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Abstract

In this paper, we present a unified approach to the problem of shape representation and
recognition. The key idea is the level set representation of a shape, in which information about
the boundary of shape is embedded in a level set function. This perspective on an object and
shape boundary has several advantages. First, the level set function provides information which
allows accurate comparison of a trial shape with a given collection of possible forms. Second,
the level set function provides a convenient framework for perturbing and distorting the shape
in order to locate a possible form near the trial shape. As an example, we use our level set
approach to study the shapes of handwritten numerals, establishing the effectiveness of the level
set function as a feature vector, and the value of flow perturbation to aid their recognition. We
present results of applying our method to numeral shapes extracted from NIST databases 8 and

7 of segmented characters.

1 Introduction

Shape recognition requires several steps. The goal is to extract and identify a shape from a given
image field. This may involve image enhancement to bring the shape of interest into greater relief,
segmentation to isolate the boundary of the shape from the enhanced image, a representation scheme
to bring the boundary into a convenient form for evaluating shape properties, and a recognition
technique to compare the shape descriptor with other known shapes.

The methodology we are developing in this and related works is a unified approach to the above

four steps. The key aspect is the level set perspective, in which a front (that is, shape) is represented
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as the zero level set of a higher dimensional function, see {32, 38]. This level set framework is
convenient for advancing the front/shape boundary, and has proved to be of great use in a variety
of interface motion calculations, see {38, 39, 7, 37, 35].

The first step, image enhancement, has met with great success in recent years, see ({2, 31]), using
various techniques which include some of the level set flow ideas mentioned above. The second
step, segmentation, has been tackled using a level set framework by Malladi, Sethian and Vemuri
in [22, 23]. In that work, a general framework was developed to recover the level set implicit
signed-distance function from image data, where the zero level set of the obtained level function
represents the boundary of the shape.

In this work, we finish the sequence by constructing a level set approach to shape representation
and shape recognition. A given shape is embedded in a family of level sets and thus contains con-
siderable information expressed via neighboring level sets about the shape boundary. In addition,
such quantities as curvature, boundary normals, and holes are easily captured in this perspective.
Thus, qualities of a shape which may prove important in shape recognition are easily obtained.
Finally, the level set framework allows one to perturb the shape of a boundary to discover the
critical features inherent in its shape.

To demonstrate and quantify these ideas, we use our methodology to identify handwritten numer-
als. We begin by training a neural net classification system on the NIST segmented, handwritten
numerical databases 3 and 7. These databases contain almost 100,000 handwritten characters ob-
tained from a large number of subjects. Unlike other recognition schemes, which often rely on
extracting shape features such as stroke elements, holes, and curvature extrema, we train on a
two-dimensional grid of values which describes a discretized version of the level set function. The
results of training on this feature vector gives the first stage of our recognition process. Following
standard terminology, given a set of characters, we discard a certain number, and then choose to
classify those that remain. On NIST database 3, we obtain classification rates of well over 99.00%
using just the level set function as the feature vector.

The second part of this process demonstrates the additional power of the level set function. Given
the set of discards, we then flow each under a variety of rules, corresponding to the curvature flow,

expansion [36), anisotropy [39], and a new flow which extends protruded arms of objects. Such flows




are straightforward using the Osher-Sethian level set algorithm (see [32]). We study the effects of
these perturbations under the neural classification system, and select shapes for identification as a
particular numeral if continued perturbation carries it into a region of high confidence in the neural
net classifier. In effect, we attempt to perturb characters by following gradients in neural net space,
until they deform into shapes that move within the bounds of the acceptance criteria. By doing

so, we can identify a large fraction of the discards with minimal decrease in the accuracy of our

classifications.

2 Background and Related Work

Segmentation of shapes from image data and their subsequent recognition has been a focus of
computer vision and pattern classification research efforts over the years. Typical application areas
include automatic target recognition, industrial part recognition, and optical character recognition.
In this section, we give some background work on edge detection, segmentation, shape description,
and recognition.

To begin, edge finding [26, 25] and edge grouping [28] have been used for the purpose of deter-
mining boundaries of shapes in images. One aspect of such techniques is that edge detection is
a local operation and thus edges do not necessarily correspond to boundaries of objects. In the
context under discussion here, we are interested in mathematical descriptions of shapes appearing
in images. In this setting, boundary finding as a means of segmenting shapes from images has been
employed in many different arenas. For example, Widrow [42] used parameterized templates called
rubber masks to model objects. Kass, Witkin and Terzopoulos [16] have investigated the use of
energy-minimizing snakes to extract smooth shapes from images — different behavior is achieved by
adjusting the weights of the smoothness and image force terms. Prior knowledge of natural objects
found in biomedical images has been used to bias the shape boundary in the work on parametrically
deformable models by Staib and Duncan [40].

In order to perform recognition, it is important to represent a given shape in a distinctive fashion
that makes is easy to place dissimilar shapes in different classes. Shape representation schemes
can be broadly classified into boundary-based approaches vs. region-based approaches. In the

first category, chain codes, introduced by Freeman [11], encode a shape by traversing the shape

3




boundary either assuming a 4 or an 8 connectivity. Polygonal approximations [33] describe a
complex boundary by a sequence of straight lines. The accuracy of the approximation can be
controlled by varying the number of lines. Shape features such as one-dimensional moments [12]
and Fourier descriptors [34] are computed from the shape boundary. Not only can one encode and
reconstruct a given shape boundary using Fourier features, but one can also render these features
invariant to similarity [9] and affine transformations [3]. Such invariant features facilitate robust
recognition.

Among the region-based shape representation schemes, one of the most typical is a “skeleton”
[5] or the medial-axis transform [20} approach. A definition of skeleton based on the propagating
fire front analogy is provided by Blum [5]; the skeleton is the locus of points at which a fire front
started along the shape boundary and burning the enclosed region at unit speed meets. There are a
large number of skeletonization algorithms (see [21, 27] and references therein). Although skeletons
provide a compact shape description, they may contain a large number of redundant edges which
may minimally contribute to shape information. Efficient edge pruning schemes are discussed in
[30, 27, 18].

The above two classes of methods have met with varying degrees of success. We believe that
one of the obstacles to greater success has been the separation of the segmentation step from the
recognition step. In this paper, we design an approach in which the problems of shape segmenta-
tion/recovery and recognition are solved within the same framework.

For the segmentation step, Malladi, Sethian and Vemuri [22] have adopted the level set front
propagation schemes developed by Osher and Sethian [32], and Sethian [38], to the problem of
shape recovery in computer vision; a related approach has also been taken by Caselles et al. [6]. In
these techniques, unknown shapes are represented by propagating fronts moving with curvature-
dependent speed. For details and advantages of this approach over the existing shape finding
methods, the reader is referred to [23]. '

The result of segmentation using this approach is the representation of a given shape by its
signed-distance function defined on a square grid. Distances are positive at points lying outside the
shape boundary and are negative inside. There are several advantages to this representation. First,

boundary- and region-based representations are implicitly contained in the signed-distance function.




The boundary is simply its zero level set. Secondly, embedding the shape as a zero level set of a
higher dimensional function enables us to adopt a global view instead of a local one. In this global
view, shapes with disconnected boundaries can be represented by exploiting the property that the
zero level set of a higher dimensional function need not be simply connected [38]. Also, shapes
with and without holes can be modeled in a seamless fashion [22]. Lastly, by adopting the global
approach, we can “flow” the shapes using the level set front propagation algorithms introduced by
Osher and Sethian [32]. We wish to explore the notion of flowing (moving) a shape §vith different
flow rules as a means of accentuating its shape features, thereby enhancing the chances of its correct
classification.

To quantify these ideas, we focus on shape recognition schemes on the problem of handwritten
numeral recognition. This area has been researched extensively and a gamut of shape features have
been used for recognition purposes. A thorough review on historica,l development of OCR (optical
character recognition) technology may be found in Mori et al. [29]. Such schemes include statis-
tical classification methods with global feature analysis schemes like moments and mathematical
transforms (Fourier, Walsh, Wavelet {19]), and syntactical methods used with structural features
like loops, junctions, strokes, convexities, e.t.c. [41].

To execute shape recognition using our level set ideas, we begin by computing the signed-distance
functions corresponding to numeral shapes and express them on a square grid. We then train a
back propagation neural network [15] on the above feature vector. To obtain high reliability rates,
we employ two or more neural networks trained on different global feature vectors, and classify
a numeral instance only if they agree. Such stringent acceptance criteria generates a large set of
rejected samples. We then show that these rejected samples can be brought into acceptance by
modifying their shape via curvature-dependent level set flow [38]. We shall describe a set of flow
rules that accentuate different shape features of some shapes. We present results of testing our
scheme on the NIST databases 3 and 7 of segmented characters.

As presented, our shape representation scheme falls under the category of global analysis. As
mentioned earlier, Caselles et al. [6] have also used the level set approach in boundary segmenta-
tion. Using much of the mathematical machinery introduced in [36] and level sets [32, 38], Kimia,

Tannenbaum and Zucker [17] have tried to produce a theory of shape by suggesting a “reaction-




diffusion space of shapes”; which consists of computing deformed shapes under the general speed
law examined extensively by Sethian in [36] via the Osher-Sethian algorithm. In this paper, we ex-
tend the general speed law to include new motions, and focus on a study of the complete process of
segmentation, description, and recognition. We demonstrate this approach as applied to character
recognition.

The outline of this paper is as follows. In Section 3, we review the application of level sets to
shape segmentation. In Section 4, we discuss the value of the signed-distance function as a shape
descriptor. In Section 5, we present details of our multi-neural network approach to handwritten
numeral recognition and in Section 6, for certain test examples, we demonstrate how various rules
for motion can be used to emphasize given aspects of the shape of an object. Finally, we apply our

level set shape descriptor and flow rules to optical character recognition.

3 Shape Recovery in 2D

In the shape recovery scheme described in Malladi, Sethian and Vemuri [23], the goal is to ex-
tract mathematical descfiptions of objects found in images without making too many restrictive
assumptions about their shapes and topology. The boundary of the object is modeled as a front
propagating along its gradient field with speed that is a function of its curvature. This front is
expressed as the zero level set of a higher dimensional function defined in the image domain. In
what has been called an Eulerian formulation [38], the equations of motion are written for the
higher dimensional function in such as way that its zero level set will always yield the current
position of the propagating front. Unknown shapes are recovered by making the front adhere to
object boundaries. This is done by applying an artificial speed term on the front which acts like a
halting criterion.

We begin by letting ¢ be the level set function, K be the curvature, and k; be the extended

image-based speed term. The equation of motion is
P+ k(1 —eK) |V [=0, (1)

with the value of %(x,t = 0) set to &d, where d is the shortest distance from x to the initial front.

Note that the word extension is meant in the sense of [39, 23]. The image-based speéd term ki,




which is defined as

1

T VG +12.9)] (2)

ki(z,y) =

has values that are closer to zero in regions of high image gradient and values that are closer to unity
in regions of relatively constant image intensity. The expression G, x/ denotes the image convolved
with a Gaussian smoothing filter with characteristic width is o. We solve the governing equation
using entropy-satisfying upwind schemes developed in Osher and Sethian [32]. In [23], a variety
of ways of computing the evolving front, including fast narrow band methods [1], reinitializations,
extension of the method to handle 3D data sets, and different artificial stopping criteria are given.
Given an image, our method requires the user to provide an initial contour, or a set of contours if
there are more than one shapes of interest. The signed-distance function 1(x, = 0) is computed
from the initial contour(s). Following this, fast narrow-band and eztension-free schemes are used
to move the front. The user may interact with the model by adjusting the smoothness control
parameter ¢ until a desired degree of smoothness is achieved.

We illustrate this approach in the following examples. First, we recover the stomach shape from
a 256 x 256 CT (Computed Tomography) image of an abdominal section shown in figure 1(a).
The user places the initial contour inside the shape as shown in figure 1(a). The initial front is
made to propagate in the normal direction with speed F = l:",]( ~1.0 — 0.025K). We employed
the narrow-band update scheme to move the front. We show an intermediate stage in the front
evolution in figure 1(b) and the final result in figure 1(c). Note that this method does not require
the initial contour be placed close to the final shape. In addition, due to the e component in
the speed function, the front attains relatively smooth shapes like the thin-plate-membrane splines
[16]. Calculations were performed on a 128 x 128 grid and the time step At was set to 0.0005.

Next, consider the image in figure 1(d). This image contains four character shapes two of which
being shapes with holes. Our goal is to recover these shapes by performing just one calculation.
For a complete description of shapes like “A” and “B”, we need to recover their outer and inner
boundaries. We initialize the front in such a way that it encloses all the character shapes (figure
1(d)). It is then made to propagate inward with a constant speed. As shown in figure 1(e), the

front wraps itself tightly around the characters and subsequently splits into four separate parts (see




figure 1(f)). The first stage of this computation comes to an end when in figure 1(g), the level set
{1 = 0} recovers the outer boundaries of four characters. In the second stage of our calculation, we
momentarily relax the image-based speed component and flow the front into the character shapes
(figure 1(h)), thereby recovering the holes present in the shapes of “A™ and “B” (see figure 1(i)).

The calculations for this experiment were done on a 128 X 128 grid and the time step At was set

to 0.00025.
4 Shape Description with Signed-Distance

For a given shape, the above technique recovers the signed-distance function in the entire domain;
the shape boundary is simply the zero level set of this function. In this section, we analyze the
effectiveness of the signed-distance function for shape description.

Given a 2D shape, one can represent it either by the boundary that separates it from its back-
ground or by the region enclosed by the boundary. In other words, a shape can be described either
by a collection of points lying on its boundary or a collection of interior points. As noted by Kimia
et al. [17] in their study of “multidimensional” nature of shape, although these two representations
are equivalent, they highlight different aspects of the shape. The signed-distance function of a shape
implicitly contains both these representations. This is very desirable because during recognition,
what is missed by one may be captured by the other.

As an example, consider the shape of numeral two in figure 2(a). This shape can be represented
by its boundary or by its skeleton as shown in figure 2(b). Instead, we embed the shape boundary
in the signed-distance function ¢ defined in a square region enclosing it. The value of ¥(z,y) at
a point (z,y) is defined to be the shortest distance from it to the shape boundary; distances are
positive at points outside the shape boundary and negative inside it. From this definition it is clear
that both the shape boundary and its skeleton are implicitly contained in the ¢ function. To make
the boundary information explicit, one need only collect the zero level set of the function /. If the
skeleton is desired, one could use Blum’s prairie fire analogy and propagate the boundary inward
at constant speed. A convenient way to simulate this is to employ Osher-Sethian [32] schemes for
front propagation. The reader is referred to Kimmel et al. [18] for a skeletonization algorithm based

on level set ideas. In figure 2(c), we plot the level sets (equal distance contours) of the function ¥




(a) t = 0.0000 (c) t = 0.2875
(d) t = 0.0000 (£) t = 0.1900

(g) t = 0.2100 (h) t = 0.2200 (i) £ = 0.2450

Figure 1: Object shapes can be recovered from image data by using the level set curvature flow
equation. (a)—(c): Recovery of the stomach shape from a CT image of an abdominal section.
(d)-(i): A two-stage scheme for shape description of both simple shapes and shapes with holes.




(a) Original image {b) Boundary & Skeleton {c) Level sets of ¢

(d) Shaded surface z = ¢(z, y)

Figure 2: Boundary and region based shape representations are implicitly contained in the signed-
distance function 1.

and in ﬂgure 2(d), we render it as a surface z = 9(z,y). Thus, our shape representation contains
both the boundary and region information and more, as depicted by the level sets lying outside the
shape boundary (see figure 2(c)).

We would like to emphasize another feature of the above approach. Boundaries of simple shapes,
disconnected shapes, and shapes with holes can be embedded alike in the % function by exploiting
the property that its zero level set need not be simply connected. This is a major advantage
considering the vast variation that exists in the way characters are written. Shape boundary can be

disconnected even as a result of noise in the image. As an illustration of these variations, consider the
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(a) Eight-1 (b) Eight-2 (c) pFione=? (d) pFione—2

(&) Five-1 (I} Five-2 {g) pFrve=i (h) PFive=2

Figure 3: Qur level set shape representation scheme handles simple shapes, shapes with discon-
nected boundaries, and shapes with holes in a seamless fashion.

shapes shown in figure (3). The numeral eight in figure 3(a) can be described by one outer boundary
and two inner boundaries corresponding to the two holes present in its shape. On the other hand,
the eight shape in figure 3(b), although very similar to figure 3(a), has only one hole. Therefore,
there is a great difference in their boundary representations. The 9 functions computed from their
boundaries, however, are very “close” in the feature space as evidenced by the configuration of
their level sets in figures 3(c) and 3(d). This is because by embedding our shape boundary in a
higher dimensional function, we are focussing on its global structure instead of adhering to a local
one. Next, shapes with disconnected boundaries can also be handled naturally. Figures 3(e) and
3(f) the shapes of numeral five with disconnected and single boundary respectively. Again, their
corresponding signed-distance functions, shown in figures 3(g) and 3(h), are very similar. Lastly,
the differential properties of the shape like normal and curvature are embedded in the function ¢

and can be extracted upon demand.
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{a) Original distance {b) Truncated distance (¢} So.07(2)

Figure 4: Desired amount of shape information can be retained by truncating the distance function.
5 Handwritten Numeral Recognition

In this section, we shall analyze the effectiveness of the signed-distance function in shape recognition.
We apply our scheme to the problem of recognizing handwritten numerals from their images. A
back-propagation neural network classifier has been used in our recognition system. We train the
network on a random set of N sample shapes, store the weights of the network, and test it on N
testing samples. Qur feature vector is the signed-distance function expressed on a 16 x 16 grid.
Therefore, the neural network is a fully-connected architecture consisting of 256 input nodes, 10
internal nodes, and 10 output nodes corresponding to 10 numeral classes. The neural network
we use has been implemented by B. Kalman and is based on the ideas developed in [15]. This
version uses the quadratically convergent conjugate gradient descent method for minimizing the
error during the training process. In addition, the network minimizes a different error function
which according to [15] is superior to the traditional sum of squares error function.

Our numeral samples have been extracted from the NIST special databases 3 and 7 of segmented
characters. Prior to training, we perform the following preprocessing steps. First, we perform
a noise removal step and trace the boundaries of each numeral using a chain code procedure.
Following this, size normalization is done by finding the bounding rectangle of every numeral shape

and mapping it into a square region of side 0.5 and centered at the origin. During this processing
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step, care must be taken not to artificially skew the shape either horizontally or vertically. Next,
the signed-distance function is computed in the square region by considering all the contours found
by the chain code procedure.

For large distances, all characters have essentially the same values for the signed-distance function;
thus little distinguishing information is contained in these values. Conversely, very close to the
boundary, the difference in values for the signed-distance function may be large even between
two versions of the same character. Thus, we would like to determine the appropriate amount of
information to carry in our classification vector; that is, how much information should we use away
from the boundary?

We leave this issue up to empirical tests by capturing the detail in a given region around the zero
set by means of a filter function. If we plot the Euclidean distance measured from a given point,

we obtain the graph shown in figure 4(a). Define a function S, as follows:

t ft<0
Sa(t) — o ifi>a
,.5% + Eg:- + 1 otherwise

The plot of 5,(t) with « set to 0.07 is shown in figure 4(b). We thus represent shape by the
function S, 0 ¢ = So(9(z,y)). This definition effectively blocks all positive distances greater than
a. When a = 0, the function S,(v) simply represents the boundary and its interior. As the value of
« increases, we gradually approach the full signed-distance function. Figure 4(c) shows the surface

of a truncated signed-distance function.
5.1 Step 1: Neural Network Classification

Given the level set signed-distance function description of character shapes, we use a multiple neural
net approach to achieve high reliability. First, we train a network on a random set of 3189 numeral
samples and upon convergence test it on another set of 3158 samples. Given a testing numeral
sample, the trained network classifies it with a confidence value lying in the interval [0..1]. We can
improve the reliability by accepting only classifications made with high confidence and discarding
the rest. In figure 5(a), we show a plot of reliability vs. percentage discards on a uniform grid.
Note that the percentage of correctly classified samples is 95.47 with 0.0% discards and with 12.0%

discards, we get 98.27% of them right. We have also trained the neural net on over 10,000 samples
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and the classification rates are measurably better. Therefore, we believe that everything that
follows also holds for much larger sample sizes.

To understand how the parameter a in the function S,(%) affects the correct classification rate,
we train several nets on the truncated distance function each computed with a different value of a.
The plot of & vs the zero-discard classification rate is shown in figure 5(b). This curve was generated
by finding exact values of percentage correct (zero-discard) at a = 0.0, 0.025, 0.05, 0.1, 0.15, 0.2,
0.35, and smoothly interpolating at other points. From this plot it is clear that as we include more
distance information by increasing «, the neural network finds it easier to place character samples
into their correct classes. We have also noticed that the training time increases with decreasing e
Obviously, this trend does not continue for all values of @. As we mentioned before, the difference
between distance values of two shapes becomes fuzzier at points very far from the zero set. We
have quantized this notion in the above experiment by showing that the distance information at
points farther than 0.25 from the shape boundary does not add to the degree of generalization that
the neural net is capable of performing. We place the shape in a square box of size 0.5 ahd centered
at the origin.

Given the optimum box size in which to express the signed-distance function, the next issue is grid
size and grid point placement. We discretize the 3 function on a 16 x 16 grid. Our goal now is to
improve the quality of the feature vector that the neural network is training on. One way to do this
is to provide uniformly more informa‘cién by increasing the grid size to say 20 x 20. But it is known
[4] that networks with large feature vectors have poorer generalization capability. Alternately, we
could keep the grid size constant and work with different point placements. That way we hope to
capture different aspects of the same shape. We examine the following four options: uniform grid,
horizontal-stagger grid, vertical-stagger grid, and a grid that is staggered in both directions (see
figures 5(c)-(f)). We express the signed-distance functions on these grids and then train a neural
network on each one of them. Now, note that although the distance values at a grid point for
two different shapes can be close, the configuration of level curves passing throug;h it may be very
different. We capture this by computing the angle of the gradient vector on a uniform grid, i.e. the
value of tan“l(m), and train another net on the resulting feature vector. We have added to this

G fdx
list of feature vectors by computing the wavelet (using the Daubechies wavelets [10]) and Fourier
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Network Confidence % Discard % Correct Confidence % Discard % Correct

(U)niform 0.5 0.0 95.27 1.0 12.00 98.27
(H)orizontal 0.5 0.0 95.59 1.0 10.13 97.67

(V)ertical 0.5 0.0 95.63 1.0 8.58 97.95
(B)oth directions 0.5 0.0 95.18 1.0 9.97 97.74
(A)ngle 0.5 0.0 89.01 1.0 27.16 94.26
(W)avelet 0.5 0.0 95.75 1.0 13.29 98.28

Table 1: Single-net classification rates with confidence values set to 0.5 and 1.0.

transforms of the function ¥(z,y), but neither helped significantly in terms of our multi-network
approach described below.

In Table 1, we show the single-net classification rates resulting from the aforementioned feature
vectors trained and tested on 3189 and 3158 samples respectively. To improve the reliability further,
we apply the following rule to make a selection: for a pair of nets, say P, select a sample for
classification if both nets classify it with confidence 1.0 and the classes agree. This multi-network
approach is likely to produce higher reliability since our feature vectors capture different aspects
of the same shape. We could add to the number of nets that must agree to make a classification,
but that will only add to the number of discards. In Table 2, we list the results of passing 3158
samples to all possible pairwise nets.

Although the pairwise nets are discarding a large number of samples, it is unlikely that they are
discarding the same set of samples. Our next step is to decrease the number of these discarded
samples. To this end, we pass the discards generated by the H-A pair to all other pairs. We choose
H-A pair because it gives us the highest reliability, i.e., 99.70%. The results of this second pass are
given in Table 3. Following this, we put these two stages together to arrive at our final analysis as
shown in Table 4. A reliability factor of 99.56% results from the network combination H-A/V-W
after discarding 12.88% of the samples. The numeral samples in the above argument have been
selected from the NIST database 3 of segmented characters. The unconstrained character shapes in
NIST database 7 (see [43]) are known to be much harder to recognize. We have manually classified
around 6000 numerals from this database to conduct our experiment. By following a similar multi-

neural net approach on 2997 training and 2998 testing samples, we arrive at the results shown in
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Figure 5: (a): Reliability vs percentage discards on a uniform grid (b): Percentage correct vs the
cut-off parameter o (in So(3)) (c): Uniform grid (d): Horizontal-stagger grid (e): Vertical-stagger
grid (f): Staggered in both directions
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Net-Pair Chosen % Discarded (Correct) % Correct Wrong

U-A 72 93.56 (69) 95.83 3
U-W 671 40.03 (659) 98.21 12
U-H 649 42.00 (630) 97.07 19
UV 717 35.92 (701) 97.76 16
U-B 703 37.17 (688) 97.86 15
H-A 0 100.00 - -
HW 642 42.62 (633) 98.59 9
HV 676 39.58 (657) 97.18 19
H-B 655 41.46 (642) 98.01 13
V-A 93 91.68 (87) 93.54 6
V-W 712 36.37 (706) 99.15 6
V-B 750 32.07 (732) 97.60 18
B-A 95 91.51 (88) 92.63 7
B-W 705 36.99 (690) 97.87 15
AW 70 95.71 (67) 95.71 3

Table 3: Results of passing 3158%0.3543 = 1119 discarded samples of the pair H-A to all other
network pairs.

acceptance criteria with which to decide if a character is moving towards acceptance.

6.1 Flow Rules

We consider the following basic flows rules. All flows are numerically executed using the Osher-

Sethian level set algorithm [32].

e Modified Curvature Flow: The interface (that is, the boundary between the inside and outside
of a character) is moved inwards in its normal direction according to its curvature. In the
curvature flow analyzed by Gage [13] and Grayson [14], convex parts of the curve move
inwards while convex sections move outwards. Extensive numerical studies of such flows are
given in [38]. This flow serves to smooth out oscillations in the boundary, thereby reducing
noise in the shape boundary. We amend this flow as follows: we let the speed F’in the normal
direction be given by F' = max(K,0.0). Thus convex parts move inwards, but concave parts

stay fixed. As shown below, such a flow preserves some important features of characters.
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Net-Combination Chosen % Discarded (Correct) % Correct Wrong

H-A/U-A 2111 33.15 (2102) 99.57 9
H-A/U-W 2710 14.18 (2692) 99.33 18
H-A/U-H 2688 14.88 (2663) 99.06 25
H-A/U-V 2756 12.72 (2734) 99.20 22
H-A/U-B 2742 13.17 (2721) 99.23 21
H-A/H-A - - - -
H-A/H-W 2681 15.10 (2666) 99.44 15
H-A/H-V 2715 14.02 (2690) 99.07 25
H-A/H-B 2694 14.69 (2675) 99.29 19
H-A/V-A 2132 32.48 (2120) 99.43 12
H-A/V-W 2751 12.88 (2739) 99.56 12
H-A/V-B 2789 11.68 (2765) 99.13 24
H-A/BA 2134 32.42 (2121) 99.39 13
H-A/B-W 2744 13.10 (2723) 99.23 21
H-A/A-W 2109 33.21 (2100) 99.57 9

Table 4: Results of applying our multi-neural network classification approach to 3158 numeral
samples from NIST database #3.

Net-Combination Chosen % Discarded (Correct) % Correct Wrong

H-V/U-A 1672 44.22 (1661) 99.34 11
H-V/U-H 1735 42.12 (1721) 99.19 14
H-V/U-V 1561 47.03 (1549) 99.23 12
H-V/U-B 1839 38.65 (1824) 99.18 15
H-V/H-A 1683 43.36 (1670) 99.22 13
H-V/H-V - - - -
H-V/H-B 1835 38.79 (1817) 99.01 18
H-V/V-A 1536 48.76 (1526) 99.34 10
H-V/V-B 1610 46.29 (1596) 99.13 14
H-V/A-B 1779 40.66 (1764) 99.15 15

Table 5: Results of applying our multi-neural network classification approach to 2998 numeral
samples from NIST database #7.
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e Outwards Constant Flow: The interface propagates outwards with constant speed, see [36,

32, 38].

Horizontal Anisotropic Flow: As discussed in [39], anisotropic flow is an integral part of crystal

growth and dendritic solidification. The anisotropic symmetry gives preferred directions of
growth. Here we consider two-fold symmetry in the horizontal direction, which means that

shapes move under speed laws which prefer to move them in horizontal directions.

Vertical Anisotropic Flow: Same as the above, except flow in the vertical direction is preferred.

@

®

Growing Limbs: One would like a flow that performs the opposite of the curvature flow, in
that limbs (regions of high positive curvature) grow outwards. However, as stated in [36],
this is the backwards heat equation which is ill-posed and numerically unstable. We instead
invent a variation on this idea which grows limbs for a short time. Begin by flowing under
curvature flow for a given number of time steps. Then, using this final shape and the initial
shape, interpolate backwards in time to a previous state, which will have larger “limbs”
at places where the initial curvature is positive. Repeat the process of curvature flow to
smooth oscillations in the front, plus backwards time interpolation to further extend limbs.
This process is unstable, in that refining the time step produces uncontrollable oscillations.

However, done on a coarse enough scale, it produces shapes which exaggerate and accentuate

limbs and protrusions.

In the next set of figures, we demonstrate the motion of various characters in the discard set
under these flow rules. First, consider moving a shape boundary with speed F(K). Consider the
shape of numeral nine in figure 6(a). This shape has protruding arms and therefore could not
be accepted with high confidence. We move its boundary with speed F' = K as shown in figure
6(b). Convex regions move inward and concave regions outward. The protrusions are smoothed
out, but we also lose the essential shape features in the bargain. Next, we move it with speed
F = min(K,0.0) as shown in figure 6(c). This flow is not very useful because concave parts move
out, the hole disappears, and the shape becomes the convex hull of the enclosed points in the limit
t — oo. On the other hand, the flow with speed F' = max(X,0.0), shown in figure 6(d), retains

holes present in a shape, and will smooth out the protrusions in the boundary.
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(a) Original shape by F=K (¢) F = min(K,0.0) (d) F = max(K,0.0)

(e} F=1 (Y ka=2,6=0 (g8) ka=20 =n/2 (h) ks = 3,60 =0

(k} Vertical growth (1) Horizontal growth

(m) Original shape {n) Hole formation {0} Original shape {p) Modified shape

Figure 6: Results of moving character shapes under various flow rules. (b)-(d): curvature flow, (e):
constant expansion, (f)~(h): anisotropic expansion, (j): limb growing, (k), (1), (n), (p): anisotropic
growth,
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{a) Original shape (b} Perturbed shape (¢) Original shape (d) Perturbed shape

(e} Original shape (f) Perturbed shape {g) Original shape {(h) Perturbed shape

Figure 7: Comparison between original and perturbed character shapes.

Now, we consider moving a given shape boundary at constant speed, F' = 1.0, and under
anisotropy which is modeled by multiplying the speed with the coefficient (1 — A cos(kaf + 6p)).
Here, # is the angle between normal 7 and the z-axis. If A > 0, the boundary moves with k4-fold
symmetry with the symmetric axis making an angle 8y with the z-axis (see [39]). In figure 6(e),
we show the boundary of numeral four moving with unit speed. Expansion can be carried out in
preferred directions by setting the parameters k4 and 8p; two-fold symmetry with p = 0 in figure
6(f), tow-fold symmetry with 6 = /2 in figure 6(g), and three-fold symmetry with 6y = 0 in figure
6(h).

Next, we investigate the idea of growing limbs in regions of high curvature. For some badly
written characters, this flow rule will serve to accentuate their prominent shape features. As an
example, consider the shape of numeral two in figure 6(i). The idea is to flow under the speed
F = max(K,0.0) for a small number of time steps and then interpolate backwards in time to a
previous state. This cycle can be repeated for a couple of times for further growth. By appending

the anisotropic term to the speed, i.e., F' = (1 — A cos(k 40 + 6p)){max(K,0.0)}, we can also achieve
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growth in preferred directions. In figure 6(j) we show three steps of isotropic growth, i.e., with
A = 0, and in figures 6(k) and 6(1), we show anisotropic growth with two-fold symmetry in vertical
and horizontal directions respectively. Anisotropic limb growing also closes off a hole in the numeral
eight (see figures 6(m) and 6(n)). Finally, in figures 6(o) and 6(p), we depict the initial and modified
shapes of numeral three which has been perturbed using horizontal growth rule. For comparison,

in figure (7), we place the original and the perturbed shapes of these numerals beside one another.

6.2 Step 2: Processing the Discarded Samples

In the second step of our recognition scheme, we take the discarded samples from ‘the previous
step and flow them under the influence of various flow rules discussed above. A numeral sample
is a member of the discard set either if one of the nets does not classify it with high confidence
or if the classifications of a net pair do not agree. Our idea is to steer the character sample into
acceptance by perturbing its shape. However, not all character shapes move into correct category
upon deformation. Therefore, we have to device an acceptance criterion.

To begin, consider the flow rule F = max(K,0.0). Given a character, we create three feature
vectors each corresponding to three time instants in its evolution. Let vy be the initial feature
vector and vy, v, and vy be the feature vectors collected after flowing the initial shape for 50,
100, and 150 time steps respectively. We perform the flow calculations using the Osher-Sethian
algorithm on a 64 x 64 grid with a time step At = 0.000025. Although the flow computations are
done on a finer grid, we finally express the signed-distance of the resulting shapes on a 16 x 16
uniform grid. Following this we present the four feature vectors to the uniform grid neural network.
Let sg, $1, 82, and s3 be the confidence values (in the range [0..1]) with which the network classifies
the shapes as ¢q, ¢1, €2, and ¢3 respectively. We accept this classification if flowing has not changed
the class, i.e., all ¢;s are the same, and the network classifies them with increasing confidence; in
other words, 53 > $9 > 81 > sg. If the above conditions are not met, we discard that character.

Consider the (0.3865 % 2998 =) 1159 discarded characters from NIST database 7. When we
flow them under F' = max(K,0.0) and apply the acceptance criterion described above, we classify
93.96% of them correctly after discarding 54.27% of the shapes. On NIST database 3, on applying
the same rule to (0.1288* 3158 =) 407 discarded shapes, we classify 92.78% of them correctly after
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Flow Rule NIST Database## % Discarded % Correct

F = max(K,0.0) 7 54.27 93.97
F = max(K,0.0) 3 48.89 92.78
Horizontal Growth 7 62.81 86.77
Horizontal Growth 3 54.32 81.47
Vertical Growth 7 45.85 80.06
Vertical Growth 3 57.45 75.70

Table 6: Flow results on the discarded numeral shapes from NIST databases 3 and 7. The percent-
ages were calculated on 1159 samples for database 7 and 407 samples for database 3.

discarding 48.89% of the shapes. These results are shown in Table 6.

Next, we grow limbs with anisotropy. We only consider two-fold symmetry with 8y = 0 (vertical
growth) and @ = = /2 (horizontal growth). In both cases, for each character, we create three
feature vectors gg, g1, and gz; go corresponds to the initial shape and g1, go are collected after each
successive growing step. Following the same procedure as above, we present them to the uniform
net to obtain three classes with corresponding confidence values. Now, we accept a classification
if the classes agree and the network classifies them with increasiné confidence. The results of this
flow procedure are also shown in Table 6.

Finally, for database 3, when we put the two steps together, multi-neural net and flow under
F = max(K,0.0), we correctly recognize 99.08% of the numerals after discarding 6.30% of them.
The figures for database 7 are 98.05% correct with a discard set of 20.98%. As further experiments,
we could continue this two-step recognition procedure a step further by presenting the discard set of
one flow to the other. For example, if we grow horizontal limbs on the (2998*.2098=) 629 discarded
samples from database 7 and put results from three stages together, we get 96.20% correct after
discarding 13.00% of the numerals. Therefore, while the classification rates will remain high as one
chains these procedures together, there is a limit to how much the discard set can be reduced; since
at some point the discard set will consist almost entirely of characters “too far” from the training
set of the neural net scheme. Thus, for the final set of discards one might choose to switch from
a neural net approach to an extensive search like the K nearest neighbor approach [8]. Figure 8

shows a sample of numeral shapes that have been recognized correctly by our algorithm.
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Figure 8: A sample set of numeral shapes that have been correctly classified.
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7 Conclusions and Discussion

In this paper, we have tried to show that the level set formulation provides a very good shape
descriptor for object recognition. Furthermore, deformation in the shape may be easily performed
to search for nearby shapes which are easily classified. For the NIST database 3, we achieve
recognition rates of 99.08% with 6% discard; for NIST database 7, we achieve 98.05% discard with
around 20% discard.

We believe that these results are excellent. Most commercial packages achieve accuracy values
similar to ours, but on a very hard database such as the NIST database 7, and their discard rates are
about half of ours; see [43] for extensive testing of various optical character recognition techniques
on the same databases. However, we view this as a very important point. Those schemes typically
trained on over 100,000 characters; this is a sample training set 30 times larger than ours. Roughly
speaking, they have over 100,000 known points where the shape of a character is linked to its
classification category.

In contrast, we have trained on only about 3000 characters. There are several reasons for this.
First, we wanted to show that the level set function is such a powerful shape descriptor that few
known examples between trial shapes and classification categories are enough to obtain very high
classification rates. Second, we wanted a significant enough discard set so that the idea of identifying
shapes through deformation could be explored. Third, we lacked computing resources to perform
a training run on a very large sample.

We believe that a neural net trained on 100,000 using the above level set shape descriptor and
secondary classification scheme under reformation motions will yield significant improvement in
our final discard rates; first, because more elements will be identified on the first pass, and second,
because the deformation mechanism will be able to locate a familiar shape in the much denser space
of known test examples. We are in the process of performing this classification now using a public

domain neural net code; results of this work will be reported elsewhere [24].
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