of P,e- with T (exhibited in Fig. 8),_ which is additionally strengthened by 
the second term on the right-hand-side of this equation. As an example, the values 
of P,e-(R, T = 0) and eV(R, T = 0), 18.8 and 14.1 MeV, respectively, reduce to 18.7 
MeV and 9.5 MeV at T = 30 MeV, which shows that the temperature dependence of 
the second term in Eq. ( 45) prevails over the one of the first term. 

Lastly, we determine V(r) in the regions Rm ~ r ~ Rand R ~ r ~ Rcrust· The 
latter corresponds to distances that lie outside of the star's strange-matter core. Two 
regions there are to be distinguished. The first one extends from the core's surface, at 
r = R, to that radial distance where the inner nuclear crust (referred to henceforth as 
the crust's base) begins, denoted r = Rcrust· The associated width, Rgap = Rcrust- R, 
is referred to henceforth as gap. The second region begins at Rcrust, and extends in the 
radial outward direction toward infinity. The behavior of the electrostatic potential 
in the surface region is determined by Poisson's equation, 

~eV 2 deV 47re2 1 
dr2 +-;.---a;:- = - 3-{ [7r2 [(eV?- (eV(Rm)) 3

] + T 2[eV- eV(Rm)]] 

0(r- Rm) 8(R- r) 

+[:2(eV) 3 + T 2 eV] 0(r- R)0(Rcrust- r)}. (49) 

Notice that in the first term on the right hand side (Rm < r < R) the net charge 
density of electrons and quarks, ne-(r)- nq(r), enters, where ng(r) ~ ne-(Rm) = 
[e V(Rm)J3 /37r2

. By definition, the quark density is zero in the second region, R ~ 
r ~ Rcrust· The expression of ne-(r), . 

1 3( 1 () 2 ne-(r) = 37r 2 Jle- r) + 3 Jle- r T 

1 1 

3
7r 2 (eV(r)] 3 + 3 eV(r) T 2 (50) 
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is computed exactly from Eq. (5), treating the electrons as massless particles. A an
alytical representation of V(r) in the gap region can be obtained at zero temperature 
if the dVjdr term in Eq. (49) is ignored (a good approximation), i.e., 

tfeV 4e2 . 
dr2 = 

3
71" [eV(r)]3 8(r-R)8(Rcrust-r) (51) 

Its solution reads 

e V(r) 
c 

R ::::; r ::::; Rcrust , -
r- R + C j[e V(R)] ' 

(52) 

with C = ~je - 5.013 x 103 MeV fm. It leads for a given crust potential, 
V(r) = Vcrust, to 

Rgap - Rcrust - R 

C (ev~rust - eV~R)) · 
(53) 

Notice that a given value of Ycrust determines Rcrust, and thus Rgap· It is obvious 
that the gap disappears if the crust potential coincides with V(R), the potential's 
value at the surface of the strange core. In this case free ions would reach the star's 
strange-matter core without restraint. 

4.1.3 Crust region 

The electrostatic potential in the nuclear crust regime, r 2: Rcrust, is constant. This 
follows from the fact that the forces acting on the ions there, gravitational and electric, 
must counterbalance each other at equilibrium. Since the former is tiny compared to 
the electric force in the gap, one obtains dV / dr = 0 which implies that the electro
static potential is constant there, that is, V ( r) = Ycrust ( =const). For what follows, 
representative values of Ycrust = 5 and 10 MeV havei>een chosen, together )Vith zero 
external potential [14]. 

4.2 Gap width at finite temperature 

Figures 13-15 exhibit the behavior of eV(r) in the close vicinity inside and outside 
of R. The curves differ with respect to the temperature of the strange star and the 
chosen value of Ycrust· For zero temperature and a electrostatic crust potential of 5 
MeV, as chosen here, a large gap of Rgap = 810 fm results. Larger values of Vcrust, 
reducing the difference of the potential at the star's surface and the inner crust, lead 
to narrower gaps. For example, a value of e'Vcrust = 10 MeV reduces Rgap to 280 fm, 
as can be seen from Fig. 14. This is consistent with the finding in Ref. [14]. Most 
interestingly is the impact of finite temperatures on the gap. From Eq. ( 45) it is 
already known that the potential's value at the star's surface, V(R), is reduced in 
this case. Figures 13-16 exhibit that this reduction amounts up to ,...._, 50% for the 
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Figure 13: Electrostatic potential of electrons in the close vicinity inside and outside of 
the surface of a strange star. The location of its surface is indicated by the vertical line. 
The figures assigned to these curves refer to temperature (in MeV). A representative 
value for the electrostatic crust potential, e 'Vcrust = 5 MeV (horizontal line), which is 
constant (see text), has been chosen. The gap width extends from"' 40 fm to about 
800 fm, depending on temperature . 
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Figure 14: Same as Fig. 13, but for a electrostatic crust potential of 10 MeV. 
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Figure 15: Same as Fig. 13, but for zero external electrostatic potential. The labels 
refer to temperature (in MeV). 

temperatures under consideration. The associated reduction of Rgap with temperature 
is rather strong. In fact, we find that the gap even shrinks to zero for plausible values 
of both Vcrust and temperature that would be typical for newly formed strange pulsars 
m supernovae. 

In Ref. [14], a minimum value of "' 200 fm was established as the lower bound 
on Rgap necessary to guarantee the crust's security against strong interactions with 
the star's strange-matter core. Via Fig. 16 we find that a hot strange pulsar with 
T = 30 MeV cannot carry a nuclear crust whose electrostatic potential at the base 
is larger than e"Vcrust "'0.1 MeV. A somewhat cooler star ofT"' 10 MeV can carry 
only crusts with Vcrust $ 4 MeV. Finally, crust potentials in the range 8 -12· MeV are 
possible for stars with temperatures T $ 5 MeV. In this connection it is interesting to 
recall that the upper limit on the density of the inner crust is determined by neutron 
drip, which occurs at about 4.3 x 1011 g/ cm3

, where free neutrons begin to drip out 
of the most stable nucleus, 118Kr (Z = 36), at that density [14]. Being electrically 
charge neutral, the neutrons can gravitate toward the star's strange-matter core where 
they are converted into strange matter. The electrostatic potential in matter at such 
densities lies right in the above given range, ,....., 10 MeV. Hence, we conclude that 
the constraint Vcrust $ 10 MeV established here provides another independent limit 
(besides the one set by neutron drip) on the maximum density of the nuclear crust 
that can be carried by a strange star. Accidentally, both sources lead to the same 
density limit. Applied to the formation of a crust on the surface of a bare strange 
pulsar formed in a supernova explosion, we are- left with the important conclusion that 
its crust must be at rather low density in order to ensure a sufficiently large enough 
gap. In terms of mass, the crust will be much lighter than ,....., 10-5 M 0 established 
for a strange pulsar possessing a nuclear crust whose density at the base is equal to 
neutron drip[14, 37]. 

As a further interesting aspect, the findings presented above permit a few simple 
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Table 1: Kinetic energy, Ep, acquired by a proton falling toward the surface of a bare 
strange star, for a few selected strange star masses. 

M/M0 0.1 0.5 1.0 1.4 1.85 
Ep (MeV) 36 95 187 252 350 

i 600.0 
.s:::. 
:0 
·~ 
c. .400.0 
<1l 
Ol 

200.0 

Figure 16: Gap width, Rga.p, versus electrostatic crust potential, e Vcrust· The labels 
refer to temperature (in MeV). 

considerations concerning the accretion of matter onto the surface of a bare strange 
star being bound in a binary system, whose companion star is made up of ordi
nary rpatter. Furthermore, since the universe is a rather dirty environment, it seems 
plausible to assume that there might be strange stars that accrete some ambient (in
terstellar) material (14). The idealized case of spherical accre.tion of a plasma, which 
consists of only protons and electrons, onto the surface of a bare, non-magnetized 
strange star (assuming no dissipation in the radiation flow of the infalling matter) 
has been considered in Ref. (16). There it was estimated that under these circum
stances, the kinetic energy of protons hitting the surface of a bare strange star is 
given by 

138 M/M0 Ep = MeV, 
~ /1 - 0.295M/(M0 ~) 

(54) 

where~= R/106 em and MfM0 is the star's mass in units of solar mass. Via Eq. 
(54) we estimate from our results (Fig. 11) that Ep $ 250 MeV for a strange star 
possessing a typical pulsar mass. Further values are listed in Table 1. Such high 
energies would enable a proton to easily penetrate the maximum possible Coulomb 
barrier, which has a height of eD.V ,...., 15 MeV, and to undergo a reaction with the 
star's strange-matter core. (The barrier is defined as eD.v:- = Z(eV(R,T)- e'Vcrust), 
Z = 1 for protons.) 
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5 Stability Against Radial Oscillations 

Below we give the equations that are to be solved to obtain the eigenfrequencies and 
eigenfunctions of radial normal modes of a massive star. The analysis is carried out 
on the basis of Einstein's field equations for a metric of the form [32, 38) 

ds2 = e2v(r) dt2 - e2..\(r) dr2 - r 2 ( dfP + sin2 () d¢i) . 

(55) 

The adiabatic motion of the star in its nth normal mode ( n = 0 is the fundamental 
mode) is expressed in terms of an amplitude un(r) by 

(56) 

where 6r(r, t) denotes small perturbations in r. The quantity Wn is the star's os
cillation frequency, which we want to compute. The eigenequation for un(r), which 
governs the normal modes, has the Sturm-Liouville form 

d ( dun(r)) ( ) dr II(r) dr + Q(r) + ~~ W(r) un(r) 0 . 

(57) 

The functions II(r), Q(r), and W(r) are expressed in terms of the equilibrium con
figurations of the star by 

II 

Q 

w = 

(58) 

(59) 

(60) 

The quantities f. and P in Eqs. (58)-(60) denote the energy density (total mass
energy) and the pressure of the stellar equilibrium configuration as measured by a 
local observer. The pressure gradient, dP/dr, is obtained from the Oppenheimer
Volkoff equations. The symbol r denotes the varying adiabatic index at constant 
entropy, given by 

r = (t + P) aP 
P ot 

The boundary conditions for Eq. (57) are 

at star's ongm, 

0 at star's surface, 
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r = 0 , 

r=R. 

(61) 

(62) 

(63) 
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Figure 17: Pulsation frequencies of the lowest four (n = 0, 1, 2, and 3) normal radial 
modes of quark matter stars as a function of central star density. For convenience, 
on the y-axis the quantity <P(a) = sign( a) log (1 + abs(a)) with a = (wnfsec- 1 )2 is 
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Solving Eq. (57) subject to the boundary conditions (62) and (63) leads to the fre
quency spectrum w~ ( n = 0, 1, 2, ... ) of the normal radial modes of a given stellar 
model. As a characteristic feature, the eigenfrequencies w~ form an infinite discrete 

• 2 2 sequence, I.e. Wn < Wn+l· 

The four lowest-lying eigenfrequencies of quark stars are shown in Fig. 17. A 
comparison with their mass-central density relationship, Fig. 10, shows that these 
equilibrium configurations possess a characteristic mode of vibration of zero frequency 
(w~ = 0) when and only when the star's mass attains an extremum (critical point as
sociated with an inflection point of mass), in agreement with the theorem of Harrison 
and Wheeler [32]. What is not known from the theorem, however, is which mode is 
possessing a zero point. Of course it must be the lowest-lying one which was previ
ously stable, i.e., for which 0 < w~. We find that it is then= 0 mode which becomes 
zero first at a density which corresponds to the maximum-mass strange quark star la
beled 'S' in Figs. 10 and 11. Since w5 remains negative at all densities larger than this 
one, it follows that no quark matter stars can exist in nature that are more compact 
than the hypothetical strange stars. Specifically this rules out the possible existence 
of charm stars. In fact, as one sees from Fig. 17, going to higher and higher central 
star densities leads to the successive excitation of more and more unstable modes, 
i.e. w~ < 0 with n = 1, 2, 3, ... , and thus no quark stars more massive than strange 
stars fulfill the condition w~ > 0 for all n ~ 0, which is necessary for stability. This 
situation is analogous to that of hydrostatic equilibrium configurations in the neutron 
star sequence with central densities above that of the maximum-mass neutron star. 

Finally, we point out that the instability of the charm stars is already indicated 
by the small values of the adiabatic index r, defined in Eq. (61), of a ultrarelativistic 
quark gas [15]. By means of Eq. (22) and Figs. 5 and 10 one sees that r ~ 4/3 
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Figure 18: Amplitudes of the three lowest-lying eigenmodes of oscillation (n = 0, 1, 2) 
of a strange star possessing a representative mass of M "' 1.5 M0 . The associated 
periods of radial oscillation are To= 0.334 ms, T1 = 0.117 ms, and T2 = 0.075 ms. 

-
at charm-star densities. Stability of a stellar model with respect to small radial 
perturbations in the post-Newtonian approximation requires that r > 4/3 +2M Kj R, 
where K "' 1 (39]. For typical masses and radii of charm stars, "' 1.3 M 0 and "' 8 
km respectively (see Figs. 10 and 11), one finds 2MKjR"' 0.5, leading to f? 5/3 
for such stars. Therefore, the less deeply analysis of the adiabatic index, performed 
in the post-Newtonian approximation, indicates that the family of charm stars may 
be unstable against radial oscillations. (Of course, from this simplified analysis alone 
one cannot definitely conclude that charm stars are unstable.) 

Figure 18 exhibits the oscillation amplitudes of the first few vibrational modes of a 
strange-quark star with mass M"' 0.5 M 0 . One sees that the number of nodes asso
ciated with an oscillation is equal to its order, n, as determined by the mathematical 
structure of the eigenvalue equation. Specifically, the n = 0 mode of oscillation is free 
of nodes. The corresponding periods of radial oscillation, Tn (= 27r /wn), whose values 
are listed in the figure caption, lie in the millisecond range, which is consistent with 
the findings of Ref. (40]. Table 2 shows that the oscillation periods are the smaller 
the lighter the strange star. Indeed, in the limit of vanishing star masses, which are 
obtained for E ---t 4B, the periods of all modes of strange stars go to zero, as shown 
in [41]. This behavior arises because r ---t 00 when E ---t 4B, that is, p ---t 0, when the 
central density of the strange star tends toward its smallest possible value [15]. As 
known from Fig. 17, the frequency of the fundamental mode, w0 , of the most massive 
strange star (labeled 'S' in Fig. 10) is zero. Therefore To = oo for that star model. 
The higher acoustical modes of vibration of the maximum-mass star are nonzero. 
They pass through zero at higher densities (Fig. 17). 

The impact of finite temperatures on the periods of the- fundamental radial os
cillation, To, of light strange stars is illustrated in Fig. 19. It is significant only for 
stars with masses M $ 1 M0 ( cf. Fig. 10), whose properties are most sensitive against 
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Figure 19: Lowest-lying periods of radial oscillation, To, of strange stars versus central 
star density, for star temperatures T = 0 and 50 MeV. 

Table 2: Periods of radial oscilla~ion, Tn, of a few selected strange-star models. 

MfMG 10-3 w-2 0.1 0.5 1.0 1.4 1.6 1.85 
To [ms] 0.0123 0.0270 0.0614 0.125 0.197 0.279 0.353 00 

T1 [ms] 6.165 x w-3 0.0134 0.0301 0.0581 0.084 0.106 0.121 0.160 
r2 [ms] 4.11 x w-3 o.895 x w-3 0.0200 0.0382 0.055 0.068 0.0769 0.0974 
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variations of temperature. Interesting is a comparison of these periods with the cor
responding ones of neutron stars. In the case of the latter, To, computed for a few 
selected nuclear equations of state [41], attains a minimum value of,-..,; (0.3- 0.4) rnsec 
at intermediate star masses. This is different for strange stars, due to their different 
generic mass-radius relationship, for which To is the smaller the lighter the star ( cf. 
Table 2). Both types of stars with masses M ? 1 M 0 seem to possess periods of 
oscillation of the same magnitude. 

6 Summary 

The purpose of this work consists in an detailed investigation of the structure and 
stability of strange and charm stars at finite temperatures. It is found that tempera
tures T ~ 50 MeV modify the equation of state significantly only at energy densities 
that are close to"'"' 4B, i.e., at small external bag pressures. The situation is different 
for the electrons since they are bound to the system by the electromagnetic interac
tion rather than the strong force, as is the case for the quarks. Correspondingly the 
electron density varies for temperatures in the range 0 ~ T ~ 50 MeV between one 
and two_ orders of magnitude. A change of the density of electrons is accompanied 
by a change of their chemical potential, which, however, is smaller than $ 1 MeV. 
As a consequence of the weak temperature dependence of the equation of state, the 
bulk properties of sequences of strange stars too exhibit only a weak dependence on 
temperature. The quark/lepton composition of quark-star matter is determined up 
to those densities at which even charm-quark states become populated. We find that 
this takes place at densities slightly larger than 1017 g/crn3

• In order to fulfill the 
condition of electric charge neutrality, there is only little need for electrons. Muons 
are completely absent in strange-star matter, and become populated only at densities 
larger than the threshold density of charm quarks. 

Of crucial importance for the existence of nuclear crusts on the surfaces of bare 
strange stars is the existence of a Coulomb barrier associated with the difference of 
the electrostatic potential at the surface and the base of the crust. It is found that 
finite temperatures lead to a considerable reduction of the Coulomb barrier, which 
favors the tunneling of ions (atomic nuclei) bound in the nuclear crust toward the 
strange star surface. In fact, the electrostatic potentials at the surface of a hot strange 
star and at the base of its inner crust may even become equal at temperatures that 
are typical for newly formed pulsars, T"'"' (30- 50) MeV. Thus, the Coulomb barrier, 
which prevents the ions in the crust from corning into contact with the star's strange 
matter core, disappears and consequently conversion of confined baryonic matter into 
strange matter is not prohibited any longer. Therefore, we conclude that hot strange 
stars are unlikely to possess nuclear crusts as long as their temperatures are larger 
than about 5 MeV, depending on the value of the crust's electrostatic potential at its 
base. 

Another important topic of this article consists in performing a stability analysis 
of quark-matter stars against radial oscillations. It is found that the fundamental 
eigenrnode passes through zero at the density of the most massive strange-star. It is 
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positive at all densities smaller than this one. Thus, strange stars are stable against 
radial oscillations. The situation is different for all quark stars having central densities 
larger than the maximum-mass strange star. For all such configurations the funda
mental mode is found to be unstable. More than that, going to higher and higher 
central star density leads to the successive excitation of higher-lying eigenmodes. We 
thus arrive at the very important conclusion that no quark-matter stars can exist 
in nature other than the hypothetical strange stars. Specifically, this rules out the 
possible existence of charm-quark stars. 
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Finite-Temperature Expansion 

The coefficients occurring in the expansion of pressure, Eq. (33), are obtained from 
Eqs. ( 4) and ( 5) as follows, 

8pi 
- 9~02"7i 1oo dE E V E 2 - mt fi(E) (64) 

a~ 
-

7r m; 
J.l.O 

T-+0 - 9i/1o2"7i 1J.tTJi dE E V E2 - m[ (65) ---+ 
27r m; 

- 9illo»i 1(( )2 2)1 -2;2" 3 /l"li - mi 2 (66) 

Notice that at finite temperatures the quantity "li is given by ( cf. Eq. (17) and Sect. 
2.3) 

{ 

1-(x0 -~x) ~f~=u,c, 
1Ji = 1 If Z = d, S , 

xo + .6-x if i = e-, 11- , 
(67) 

All those quantities not defined here are explained in Sect. 2. From Eq. (66) one gets, 
using Eq. (18),. 

The second coefficient reads 

8pi 
8.6-x 

and thus 

The third coefficient is obtained from 

(68) 

. (69) 

(70) 

(71) 

(72) 

where the transformation ~ = (E - /l"li)/T has been introduced. For the zero
temperature coefficient one gets 

(73) 

(74) 
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The coefficients occurring in the expansion of particle density are obtained from 
Eq. (5), and are given by 

(75) 

(76) 

(77) 

and 

(78) 

which has the same mathematical structure as Eq. (75). At zero temperature it . 
reduces to 

8ni I _ 9i c; 3 2 V 2 
8/:l.x - 27r2 Jlo1Ji 1 - z; . 

J.to,xo,T=O 

(79) 

Finally, from 

(80) 

one gets 

(82) 

The expansion coefficients of particle density enter in the condition of electric 
charge neutrality, Eq. (3), written at finite temperature, 

(83) 

Now, Eq. (83) holds at all temperatures T ~ 0. In the special case of T = 0 one 
has b&p, = b&x = 0, and thus it follows that Li q;ni,o == 0, in agreement with Eq. (3). 
Since the sum of the remaining three terms on the right hand side of Eq. (83) must 
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be equal to zero at any temperature different from zero, all three must possess the 
same functional temperature dependence. We thus make the ansatz 

~ (T) 2 (T) 2 

_!!:_ = a1r2 
- , and ~x = b1r 2 

- • 
J.Lo J.Lo J.Lo 

Inserting Eq. (84) in Eq. (83) leads to an equation of the form 

O=Aa+Bb-Q, 

where 

{J - - L: Qi a~~ I 
i a~ JLo,xo,T=O 

ILo 

1 
= 3 (1- 5xo) 

(84) 

(85) 

(87) 

(88) 

To derive the pressure-energy density relation at finite temperature, we start from 
Eq. (1), which reads now (p denotes an external pressure acting on the quark bag) 

Since at zero temperature p + B = Li Pi,o, it follows that the expansion in curly 
brackets must vanish identically. By means of Eq. (84) one obtains, in analogy to Eq. 
(85), 

p (90) 

where 

' (91) 
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(92) 

Muons and c quarks occur in the system only at densities larger that 3.8 x 
1017 g/cm3 and 1.1 x 1017 g/cm3

, respectively. Quark matter at lower densities 
consists of only u, d, s quarks and electrons. For such matter the above coefficients, 
A through P, are given by the simpler relations · 

A - 1 - }1 - z'}- 3x0(x~- 2x0 + 2) (94) . 

iJ - 2 - xo( 4 - 3xo) , (95) 
Q - xo ' (96) 

6 - ( )4 1 4 ( 2) 3 

1 - x0 + 3x0 + 1 + 1 - z8 2 (97) 

iJ ( ? 1 3 1- Xo - 3x0 , (98) 

p ~ [(1- x0 )
2 + 1 + (1- ~z;) + }x~] (99) 

Equations (85) and (90) constitute two relations for the two unknowns a and 
b. Solving for them and inserting the results into Eqs. {33) and (84) leads to the 
expressions for Pi and ni given by Eqs. (34) and (35), respectively. Finally, the 
expression for the energy density is obtained from Eqs. (1) and (2) which, for this 
purpose, are combined to 

(100) 
i=c,s,IJ.-
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