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ABSTRACT

Various layers of the parallel I/O subsystem offer tunable
parameters for improving I/O performance on large-scale
computers. However, searching through a large parameter
space is challenging. We are working towards an autotun-
ing framework for determining the parallel I/O parameters
that can achieve good I/O performance for different data
write patterns. In this paper, we characterize parallel I/O
and discuss the development of predictive models for use
in effectively reducing the parameter space. Applying our
technique on tuning an I/O kernel derived from a large-scale
simulation code shows that the search time can be reduced
from 12 hours to 2 hours, while achieving 54X I/O perfor-
mance speedup.
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1. INTRODUCTION
Achieving efficient parallel I/O in high-performance com-

puting (HPC) applications is a nontrivial task because of
the complex interdependencies between the multiple layers
of I/O middleware and storage hardware. Each I/O middle-
ware layer offers a set of tunable parameters. However, the
configuration of these parameters to obtain the best possible
I/O performance depends on diverse factors, such as the I/O
application, storage hardware, problem size, and number of
processors. HPC application developers, typically experts
in their scientific domains, do not have the time or expertise
to explore the intricacies of I/O systems. Their resorting to
using default I/O parameters often results in poor perfor-
mance. As the complexity and concurrency of future HPC
systems grow, we expect that so too will obstacles to achiev-
ing high-performance I/O.
We have recently developed a parallel I/O autotuning

framework [2] with the ambitious goal of hiding the complex-
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ity of the I/O stack from scientific application developers.
The autotuning framework uses a genetic algorithm (GA)
to search through a large set of possible parameters. After
constructing a random initial population, the GA produces
new generations of populations by applying mutation and
crossover operations. The GA thus determines values for
the tunable parameters that result in good I/O performance.
The dynamic library of our autotuner applies the selected
parameter values by intercepting the data write calls. Our
current implementation of the tuner, called “H5Tuner,” is
capable of intercepting the write calls of the HDF5 library
and applying tunable parameters from HDF5, MPI-IO, and
parallel-file systems (i.e., Lustre and GPFS).

While we consistently demonstrated I/O write speeds be-
tween 2X and 100X in our previous work [2], the overhead
of the GA approach was significant. For example, running
the GA for fifteen generations with a population of forty
members typically takes about twelve hours. This overhead
is considerable; it severely limits the general-purpose appli-
cability of such an autotuning framework.

In this paper, we significantly reduce the search time by
using empirical models of the I/O performance. We charac-
terize performance of a typical parallel I/O subsystem with
multiple levels of data movement and develop performance
prediction models. Existing models for predicting parallel
I/O performance (see, e.g., [8, 6, 7]) often aim for highly
accurate predictions of I/O performance and are relatively
complex. Many of these models have limited applicability,
being restricted to specific systems or I/O kernels. We take
a two-step approach: the first step crafts an empirical model
that effectively reduces the search space of interest and the
second step searches in this small parameter space.

Our paper makes the following technical contributions:
We develop an approach to construct automatically an I/O
performance model. We then use the model to reduce the
search space for good I/O configurations and we demon-
strate the applicability of the autotuning framework to sci-
entific I/O kernels with various problem sizes.

2. EMPIRICAL PERFORMANCE MODELS
We have tested our autotuning framework on Hopper sys-

tem located at the National Energy Research Scientific Com-
puting Center (NERSC). Hopper is a Cray XE6 system con-
taining 6, 384 twenty-four core nodes with 32GB of memory
per node. We used a Lustre file system of Hopper with 156
OSTs and a peak bandwidth of about 35GB/s for storing
data. We used Cray’s MPI library v6.0.1, HDF5 v1.8.11,



and H5Part v1.6.6 for compiling the I/O kernels.
We examined the VPIC-IO I/O kernel in our study. This

kernel is extracted from a particle physics simulation (VPIC
[3, 4]). The kernel mimics exact I/O operations of the real
application configuration.
We denote the independent variables/parameters (e.g.,

the stripe count of Lustre) in our model by x = [x1, · · · , xnx ]
and the scalar-valued output/dependent variable (e.g., the
write time) associated with the configuration x by y(x). In
our setting, this output depends on the state of the system
and can be viewed as stochastic. By yj we denote a par-
ticular measurement of the output at a specific xj . Hence,
collected data is of the form

{

(xj , yj) : j = 1, . . . , ny

}

, where

the xj need not be distinct (which occurs if replicated mea-
surements are conducted at a particular xj).
We consider smooth, nonlinear models, which can be writ-

ten as linear combinations of nb nonlinear basis functions φ,

m(x;β) =

nb
∑

k=1

βkφk(x). (1)

Once a basis φ has been selected, the hyperparameters β

can be selected by standard regression-/optimization-based
approaches. For example, since these models are linear in
β, a common approach is to employ

β̂ = argmin
β

ny
∑

j=1

(

m(xj ;β)− y
j
)2

, (2)

which corresponds to the maximum likelihood estimator for
β under the assumption that y is Gaussian.
There can be many choices of basis functions; for simplic-

ity, we focus on terms that are low-degree polynomials in
either the parameter, xi, or the inverse of the parameter,
1
xi
. In particular, we consider terms of the form

{

nx
∏

i=1

(xi)
pi : pi ∈ {−1, 0, 1}, i = 1, . . . , nx

}

. (3)

We could have expanded our set to include terms that could
better account for differences in scale (e.g., x1 log(x2)) or

higher degree polynomials (e.g.,
x2

1
x2

x2

3

), but found that the

set (3) was sufficiently rich for our purposes.
Since one of our goals in building a model of the form (2)

was simplicity of the model, we desired to incorporate only a
handful of basis terms, nb, from the set (3). Each term in (3)
can be defined by the integer vector p ∈ {−1, 0, 1}nx . We
let m̂(x;P) denote the model prediction at x resulting from
selecting a basis defined by P = {p1, · · · ,pnb} and using the
coefficients defined by (2). Given an initially empty set P,
we follow a greedy procedure (also known as a forward model
selection approach) of adding to P the p that most reduces
the prediction error. Formally, this means we determine the
p that solves

min
p∈{−1,0,1}nx

ny
∑

j=1

(

m̂(xj ;P ∪ p)− yj

yj

)2

. (4)

After updating P, this procedure can be repeated until: (i)
we have reached a desired limit on the number of terms to
include, (ii) we have exhausted the set in (3), or (iii) addi-
tional terms lead to negligible reductions of the prediction
error (which, under certain regularity assumptions can be in-
terpreted as the terms not being statistically significant). In

# of
Parameter Tested Values Values

c, stripe count 1,2,4,8,16,32,64,96,128,156 10
s, stripe size (MB) 1,2,4,8,16,32,64,96,128 9

Table 1: Training configurations (90 in total) tested as part of
the single-node experiment.

our experiments, we always terminated the approach based
on (i), reaching an upper limit to the number of model terms.

Before proceeding, we note that in (4) we are using a
relative error metric that is slightly different from the usual
least-squares error criterion (e.g., as used in (2)). We made
this choice in order to bias our model terms toward smaller
values of the output y. In the context of I/O models for
optimization, we are less interested in accurately predicting
large times than we are small times. An alternative approach
to building models based on a bias toward high-performing
configurations is discussed in [1].

Here, we consider models that could be employed in tun-
ing for multiple file sizes simultaneously. Consequently we
will have nx = 4 independent variables, x = (c, s, a, f), and
there are 3nx = 81 possible terms in the set (3).

Experimentally, we ran tests using VPIC-IO and differ-
ent file sizes (i.e., different core counts). The training set
for each of the VPIC-IO experiments and their file sizes are
shown in Table 2. We have chosen to decrease the size of the
training set as the core counts (and hence file sizes) increase
because of the corresponding increase in computational re-
sources required. The way that these training sets are chosen
is done in a systematic and automatic manner: For example,
for the 2048-core experiments for stripe count, out of the 10
values shown in Table 1, 3 were chosen to cover the space:
[16, 32, 256]. We chose 4 values (in MB) for stripe size, [1, 4,
16, 64], and 5 values for the number of aggregators, [16, 32,
48, 64, 80]. This leads to 60 configurations used for training
our model. Since 2048 cores on at least needs 85 nodes on
Hopper, and we follow the one-aggregator-per-node rule, 80
is the maximum value of the aggregators.

# of cores file size (GB) training set size
128 32 216
256 64 120
512 128 72
1024 256 60
2048 512 60

Table 2: Breakdown of training set for the parallel I/O model.

Using the above approach on the entire training data set,
we obtain a six-term basis of {1, f, f

a
, a
c
, cs

a
, cf

a
}. However,

inspection of this basis shows that any resulting model is
necessarily monotone in s: if the coefficient for cs

a
is positive,

the write times are increasing in s, otherwise the write times
are non-increasing in s. Consequently, we made the decision
to include a seventh term. The term with a factor 1

s
that

best solved (4) given the other six terms was determined to
be a

s
. Therefore, our seven-term model is of the form

m(x) = β1 + β2f + β3
f

a
+ β4

a

c
+ β5

a

s
+ β6

cs

a
+ β7

cf

a
, (5)

with a fit to the data yielding β̂ = [−20.65, 0.11, 4.17, 27.13,
4.50, 0.0038, 0.01].

In the next section we will analyze this model’s ability



to perform space reduction and optimization for a variety
of I/O tuning tasks. Before proceeding to this study, we
note that the model (5) includes both actionable parameters
(c, s, a) as well as an ancillary parameter (f) determined
from an input. In the context of model-based optimization,
we could use this new model in a minimization for any file
size for which the model is deemed reliable,

m
∗(f) ≡ min

(c,s,a)∈Ω
m(c, s, a, f). (6)

We also note that the application considered here is a
weak-scaling application (i.e., the number of processors used
to run the application is directly proportional to the file
size). Therefore, there was no need to use the number of
processors (p) as another parameter in the model. If instead,
the file size is fixed as we scale the number of processors, p,
should also be an independent variable in the model.

3. APPLYING PERFORMANCE MODELS
We show the process of using the empirical model in our

I/O autotuning framework in Figure 1. The three steps of
the autotuning process are: pruning, exploration, and refit-

ting. In the pruning step, for a given I/O kernel and problem
size, the framework predicts the I/O cost for all combina-
tions of tunable parameters and selects the top twenty con-
figurations with the least I/O cost. In the exploration step,
the framework executes the I/O kernel with the selected
twenty configurations to determine their empirical (rather
than predicted) performance. The framework then refits the
model with the newly collected write time data included. In
the simplest case, which we use in this paper, the autotun-
ing system runs the top ten configurations with the refitted
model and returns the best-performing configuration to the
user. One can use this configuration for future executions of
the application at varying levels of concurrency.
The selection of the best performing configurations from

the model-predicted write times and the number of itera-
tions of refitting are controllable by the user of our frame-
work. While we used the top twenty configurations, which
proved to be effective in our tests, if a user prefers to se-
lect a different number of best-predicted configurations or
wishes to refit the model iteratively, the user can configure
the framework with simple settings.

4. EXPERIMENTAL RESULTS
In this section, we present the I/O write time results for

the VPIC-IO kernel at different scales. We first compare the
performance of our autotuning framework using the empir-
ical models with that of the previous framework using GAs
[2]. We then evaluate the effectiveness of the model-based
framework on a variety of problem settings.
To develop the model, we ran various training configura-

tions. The number of configurations for each scale is shown
in Table 2. The total time to run all the configurations
of VPIC-IO at the specified number of processors was 16.5
hours. Note that this training cost is a one-time expense for
the performance model. The resulting model is used for pre-
dicting write times across different concurrencies. Once the
model is formed, the incremental time spent in the pruning,
exploration, and refitting steps is minimal. For example,
the exploration step of the VPIC-IO kernel using 2048 cores
took 31 minutes. In contrast, our GA-based tuning process,

Figure 1: Design of our new autotuning system making use of
performance models.

which tested roughly 400 configurations for the VPIC-IO
kernel (running at 2048 cores), ran for 12 hours.

To summarize, the GA-based approach has a high run-
time overhead associated with every kernel and scale level.
The empirical-model-based approach has a one-time cost as-
sociated with fitting a model for a specific kernel, but can
thereafter be used to predict times for any number of pro-
cessors, with a fractional cost for refitting.

We now evaluate the framework with a large space of 640
configurations for the VPIC-IO kernel running on 512 cores.
Figure 2 shows the twenty selected configurations with the
least predicted write times for the original space along with
the actual time it took to run them on the platform. The
autotuning framework found configurations that achieve an
approximately 1.4X speedup of write time performance by
using the larger configuration/search space. The new config-
urations use larger stripe counts, stripe sizes, and numbers
of aggregators. In this 512-core VPIC-IO experiment, the
number of nodes used is equal to 22 (i.e., 512 divided by 24
cores per node). It has been suggested by some studies that
using one aggregator per node achieves the best write times.
We observe that all of the top-ten configurations use more
aggregators than the number of nodes. Further analysis is
needed to characterize the reasons for such behavior.
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Figure 2: Comparison of the write times of the top-twenty con-
figurations for VPIC-IO on 512 cores.

We tested the autotuning framework to tune the VPIC-IO
kernel on a different number of processors (2048 cores). We
compare the performance of the selected top-twenty config-



urations (from a space of 640 input configurations) and the
best ten configurations (after the refitting process), respec-
tively, in Figure 3. In this test, we observe that the tuned
parameters values differ for I/O kernels running at different
number of processors. Among the configurations, the num-
ber of aggregators is again larger than the number of nodes
(85 for the 2048-core test) in many cases. Although the ac-
curacy of predicted write times is lower than the 512-core
experiment, the best configuration achieves a 27X speedup
over the default configuration.
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Figure 3: Comparison of the write times of the top-twenty con-
figurations for VPIC-IO on 2048 cores.

We evaluate the model developed using the training con-
figurations at smaller scales (see Table 2) in order to tune
the I/O kernel running at 8192 cores. Note that we did not
use any configurations from the 8192-core runs in training
the model. The 8192-core runs use 342 nodes of Hopper
and produce roughly 2TB of data. We used a configura-
tion/search space of 1080 configurations for the model.
We show the I/O cost of the selected top-twenty configura-

tions after the pruning and exploration steps in Figure 4. We
observe significant performance improvement. The speedups
over the default I/O configurations on Hopper at a concur-
rency of 8192 cores are on the order of 54X for VPIC-IO.
Table 3 summarizes the achieved speedups for the VPIC-

IO kernel running at different concurrencies. The table also
shows the size of the data written to the file system and
the I/O bandwidth achieved. Overall, the tuned configura-
tions achieve speedups ranging from 3.5X to 50X, which is
consistent with exploring the search space using GAs. The
time to traverse the search space after training was reduced
from 12 hours to a maximum of two hours. In most cases,
exploring the top-twenty configurations took one hour, re-
sulting in significant improvements to overall parallel I/O
performance.
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Figure 4: Comparison of the write times of the top-twenty con-
figurations for VPIC-IO on 8192 cores.

# cores
I/O

Kernel

File
Size
(GB)

Actual
B.W.

(MB/s)

Default
B.W.

(MB/s)

Speed-
up

128 VPIC 32 2074.65 471.75 4.40

512 VPIC 128 5185.4 408.6 12.69

1024 VPIC 256 6181.75 336.6 18.37

2048 VPIC 512 11422.28 412.19 27.71

8192 VPIC 2048 18857.3 345.27 54.62

Table 3: Speedups of VPIC-IO with our autotuning framework.

5. CONCLUSION AND FUTURE WORK
This paper has presented an important development in

our work on autotuning parallel I/O. We have dramatically
reduced the run time for our framework from 12 hours to

2 hours by incorporating an empirical performance model.
The model accounts for major parameters pertaining to par-
allel I/O operations on a production supercomputing plat-
form. We fit the model with a relatively small training set
of application runs. The model was then used to predict
configurations with high levels of I/O performance on two
applications and at varying levels of concurrency.

Our current approach of determining a training set is
based on a batch execution model. Namely, we precompute
a training set with a space-filling design in advance, and eval-
uate the training set in a single batch job. We could have
opted for an adaptive, “sequential design of experiments”ap-
proach (see, e.g., [5]), where each configuration is based on
the results of the previous runs. This has the potential to
further reduce the size of the training set.
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