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ABSTRACT 

There is a theorem that states that there can be no null test of time-reversal invariance 

( T symmetry) in exclusive reactions; that is, T symmetry does not require any single 

observable to vanish. This theorem is extended to inclusive reactions, and it is shown that 

purported null tests of T symmetry in electron scattering have been, in fact, non-tests of 

time-reversal invatiance. 
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I. INTRODUCTION 

Following the realization that there had been no experimental verification of parity ( P) 

conservation in weak-interaction processe_s [1 ], there was an immediate investigation of 

possible experimental tests of the charge-conjugation (C) and time~reversal (T) symmetries 

because of the interrelation of the three symmetries that is provid~d by the CP_T theorem [2]. 

Then, the subsequent experimental finding ·-of P nonconservation in nuclear {3-decay [3], and in 

pion and muon decays [4], was quickly followed by both theoretical and experimental activity 

concerning experimental tests of T symmetry. 

Then, again, after the discovery of CP nonconservation in kaon decays [5], with the 

implied T noninvariance via the CPT theorem , there were increased efforts to devise and to 

carry out tests of T symmetry in other particle and nuclear systems. Null-test 

measurements of the proton and the deuteron analyzing powers [6], were proposed in ep ~ eX 

inclusive scattering [8] and in ed ~ ed elastic scattering [9]. These experiments were 

carried out with proton [1 0] and deuteron [11] targets, and the anticipated null results were 

found within the few to ten percent experimental uncertainties. In spite of this relatively 

modest preci~ion, the very existence of this null-test observable could be important with 

respect to the level of experimental precision attainable in such a test of T symmetry. Since 

null tests of parity conservation exist, it has been possible to reach the remarkable precision 

of 2 X 1 o-s in such tests [12,13], so a comparable null test of T would permit an 

improvement in experimental precision of several orders of magnitude over that achieved in 

past tests. 

However, some fifteen years later a proof of the nonexistence of a null test of T in a 

two-particle in and two-particle out reaction was established. It states that in such a reaction 

there can be no single experimental observable that is required to vanish by T symmetry 

[14]. Thus, the often expressed view, that T symmetry requires a so-called T-odd 

observable to vanish, is in direct conflict with the theorem. It follows, then, that the finding 
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of a nonzero value of any observable cannot be taken as a proof of T violation, and the 

validity of the electron scattering tests is questionable. 

The theorem, however, does not encompass total cross-section observables, and it has 

been shown that, there, T-odd spin-correlation observables provide null tests of T 

symmetry (15). 

Since the importance of the "no null test" (of T) theorem has not been widely appreciated 

(16), it is developed in Section II from a more experimentally oriented perspective than that 

of the formal theoretical approach of reference 14, and the characterization of T-odd 

amplitudes and observables is discussed. The theorem is also extended to include the 

accessible observables of inclusive reactions a + b ~ c + X . A parallel discussion of P-odd 

amplitudes and observables is presented, mainly for purposes of comparison and contrast, but 

the principal focus is on tests of T symmetry. Then, in Section Ill the purported null tests of 

T are examined, and the correct explanation of the results is provided. Section IV provides a 

summary of the discussion and conclusions. 

II. NONEXISTENCE OF A NULL TEST OF TIME-REVERSAL INVARIANCE 

For a reaction or scattering with two particles in and two out, the underlying reason for 

the lack of a null test of T symmetry can be clearly stated by comparison, for example, with 

a null test of parity conservation (PC). In the latter case, one compares a transition 

amplitude or an experimental observable with the corresponding amplitude or observable for 

the same, but parity-transformed, process. Then, since PC requires that the corresponding 

amplitudes and observables be the same, any P-odd amplitude or observable vanishes [17]. 

The fundamental difference in a test of T is that one compares an observable in a reaction 

with a different observable in the inverse, i.e., time reversed, reaction, so that the difference 

(or sum} of the two observables is required by T symmetry to be zero. Thus, there is no 

single-observable null test of T in these reactions. 

3 



A. Reaction a + b --+ c + d 

For a more formal illustration of these remarks; consider a reaction with the simple 

spin-structure ~ + 0 --+ ~ + 0. The matrix of amplitudes in the 2 X 2 spin-space can be 

expanded in terms of the Pauli spin matrices (18], 

M{9) = 2, aj {9) Gj, 
j 

j = o,x,y,z, Go= 1 . ( 1 ) 

Choosing the center of mass helicity frame [19,20], in which the conditions imposed by T 

symmetry on the scattering/reaction amplitudes are most naturally expressed, unit vectors 

· along the coordinate axes are 

Zf (zt) = k1 (kt) y = kf X kf Xf (xt)= y X Zf (zt) , ( 2 ) 

where k; (kt) is the c.m. momentum of particle a (c). Then with the P and T 

transformations kf,f --+ -kl,f ' (j --+ (j and k 1 H ·kt , G --+ -G , respectively, 

and noting that Gx = G · x etc., one has the following transformations under the P, T 

symmetry operations: 

( 3) 

Then, the corresponding M-matrix amplitudes in (1) and in Mt = 2, atj Gj, the M matrix 
j 

for the inverse reaction, can be classified according to their P and/or T symmetries as 

follows: 
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P: 

T: 

aj = (-1)fnx+nz) aj 

aj = (-1)nx a1 ; 

( 4a) 

( 4 b) 

and an amplitude aj is P-odd (T-odd) if nx + nz (nx) is odd , where nx (nz) is the number 

of x (z) subscripts [21 ]. Thus, PC requires the P-odd (P-even) amplitudes to vanish when 

the product of the particles' intrinsic parities is even (odd), but T symmetry imposes no 

such condition on the T-odd amplitudes. H requires only that the T-odd amplitudes satisfy 

the condition (4b) that atx = -ax [22]. Only in the case of elastic scattering, which is its 

own inverse reaction, does this condition force the amplitude to vanish. 

Another form of this 2 X 2 matrix is that in which the elements, M(if) are the actual 

transition amplitudes between initial and final helicity states, 

(
M(++) 

M{O} = M ( + _ )· 
M(-+)} 
M (--) 

Comparison with (1 ), expressed in terms of the (invariant) amplitudes aj. 

(5) 

(6) 

shows the connection between the two sets of amplitudes. For the general case of all four 

particles with helicities a + f3 -7 r + o, M(if) = M( af3, ro), and the conditions imposed by the 

P and T symmetries directly on these helicity amplitudes M(af3,ro) have been established 

[20], and these conditions are correspondingly satisfied in (6) by the conditions (4) imposed 

on the amplitudes aj (ajk in the general case). 

Consider, now, the experimental observables for reactions with this particular spin-

structure [7], 
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X(j,k) = Tr MujMt Gk I Tr MMf , j,k = o,x,y,z , ( 7) 

where j labels the polarization component of the initial-state particle, k labels the 

observed final-state polarizati,on component, and j (k) = o for unpolarized incident 

particles (unobserved final polarization). Since, by definition, the P transformation of the 

M-matrix is M ~ M , the combination M, Mt contributes no change of sign in the P 

transformation of an observable, so its P symmetry is determined by the explicit spin

operators, Gj and Gk , in (7). Its T symmetry is determined in the same manner. Thus, 

with (3), it follows from (7) that these observables can be classified according to their P 

and T symmetries in exactly the same way as was found for the amplitudes in (4): 

P: 

T: 

X{j,k) = (-1J(nx+nz) X(j,k) 

X{j,k) = (-1)nx xt(k,j) 

(Sa) 

( 8 b) 

[23]. So, now, PC requires a P-odd observable to be zero, but the T symmetry condition is 

that an observable is equal to (+/-) a different observable in the inverse process {k,j), 

which proves the "no null test" theorem that there can be no single vanishing T-odd 

observable. 

Even in the case of elastic scattering, where the T-odd amplitude ax vanishes, the 

theorem applies. This circumstance can be understood from the specific expressions for 

appropriate pairs of observables in terms of the amplitudes; for example, analyzing powers 

and polarizing powers. From (1) and (7), with I= .~ Tr MMf, one obtains 

IAj =IX(j,o) = 2(Re aoa/ + lm aka/), 

IPj = IX(o,j) = 2(Re a0 a/- lm aka,.), j,k,/ cyclic in x,y,z . 

(9a) 

( 9 b) 
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It is clear from (9), with the T-odd amplitude ax= 0, that none of these observables goes 

to zero (24) and that 

Ax = -Px , Ay = Py , Az = Pz , ( 1 0) 

all in accord with (8b). Since there are two either P-odd or P-even amplitudes which 

vanish when parity is conserved, the P-odd observables vanish, now iri accord with (8a). 

In the more general case of a reaction, consider (9b) for the inverse reaction, 

( 11 ) 

Then, with the T-odd amplitudes atx = -ax , from (9a) and (11) one finds [25) 

( 1 2) 

just as required by (8b). 

The entire foregoing discussion is easily generalized to reactions/scattering of more 

complex spin-structures. Consider, for example, the case of particular interest in particle 

physics, a + b -+ c + d, with four spin-~ particles. The required 4 X 4 M-matrix can 

now be expanded in terms of direct products of the 2 X 2 (a,c) and (b,d) matrices uj and 

c:Jk , respectively [26], 

M(B) = :L ajk(B) c:Jj ® Uk , 
j,k 

j,k = o,x,y,z , u0 = 1 . 

In a more compact form, with the 4 X 4 matrix c:Jjk = c:Jj ® Uk , 

( 1 3) 

M = :L ajk c:Jjk , ( 1 4) 
j,k 
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and the 16 M-matrix amplitudes, 

aoo. aox. aoy. aoz, axo. axx. axy. axz 

ayo. ayx. ayy. ayz, azo, azx, azy, azz, 

can then be classified, as in (4), according- to their P and/or T symmetries, 

P: ajk = (-1J(nx+nz} ajk 

T: ajk = (-1}nx a~k 

Also, again from (3), the experimental observables, 

X(jk,lm) = Tr M Ujk Mt a 1m I Tr MMf, j,k,l,m = o,x,y,z , 

have, as in (Sa) and (8b), the symmetries 

P: 

T: 

X(jk,lm) = (-1)fnx+nz} X(jk,/m) 

X(jk,lm) = (-1)nx xt(lm,jk). 

(15) 

(16a) 

(16b) 

( 17) 

(18a) 

(18b) 

Here, j,k designate the polarization components of particles a,b , and /,m the observed 

polarization components of c,d. 

Finally, since the components, Sj , of the spin operator for any spin S transform 

just as the Uj in (3), the symmetries (18a) and (18b) apply to reactions of particles 

with arbitrary spins. This includes the second (and higher) rank tensor observables, since 

the corresponding spin operators are constructed from combinations of the rank-one 
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operators S j [23]. The equivalent symmetries imposed on the observables in their 

spherical-tensor form, rather than the cartesian form used here, have been established [27]. 

As is stated above in connection with (4) and (8) and now with (16) and (18), unlike 

the PC requirement that a P-odd amplitude or observable vanish, T-symmetry requires that 

a pair of amplitudes or observables satify the condition that 

X - xt = 0 (T-even) or X+ xt = 0 (T-odd). (19) 

Only in elastic scattering do the T-odd amplitudes vanish, but, in general, there is no single 

T-odd observable. 

It is clear, then, that the valid argument, that the expectation value of a P-odd 

observable must vanish from P symmetry, has no counterpart with respect to T-odd 

observables and T symmetry. In fact, both (pairs of) T-even and T-odd observables, e.g. 

(12), are available for tests of T symmetry when P is not conserved, and it is only when the 

appropriate condition (19) is not salified that T symmetry violation is demonstrated. Since 

PC requires that Ax= Px = Az = Pz = 0, it is interesting to note that the rather standard 

nuclear physics test of Ay - pty = 0 is a T-even test of T symmetry. 

B. Inclusive reactions 

In view of the fact that many inclusive experiments are pursued, especially in particle 

physics, it is of obvious interest to know whether or not there are P and/or T imposed 

symmetries on the available experimental observables in such reactions, a + b ~ c + X, 

where only particle c is detected in the final state [28]. From energy and momentum 

conservation, X can be treated as a composite "particle" of known mass and momentum, 

with, however, unobservable spin. This latter fact has no effect on the observables involving 
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particles a, b, and c, and it will be seen that these observables retain the same symmetries 

as in the 2 --+ 2 exclusive reactions, namely (18a} and (18b}. 

Consider a reaction in which a, b, and c are spin-~ particles, i. e., fermions. Then 

from baryon and lepton conservation, "particle" X is also a "fermion" and , for the purpose 

of illustration, is taken to be spin- ~ . Then the available observables are given as in (17) 

with m = o, corresponding to the fact that the "polarization" of X is not observed [2~). 

X(jk,lo) = Tr M Gjk Mt Gfo I Tr MMf_ ( 2 3) 

Then, just as before, these observables have the symmetries given in (18). In order to 

better understand the specific details of these results, we consider again, for example, the 

expressions for the analyzing power A yo and the inverse-reaction polarizing power ptyo , 

even though the latter cannot be determined experimentally. These are 

IAyo =IX(yo,oo) = ~ Tr Mayo Mt, 

[tptyo = ftxt(oo,yo) = ~ Tr MtMtt a yo , 

and with (14), Eq. (24a) becomes 

1 
IAyo = 4 Tr {("£ Bjk Gjk) ayo ( 'L Bj'k/" Gj'k'JI. 

j,k j'k' 

Then, noting that 

Tr Gjk aJm = Tr [(GjG/) ® (akam)] = Tr apf Tr GkGm , 

we have 
1 

IAyo = 4 'L 'L Bjk Bj'k'. Tr ajayaj' Tr akak'. 
j,k j',k' 

(24a) 

(24b} 

(25) 

( 2 6) 

( 2 7} 
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Here one sees that the matrix operations factor, as they must, into operations in the separate 

(a,c) and (b,X) spin-spaces. Then using the properties ujuk = iuJ 1 uf = uo 1 Tr upj' = 2 

~jj' , one finds 

and (27) becomes 

and, similarly, 

Tr ujuyuj' = 2i (-2i) for (jlj') = (x,z) ((z~x))~ 

= 2 for a,n = (o,y) or (y,o) , 

= 0 otherwise , 

!A yo= L, 2(Re aok ayk • + lm azk axk ·), 
k 

(28) 

( 2 9) 

( 3 0) 

for the inverse reaction. Comparing these two equations with (9a) and (11 ), one sees that 

they have identical forms, with the additional summation over k coming from taking the trace 

over the (b,X) part of the spin-space, which performs the sums over the spin projections 

of particles b and X. One then recovers the symmetries (12), and more generally (18b), 

among these inclusive observables, and these are independent of the "spin" of "particle" X . 

The parity-imposed symmetries on the (spherical-tensor) observables in a reaction with a 

three particle final-state have been discussed in a detailed treatment which uses the P-

symmetries of the amplitudes to deduce those of the observables [30]. The corresponding 

inclusive observables are also included. 
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Ill. PURPORTED NULL TESTS OF TIME-REVERSAL INVARIANCE 

A. Electron scattering 

As is noted in section I, there have been inclusive experiments that searched for a 

nonvanishing ·analyzing power, A0 y, in the reaction ep ~eX with a polarized proton 

target, at energies from 4 to 18 GeV [1 0]. This was purported to be a null test of T 

symmetry [8]. However, as has been detailed in Section II.B, even in this reaction there can 

be no null test of T. With that in mind it is straightforward to identify the error of reference 

8. Their proposal was to measure the (presumably T-odd) correlation function 

S · (k; X kt), ( 3 2) 

where S is the polarization of the target proton. This, however, is my cry which from (3) 

is a T-even correlation, so there seems to have been a simple error of sign. The decay 

process A~ B + e+ + e· was also discussed in [8], and the decay correlation-function 

( 3 3) 

was examined. Here B is a spin-~ particle and k+ (k.) is the e+ (e·) momentum. 

Although (33) has the same form as (32}, it is, indeed, a T-odd correlation. The difference 

resides in· the different T transformations: k; H -kf, interchanging initial and final states, 

and k+, k. ~ -k+, -k., so that 

but 

(k; X kt) ~ (kt X k;) = -(k; X kt) , 

(k+ X k.) ~ (k+ X k.) , ( 3 4} 
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and this difference may have gone unnoticed. So, even in the absence of the "no null test" 

theorem, the T-even observable Aoy would not have been required to vanish from T 

symmetry. It does vanish, however, from the one-photon exchange dynamics [7]. 

It now seems clear that the proposal to test T symmetry in the measurement of the 

same T-even observable, A0y, or equivalently P0 y = X(oo,oy}, in elastic ed scattering [9], 

which was done at 1 GeV (11], simply propagated this error; so, it is of obvious interest to 

know if this misconception has been corrected in the literature at some point during the past 

twenty-seven years. That it has not is indicated by continuing references to the reference 8 

result. The same presumed T-odd correlation was investigated in pion photoproduction [31 ), 

and a connection was made to a test of C invariance [32]. Somewhat later, a review article 

[33] included the [8] result. Finally, references made in recent articles [34-37] show that 

the misconception still exists. Reference 35 does not quote the [8] result directly, but, in its 

treatment of A yo in the deep-inelastic scattering of transversely polarized electrons from 

protons, it similarly arrives at the conclusion that a nonzero value of Ayo signals T violation. 

Reference 37, in its investigation of polarization observables in the inclusive 

electrodisintegration of the deuteron, ed ~ eX , concludes that two form factors must vanish 

below the pion threshold because of T symmetry. These form factors correspond to the target 

analyzing power Aoy and the spin-correlation coefficient X(z,yz;o,o}, both of which are T

even observables. The latter involves the correlation between the electron polarization pz 

and the deuteron tensor polarization Pyz [7,23). 

The remaining point to be made , of course, is to show that a genuine T-odd, but P-even, 

observable does not vanish in (parity conserving) electron scattering. The appropriate 

observable is the spin-correlation coefficient Azx = X(zx,oo), which in ep elastic 

scattering is proportional to G~ [7), and the. proton magnetic form factor GM is certainly 

not zero. 

IV. SUMMARY AND CONCLUSIONS 

1 3 



The theorem, that there can be no null test of T symmetry in a two-particle in and two

particle out reaction, has been extended, to include inclusive reactions . As a result, ·the 

purported null tests in inclusive ep scattering and in elastic ed scattering are shown to have 

been non-tests of of T symmetry. 

It follows, then, that there have been no direct tests of T symmetry in the 

electromagnetic interaction via electron scattering. It is somewhat discouraging to realize 

that the required comparison, between a reaction observable and its inverse-reaction 

counterpart, is very difficult in electron scattering. The possiblity in elastic ep scattering, 

for example, is to test the PC T-odd condition that 

Azx = X(zx,oo) = - Czx =- X(oo,zx). (42) 

The most difficult part of this experimental comparison would seem to be the precise 

determination of the polarization pz of the scattered electron. 

Although T tests have been more readily available in strong-interaction processes, it is 

now important to improve the precision beyond the 1 o-2 to 1 o-3 level of experimental 

error that has been achieved. In view of the fact that a total cross-section observable is not 

included in the "no null test" theorem, and that such a T-test observable has been identified 

[15], it is important to pursue such tests because of the considerably higher precision that is 

inherently possible in null tests. 
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