
DINO: Divergent Node Cloning for Sustained

Redundancy in HPC

Arash Rezaei and Frank Mueller

North Carolina State University, Raleigh, NC.

mueller@csc.ncsu.edu

Abstract—Soft faults like silent data corruption and hard
faults like hardware failures may cause a high-performance
computing (HPC) job of thousands of processes to nearly cease to
make progress due to recovery overheads. Redundant computing
has been proposed as a solution at extreme scale by allocating
two or more processes to perform the same task. However,
current redundant computing approaches do not repair failed
replicas. Thus, SDC-free execution is not guaranteed after a
replica failure and the job may finish with incorrect results.
Replicas are logically equivalent, yet may have divergent runtime
states during job execution, which complicates on-the-fly repairs
for forward recovery. In this work, we present a redundant
execution environment that quickly repairs hard failures via
Divergent Node cloning (DINO) at the MPI task level. DINO
contributes a novel task cloning service integrated into the MPI
runtime system that solves the problem of consolidating divergent
states among replicas on-the-fly. Experimental results indicate
that DINO can recover from failures nearly instantaneously, thus
retaining the redundancy level throughout job execution. The
cloning overhead, depending on the process image size and its
transfer rate, ranges from 5.60 to 90.48 seconds. To the best
of our knowledge, the design and implementation for repairing
failed replicas in redundant MPI computing is unprecedented.

I. INTRODUCTION

Reliability has been highlighted as a key challenge for
next generation supercomputers [1], [3], [5]. Node failures
are commonly due to hardware or software faults. Hardware
faults may result from aging, loss of power, and operation
beyond temperature thresholds. Software faults can be due
to bugs (some of which may only materialize at scale),
complex software component interactions and race conditions
that surface only for rare parallel execution interleavings of
tasks [4].

One resilience method is redundant computing [2], [8],
[7], [9]. It aims at improving reliability and availability of
systems by allocating two or more components to perform the
same work. A recent study [13] showed that redundancy could
be a very viable and even cost-effective approach for HPC
on the cloud. Their approach to combine checkpointing and
redundancy on Amazon EC2 using a variable-cost spot market
provides up to 7 times cheaper execution compared to the on
demand default market. Redundancy provides tolerance not
only against hard faults but also soft faults, such as silent data
corruptions (SDCs), which do not stop application execution
as they are undetectable. SDCs may manifest at application
completion by producing wrong results or, prior to that, wrong
interim results. A study at CERN raised concerns over the
significance of SDC in memory, disk and RAID [14]. Their
results indicate that SDC rates are orders of magnitude larger
than manufacture specifications. Schroeder et al.’s study [16]

of the DRAM errors on a large scale over the course of 2.5
years concludes that more than 8% of DIMMs are affected
by errors per year. SDCs can be detected by Dual Modular
Redundancy (DMR) and can be corrected with voting under
Triple Modular Redundancy (TMR) [9].

Current approaches for redundant computing do not pro-
vide a sustained redundancy level during job execution when
processes are hit by failures. When a replica fails, either the
application deadlocks (RedMPI [9]) or other replicas ensure
that the application can progress in execution [2]. The latter re-
quires at least one healthy replica, i.e., should all replicas of an
MPI task fail, then the entire job fails. Note that after a replica
failure, even if the job can continue its execution, the SDC de-
tection module cannot guarantee application correctness (e.g.,
an undetected SDC might occur). Checkpoint/Restart (CR) is
another popular method for tolerating hard errors but cannot
handle soft errors. CR takes snapshots of all processes and
saves them to storage. Should a hard error occur, all processes
re-load the last snapshot into memory and the application
continues. Elliott et al. [6] show that CR will eventually take
longer than redundancy due to recomputation, restart and I/O
cost. At scale, this makes capacity computing (maximizing
the throughput of smaller jobs) more efficient than capability
computing (using all nodes of an exascale machine). E.g., at
80,000 CPU sockets, dual redundancy will finish twice the
number of jobs that can be handled without redundancy. This
includes a redundancy overhead of 0-30% longer time (due to
additional messages) with hashing protocols [9], which has no
impact on bandwidth for Dragonfly networks since original
and replica sphere exchange full messages independently.
As hash messages are small, they add latency but do not
impact bandwidth. Since twice the jobs finished under dual
redundancy, this amounts to the same energy.

This work targets tightly-coupled parallel applications/jobs
executing on HPC platforms using MPI-style message pass-
ing [10]. We use the term rank to refer to an MPI task/process.
In MPI-style programming, each MPI process is associated
with a unique integer value identifying the rank. Suppose there
is a job with n ranks that requires t hours to complete without
any failures. This is called plain execution time. We consider
systems with r levels of redundancy (at the rank level). Our
system then consists of r × n ranks, where n logical MPI
tasks are seen by the user while redundant replicas remain
transparent. There is no difference between replicas of the
same task in terms of functionality as they perform the same
operations. We also assume the availability of a small pool of
spare nodes. Spare nodes are in a powered state but initially
do not execute any jobs. We assume that a fault detector is
provided by the system. We focus on the recovery phase and

consider works in failure detection [18], [12] orthogonal to our
work.

We introduce node cloning as a means to sustain a given
redundancy level. (We use the terms node / MPI task cloning
synonymously.) The core idea is to recover from hard errors
with the assistance of a healthy replica. A healthy replica is
cloned onto a spare node to take over the role of the failed
process in “mid-flight”. To address shortcomings in current
redundant systems, we provide the following contributions:

• We devise a generic high performance node cloning service
under divergent node execution (DINO) for recovery. DINO
clones a process onto a spare node in a live fashion. We
integrate DINO into the MPI runtime under redundancy as a
reactive method that is triggered by the MPI runtime to forward
recover from hard errors, e.g., node crash or hardware failure.

• We propose a novel Quiesce algorithm to overcome di-
vergence in execution without excessive message logging.
Execution of replicas is not in a lock-step fashion, i.e., can
diverge. Our approach establishes consistency through a novel,
multicast variant of the traditional bookmark protocol [15]
and resolves inconsistencies through exploiting the symmetry
property of redundant computing.

• We evaluate DINO’s performance for MPI benchmarks. The
time to regain dual redundancy after a hard error varies from
5.60 seconds to 90.48 seconds depending on process image
size and cross-node transfer bandwidth, which is short enough
to make our approach practical.

II. DESIGN OF DINO

DINO has a generic process cloning service at its core.
Node cloning creates a copy of a given running process on
a spare node. The cloning mechanism itself is MPI agnostic
and is applied to processes encapsulating MPI tasks in this
work. DINO considers the effect of cloning on the MPI runtime
system, as detailed later. Fig. 1 shows how the system retains
dual redundancy in case of a failure. A and A′ are logically
equivalent and both perform the same computation. They run
on nodes 0 and 1, respectively. Ranks B and B′ on nodes 2 and
3 are also replicas. If node 2 (B) fails, its replica (B′) on node
3 (source node) is cloned onto node 4 (a spare node) on-the-fly.
The newly created rank B′′ takes over the role of failed rank
B and the application recovers from the loss of redundancy.
At the end of node cloning, B′ and B′′ are in the same state
from the viewpoint of the application, but not necessarily from
another rank’s point of view due to stale B references. The
quiesce algorithm resolves such inconsistencies.

The process B′′ is created on node 4 as follows. While
B′ performs its normal execution, its memory is “live copied”
page by page to B′′. This happens in an iterative manner (see
Section IV). When we reach a state where few changes in
dirty pages remain to be sent, the communication channels
are drained. This is necessary to keep the system of all
communication processes in a consistent state. After this, rank
B’s execution is briefly paused so that the last dirty pages,
linkage information, and credentials are sent to node 4. Rank
B′′ receives and restores this information and then is ready to
take over the role of failed rank B. Then, communication chan-
nels are resumed and execution continues normally. Between

Fig. 1: Node cloning: Application w/ 2 ranks under dual redundancy

channel draining and channel resumption, no communication
may proceed. This is also necessary for system consistency
with respect to message passing.

The short time interval between error detection and the
end of DINO recovery is a “vulnerability window” where un-
detected SDCs may occur. The vulnerability window depends
on the process image size and is evaluated in Section V.

III. QUIESCE ALGORITHM

The purpose of the Quiesce algorithm is to resolve the
communication inconsistencies inside DINO at the library
level and provide transparent and consistent recovery to the
application layer. The inconsistencies are rooted in the state
divergence of replicas. Blocking operations impose limited
divergence. But non-blocking operations can easily create
scenarios where the state of replicas differs largely as there
is no enforced state synchronization among replicas.

Let us assume that rank B has failed and rank B′ is cloned
to create B′′, which takes over the work of B. Ranks B′ and
B′′ are in the same state, but any other ranks may still assume
B′′ to have the state of B.

First, the outgoing channels of B′ and of any other ranks
that have initiated a send to B′ are cleared. We use a modified
version of bookmark exchange protocol [15] to identify in-
flight messages and drain them. After this step, we can be sure
that any ongoing communication with rank B′ is completed.

The next two steps (steps 2 and 3) are to identify the
state of communication with regards to rank B′′, and to
guarantee the correctness of DINO recovery. We exploit the
symmetry property of redundant computing stating that every
rank receives the same number of messages from members of
a replica set (e.g., B and B′). The same rule applies to the
number of messages sent to a given replica set. This property
is the basis for resolving the inconsistencies in stages 2 and
3. Every rank keeps a vector of the number of messages
sent to other ranks (Sent[]) and received from other ranks
(Received[]) along with the message signatures.

In step 2, every rank X (other than B′) resolves its possible
communication inconsistency due to sends to B. Three cases
are distinguished (see Fig. 2, left side): (1) If bookmarks match
(Sent[B] == Sent[B′]), then B, B′, and B′′ are in the same
state from the point of view of X , and no action is needed.

Fig. 2: A view of Steps 2 and 3 of the Quiesce algorithm

(2) If B lagged behind B′ (Sent[B] < Sent[B′]), then sends
from X to B are in transit/will be issued (Fig. 2 part 3.2).
Since B has been removed and B′′ is ahead (has already seen
these messages), they are silently suppressed (skipped). (3) If
B was ahead of B′ (Sent[B] > Sent[B′]), then there exist
messages in transit/to be sent from X to B′ (Fig. 2 part 3.3).
Since B′′ is in the same state as B′, these messages need to
be sent to B′′ as well.

In step 3, the same procedure is performed on the receive
counters (see Fig. 2, right side). The 3 cases are symmetric
to the send cases: (1) if bookmarks match (Received[B] ==
Received[B′]) then B, B′, and B′′ are in the same state from
the point of view of X , and no further action is needed. (2) If
B′ was ahead of B (Received[B] < Received[B′]) then X

is expecting messages from B (Fig. 2 part 4.2). Since B does
not exist anymore and B′′ will not send them (as it is ahead),
these receives silently complete (skipped). X will be provided
with the corresponding messages from B′ (without comparing
them with the one from B′′ that was never received). (3) If B′

lagged behind B (Received[B] > Received[B′]), then X is
expecting messages from B′ (Fig. 2 part 4.3). Since B′′ and
B′ are in the same state, both will send those messages, even
though X has already received a copy from B. Thus, messages
from B′′ are silently absorbed (up to the equalization point).

IV. IMPLEMENTATION

1. Pre-copy. This phase transfers a snapshot of the memory
pages in the process address space communicated to the spare
node while normal execution of the process continues on the
source node (see Fig. 3). We use TCP sockets to create a
communication channel between source and spare nodes. The
pre-copy approach borrows concepts from [17] (under Linux
2.4), but adapted to Linux to 2.6. Vital meta data, including
the number of threads, is transferred.1 The spare node receives
the memory map from the pre-copy thread. All non-zero pages
are transferred and respective page dirty bits are cleared in the
first iteration. In subsequent iterations, only dirty pages are
transferred after consulting the dirty bit. We apply a patch
to the Linux kernel to shadow the dirty bit inside page table
entry (PTE) and keep track of the transferred memory pages.
The pre-copy phase terminates when the number of transferred
pages reaches a threshold (1MB in our current setting).

1We assume that applications maintain a constant sized thread pool after
initialization, e.g., OpenMP implementations. Cloning applies to the execution
phase after such thread pool creation.

Restore Pre-copy

Fork

Clone syscall

pthread_create

Signal

No. of threads

Barrier

Barrier

Memory Map

All non-zero memory pages

Loop: Only dirty pages

exit

Current Node Spare Node

K
er

n
el

Fig. 3: Pre-copy phase

2. Channel Quiesce. The purpose of this phase is to create a
settle point with the shadow process. This includes draining all
in-flight MPI messages. The runtime system also needs to stop
posting new send/receive requests. We build this phase on top
of the functionality for message draining provided by the CR
module of Open MPI [11]. The equalization stage described
in Section III is implemented in this step.

3. Clone. This phase stops the process for a short time
to transfer a consistent image of its recent changes to the
restore tool. The memory map and updated memory pages
are transferred and stored at the corresponding location in the
address space of B′′. Then, credentials are transferred and
permissions are set. Restoration of CPU-specific registers is
performed in the next phase. The signal stack is sent next
and the sets of blocked and pending signals are installed.
Inside the kernel, we use a barrier at this point to ensure that
all threads have received their register values before any file
recovery commences. In short, different pieces of information
are transferred to fully create the state of the process.

4. Channel Resume. In this phase, processes re-establish
their communication channels with the recovered sphere. All
processes receive updated job mapping information, reinitialize
their Infiniband driver and publish their endpoint information.

V. EXPERIMENTAL RESULTS

The node cloning experiments require insertion of our
kernel module into the Linux kernel. This permission is not
granted on large-scale supercomputers maintained by NSF or
DOE. Thus, we conducted the experiments on a 108-node
cluster with QDR Infiniband. Each node is equipped with two
AMD Opteron 6128 processors (16 cores total) and 32GB
RAM running CentOS 5.5, Linux kernel 2.6.32 and Open
MPI 1.6.1. The experiments are demonstrating failure recovery
rather than exploring compute capability for extreme scale due
to the limitations of our hardware platform. Hence, we exploit
one process per node in all experiments. Experiments were
repeated five times and average values of metrics are reported.

We consider 5 MPI benchmarks: (BT, CG, FT, IS, LU)
from the NAS Parallel Benchmarks (NPB). We use input
class D for NPB. We present results for 4, 8, 16 and 32
processes under dual redundancy (CG, IS, LU). We use 4,
9, 16, 25 processes for BT (square numbers are required by
the benchmark). FT with 4 and 8 processes could not be
executed due to memory limitations. Due to lack of support
from the Infiniband driver to cancel outstanding requests

BT CG FT IS LU

0
2
0

6
0

1
0
0

0
2
0

6
0

1
0
0

T
im

e
 i
n
 s

e
c
o
n
d
s

2 x 4

2 x 8

2 x 16

2 x 32

NANA

(a) Overhead (vulnerability window)

BT CG FT IS LU

0
2

4
6

8
0

2
4

6
8

T
ra

n
s
fe

rr
e
d
 p

ro
c
e
s
s
 i
m

a
g
e
 i
n
 G

B

2 x 4
2 x 8
2 x 16
2 x 32

NANA

(b) Transferred process image

Fig. 4: DINO recovery from 1 fault injection for different MPI
benchmarks (1 rank per physical compute node)

without invalidating the whole work queue and lack of safe re-
initialization, current experiments are performed with marker
messages. Every process receives a message indicating the
fault injection and acts accordingly. One rank mimics the
failure by performing a SIGSTOP. Then the Cloning APIs
are used to start the clone procedure and the discussed steps in
Section II are performed: Pre-copy, Quiesce, Clone, Resume.

Fig. 4(a) and 4(b) depict the overhead and transferred
memory size, respectively. NPB are strong scaling applications
and the problem size is constant in a given class. Therefore,
the transferred memory size and consequently time decreases
when the number of processes increases. Overhead is the time
that takes to transfer the memory pages, create a fully working
MPI rank on the spare node and resume the communication.
This is also the vulnerability window where only one copy of
the process exists (e.g., only B′ in Fig. 1).

FT has the largest process image. The size of memory for
FT with 16 processes is 7GB and takes 90.48 sec to transfer,
while it takes 46.75 sec with 32 processes to recover from
a failure when transferring 3.52GB of memory. LU has the
smallest process image among NPB, its memory size ranges
from 2.64GB to 0.36GB with transfer times of 32.51 sec to
5.60 sec for 4 to 32 processes, respectively.2 The relative
standard deviation in these experiments is less 7% in all cases.

VI. CONCLUSION

We introduced DINO, a quick forward recovery method
from failures in redundant computing. DINO contributes a
novel live node cloning service with multicast variant of the
bookmark algorithm and a corresponding Quiesce algorithm
for consistency among diverging communicating tasks. With
its integration into the MPI runtime system, DINO allows
a redundant job to retain its redundancy level via cloning
throughout job execution. Experimental results with multiple
MPI benchmarks indicate low overhead for failure recovery.

ACKNOWLEDGMENT

This work was supported in part by grants from Lawrence
Berkeley National Laboratory and NSF grants 1058779 and
0958311. This material is based upon work supported by

2In the current implementation, the memory is copied one page at a time.
This lowers the performance of the cloning operation. A larger buffer size
might increase the performance as the effective bandwidth could be increased.

the U.S. Department of Energy, Office of Science, Office of
Advanced Scientific Computing Research, Computer Science
program under contract number DE-AC02-05CH11231. The
views and opinions of authors expressed herein do not neces-
sarily state or reflect those of the United States Government
or any agency thereof or the Regents of the University of
California.

REFERENCES

[1] Keren Bergman et al. Exascale computing study: Technology challenges
in achieving exascale systems, September 2008.

[2] Ron Brightwell, Kurt Kurt Ferreira, and Rolf Riesen. Transparent
redundant computing with MPI. In Euro-Par, pages 208–218, 2010.

[3] Franck Cappello, Al Geist, Bill Gropp, Laxmikant Kale, Bill Kramer,
and Marc Snir. Toward exascale resilience. Int. J. High Perform.

Comput. Appl., 23(4):374–388, Nov 2009.

[4] Domenico Cotroneo, Roberto Natella, Roberto Pietrantuono, and Ste-
fano Russo. Software Aging Analysis of the Linux Operating System.
In ISSRE, pages 71–80, 2010.

[5] Jack Dongarra et al. The international exascale software project
roadmap. Int. J. High Perform. Comput. Appl., 25(1):3–60, February
2011.

[6] James Elliott, Kishor Kharbas, David Fiala, Frank Mueller, Kurt Fer-
reira, and Christian Engelmann. Combining Partial Redundancy and
Checkpointing for HPC. In International Conference on Distributed

Computing Systems, Macau, China, June 18-21 2012.

[7] Christian Engelmann and Swen Böhm. Redundant Execution of HPC
Applications with MR-MPI. In International Conference on Parallel

and Distributed Computing and Networks, pages 31–38, February 15-
17, 2011.

[8] Kurt Ferreira, Jon Stearley, James H. Laros, III, Ron Oldfield, Kevin
Pedretti, Ron Brightwell, Rolf Riesen, Patrick G. Bridges, and Dorian
Arnold. Evaluating the viability of process replication reliability for
exascale systems. In Supercomputing, pages 44:1–44:12, 2011.

[9] D. Fiala, F. Mueller, C. Engelmann, K. Ferreira, and R. Brightwell.
Detection and Correction of Silent Data Corruption for Large-Scale
High-Performance Computing. In Supercomputing, 2012.

[10] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-performance,
portable implementation of the MPI message passing interface standard.
Parallel Computing, 22(6):789–828, September 1996.

[11] Joshua Hursey, Jeffrey M. Squyres, Timothy I. Mattox, and Andrew
Lumsdaine. The design and implementation of checkpoint/restart
process fault tolerance for Open MPI. In IPDPS, March 2007.

[12] A. Mahmood and E.J. McCluskey. Concurrent error detection using
watchdog processors-a survey. Computers, IEEE Transactions on,
37(2):160–174, Feb 1988.

[13] Aniruddha Marathe et al. Exploiting Redundancy for Cost-effective,
Time-constrained Execution of HPC Applications on Amazon EC2. In
HPDC, pages 279–290, 2014.

[14] Bernd Panzer-Steindel. Data Integrity. Technical Report 1.3, CERN,
2007.

[15] Sriram Sankaran, Jeffrey M. Squyres, Brian Barrett, and Andrew
Lumsdaine. The LAM/MPI Checkpoint/Restart framework: System-
initiated checkpointing. In LACSI Symposium, Sante Fe, pages 479–493,
2003.

[16] Bianca Schroeder, Eduardo Pinheiro, and Wolf-Dietrich Weber. Dram
errors in the wild: A large-scale field study. SIGMETRICS Perform.

Eval. Rev., 37(1):193–204, June 2009.

[17] Chao Wang, Frank Mueller, Christian Engelmann, and Stephen L.
Scott. Proactive process-level live migration in HPC environments. In
Supercomputing, pages 1–12, 2008.

[18] Keun Soo Yim, Z. Kalbarczyk, and R.K. Iyer. Pluggable Watchdog:
Transparent Failure Detection for MPI Programs. In International

Parallel and Distributed Processing Symposium, pages 489–500, May
2013.

