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Abstract 

A Discrete Variable Representation for 
Electron-Hydrogen Atom Scattering 

by 

Lionel Francis Gaucher 

Doctor of Philosophy in Chemistry 

University of California at Berkeley 

Professor William H. Miller, Chair 

1 

A discrete variable representation (DVR) suitable for treating the quan­

tum scattering of a low energy electron from a hydrogen atom is presented. The 

benefits of DVR techniques (e.g. the removal of the requirement of calculating multi­

dimensional potential energy matrix elements and the availability of iterative sparse 

matrix diagonalization/inversion algorithms) have for many years been applied suc­

cessfully to studies of quantum molecular scattering. U nfortl.mately, the presence of a 

Coulomb singularity at the electrically unshielded center of a hydrogen atom requires 

high radial grid point densities in this region of the scattering coordinate, while the 

presence of finite kinetic energy in the asymptotic scattering electron also requires 

a sufficiently large radial grid point density at moderate distances from the nucleus. 

The constraints imposed by these two length scales have made application of current 

DVR methods to this scattering event difficult. 

Chapter 2 of this thesis is a short aside demonstrating the superiority of the 

S matrix formulation of the Kohn variational principle over the Schwinger variational 

principle for elastic S-wave scattering of an electron from a hydrogen atom within 

the static exchange approximation. It is shown that while the Schwinger principle 

suffers from the same spurious non-physical singularities usually associated with the 
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K matrix formulation of the Kohn principle, the S matrix formulation demonstrates 

no such defect. 

Chapter 3 introduces the main work of this thesis. A DVR for low en­

ergy electron-hydrogen atom scattering is developed which creates a radial grid point 

density well-suited to the two length scale constraints previously mentioned. This 

is accomplished through the diagonalization of the position operator within a trun­

cated basis set of reference potential eigenstates. The reference potential chosen is 

the effective local potential for scattering from a static hydrogen ¢>26 state since this 

demonstrates properly-scaled Coulomb behavior at the atomic nucleus and Yukawa 

behavior asymptotically. The multi-dimensional DVR is composed of a direct prod­

uct of two such radial DVRs and one angular Gauss-Legendre DVR, partitioned into 

the proper irreducible group representations. 

Chapter 4 combines this composite DVR in the S matrix formulation of 

the Kohn variational principle to calculate S matrix elements and eigenphase sums 

for electron-hydrogen atom scattering for Jtotal = 0 between the n = 2 and n = 3 

thresholds. Results are compared to those of other theoretical methods. 

Chapter 5 proposes an important improvement in the technique. While the 

condition number of the multi-dimensional Hamiltonian is found to be too large to 

permit application of low-memory iterative matrix inversion technology, a method is 

propo~ed which greatly reduces the condition number of the Hamiltonian by effectively 

filtering out high energy elements of the L2 basis. 
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Chapter 1 

Introduction 

1.1 Classic Studies of e- + H Scattering 

The development of the theory of quantum mechanics ushered in a new era 

in the study of basic physical phenomena, and the theory of scattering processes has 

been influenced greatly by it. Extensive reviews can be found in Wu and Ohmura [1], 

Mott and Massey [2], Newton [3], Geltman [4], Smith [5], Joachain [6], and Taylor 

[7]. 

It is not surprising that a quantum mechanical treatment of scattering phe­

nomena would find its first applications in the most basic of scattering processes. Due 

to its high degree of symmetry and simplicity, the scattering of a low energy electron 

from a hydrogen atom is obviously in this category. Consequently, a tremendous 

amount of theoretical study has been brought to bear on this most simple of atomic 

scattering events in an effort to test various theoretical methods. 

An initial approach to this problem usually begins with the so-called coupled­

channel expansion [8], in which the total two-electron wavefunction is expanded in a 

properly symmetrized sum of projections onto various hydrogen bound states to give 

w(Rt, R2, 1) = 2: A Fi(RI)<f>i(R2, 1) (1.1) 
i 

where the operator A provides the proper symmet-rization. (A concise review of this 

expansion is given by Lester [9].) Unfortunately, completeness in such an expansion is 
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not approached without inclusion of a non-denumerable set of continuum functions, 

and proper treatment of the polarizability of the hydrogen atom becomes very difficult 

[10]. This renders ineffective expansions which are restricted to physical eigenstates, 

necessitating the inclusion of so-called pseudo-states. These can be thought of as 

closed-channel virtual states which exist in the continuum, and they are often de­

rived by diagonalization of the physically correct Hamiltonian for the system within 

a large set of L 2 functions. The resulting coupled differential equations (which be­

come integro-differential equations after the proper symmetrization) are then solved 

through a numerical integration algorithm in which proper boundary conditions are 

imposed on the total spatial wavefunction. An excellent review of early use of this 

class of methods is provided by Burke and Smith [11]. 

Unfortunately, the solution of the integra-differential equations through the 

use of these numerical integration methods has proven to be a difficult and com­

plicated undertaking. Not surprisingly, instabilities are encountered during the nu­

merical propagation procedure which require special treatment. And when electron 

exchange is included in the total wavefunction, the integro-differential equations must 

be solved iteratively until self-consistency is achieved. 

Variational basis set methods have proven to be extremely useful alternatives 

to numerical integration algorithms, and excellent reviews of these methods as applied 

to electron-atom scattering are provided by Callaway [12] and Nesbet [13]. Several 

different variational methods exist, but all are based on the existence of a functional 

which is stationary with respect to arbitrary variations in the wavefunction. 

One of the oldest variational principles associated with quantum scattering 

theory is the Schwinger variational principle [14] which is based on th~ Lippm_~nn-_ 

Schwinger integral equation [15]. This formalism has been used extensively to study 

electron-atom scattering phenomena, ari.d has also been applied to electron-molecule 

scattering (e.g. Lima et al. [16]). Unfortunately, despite the fact that the Schwinger 

principle naturally incorporates the proper scattering boundary conditions into the 

calculation, this variational principle requires the expensive calculation of matrix 

elements of the scattering Green's function G0 between pairs of L2 basis functions. 

The Kohn variational principle [17] provides an alternative to the Schwinger 

!./ 
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principle. And although it does require the calculation of a small number of energy­

dependent integrals, it only requires integrals of the Hamiltonian rather than of 

the scattering Green's function. This variational principle combined with K ma­

trix boundary conditions provided the basis for an initial application of the method 

to elastic S-wave electron-hydrogen scattering by Schwartz [18]. Schwartz used two­

electron L 2 functions of the type employed by Hylleraas [19] in previously performed 

bound state calculations: 

X - _1_ ""' c e-(,;f2)(Rl+R2)Rl (Rm ~n ± Rn ~m) (1.2) - 47rV2" L..J lmn 12 1 .. "2 1 .. "2 • 
l,m,n~O 

Schwartz found that one of the defects of the Kohn variational principle was 

the presence of spurious singularities in the calculation of phase shifts as a function 

of the non-linear scale parameter K. Analysis of the origin of these anomalous sin­

gularities led to the development of several alternative Kohn formalisms which have 

been reviewed by Truhlar et al. [20] and Callaway [12]. The various incarnations 

of the Kohn principle, together with a wide range of various pseudo-state L 2 basis 

sets, have been widely applied in the study of electron-hydrogen scattering as well as 

electron scatt.ering from multi-electron atoms [21]. Kohn calculations have also been 

performed on electron-molecule systems with success [22], and the development by 

Miller [23, 24] of a Kohn formulation with complex boundary conditions has provided 

a method free of the anomalous singular behavior found in the K matrix formulation. 

1.2 Discrete Variable Representations 

Computational scattering theory has from its beginning been limited by 

the speed and memory requirements of its computations. And while modern com­

putational technology has improved quite rapidly in both respects, the aspirations 

and imaginations of theoretical physicists and che~sts constantly look beyond the 

prevailing technological limitations. The development of the discrete variable repre­

sentation (DVR) has provided an extremely useful tool for extending the applicability 

of current technology to physical problems previously thought to be unapproachable. 
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The main purpose of this thesis is the adaptation of the modern DVR to 

the basic study of quantum electron-atom scattering, beginning with the simplest 

example of low energy electron-hydrogen scattering. As will shortly be discussed, 

discrete variable representations have characteristics which make them very useful 

for this endeavor. 

The genesis of DVR begins with the landmark work of Harris, Engerholm, 

and Gwinn [25], in which a method is presented which utilizes a quadrature approxi­

mation in the calculation of matrix elements of quantum mechanical operators. The 

method is simple: 

1. The matrix representation of the position operator x is calculated within a 

particular basis set { </>n}. 

2. A unitary-similarity transformation U is derived within this basis which diag­

onalizes the position operator to give the new representation of the position 

operator X 1 = U-1 ·X • U. 

3. This transformation defines a new basis set { ¢>' n} in which the position oper­

ator is diagonal. The potential energy matrix V' in this new representation is 

approximated by setting its diagonal .. elements to the values of the potential at 

the eigenvalues of the original x matrix: V'ii' = V(x'ii') 8ii'· 

4. Other quantum mechanical operators Q are placed in the new representation 

by the same transformation: Q' = u-1 • Q. u. 

The approximation of the potential matrix in this new representation is most accu­

rate when the potential function V(;) ~an be easily r~presented by a- short Taylor 

expansion in x, and its accuracy increases with the number of x eigenfunctions used. 

Dickenson and Certain [26] showed that the V matrix elements generated 

by this method are equivalent, to Gaussian quadrature approximations [27] when the 

original basis set { </>n} is composed of properly weighted orthogonal polynomials. 

Formal application of these techniques to the coupled-channel equations of quantum 

scattering was done by Lill, Parker, and Light [28], and formalization of the gener-

\.1 
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alized DVR in which the set of grid points {Xi} can be chosen independent of the 

original basis set { <f>n} was performed by Light, Hamilton, and Lill [29]. 

The benefits of the DVR over a more conventional variational basis represen­

tation (VBR) utilizing standard basis functions became clear for multi-dimensional 

problems. Instead of a direct product of sets of spatially-diffuse basis functions, the 

multi-dimensional basis set could be represented by a direct product of grid point 

basis sets. The calculation of potential matrix elements was now reduced to the cal­

culation of function values at points in multi-dimensional space, rather than expensive 

multi-dimensional integrations. The DVR provided a potential matrix V which was 

diagonal. 

But another great benefit is realized for Hamiltonian matrices H which are 

highly separable in the individual spatial coordinates. The resulting Hamiltonian in 

the DVR is sparse. This is due entirely to the fact that the potential matrix V in 

the DVR is diagonal. For an ordinary spatially-diffuse basis set representation, the 

multi-dimensional kinetic energy matrix T is usually sparse due to the separability 

of the operator. 

(1.3) 

But the potential energy matrix V in a conventional basis is usually not sparse at all. 

It is full, and therefore the entire Hamiltonian H is full. This means that not only 

must expensive multi-dimensional integrations be performed, but the entire matrix 

must be stored in order to calculate its eigenvalues or to perform inversion of the 

Hamiltonian (or some function of the Hamiltonian). This is a tremendous liability 

for multi-dimensional problems ~ince the storage requirements of the Hamiltonian 

grow very quickly as its dimensionality increases. But usually the complete storage of 

the Hamiltonian is not necessary in the DVR. One need only store the values of the 

potential at the composite grid points and the values of the one-dimensional matrices 

making up the remainder of the Hamiltonian (kinetic energy and centrifugal barrier 

terms). 

The development of eigenvalue and matrix inversion algorithms specifically 

designed for sparse matrices has enabled performance of these operations on extremely 
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large matrices which demand far too much memory to permit complete storage. This 

offers an attractive alternative t~ decomposition/ Gaussian elimination algorithms. 

For example, the algorithms developed by Lanczos [30, 31, 32] merely require a sub­

routine which multiplies the particular matrix A being inverted or diagonalized by 

an input column vector: 

y=A·x. (1.4) 

The algorithm generates solution vectors (or eigenvectors in the case of a diagonal­

ization) within a subspace called the Krylov space [33] defined by 

(1.5) 

in which x 0 is a random seed vector and N is the number of A multiplications which 

have been performed during the iterative inversion (or diagonalization). 

The benefit of such algorithms for sparse matrices is obvious. If the vast 

majority of matrix elements in the matrix A are zero, the operation of matrix mul­

tiplication can be made computationally inexpensive. In addition, the multiplication 

can be accomplished without storing the entire matrix. It is only necessary to store 

"bookkeeping" information which identifies non-zero matrix elements within a row of 

the matrix A. 

The applications of discrete variable representations in the chemical litera­

ture are quite numerous. Lill, Parker, and Light [34] have presented the application 

of a combination of a finite basis representation (FBR) with a DVR for atom-diatom 

collisions. Choi and Light [35] have successfully applied DVR to the determination of 

bound and quasibound states of the Ar-HCl van der Waals complex. Leforestier [36] 
• has presented-a grid representation for-rotating triatomic molecules .using the gener-

alized DVR of Light, Hamilton, and Lill [29], and a DVR based on Gauss-Lobatto 

quadrature [37, p. 888] and Lagrangian interpolation polynomials was developed by 

Manolopoulos and Wyatt [38] for use in studying-quantum reactive molecular scatter­

ing within the formulation of Miller [39]. A potential-optimized DVR representation 

in which the placement of the grid points is dictated by the shape of the potential en­

ergy surface can be found in the calculation of the quantum mechanical rate constant 

for the reaction H + 0 2 --+ OH + 0 by Leforestier and Miller [40]. 
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Colbert and Miller [41] have developed an extremely general DVR which 

provides equally-spaced grid points (see also Schwartz [42]) and has proven use­

fu1 in reactive molecu1ar scattering [43]. Seideman and Miller [44] have computed 

cumulative reaction probabilities using this DVR by augmenting it with a steadily 

increasing complex (optical) potential in the asymptotic region of the scattering co­

ordinate. Thompson and Miller [45] have used a similar formalism to calcu1ate initial 

state-selected and state-to-state molecu1ar reaction probabilities. A technique for re­

formulating the calculation of the cumu1ative molecular reaction probability as an 

eigenvalue problem using the DVR of Colbert and Miller [41] and the complex poten­

tial of Seideman and Miller [44] is presented by Manthe and Miller [46] and has been 

used to calculate the rate constant for the reaction H2 + OH---+ H2 0 + H [47]. 

Time-dependent methods which apply discrete variable representations in 

the direct calculation of the time-dependent wavefunction through operation of the 

quantum mechanical time propagator on an initial state, indicated by 

. iilt 
,P(R, t) = exp( -T) ,P(R, o), (1.6) 

are quite popular and extensively used. An excellent review is given by Kosloff [48]. 

1.3 Outline 

The general subject of this thesis is the study of quantum electron-hydrogen 

scattering at low energies. Chapter 2 [49] is a short aside in which it is discovered 

that although the Schwinger variational principle has been shown by Apagyi, Levay, 

and Ladanyi [50] to produce spurious singularities when applied to S-wave electron­

hydrogen scattering within the static exchange approximation, the S matrix formula­

tion [24] of the Kohn variational principle has no such singu1arities when applied to 

the same scattering system . 

But the main focus of this thesis is the application of discrete variable repre­

sentation methods to the problem of low energy electron-atom scattering, specifically 

to the simplest case of electron-hydrogen scattering for Jtotal = 0. Unfortunately, the 

application of specific DVR techniques which have proven to be usefu1 in quantum 
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molecular scattering do not provide adequate treatment of quantum electron-atom 

scattering. Chapter 3 presents the development of a DVR for electron-atom scat­

tering which is tailored specifically to the physics of these events and alleviates the 

particular mathematical problems which result from the scattering of electrons from 

atoms. Chapter 4 applies this theory to the quantum scattering of an electron from 

a hydrogen atom at energies between then = 2 and n = 3 thresholds for Jtotal = 0. 

Chapter 5 presents an improvement to the theory which would permit the application 

of low memory iterative matrix inversion algorithms to the calculation. 



•. Chapter 2 

on·. the Absence of Anomalous 

Singularities in the S Matrix 

Version of the Kohn Variational 

Principle 

2.1 Introduction 

9 

One of the simplest variational principles associated with quantum scatter­

ing theory is the Kohn Variational Principle [17]. It shows a striking similarity to 

the Raleigh-Ritz Principle, which is commonly used in the variational calculation of 

eigenvalues in standard quantum mechanical bound state problems. The presence of 

an inhomogeneous boundary condition in the scattering problem merely introduces a 

surface term into the formula, so that the functional which is extremized in the Kohn 

principle takes the form 

F = F + ({/;Jil- EJ{/;) (2.1) 

where{/; is the trial wavefunction which is extremized and satisfies the proper bound­

ary conditions, if is the Hamiltonian for the system, and E is the total energy of the 

system. The inhomogeneous term F is the boundary condition term which depends 
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upon which formulation of the Kohn principle is being employed. 

The application of the Kohn principle in actual potential scattering is quite 

simple. One need merely calculate matrix elements of the Hamiltonian as a function of 

a particular basis set. Unfortunately, past applications of the Kohn principle with K 

matrix boundary conditions [18, 13] have demonstrated the presence of non-physical 

anomalous singularities. Oddly enough, the S matrix formulation (using complex 

basis functions rather than the purely real sine and cosine functions) of the Kohn 

principle provides a mechanism by which these "Kohn anomalies" can be avoided 

[23]. The S matrix formulation [24] has provided a useful means to solve molecu­

lar reactive scattering problems [51, 52, 53, 54] as well as electron-atom/molecule 

scattering problems [55, 56, 22, 57]. 

Another variational principle widely used in the study of scattering phe­

nomena is the Schwinger Variational Principle [14, 58]. It has found wide applica­

tion in the study of electron-atom scattering [59, 16]. It is more difficult to apply 

than the Kohn principle because it requires the calculation of matrix elements of the 

energy-dependent operator VG0 V where Vis the scattering potential and G0 is the 

energy-dependent Green's function for a convenient reference problem. 

One of the desirable features of the Schwinger principle is that until recently 

it was thought that it provided an "anomaly-free" scattering'calculation. But Apagyi 

et al. [50] have applied the Schwinger principle to the problem of S-wave electron­

hydrogen scattering within a static exchange approximation and found the existence 

of exactly such non-physical singularities when the non-local portion of the static 

exchange potential is included. (The anomalous singularities are not found when 

only the local, non-exchange portion of the potential is included.) _ 

This has important implications for applications to quantum mechanical 

reactive scattering theory. The rearrangement of atoms in a reactive collision of 

molecules has been shown by Miller [39] to generate similar non-local exchange terms 

in the applicable coupled-channel equations. As such, anomalous singularites could 

in principle occur in these calculations too. It is the purpose of this chapter to apply 

the S matrix version of the Kohn variational. principle to the same physical system 

studied by Apagyi et al in an effort to determine whether this method suffers from 
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the same unfortunate characteristic. 

Section 2 of this chapter provides a short review of the S matrix formulation 

of the Kohn variational principle and compares it to the K matrix formulation, while 

demonstrating why the S matrix formulation is free from the aforementioned non­

physical anomalies. Section 3 presents the results of applying the S matrix formulation 

to the S-wave static exchange approximation of e- + H scattering and compares these 

results to the results of Apagyi et al. (It will be noted that the same basis set is used 

in both calculations.) 

2.2 S Matrix Kohn Variational Principle 

In this section, the main points in the derivation of the S matrix formulation 

of the Kohn variational principle are reviewed. A more detailed description is provided 

by Zhang, Chu, and Miller [24]. Atomic units are used throughout this section (n = 

me= 1). 

In the S matrix formulation of the Kohn principle, the functional in (2.1) 

which is treated variationally is the S matrix itself associated with a trial wavefunction 

'lj;: 

S[~] = s + i(~lii- El~}. (2.2) 

Here,~ is a trial function which is treated variationally and has (for the case· of elastic 

scattering involving only one open channel) the asymptotic form 

(2.3) 

As this point, it is important to state a convention which is used throughout this 

chapter. The wavefunction in the "bra" portion of bra-ket notation is not complex­

conjugated. This provides for a simplification of notation in more complicated for­

mulae. (A more detailed explanation of this general aspect of the Kohn principle 

is provided by Mott and Massey [2, p. 116].) Also, elastic scattering is assumed 

throughout the remainder of this chapter when the S matrix is not printed in bold­

face type. 
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The trial function {; is expanded in a .linear combination of L2 basis functions 

as well as two non-L2 functions employed to enforce the inhomogeneous boundary 

condition as R --+ +oo: 
N 

{i;(R) = -u0 (R) +I: c,u,(R). (2.4) 
l=l 

The function u0 is regular at the origin (R =b) and has the proper asymptotic form 

for the particular scattering energy: 

li (R) _ k-1 -ikR m u0 - 2e . 
R-+oo 

(2.5) 

The regularization at the origin is usually accomplished through the use of a multi­

plicative switching function f which has the asymptotic forms 

{ 
0 ifR=O 

f(R) = 
1 as R--+ +oo. 

(2.6) 

The function u1 (R) = u~(R), which provides the out-going wave boundary condition. 

The remaining set of functions { u,}, where l = 2, 3, 4, ... , N, are simply the basis of 

L 2 functions chosen to span the interaction region. 

The variational procedure determines the coefficients { c1}. This is accom­

plished by substituting (2.4) into (2.2) and determining the extremum of S by solving 

the system of simultaneous linear equations given by 

a --a S[¢] = o. 
C[ 

(2.7) 

Having found the expansion coefficients { c,}, these are then substituted back int~ 

(2.2) to give the final value for the S matrix. When this procedure is done in its · 
-- - - -

general form, the formula for S becomes 

where 

S = i (Moo- M~ · M-1 
• M 0 ) 

Moo {uoiH ~ Eluo) 
(Mo)l - {utiH- Eluo) 
(M)ll' {uti if- Elu,) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 
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and l, l' = 1, ... , N. 

Unfortunately, the matrix inversion M-1 in (2.8) is dependent on the scat­

tering energy. In order to provide a more practical calculation, the energy-dependent 

portion of the M matrix is partitioned out using the Lowdin-Feshbach partitioning 

identity 

(2.12) 

in which the "P" subscript represents the partition containing energy-dependent u1 

function. This results in a more practical expression for S given by 

C2 
S = i (B- B..) (2.13) 

where 

B - Moo - M~ · M-1 · Mo (2.14) 

c = · M1o - M~T · M-1 · M 0 (2.15) 

in which 

M10 = (u1IH- Eluo) (2.16) 

and the matrices M 0 and M are restricted to index values l = 2, ... , N. 

As mentioned previously, the K matrix formulation of the Kohn variational 

principle is known to be plagued by anomalous non-physical singularities, whereas the 

S matrix formulation presents no such problem. The reason for this difference is based 

on the different ways that the two methods impose the proper boundary conditions 

on the scattering wavefunction. A short discussion of the K matrix formulation is 

useful. 

The proper expression for the functional in (2.1) when applied with K matrix 

boundary conditions is give by 

K[¢] = k- 2{¢1H- El¢}. (2.17) 

Here, the trial wavefunction ¢ is also regular at R = 0, but the asymptotic form is 

given as 
- 1 -

lim '1/;(R) = k-2[sin(kR) + K cos(kR)]. 
R_,.+oo 

(2.18) 
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There is a corresponding difference in the non-L2 portion of the basis set. An expan­

sion of the wavefunction similar to that given in (2.4) is employed, but the functions 

u 0 and u1 are replaced with functions u0 and u1 , respectively. These functions are 

also regularized at the origin, but have the asymptotic forms 

(2.19) 

(2.20) 

Using the same technique described above for calculating the S matrix, the 

K matrix is found to be 

I< = -2 (Moo- M~ · M-1 
• M 0 ) (2.21) 

where the new matrices Moo, M 0 , and Mare now calculated using u0 and u1 instead 

of u 0 and u1 . 

Singularities in such a computation will occur when the matrix M is singular 

and cannot be inverted. It is immediately apparent that the matrix M found in the K 

matrix formulation is real symmetric, and hence all of its eigenvalues are real. These 

eigenvalues are those of the matrix H-E. And so singularities occur when the total 

scattering energy E corresponds to one of the eigenvalues of H. 

On the other hand, in the S matrix formulation the matrix M of (2.8) is 

complex-symmetric. Since the eigenvalues of the corresponding Hamiltonian H are 

not real, singularities as a function of scattering energy E cannot occur regardless of 

the parameters used in this calculation. The values of E which cause the S matrix 

formulation of M to be singular are the ~?lution~ to the equation 

IMI=O. (2.22) 

These values of E are the Siegert eigenvalues [60] which characterize scattering reso­

nances. These are complex energy poles of the S matrix which have a finite imaginary 

part -ir /2 indicating the lifetime 1/r of the resonance. Therefore, the S matrix for­

mulation is free of the anomalous singularities which plague the K matrix formulation. 
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2.3 Static Exchange e- + H Scattering 

In this section, the S matrix formulation of the Kohn variational principle 

is applied to S-wave elastic scattering of e- + H where the hydrogen atom is in a ¢>Is 

state and a static exchange approximation is used. Again, atomic units are assumed . 

The static exchange approximation assumes that the bound electron remains in a ¢>Is 

state without any distortion (i.e. a mean field approximation), while still assuming a 

properly symmetrized form for the total spatial wavefunction based upon the electron 

spin state of the system, S = 0 (singlet), or S = 1 (triplet). (A review of this 

approximation can be found in reviews by Mott and Massey [2, p. 522], and Burke 

and Smith [11, p. 471].) 

The reduced dimensionality Schrodinger equation for the scattering electron 

is found to be 

(2.23) 

where EI is the asymptotic translational energy of the scattering electron and there­

fore Etotal = EI + €ts is the total energy of the system. ( €ts = - ~ is the energy of 

a 1s hydrogen atom.) The potential V = Vo + W is composed of a local portion Vo 
given by 

(2.24) 

together with a non-local exchange portion W which operates on a general function 

to give 

W j(R) = fooo w(R, R') f(R') dR' 

in which the kernal w(R, R') is given by 

w(R, R') = -4( -1)8 
( E1 - €18 - ~>) Re-R R' e-R'. 

Here, S = 0 for singlet scattering and S = 1 for triplet scattering. 

(2.25) 

(2.26) 

The choice of L 2 basis set is identical to that of Apagyi, Levay, and Ladanyi 

[50): 

(2.27) 
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where a is a non-linear tunable parameter and l = 2, 3, ... , N. The non-L2 functions 

are chosen to be 

uo(R) 

u1 (R) - u~(R) 

(2.28) 

(2.29) 

where the simple function J(R) - 1 - e-aR is chosen as a regularizing switching 

function. 

2.4 Results and Discussion 

The calculation of Apagyi, Levay, and Ladanyi (50] studied elastic scattering 

of e- + H using the Schwinger variational principle with a static exchange approxi­

mation. Figure 2.1 shows values of tan 8 for singlet scattering at k = 1 au for various 

values of the non-linear scale parameter a. Figure 2.1a shows the results of the 

Schwinger variational study of Apagyi et al. [50] ; Figure 2.1b shows the results of 

the present S matrix Kohn method. As indicated in the caption, basis set sizes are 

identical in both cases. Anomalous singularities are readily apparent in Figure 2.1a, 

increasing in number as the size of the basis set is increased. By contrast, the results 

of the S matrix Kohn calculation are .quite stable over a wide range of a values. Fig­

ure 2.2 shows results for the same Kohn calculation over a wider range of a. The 

stability of the calculation occurs over a wider range of a as the size of the basis set 

Increases. 

Figure 2.3 once again compares singlet results from the Schwinger calcu­

lation of Apagyi (Figure 2.3a) to those of the present S matrix Kohn- calculation 

(Figure 2.3b), this time holding the value of the non-linear parameter a constant 

while varying the asymptotic kinetic energy. Once again, the Schwinger principle re­

veals the presence of non-physical singularities while the Kohn calculation does not. 

The singularity located at k = 0.28 au is a "natural" singularity result­

ing from the phase shift 8 passing through a multiple of I. This demonstrates the 
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Figure 2.1: tan o as a function of a: for S = 0 scattering at k = 1 au. (a) Schwinger 
principle; (b) S matrix Kohn principle. Dotted line: N = 5 £ 2 functions; Solid line: 
N = 6 L2 functions. Curves in (a) for a: < 0.5 are continuous (see Figure 2.2) and 
have no singularities. 



CHAPTER 2. ON THE ABSENCE OF ANOMALOUS SINGULARITIES... 18 

1.0 I I ·I 

0.8-

~\ 
-

0.6 -
.... ····· ....................... ~:.: 

I . 
I 

. . . 
I . . 

tan 8 0.4- I . -. 
I . . 
I . 

0.2- I : -
I : 
I : 
I : 

0 I:· -
1: 

~~: 
I I I -0.2 

2 3 4 0 I 
a 

Figure 2.2: Same quantity as in Figure 2.1 (for S matrix Kohn method only) over a 
wider range of a. Dotted line: N = 2; Dashed line: N = 4; Solid line: N = 6. 

difficulty of performing calculations in which anomalous singularities can appear hap­

hazardly, particularly where a fully-converged basis set of great size cannot be em­

ployed. It becomes difficult to differentiate between fictitious singularities and actual 

resonance behavior. 

Figure 2.4 demonstrates the stability of the S matrix Kohn calculation over 

a wide range of energy with a moderately-sized basis set and a fixed value of the non­

linear parameter a. As one can see, convergence is achieved rather quickly. Finally, 

Figure 2.5 shows results from the application of _the_ S matrix Kohn method to triplet 

scattering at a constant value of a· for many different basis set sizes. Once again, 

there is a singularity at k = 0.83 au which is not anomalous. (The results of Apagyi 

et al. are not shown because they are indistinguishable from the present results when 

.N= 8.) 

The discovery of anomalous singularities in the Schwinger variational princi­

pl~ is an interesting development. Studies by Winstead and McKoy [60], and Ladanyi, 

Levay, and Apagyi (61] have shown that these non-physical singularities occur when 
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Figure 2.3: tano as~ function of k for S = 0 scattering with a= 0.94. (a) Schwinger 
principle; (b) S matrix Kohn principle. Dotted line: N = 5; Solid line: N = 6. 
(Dotted and solid lines are coincident in Figure 2.3b.) 
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Figure 2.5: tan 8 as function of k for triplet ( S = 1) scattering with a = 0.5 for the 
S matrix Kohn method. 

one of the eigenvalues of the potential matrix V vanishes. While one may construct 

any number of numerical procedures to avoid such a situation, the S matrix formu­

lation of the Kohn variational principle does not require such effort. It therefore 

provides a more reliable numerical method for the study of quantum reactive scatter­

mg. 
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Chapter 3 

The Theory 

3.1 Introduction 

There exist a wide variety of methods by which discretized grids can be used 

to study the quantum mechanical wavefunctions of electrons in atoms. Baye and Hee­

nen [63) discuss applications of generalized mesh methods for quantum mechanical 

problems, focusing first on grids associated with orthogonal polynomials and then 

generalizing to other grids. The technique involves the generation of interpolating 

Lagrange functions [42) derived from a set of chosen grid points. The discussion is 

confined to applications to bound state problems. For systems involving electrons 

bound in atoms, however, the presence of Coulomb or centrifugal forces at finite 

distances greatly weakens the accuracy of techniques based on any Gaussian quadra­

ture rules. Vincke, Malegat, and Baye [64) present a technique which provides for 

regularization of these singularities t<? ensure an accurate quadrature approximation. 
- . - - - ..... 

Unfortunately, the distribution of grid points which may be ideal for rep-

resenting the wavefunction of an electron bound in an atom is probably not ideal 

for representing an electron scattering from an atom. Bound wavefunctions decay 

exponentially at moderate distances and do not require as high a grid density asymp­

totically as do free electrons with finite kinetic energy. But by the same token, there 

must be a sufficient density of grid points close to the origin in order to accurately ap­

proximate the usually crucial contribuution of S-wave scattering. Reconciling these 

.. 
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two length scales presents a challenge. Unfortunately, grids which provide proper 

point densities for molecular scattering [41] do not provide adequate density near the 

Coulomb singularity region. And grids derived from orthogonal polynomials which 

provide high density near the Coulomb singularity region (such as a DVR derived 

from Laguerre functions) do not provide adequate density in the asymptotic region. 

Recently, Bot~ro and Shertzer [65] have used the finite-element method 

(FEM) [66, 67] to study elastic scattering of an electron from a hydrogen atom using 

radial grids which satisfy the constraints of both of these length scales. Poet [68] 

and Wang and Callaway [69] have used a Numerov propagation method to study 

electron-hydrogen scattering up to the n = 3 threshold. In this chapter, a radial 

DVR is developed which satisfies the constraints resulting from the two length scales 

in the electron-hydrogen scattering system. In the next chapter, the scattering of an 

electron from a hydrogen atom ( Jtotal = 0) between the n = 2 and n = 3 thresholds 

is studied with this DVR. The S matrix for the scattering system is calculated using 

the S matrix formulation of the Kohn variational principle derived by Zhang, Chu, 

and Miller [24]. 

3.2 Hamiltonian and Coordinate System 

The objective is to study the scattering of a low energy electron from a 

hydrogen atom, restricted to a total energy E between the n = 2 and n = 3 principal 

quantum states of the atom. The study is also restricted to a total angular momentum 

of J = 0. As before, atomic units will be assumed throughout the discussion. Because 

the mass of the hydrogen atom nucleus is so much larger than those of the two 

electrons, it is assumed that the nucleus is infinitely large in this treatment. The 

choice of Jacobi coordinates is then equivalent to choosing the two radial coordinates 

R1 and R2 as the distances from each of the electrons to the nucleus. The single 

angle in the system 1, which results from eliminating the three extraneous Euler 

angles after restricting the total angular momentum to J = 0, is the angle made by 

the two electrons with the nucleus as the center of rotation. 
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The Hamiltonian for this system is 
• ,. /lo. A 2 

A 1 82 . 1 82 L2 IJ- Ll 1 1 1 
H = -2 8Ri - 2 8R~ + 2Ri + 2R~ - R1 - R2 + IR1- R2l. (3.1) 

where R 1 and R 2 are arbitrarily taken to be the radial coordinates of the bound and 

scattering electrons (respectively). Here, J is the total angular momentum operator 

associated with both electrons and L is the angular momentum operator associated 

with the scattering electron. Setting J equal to zero gives the form 

A 1 82 1 82 
( 1 1 ) A 2 1 1 1 ' 

H = -2 8Ri- 2 8R~ + 2Ri + 2R~ L - R1- R2 + IR1- R2l. (3.2) 

Here, L2 is the square of the orbital angular momentum operator associated with 

both electrons given by 

(3.3) 

where 'Y is the angle described previously at the beginning of the chapter. It will be 

noticed that the </> (azimuthal angle) dependence in this angular momentum operator 

.can be ignored since J = 0. 

As has already been mentioned, it would be most useful to create a discrete, 

variable representation (DVR) conducive to studying such a physical system in order 

to take advantage of the resultant sparcity of the Hamiltonian matrix as well as the 

simplicity of calculating potential matrix elements. 

3.3 Review of S Matrix Kohn Variational Princi-

pie 

The S matrices (and accompanying state-to-state transition probabilities) 

are calculated using the complex version of the Kohn variational principle developed 

by Zhang, Chu, and Miller(24]. The multi-channel formulae which determine the com­

putational procedure are given here without proof, as they are a simple generalization 

of the formulae derived in the previous chapter. The S matrix is given by 

S = i (B- CT · B*-1 ·c) (3.4) 
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where S, B, and Care complex matrices whose dimension is equal to the number of 

open channels and T denotes the transpose of a matrix. The individual matrices B 

and C are given by 

B - Moo - M~ · M-1 · Mo 
~T -1 C - M 10 -M0 ·M ·Mo 

(3.5) 

(3.6) 

where Moo and M 10 are also complex matrices whose dimension is equal to the number 

of open channels, and which are given by 

(Moo)nn' - (WoniH- EIWon•), 

(Mto)nn' - {W1niH- EIWon•). 

(3.7) 

(3.8) 

As was said before, the convention is used in which the "bra" is not complex con­

jugated in the Dirac notation. The Won wavefunction is a so-called "free" function 

which has the asymptotic form 

as R1 ~ +oo. (3.9) 

kn is the magnitude of the asymptotic wavevector for the nth open channel given 

by kD. = J2(E- €n) where €n is the energy of the nth hydrogen bound state. ln is 

the orbital angular momentum quantum number for the nth open channel, and </>n is 

the wavefunction for the hydrogen bound state associated with this channel. W1n is 

simply the complex conjugate of Won· There is also the requirement that both of these 

wavefunctions vanish at the origin. The M matrix is the so-called "bound-bound" 

matrix: 

(3.10) 

m which the Ut functions are L 2 functions which span the full dimensionality of 

the interaction region. As such, the t indices are composite in nature and actually 

represent three separate indices (one for each spatial degree of freedom present in the 

system), so that t = {tt, t2 , t3 }. The M 0 matrix is the "bound-free" matrix which 

provides the connection between the L2 functions and the free functions. It is a 

rectangular matrix with the form 

(3.11) 
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3.4 DVR for the Interaction Region 

3.4.1 Necessary Characteristics 

This section discusses the characteristics of the interaction region's discrete 

variable representation which are nece§sary for an accurate treatment of the H + e­

scattering system. The most important feature of the DVR which must be kept in 

mind for this particular system is that the only manifestation of both the poten­

tial energy surface and the form of the free functions present within the interaction 

region occurs at the DVR grid points and nowhere else. Herein lies the inherently 

approximate nature of DVR methods. 

As was mentioned previously in the introductory chapter, this is particu­

larly a problem in electron-atom scattering because of the presence of grid density 

requirements both near the origin and at the edge of the interaction region. A high 

density of grid points is needed near the origin in order that the DVR approximation 

of the electron-nuclear potential will accurately reflect the strongly singular behav­

ior of an attra~tive Coulomb interaction. This is particularly crucial in the case of 

S-wave scattering since the lack of a centrifugal barrier in such a case allows very 

high electron densities near the origin. The singularity of the potential at the origin 

ensures that there will be a very high local kinetic energy near this region. The rapid 

oscillations of the wavefunction in this region demand that a high enough density of 

DVR points be present in order to provide an accurate representation. 

A counterpart of this constraint is that the Coulomb repulsion between the 

electrons must also be accurately reflected by the choice of DVR points. Of course, the 

regions of the potential energy surface where there is very strong repulsion between the 

electrons will not figure too prominently in the calculation since the amplitude of the 

total wavefunction in these regions is very likely to be zero. Therefore, composite DVR 

points which are located in these regions can be safely omitted from the calculation. 

A more important constraint on the choice of the DVR grid involves the 

requirement of a certain minimum density of points at the edge of the interaction 

region where the free electron is not located within the density cloud of the bound 
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electron. The density of grid points required in this region is strongly dependent on 

the asymptotic kinetic energy of the free electron, since it is this which determines the 

frequency of oscillation in the wavefunction in this region. This is a constraint which 

in some ways is unique to scattering systems and their accompanying inhomogeneous 

boundary conditions. Although the size of the interaction region in the similar bound 

state system is comparable, the form of the wavefunction at the edge of the interaction 

region is invariably in the form of a· decaying exponential, which is more effectively 

approximated by a section of DVR points which is locally sparse. Unfortunately this 

is generally not adequate in the case of a scattering system. 

A more global consideration which needs to be taken into account in choos­

ing an optimal DVR grid is the actual extent of the interaction region in the system, 
• 

since it is throughout this entire region that the grid needs to adequately represent the 

wavefunction. Unfortunately, the presence of charged species in the H + e- system 

introduces long-range forces into the potential energy surface which serve to increase 

the interaction region (and hence also increase the required size of the grid). The 

Coulomb interactions between the species make the potential energy surface consid­

erably less well-behaved than that of a typical molecular scattering system in which 

the scattering atomic species are often uncharged and therefore have weaker inter­

actions between each other (such as van der Waals interactions between molecules). 

But these considerations tend to dictate the choice of free functions used rather than 

the actual form of the DVR grid in the interaction region, since the general pattern of 

point densities present is generally not sensitive to the size of the interaction region. 

This point will be discussed later. 

3.4.2 Sturmian Functions and Potential Optimized DVR 

One of the factors which once plagued physicists trying to calculate energy 

levels of atoms (even ones with few electrons, such as helium) was the fact that basis 

sets composed of simple hydrogen atom eigenfunction expansions would offer only 

slowly converging results. Unfortunately, a basis set composed only of such functions 

is not complete without inclusion of continuum states [18, 70]. 
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The historical development of a set of functions which have proven to be 

an excellent basis set for attaining energy levels of simple atoms such as hydrogen 

is now examined. So-called "Sturmian" functions (a term coined by Rotenberg [71]) 

have been shown to offer an excellent alternative [72] to conventional hydrogen eigen-

~function expansions [73) in the calculation of ground state helium eigenvalues. Their 

usefulness when combined with discrete variable representation methods in calculat­

ing eigenstates of molecular vibrational potentials [74) and of molecular van der Waals 

complexes [35) has also been demonstrated. 

Sturmian functions associated with the Coulomb potential [75] solve the 

second-order differential equation 

(_!_~ 1(1 + 1) _ a:nz _E) S (R) = 
2 dR2 + 2R2 R nl 

0 (3.12) 

in which the individual Snz(R) functions satisfy the standard boundary conditions 

Sn~(O) - 0 

lim Sn~(R) - 0 
R-oo 

(3.13) 

(3.14) 

and O:nz = kn where k = V-fE. The analytical form taken by the Sturmian function 

lS 

where 

S = N. e-kR(2kR)1+1 L(2l+1) (2kR) nl nl n-l-1 

·Nn~= (~(n-1-1)!)~ 
n (n + l)! 

and L~2~j2{ is a Laguerre polynomial defined by [37, p. 775) 

L~~i2i (x) = nE\ -1)m ( n + l ) X~. 
m=O n - l - 1 - m m. 

(3.15) 

(3.16) 

(3.17) 

Of course, there is an immediately apparent similarity found in the radial portion of 

the hydrogen atom eigenfunctions given by 

1 
Unl =­

n 
(n- 1- 1)! l+le-P/2 L(2l+l) ( ) 

(n + l)! P n-l-1 P (3.18) 
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where p = 2R/n. The most apparent difference between (3.15) and (3.18) is the 

presence of a scaling factor in the argument of the Laguerre polynomial which is 

dependent upon the principal quantum number n. It is then seen that the effect of 

the parameter O:nl on the "eigenfunctions" of the "Coulomb" potential in (3.12) is 

to "pull" the corresponding Snl particle density much closer to the origin. This has 

the desirable effects of including continuum states in the Sturmian expansion which 

would not be present in a simple hydrogen atom eigenstate ~xpansion, as well as 

confining the particle density of the basis set to a region more representative of the 

spatial extent of electrons bound within atoms. 

Just as a variable "strength" parameter multiplying an ordinary Coulomb 

potential can be seen to "pull" its eigenfunctions closer to the origin, one may sur­

mise that a similar multiplicative factor applied to a typical electron-atom scattering 

potential would have a similar effect. This is the subject of the next section. 

3.4.3 Radial DVR for Screened Coulomb Potentials 

Just as the usefulness of Sturmian functions as a basis set for calculating 

energy levels of atoms may be seen as resulting from their connection to a Coulomb 

potential, it should be possible to determine 'a potential more representative of an 

electron-atom scattering system and then determine eigenfunctions of that potential 

for use as a basis set in such scattering calculations. Since this work focuses on low 

energy electron scattering from a hydrogen atom in either the 1s, 2s, or 2p states, it 

is worthwhile to confine the search for such a potential accordingly. 

In the previous chapter a calculation was performed which examined elas­

tic scattering of an electron from a hydrogen atom in its ground state. The static 

exchange approximation [76] was used in an effort to eliminate the radial degree of 

freedom associated with the bound electron, which was assumed to be fixed in the 

¢>1s state. The local portion of the potential in this calculation 

Vlocal(R) = -e-2
R ( 1 + ~) (3.19) 

appears to offer an attractive alternative to the Coulomb potential for the purposes 

of correctly representing the most important physical characteristics of the scattering 

. / 
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system. The scattering electron feels the full strength of the nucleus when it has 

penetrated to within infinitesimal distances from the nucleus. This is reflected in 

Vzocaz(R) since 

liiD Vlocaz(R) "' - (Rl) . 
R-+O+ 

(3.2~) 

This characteristic is certainly a necessary one for any potential which is chosen to de­

termine the basis set. But we see that Vzocaz(R) also has very desirable characteristics 

in the asymptotic region as well, since 

(3.21) 

This Yukawa-like behavior reflects the shielding effect of the bound electron on the 

scattered electron. This characteristic ensures that eigenfunctions of this potential 

will exhibit free particle behavior in the near asymptotic region. Therefore, it seems 

that finding eigenvalues of Vzocaz(R) would provide an excellent basis for an electron­

atom scattering calculation. 

But there are two main difficulties with this approach. First, the eigenstates 

of Vzocaz(R) are not L2 functions above the ionization threshold. Secondly, only scat­

tering from a <!>Is state will be accurately represented by such a basis. An electron 

scattering from either the </>28 or </>2p states will feel an attractive potential at values 

of the scattering coordinate R .at which Vzocaz(R) is already in the Yukawa-like re­

gion. This is obviously because the shielding effect of the </>18 electron is sustained at 

distances where both the </>2s and </>2p electron clouds have been penetrated. 

Solving the first problem is simple. It is sufficient to choose a basis set for 

the eigenvalue calculation which is composed solely of L2 functions wh?se extent is 

no greater than a predetermined limit (presumably no greater than the interaction 

region for the scattering system). This has the effect of imposing a "hard waJ.l" at the 

predetermined limit, causing successively higher eigenfunctions to emulate particle-in­

a-box eigenfunctions, and thereby attain greater oscillation in the interaction region 

than if low-index non-L2 continuum functions were permitted. 

The obvious solution to the second problem is to use the Vzocaz(R) associated 

with scattering from a static </>28 state for the eigenfunction calculation. For any given 
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value of the scattering coordinate R, the potential energy Vzocaz( 2s)(R) will be lower 

than that of Vlocal(ls)(R) and therefore the local kinetic energy will be higher. This will 

only serve to increase the frequency range spanned by the </>28-derived basis relative 

to that spanned by the </>18-derived basis. 

To derive the local potential associated with scattering from a static </>2 s 

state, one begins with the proper radial wavefunction 

(3.22) 

Exchange is ignored, and the form of the two electron wavefunction is then 

(3.23) 

Using the familiar Hamiltonian 

.H = _! ~ _! ~ + i} + 11- Ll
2 

_ __!__ _ __!__ + 1 
2 8R~ 2 8R~ 2R~ 2R~ Rl R2 IRI - R21 (3.24) 

one sets J and L equal to zero and integrates out the static R1 degree of freedom 

(together with the only angle 1 ) to get 

where €2s is the energy of the </>28 state. A multipole expansion on the inter-electron 

potential gives 
1 oo Rz 

IR - R I = L l~l.P,(cosl)· (3.26) 
1 2 l=O R> 

The spherical symmetry of the </J28 state ensures that only the l = 0 term of the 

expansion contributes, giving 

(3.27) 

The effective potential for scattering from a hydrogen atom in a static 2s state is then 

T I (R) -R2 ( 1 3 1 1 2) 
Y2s = -e -R +- + -R2 + -R2 . 

2 4 4 8 
(3.28) 

The effective static potentials for scattering from <P1s and </>28 hydrogen states are 

shown in Figure 3.1 below. 
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Figure 3.1: Effective potential for e- scattering from a static </J1s or </J2s H state. 
Dotted line: "Yl.si Solid line: Vis· 

Just as the Coulomb potential (multiplied by a physically suitable scaling 

parameter O:nz ) can be diagonalized to provide Sturmian functions as an effective basis 

for bound state atom calculations, the previously derived effective static 2s potential 

ought to provide an equally suitable basis set for electron-atom scattering calculations 

if the multiplicative scaling parameter a: is chosen with care. Such a potential would 

then have the form 

Vi (R) = -ae-R2 (_!__ + ~ + ~R2 + ~~) . 
s R2 4 4 8 

(3.29) 

This basis set can then be used to derive a potential-optimized DVR [77] 

ideal for electron-atom scattering. But a primary basis set must first be choseD:, with 

which the diagonalization of the static 2s potential can be efficiently performed. The 

obvious choice for such a primary basis is Sturmian functions, mainly because of the 

great similarity between the Coulomb potential and the static 2s potential near the · 

ongm. 

The diagonalization begins with the designation of a set of orthogonalized 
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(non-normalized) Sturmians of the form 

(3.30) 

where the n index of the Laguerre polynomials is redefined from that in (3.17) and 

a = 2 such that 

(3.31) 

Recurrence relations governing these polynomials are given [37, p.782-3] as 

(2n + 3- x)Ln- (n + 2)Ln-1 

nLn- (n + 2)Ln-1· 

(3.32) 

(3.33) 

A simple integration by parts gives the one-dimensional radial kinetic energy matrix 

as 

(3.34) 

where 
1 d 

</>'n(x) = -2e-xl2x Ln(x) + e-:r:/2 Ln(x) + e-xl2x dx Ln(x). {3.35) 

Using the recurrence relations (3.33) this integral is given in terms of weighted mo­

ments of the Laguerre polynomials as 

where 

1= dx </>'n(x)</>'m(x) = 

~(n, 2, m)- ~(n + 1)(n, 1, m) + ~(n + 2)(n- 1,1, m) 

1 
- 2(m + 1)(n, 1, m) + (n + 1)(m + 1)(n, 0, m) 

1 
- (n + 2)(m + 1)(n- 1, 0, m) + 

2
(m + 2)(n, 1, m- 1) 

- (n + 1)(m + 2)(n, 0, m- 1) + (n + 2)(m + 2)(n- 1, 0, m- 1) (3.36) 

(3.37) 
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The higher moments of the weighted Laguerre polynomials may be calculated by 

using (3.33) if the zeroth order moment (n, 0, m) is known. Using (3.31) one obtains 

(n,O,m) = fooo dxe-xLn(x)Lm(x) 

_ f (-1)k' ( m+2) t (-1)k ( n+2 ).(k+k')! 
k'=O k'! k' + 2 k=O k! k + 2 

m n 

L Cmk' L Dnkk'· (3.38) 
k'=O k=O 

But 

- f: (-~)k ( n+2) (k+k')! 
k=O k. k + 2 

:E ( -1)k [(k + 1)(k + 2) ... (k + k')] n (n+2) 
k=-2 k + 2 

n+2 ( n + 2) - :L)-1)q . [(q-l)(q+O)···(q+k'-2)] 
q=O q 

ifk'~2. 

But ~:=o( -1)• ( : ) qN = 0 if S -1 ~ N > 0 with N a non-negative integer [78, p. 

4]. Therefore, only the terms Dnko and Dnkl are finite. It can easily be shown that 

n 

L DnkO - n + 1 and 
k=O 

n 

LDnkl - 1. 
k=O 

It is then found that for n ~ m 

1 n 

(n,O,m) = L Cmk' L Dnkk' 

k'=O k=O 

- { -1)o ( m + 2 ) (n + 1) + ( -1)1 ( m + 2 ) . 1 + 0 + 0 + ... 
0! 2 1! 3 

1 
6(m + 1)(m + 2)(3n- m + 3). (3.39) 
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Using this zeroth order moment, the first order moment for the Laguerre polynomials 

is easily calculated for the case ( n > m) by 

(n, 1, m) -(n + 1)(n + 1, 0, m) + (2n + 3)(n, 0, m)- (n + 2)(n- 1, 0, m) 
1 

2(m + 1)(m + 2). (n 2: m). (3.40) 

A similar calculation gives the second order moment as 

(n, 2, m) = (m + 1)(m + 2)8nm· 

Substituting into (3.33) and (3.36) gives 

1 
-

24 
(m + 1)(m + 2)(4m + 3) 

1 
-

12 
(m + 1)(m + 2)(2m + 3) 

(n = m) 

(n > m). 

(3.41) 

(3.42) 

(3.43) 

The second order moment gives the overlap integral for the non-normalized basis 

functions, and can be used to provide a normalization constant. Inclusion of a radial 

scale parameter s and re-indexing the basis functions such that n = 1 refers to the 

first function gives 

where 

- (2n + 1- x)Ln- (n + 1)Ln-1 and 

-nLn+1 + (2n + 1)Ln- (n + 1)Ln-1 

(3.44) 

(3.45) 

(3.46) 

with L 1 = 1, L 2 = 3- x, etc. The recurrence relation for the entire basis function is 

A.. . ( ) _ 2n + 1 - sx A.. ( ) _ 

'f'n+1 X - Jn(n + 2) 'f'n X 

(n- 1)(n+ 1) A.. ( ) 

n(n+2) 'f'n-1X. 
(3.47) 

The final formulae for the one-dimensional radial kinetic energy in this Sturmian basis 

.set is then given as 

{ 

52 (4 ) - n-1 
TSTU = 24 

nm ~~(2m+ 1) 

if n = m 

m(m+1) if n > m 
n(n+1) 

(3.48) 
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The overlap integral is simply 

(3.49) 

The determination of a suitable radial scale parameter s is dependent ulti­

mately on how much spatial extent the primary basis will require in order to provide 

adequate coverage of the interaction region in the particular scattering system. This 

must ultimately be determined empirically through convergence tests within the fi­

nal basis, but certainly the end of the interaction region provides a lower bound on 

the spatial extent of the primary basis. With this in mind, a cue is taken from the 

procedure used for calculating the abscissae in Gaussian quadrature formulae. Since 

the primary basis set being used in this diagonalization is composed of Laguerre 

polynomials multiplied by their proper weight functions, it seems reasonable to as­

sume that choosing the scale factor such that the final Gaussian quadrature point Xn 

(which would be used in integrating products of these basis functions) were placed 

just beyond the edge of the interaction region would ensure that the primary basis 

set put L 2 density in the proper location for the scattering system. Then Gaussian 

quadrature points (79, p. 970] used for exactly integrating products of the primary 

basis functions are simply the zeroes of the Laguerre polynomial of degree (n + 1). 

Requiring that, the final nth zero be placed at a particular value of the scattering 

coordinate determines the value of the scale parameter. 

Since the radial kinetic energy has been determined analytically for the Stur­

mian basis, one must now calculate the potential matrix elements for the strengthened 

static 2s potential. Recall that the analytic form of this potential is given by (3.29) 

as 

Since the lowest power of x multiplying the decaying exponential in each of the 

functions of the primitive basis is x1 , it is easily seen that in spite of the presence of 

a x-1 term in the potential, the potential matrix elements can be calculated exactly 

by Gauss-Laguerre quadrature. 
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where Pq(x) is simply a polynomial in x of degree q ~ 2max(n,m) + 2. This tech­

nique forms the essential background for the regularization of unshielded Coulomb 

potentials in currently popular Laguerre mesh DVRs for atom eigenvalue calculations 

[64] . 

As was mentioned previously, just as the Coulomb potential (multiplied 

by a strength parameter an1) can be used to derive Sturmian functions as a basis 

set for atom eigenfunction calculations, the static 2s potential can be used in the 

same manner to derive a secondary basis set suitable for electron-atom scattering 

calculations. But there is a difference which needs to be addressed. The strength 

parameter anz used in the derivation of the Sturmian functions is dependent on the 

"quantum" numbers of the resulting eigenfunctions. It would not be effi.~ient to 

diagonalize the static 2s potential for a whole host of strength parameters, especially 

since there may be a need for many eigenfunctions forming the secondary basis set 

for a given scattering problem. It would be preferred if a single strength parameter a 

could be chosen which offers a satisfactory compromise. Eigenfunctions would then 

be found for the potential energy function given by (3.29) 

- -R ( 1 3 1 1 2 ) V2 (R) = -a e - + - + -R + -R . 8 R 4 4 8 

The criteria for choosing such a parameter are now discussed. Obviously, 

choosing a = 0 would result in a series of eigenfunctions closely resembling particle­

in-a-box eigenfunctions (sine functions). This would be satisfactory if the system 

being studied did not have regions of the scattering coordinate in which the local 

kinetic energy of either the bound or scattering electron could become very large, 

since the Fourier transform of the resulting eigenfunctions would vanish above a 

certain wavelength. This would not be a serious constraint for scattering calculations 
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involving potential energy surfaces which behave in a fairly benevolent fashion,, such 

as many surfaces associated with molecular scattering. 

But for electron-atom systems this is certainly not the case. In order to 

accurately represent the local kinetic energies present near the origin (when nuclear 

shielding is all but non-existent), the number of a= 0 eigenfunctions required would 

be quite large since only the highest such functions would have rapid enough oscil­

lations near the origin to accurately represent the high kinetic energy there. In the 

same way that increasing the value of the anl parameter in the calculation of Sturmian 

functions "pulls" the eigenfunctions closer to the origin, thus enabling the basis set 

to span the needed continuum [18, 10], a "strengthened" static 2s potential is needed 

to provide inclusion of the continuum for scattering systems. 

On the other hand, if a is too large the eigenfunctions resulting from di­

agonalizing the strengthened static 2s potential will have too much particle density 

near the origin and will not accurately span the region of the scattering coordinate 

at the edge of the interaction region. a could in fact be so strong that very few of 

the eigenfunctions will have eigenvalues above V = 0. This would mean that the 

region of the scattering coordinate at the edge of the interaction region would be rep­

resented mainly by functions whose functional form was mainly decaying exponential 

in nature. 

Obviously a scattering wavefunction with an inhomogeneous boundary con­

dition will not be well-represented by such a basis set. In this sense one can think 

of a as a "tuning" parameter which is designed to reconcile the competing interests 

and requirements of the strong Coulomb behavior near the unshielded region of the 

scattering coordinate with the shielded Yukawa-like behavior of the potential felt by 

the scattering electron at the edge of the interaction region. Ultimately the choice 

of a is determined by which value gives the most converged results with the fewest 

eigenfunctions making up the secondary basis set. More will be discussed about the 

· most efficient values for the a strength parameter later. 

Assuming that an optimal a strength parameter has been found, the static 

2s radial potential is diagonalized within the previously described Sturmian basis set. 

The orthogonal transformation matrix Z1 which effects this diagonalization is then 
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stored, as it provides the formulae for the eigenfunctions in terms of the Sturmian 

basis. 
N 

Xn(x) = :LJZ[)ntcPt(x) {3.50) 
t=l 

where N is the total number of Sturmians used in the diagonalization and T denotes 

transposition. {In actuality, only as many rows n of Z[ are stored as there are 

numbers of radial DVR points anticipated to be needed in the final calculation.) 

The transformation of the secondary static 2s eigenfunction basis into the 

tertiary radial DVR basis is now discussed. As has been discussed previously, the 

development of a diagonal representation of the potential energy matrix [25] has been 

well-characterized [26, 29]. The more specific method of diagonalizing the position 

operator x within a particular basis to provide a DVR basis has been shown to provide 

excellent results [80], and it is used here also. 

It is necessary to calculate the x matrix within the secondary basis set of 

static 2s eigenfunctions. First, the x matrix is calculated within the primary basis set 

of Sturmian functions and then transformed into the secondary representation with 

the Z1 matrix. In order to calculate the x matrix within the primary Sturmian basis, 

the third position moment of the previously-derived Laguerre functions is calculated. 

Using the recurrence expression derived for the Sturmian functions {3.47) and the 

fact that the second moment of the Laguerre functions is simply the overlap integral 

{3.49), it is a simple matter to derive that 

-lv'n2 -1 
8 

ifm=n-1 

x(l) = ~(2n + 1) ifm = n 
{3.51) nm 

-~Jn(n + 2) ifm=n+1 

0 if In- ml > 1 

where the superscript 1 indicates the representation of x in the primary Sturmian 

basis. Transformation of x into· the static 2s eigenfunction representation is simply 

accomplished with the zl transformation matrix by 

{3.52) 

The position operator :X(2) is then diagonalized within the secondary static 2s eigen­

function b.asis to obtain a second transformation matrix Z2 • The product of these 
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two transformation matrices 

(3.53) 

is the only matrix which needs to be finally stored, and gives the transformation 

from the primary Sturmian basis to the final one-dimensional radial DVR basis. The . 

explicit formula for a radial DVR basis function in terms of xis then 

N 

'Pn(x) = L)Z{;)ntcPt(x). (3.54) 
t=l 

Calculation of the one-dimensional radial kinetic energy in this new basis is then 

simply accomplished with 

T nvR _ zT TsTu z 
- 12. • 12 (3.55) 

where TSTU is calculated with (3.48). 

3.4.4 Gauss-Legendre DVR for Angular Coordinate 

Although the single angular degree of freedom present in the system also 

contains singularities in the inter-electron potential at 1 = 0, no attempt was made 

to develop a specialized DVR for this degree of freedom, mainly because the cusp 

behavior at 1 = 0 is a repulsive cusp and it was anticipated that the quadrature 

approximation afforded by simple Gauss-Legendre quadrature would be adequate. 

The finite basis representation (FBR) functions chosen for the angular degree of 

freedom were spherical harmonics in which the azimuthal angle is integrated away: 

(3.56) 

where Pn is a Legendre polynomial (37, p. 775] generated by the standard recurrence 

relation 

nPn(x) = (2n -l)xPn-t(x)- (n -l)Pn-2(x) (3.57) 

where Po(x) = 1, P1(x) = x, etc. Notice that are-indexing similar to that performed 

on the Laguerre polynomials has been done here too. Within this indexing convention, 
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the squared angular momentum operator in the finite basis representation takes the 

form 

(TFBR) 
c nn1 (I?)nn1 

- n(n- 1)8nn'· 

(3.58) 

(3.59) 

where the subscript "c" indicates "centrifugal". The orthogonal matrix which trans­

forms the angular functions into the localized Gauss-Legendre DVR representation 

lS 

Ani - · foi '1/Jno(J) 

- foi 1¥-Pn-l(cosl) (3.60) 

where Wi is the Gaussian quadrature weight associated with the ith DVR point. The 

localized angular DVR functions are then given as 

N 

en(J) = L)AT)nt'l/Jto(J) (3.61) 
t=l 

and the centrifugal energy term in the localized DVR representation is 

TDVR = AT . TFBR • A 
c c (3.62) 

where T~BR is given by (3.58). 

3.5 Form of the Symmetrized Hamiltonian. 

3.5.1 Benefits of Symmetrization 

The exploitation of symmetry [81, 82] within the representation of the Hamil­

tonian of the scattering system provides great benefits. Starting with the form of the 

Hamiltonian already given in (3.2), it is seen that it is symmetric with respect to 

exchange of the coordinates of each electron. In other words, 

A A A 

X12H =H. (3.63) 
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The total wavefunction for the two electron system can be expanded in eigenstates 
A 

of the total spin operator S to give 

WT(Rt, R2, /i St, 82) = 
2::: W+(Rt,R2,/iSt,s2)u+(st,s2) + 'lf_(Rt,R2,/iSt,S2)u_(st,s2) (3.64) 

81,82 

where the summation has been split into singlet and triplet groups, respectively, 

(3.65) 

Electrons satisfy Fermi-Dirac statistics. Since the singlet spm state u+ is anti­

symmetric with respect to exchange, the spatial function associated with it must 

be symmetric. Likewise, the three triplet spin states u _ must be paired with anti­

symmetric spatial functions. Therefore 

X12w+ w+ and 

x12w- - -w_. 

Using (3.63) and the fact that [X12, H] = 0 it is seen that 

(w+IX12hlw-} 
(w+J.HxuJw_) 

- -(w+IHJw_) 
- 0. 

(3.66) 

(3.67) 

Therefore, isolating singlet and triplet portions of the spatial basis set block diagonal­

izes the Hamiltonian. Since the most computationally intensive part of the calculation 

of the S matrix is the inversion of the bound-bound Hamiltonian matrix in (3.5) and 

(3.6), the reduction in dimensionality of the Hamiltonian into two smaller matrices 

offers a considerable savings. 
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3.5.2 Calculation of the Hamiltonian Matrix Elements 

Since the Hamiltonian being used ignores spin-orbit coupling and has no 

dependence on the spins of the two electrons it is sufficient to restrict our basis set 

to functions of a purely spatial character. The most general expansion of the total 

wavefunction within the restricted L 2 space is then 

'I!(R1, R2, I) = L Cijk<t'i(RI)<t'i(R2)ek( I) 
ijk 

where cp; is defined by (3.54) and ek is defined by (3.61). Then 

ijk 

- L: Cjik<t'i(RI)<t'j(R2)ekb) 
ijk 

(3.68) 

since ek(l) is composed of Legendre polynomials which are even in I· Therefore, 

(3.69) 

where the upper "+" state corresponds to singlet scattering and the lower "-" state 

corresponds to triplet scattering. It is then possible to truncate the basis set to give 

'I! s(Rt, R2, I) = L L Cijk [cp;(R1)cpj{R2) ± cpj{R1)cp;(R2)] ek(l) 
k i?;j 

(3.70) 

where the subscript s indicates symmetrization of the function. The expansion coef­

ficients Cijk are chosen so as to ensure orthonormality of the three dimensional basis 

functions. For singlet scattering the spatial L 2 basis functions are (in bra/ket nota­

tion) 

if i = j 

ifi>j 
(3.71) 

where the order of indices in the ket detennines the spatial independent variable. For 

the triplet case the only form is 

(3.72) 
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The kinetic energy in this basis is diagonal in the angular degree. of freedom: 

Utilizing the orthogonality of the one-dimensional DVR functions gives 

. a{ijkjTl + 1\ii'j'k')s = (tii'Ojj' + tjj'Oii' ± tji'Oij' ± tij'Oji') akk' 

if i > j and i' > j', 

s{iiklTl + T2li'j'k'} 8 - .J2 (tii'Oij' + tij'Oii') Okk' 

if i = j and i' > j', and 

s{iiklTl + T2li'i'k'} 8 - 2tii'Oii'Okk' 

if i = j and i' = j' 
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(3. 73) 

(3.74) 

(3.75) 

(3.76) 

where tij' is the one-dimensional radial kinetic energy matrix for the DVR {'Pi} basis 

set. The orbital angular momentum terms in the Hamiltonian are given by 

{ .. kl.!. (~ ~) t21·'·'k') 
8 ZJ 2 R~ + m z J 8 

.!_tkk' (~ + ~) r .. , r · ., - 2 R~ R~ Vu uJJ 
I J 

if i > j and i' > j', 

s{iikl~ (~~ + ~~) L2
li'j'k'} 8 - 0 

{. 'kl.!. (~ + ~) LA 2 l''''k'} 
s zz 2 R~ m z z 8 

if i = j and i' > j', and 
"1 
-tkk's.:, Rf n 

I 

if i = j and i' = j' 

(3.77) 

(3.78) 

(3.79) 

where tij' is the one-dimensional angular kinetic energy matrix for the DVR { ~i} basis 

set. The potential energy and overlap matrices have the following simple form: 

S{ ,;J'klVA l,;'J''k'}s TT r r C • o V ijkUii'Ujj'Ukk' 

· 8(ijkl0li'j'k')s - aii'ajj'akk' 

where 
TT 1 1 ( 2 2 )-1/2 
Vijk =-R;- R; + Ri + R;- 2R;RjCOSik 

(3.80) 

(3.81) 

(3.82) 
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where~ is the ith eigenvalue obtained in the diagonalization of :X:(2) defined in (3.52). 

Combining all terms of the Hamiltonian together results in the following functional 

forms. First, in the singlet (S = 0) case 

H· ·k·' ·'k' - (t··,8 · ., + t · ·,8··, + t ··,8· ., + t· ·,8 ··,) 8kk' + lJ I J - U JJ JJ U Jl IJ IJ Jl 

!.tkk' (2._ + .2_) 8··,8 · ., + V. ·k8··,8 · ·,8kk' 
2 R~ R~ " n '' " 33 

I J 

if i > j and i' > j', 

Hiiki'i'k' - v'2 (tii'8ii' + tii'8ii') 8kk' 

if i = j and i' > j', 

if i > j and i' = j', and 

Hiiki'i'k' - 2tii'8ii'8kk' + tkk' (~l) 8ii' + Viik8ii'8kk' 

if i = j and i' = j' . 

And in the triplet ( S = 1) case 

(3.83) 

(3.84) 

(3.85) 

(3.86) 

(3.87) 

The sparse nature of the Hamiltonian matrix is readily apparent from these formulae. 

3.6 Representation of the Free Functions 

3.6.1 Background 

The form of the so-called "free" functions used in this study is of crucial 

importance in contributing to the· success of the calculation. These functions were 

roughly described previously in terms of their asymptotic behavior. 

as R1 -+ +oo, (3.88) 

as R1 -+ +oo. (3.89) 



I 

CHAPTER 3. THE THEORY 46 

Since the region near R = 0 is within the interaction region (and therefore is primarily 

the domain of the L2 DVR basis) the boundary condition applied to Won and W1n here 

is considerably less restrictive than that in the asymptotic region, mainly because the 

L2 DVR basis can in some sense "pick up the slack". Ordinarily in a simple coupled­

channel expansion one would impose the boundary condition 

(3.90) 

due to the presence of a centrifugal barrier. But in this study the wavefunction is 

actually represented by a linear combination of the free function and radial DVR 

functions multiplied by the bound state. As a result, as long as the free function 

Won(R~, R 2 , 'Y) approaches zero rapidly enough at the origin that the resulting free­

free matrix elements remain finite, this will be an adequate constraint since the radial 

DVR functions will provide the proper rectification of the boundary condition. As 

will be seen later, the introduction of a multiplicative cutoff function into the free 

function (in order to cause the free-free exchange matrix elements to vanish) will 

cause the free function to actually vanish within a finite distance from the nucleus 

anyway. 

On the face of it, these boundary conditions appear to permit considerable 

freedom of choice in deciding upon the actual functional form of the free functions. 

But the computational reality of the situation is quite a bit less forgiving. The 

separation of the total wavefunction into that part existing inside the interaction 

region and that part existing outside requires that the L2 DVR basis functions must 

provide finite particle density in any region of the scattering coordinate at which the 

free functions do not satisfy the Schrodinger equation. The free functions chosen 

should therefore solve the applicable . Schrodinger equation as close to R = 0 as 

possible in order to minimize the extent of the scattering coordinate which must be 

spanned by the L2 functions. On the other hand, an exact solution of the Schrodinger 

equation is likely to have a complicated analytical form (or none at all in the case 

of a purely numerical solution) and therefore makes the calculation of free-free and 

bound-free integrals more computationally time-consuming. A balanced approach 

must therefore be reached. 
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Ideally it would have been convenient if it were possible to use the free 

particle wavefunction associated with the proper centrifugal barrier and regularized 

at R1 = 0. 

(3.91) 

where f(R1 ) is a smooth cutoff function designed to keep 'lllon(Rll R2, ;) regular at 

the origin and has the asymptotic form 

f(R,) ~ { ·~ as R1 --+ 0, and 

as R1 --+ oo. 
(3.92) 

This choice of free function has been used with success by C~lbert and Miller [41] in 

the molecular scattering system H + H2 utilizing a DVR with the S matrix formulation 

of the Kohn variational principle. 

A better approximation to the free function is that of a spherical Hankel 

function [37, p. 437] multiplied by a regularizing cutoff function, 

(3.93) 

In this case the cutoff function must be strong enough at the origin to regularize the 

divergent Neumann solution contained in the spherical Hankel function. This function 

has been used successfully by Zhang and Miller in the F + H2 [52] and D + H2 [54] 

scattering systems. 

Unfortunately, the strengths of the interactions between electrons and target 

atoms are larger than those present in typical atom-molecule scattering systems. For 

atoms scattering from diatomic molecules with no permanent dipole moment, the 

strongest long range forces are the so-called dispersion forces [83, p. 103] which have 

the asymptotic form 

(3.94) 

In contrast, electron-atom scattering calculations must contend with the net charge 

present on the electron together with the polarizability of the target atom, resulting in 

much longer range interactions which prevent the use of simple complex exponentials 

and spherical Hankel functions as free functions. The actual analytical form for the 
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asymptotic wavefunction is discussed in the literature [84] and in standard textbooks 

[4, p. 160]. 

In order to more clearly see the source of this difficulty, the coupled-channel 

equations giving the form of the asymptotic wavefunction outside the exchange region 

for the scattering of a low energy electron from a hydrogen atom ( J = 0) are given as 

. [-~ d~2 + li(~; 1) - ~ - ki] Fni(Rl) + ~ [Fn;(R1)(<PiiiR ~ R 114>;} l = 0 
1 1 1 3 1 2 R 2 'Y 

(3.95) 

where the total wavefunction is expanded as 

(3.96) 

where n indi~ates the asymptotic quantum state index, k[ is the asymptotic kinetic 

energy associated with the ith channel, and the subscripts R2 and 1 on the "ket" 

indicate that the integration is only performed over those variables. Using the mul­

tipole expansion in (3.26) and combining the l = 0 term of the summation with the 

electron-nuclear interaction potential gives 

(3.97) 

where 

'\!; ·(R ) = [-k~ + li(li + 1)] 8·. + ~ aiil 
SJ 1 ' R2 lJ L....J Rl+1 ' 

1 1=1 1 

(3.98) 

and 

(3.99) 

Here, the superscript "r" on the </> functions signifies that only the radial portion of 

the bound function is present. The C(lil;l; 000) factor is the usual Clebsch-Gordan 

coefficient defined using the convention of Rose [85, p. 39]. A cursory examination 

of the definition of the aijl term reveals that it is finite whenever li, l;, and l satisfy 

the triangle inequality 

ll·- l·l < l < l· + l·. ' J - - ' J (3.100) 

If only spherically symmetric bound states are included in the coupled-channel ex­

pansion, li = 0 and l; = 0. There is then no R1 dependence in the potential coupling 
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term "Vi;(R1 ). But when non-spherically symmetric bound states are included in the 

expansion, the potential coupling term acquires a strong R-2 component which acts 

to alter the centrifugal potential in the second-order differential equation which the 

free functions satisfy. Use of the spherical Hankel functions as free functions for such 

a scattering calculation would cause the region of the scattering coordinate which 

must be covered by the L 2 DVR functions to be prohibitively large. It is therfore 

necessary to either make a more judicious choice of free function, or alter the L2 basis 

in order to keep the calculation tractable. 

Various methods of dealing with this difficulty have been reviewed [12, pp. 

116-7] in the literature. For scattering above the n = 2 threshold Seiler et al. [86] 

and Callaway and Wooten [87] included as part of the L 2 basis set functions of the 

form 

(3.101) 

where the (1 - e-.8R)1+2 factor was included to provide adequate regularization of 

the functions at the origin. Although the inclusion of these functions causes an 

improvement in the performance of the variational calculation, it has the disadvantage 

that the L 2 basis is energy-dependent and therefore requires that the bound-bound 

Hamiltonian must be recalculated at each scattering energy. 

Oberoi and Nesbet [88] have used a more effective means of including the 

long-range potential terms in the form of their free functions. The scattering coor­

dinate is divided into two regions, R > IlQ and R < IlQ, where IlQ is a demarcation 

point outside the exchange region of the scattering system. In the R > IlQ region 

the non-local operators present in the Hamiltonian (resulting from the imposition of 

proper electron wavefunction symmetry) do not manifest themselves and can there­

fore be ignored. The resulting simplified coupled differential equations can be solved 

numerically by various techniques, such as that of Burke and Schey [89]. Since these 

solutions will in general not have the correct asymptotic behavior at R = 0, they are 

fitted at R = IlQ to two functions which do have the correct asymptotic behavior at 

R = 0. The two coefficients on these functions are supplied by matching the func­

tions and their first derivatives at R = IlQ. The functional form of the free function 
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components is then 

Fni(R) = { Cnilhl(R) + Cni2h2(R) for R < Ro, 
Hni(R) for R > Ro. 

(3.102) 

The only restrictions on the two functions h1 and h2 are that they be linearly inde­

pendent ~d regular at the ongin. The integrations of the free-free and bound-free 

integrals arising in the Kohn variational principle are performed over the finite inter­

val (0, Ro) since the components of the free function outside this region exactly solve 

the coupled-channel equations. 

3.6.2 Derivation of the Free Functions 

In the present work, a variation of this latter technique is utilized which 

enables one to exercise more freedom in choosing the functional form of the free 

function. The free function components outside the interval (0, Ro) are assumed to 

take the form of an expansion in reciprocal powers of R as originally done by Burke 

and Schey. 
Co Pma.z 

Fni(R) = :E :E [a:i.c sin(k.cR) + ,a:i.c cos(k.cR)] R-P (3.103) 
.c=l p=O 

where n is the composite open channel index associated with the free function, i is 

the bound state index, c0 is the total number of open channels present, and k.c is the 

magnitude of the asymptotic wave vector for the "'th open channel. Substitution of this 

functional form into (3.97) and equating coefficients of R-P sin(k.cR) and R-P cos(k.cR) 

gives a set of recurrence relations for the a;i.c and ,a;-i.c expansion coefficients. 

Co 00 

2:2: aijla;~7- 1 (3.104) 
j=ll=l. 

(k[- k~),B:i.c - 2k.c(P- 1)a:~~ + [li(li + 1)- (p- 1)(p- 2)] ,a:~~+ 
Co 00 

2:2: aijl,B:~~-l (3.105) 
j=ll=l 

It will be noticed that Burke and Schey's corresponding formulae do not have the extra 

li(li + 1) term present, probably because they absorbed the centrifugal potential into 
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the associated aijl factor. Adopting the hydrogen bound state indexing convention 

that 

along with the formulae 

</>1s(R, I) 

</>2s(R, I) 

</>1 ( R, I) - </>1s ( R, I), 

</>2(R, 1) - </>2s(R, 1), 

¢>3(R,1) - </>2p(R,1), 

- 2Re-R'I/J10(/), 

-
1
;;:;R(2- R)e-RI2'1/J10(1), 

2v2 

_ _l_R2e-Rf2.J, ("") 
2v'6 o/20 I l 

(3.106) 

(3.107) 

(3.108) 

(3.109) 

(3.110) 

(3.111) 

where '1/Jno(/) is defined by (3.56), one obtains by substitution into (3.99) that 

ani 
(l + 2)! 

(3.112) - 21+1 ' 

a121 - 1 (2) l+4 - .j2 3 l(l + 2)!, (3.113) 

a131 - 1 (2Y+4 .J6 3 (l + 3)!, (3.114) 

a221 - ~(l2 + 31 + 4)(1 + 2)!, (3.115) 

1 
(3.116) a231 - 8yJ(1 + 2)(1 + 3)!, 

1 
(3.117) a331 - -(1 + 4)!. 

24 

Because of the (k[ ,_ k~) factor multiplying a;iK and f3:iK in the recurrence relations, 

the actual relations determining both of these quantities are different in the two cases 

where ki = kK and ki -:f. kK. In the case where ki -:f. kK, 

a;iK k~ ~ k2 { -2kK(p- 1)/3:~~ + [1i(li + 1)- (p- l)(p- 2)] a;~;+ 
I K ' 

Co oo } L L aijza;~7-1 , and 
j=ll=l 

(3.118) 

k~ ~ k2 { 2kK(p- l)a;~; + [1i(li + 1)- (p- l)(p- 2)] f3:~~+ l 

a K 
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(3.119) 

And when ki = kte, 

-
2
k
1 {(p(p- 1) -li(li + 1)] (3:~~- t 'f,aiilf3:!7}, 
teP J=ll=l 

and (3.120) 

= -
1 {(p(p-1)-li(li+1)]a:~~-f:f,aijla!~7}· 

2ktep j=l l=l 

(3.121) 

The recurrence is begun by setting the values of a;!'O and !3;:~'0· Since the asymptotic 

wavefunction is in a pure bound state only ag-nn and (3ffnn are finite. Combining (3.9), 

(3."!03), and (3.96) one can derive the values of ag-nn and (3ffnn. Using the equation 

and the identities 

the intialization conditions are derived as 

·lnk-1/2 z n . 

(3.122) 

(3.123) 

(3.124) 

(3.125) 

The recurrence is performed for p = 0, 1, 2, 3, ... ,Pmax· Obviously, if Pmax = 0 the 

expanded free function is. then just a simple free particle wavefunction. 

It is interesting to note that this recurrence procedure generates a free wave­

function which (assuming proper convergence of the expansion) could also be gener­

ated through the use of a conventional Numerov propagation algorithmin which the 

coupled-channel expansion in each of the three open channels is solved numerically 

in a step-wise fashion beginning in the asymptotic region of the scattering coordinate 

and proceding inward toward (but not into) the exchange region. In some sense, the 

present method can be thought of as an analytical Numerov algorithm which takes 

advantage of the simple analytical form of the potential energy function. 
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The accuracy of successive approximations of the free function is demon­

strated by examination of projections of (H - E)'I!on(R1 , R2, 1) onto each of the 

bound states <Pi(R2 ,!) included in the expansion used to solve the coupled-channel 

equations (3.97). This quantity is a function of the scattering coordinate R1 and 

should vanish outside of the exchange region for the exact, physically correct wave­

function. Theoretically, the projection of (H- E)'I!on onto any function (including 

closed channels and continuum functions) should vanish outside of the exchange re­

gion since (if- E)'I!on vanishes for the correct Won· 

Unfortunately, recurrence relations which result from inclusion of closed 

channels in the coupled-channel expansion [89] cannot be solved by setting their 

corresponding p = 0 coefficients to a known value, since these decaying exponential 

components of the free function vanish as R1 -+ oo. Techniques for including closed 

channels in asymptotic expansions are available [5, 90, 91, 92], but in the present work 

the assumption is made that projections of (if- E) won onto the closed channel space 

are very small and are therefore safely ignored. Of course, this assumption breaks 

down when the scattering energy is just below the threshold for opening another 

channel, since the exponential tail for the R1-dependent coefficient of that closed 

channel will be quite long and extend far beyond the exchange region. 

Figures 3.2 through 3.10 show the previously described projections for a 

calculated free function which corresponds to an asymptotic <P2s state. Projections 

onto each of the three open chamiels cPls, cP2s, and cP2p are shown as a function of 

different values of Pmax for three different representative total energies - one just 

above the n = 2 threshold, one just below the n = 3 threshold, and one roughly in 

the middle of this energy region. 

· Clearly, the expansion works best at the energy just below then= 3 thresh­

old, with rapid convergence for even small values of R1 . Of course, this behavior is 

deceptive since this is the energy region in which the omission of the n = 3 closed 

channels begins to have a negative effect on the accuracy of the coupled-channel ex­

pansion. But the expansion is clearly strained at the energy just above the n = 2 

threshold, requiring a large value of Pmax to converge the free function at even mod­

erate values of R1. This results from the inability of the sine and cosine expansion 
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Figure 3.2: Re{c/>tsiH- El'll'o(2s)) forE= 0.78Ryd. Dotted line: Pmax = 0; Dashed 
line: Pmax = 1; Long-dashed line: Pmax = 2; Dot-dashed line: Pmax = 3; Solid line: 
Pmax = 8. 
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Figure 3.3: Re(c/>2siH- El'll'o(2s)) forE= 0.78Ryd. Dotted line: Pmax = 0; Dashed 
line: Pmax = 1; Long-dashed line: Pmax = 2; Dot-dashed line: Pmax = 3; Solid line: 
Pmax = 8. 
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Figure 3.4: Re(</>2piH- El'llo(2s)) forE= 0.78Ryd. Dotted line: Pmax = 0; Dashed 
line: Pmax = 1; Long-dashed line: Pmax = 2; Dot-dashed line: Pmax = 3; Solid line: 
Pmax = 8. 
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Figure 3.5: Re(</>IsiH- El'llo(2s)) for E = 0.82 Ryd. Dotted line: Pmax = 0; Dashed 
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Figure 3.6: Re(¢2siH- El"lllo(2s)} for E = 0.82 Ryd. Dotted line: Pmax = 0; Dashed 
line: Pmax = 1; Long-dashed line: Pmax = 2; Dot-dashed line: Pmax = 3; Solid line: 
Pmax = 8. 
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Figure 3.8: Re(¢lsiH- EI"Wo(2s)} forE= 0.88Ryd. Dotted line: Pmax = 0; Dashed 
line: Pmax = 1; Long-dashed line: Pmax = 2; Dot-dashed line: P~ax = 3; Solid line: 
Pmax = 8. 
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Figure 3.9: Re(¢2siH- EI"Wo(2s)) forE= 0.88 Ryd. Dotted line: Pmax = 0; Dashed 
line: Pmax = 1; Long-dashed line: Pmax = 2; Dot-dashed line: Pmax = 3; Solid line: 
Pmax = 8. 
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Figure 3.10: Re(</>2piH- EIWo(2s)} forE= 0.88 Ryd. Dotted line: Pmax = 0; Dashed 
line: Pma:z: = 1; Long-dashed line: Pma:z: = 2; Dot-dashed line: Pma:z: = 3; Solid line: 
Pma:z: = 8. 

to represent a wavefunction with such low kinetic energy as is present just above an 

opened threshold. Not surprisingly, it is in the middle energy region between the 

n = 2 and n = 3 thresholds that the expansion seems to work best. 

It is probably also instructive to examine how ineffective this expansion 

would be if only a;i~ and f3:i~ coefficients diagonal inn and i were kept. (This would 

correspond to free functions which project only onto a single bound hydrogen state 

outside of the exchange region, a form of free function often used in molecular scatter­

ing calculations involving neutral species.) Figures 3.11 and 3.12 show components of 

the free function for three different. energies between the n = 2 and n = 3 thresholds 

corresponding to asymptotic </>2s and </>2p states respectively where the asymptotic 

wavefunction is defined as before in (3.96). 

Won(RI, R2, I) = 'L,. Fni(RI)cf>i(R2, 1). (3.126) 

' 

The </>2s and </>2p asymptotic states are shown here because these particular functions 

show the greatest amount of "mixing" far from the interaction region. 
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Figure 3.11: Mixing of H bound states for asymptotic </>2s state. 1Fn,il2 
/ L:i IFn,jl2 for 

n = </>28 and Pmax = 8. Solid line: E = 0.78 Ryd; Dotted line: E = 0.82 Ryd; Dashed 
line: E = 0.88 Ryd. Curves approaching 1 asymptotically represent square moduli of 
</>28 coefficients. Curves approaching 0 asymptotically represent square moduli of </>2p 
coefficients. Square moduli of </>18 coefficients are very small and not visible on this 
scale. 

Obviously, inclusion of the full compliment of bound states in the asymptotic 

expansion is required in order to accurately represent the asymptotic region (and 

therefore adequately reduce the size of the interaction region which must be spanned 

by the L 2 basis set.) This is particularly crucial in the ~ase of the low kinetic energies 

associated with the </>28 and </>2p channels when the total energy is located just above 

then= 2 threshold. 

While the behavior of this expansion in reciprocal powers of R1 is quite 

adequate outside of the exchange region, it is considerably worse within the exchange 

region. This is not surprising since the derivation of the recurrence relations (3.104) 

and (3.105) assumed R> = R1 and R< = R2 prior to integrating out the R2 and 1 

degrees of freedom. One might assume that the incl~sion of the cutoff function f(R1 ) 

previously described in (3.92) could be made sufficiently strong enough to ensure that 

the free function is well-behaved throughout the entire exchange region. Since the 
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Figure 3.12: Mixing of H bound states for Asymptotic </>2v state. IFn,il2 /I:; IFn,;l2 
for 

n = </>2v and Pmax = 8. Solid line: E = 0.78 Ryd; Dotted line: E = 0.82 Ryd; Dashed 
line: E ..:.... 0.88 Ryd. Curves approaching 1 asymptotically represent square moduli of 
¢>2v coefficients. Curves approaching 0 asymptotically represent square moduli of </>2s 
coefficients. Square moduli of ¢>18 coefficients are very small and not visible on this 
scale. 

reciprocal R 1 expansion has only "removable" singularities, it is quite possible to find 

a large number of cutoff functions which would ensure regularity at the origin. The 

function 

(3.127) 

used by Seiler et al. [86] and Callaway and Wooten [87] would suffice with a large 

enough value for l. 

Unfortunately, relying solely on the cutoff function to ensure good behavior 

of the reciprocal R1 expansion within the exchange region is not sufficient. This is 

because there continue to be parts of the exchange region in which the local kinetic 

energy of the free function is extremely high. Since these regions do not accurately 

reflect the correct physical situation within the exchange region, it is then up to the 

L 2 DVR functions to correct for this error. This would require a prohibitively large 

density of DVR points in this region, and it would be best to avoid such a requirement 
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in the interest of reducing the size of the matrix inversion required in the calculation. 

As was mentioned previously, Oberoi and Nesbet [88) performed a spline 

fit of the asymptotic free function to a linear combination of two functions which 

have the proper boundary condition at the origin. A discussion of this method is 

provided just prior to (3.102). The method used in this treatment is very similar. 

But rather than restrict the spline fit to only two functions (and hence only allow 

a matching of oth and 1st order derivatives at the demarcation parameter), a linear 

combination of four linearly-independent functions is used. This has the advantage of 

permitting a matching of oth' 1st' 2nd' and 3rd order derivatives, thereby permitting 

the use of simple automated integration routines in the calculation of the free-free 

matrix elements. The regions of integration then need not be split. between exchange 

and non-exchange regions since the integrand (in spite of the presence of the 2nd 

derivative kinetic energy operator) will be not only continuous, but will also have no 

cusps. This permits the efficient use of automated integration routines without the 

need of frequent function evaluations within "difficult" areas. 

The choice of linearly-independent functions is now discussed. To allow 

maximum freedom of choice the requirement that these functions be regular at the 

origin is temporarily suspended. Instead, the entire free function (in both the R1 > Ro 
and R1 < Ro regions) is to be multiplied later by an external cutoff function which 

provides the proper regularization at the origin and also forces the exchange free­

free matrix elements to vanish. (This aspect of the computation will be discussed 

later.) Certain characteristics of the four linearly-independent functions are desirable. 

When combined with the asymptotic free function they should emulate the correct 

local kinetic energy at the demarcation point Ro. The spline fit will ensure this. 

They should also be well-bounded within the exchange region in order to keep the 

coefficients Of the L 2 DVR functions reasonably sized during the matrix inversion. 

They should be limited in bandwidth so that within any part of the exchange reg1on 

which has a relatively low local kinetic energy it would not be necessary to provide a 

high density of DVR points to "undo the damage" done by the free function. 

This suggests that a linear combination of sine and cosine functions would be 

most appealing. Choosing two frequencies is sufficient to determine the four linearly-
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independent functions. An examination of the following identities provides a clue in 

choosing the two frequencies. 

sinx+siny- 2sin~(x+y)cos~(x-y) 
1 1 

cos x +cosy - 2cos 
2

(x + y) cos 2(x- y) 

(3.128) 

(3.129) 

In each of these identities, when x ~ y the righthand side of the equation is composed 

of a trigonometric function whose frequency is the average of x and y, multiplied by 

a low-frequency cosine function which acts as a "modulation" envelope. Using this as 

a guide, the two frequencies needed to provide the two additional degrees of freedom 

needed in the spline fit are chosen such that they are nearly equal to each other 

and their average corresponds to the correct asymptotic frequency for the particular 

open channel being represented.· The general form for ·the individual free function 

components within the exchange region is then taken to be 

It is now necessary to determine the proper coefficients Cnix· The oth, 1st, 

2nd, and 3rd order derivatives of the asymptotic free function Fni(R1 ) are determined 

analytically from (3.103). These are matched to the corresponding derivatives of the 

free functions in the exchange region, resulting in the simultaneous equations 

A·c=F (3.131) 

where 

sin kaRo COS kaRo sin kbRo cos kbRo 

A 
ka COS kaRo -ka sin kaRo kb cos kbRo -kbsin kbRo 

-k~ sin kaRo -k~ COS kaRo -k~ sin kbRo -k~ cos kbRo 

-k~cos kaRo k~ sin kaRo -ktcos kbRo kt sin kbRo 

(3.132) 

Cnil 

Cni2 
and (3.133) c 

Cni3 

Cni4 
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F 

F~~)(~) 

F~~)(~) 

F~~)(~) 
F~~)(~) 
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(3.134) 

Here, ka ~ kb and !(ka + kb) = kn where n is the nth open channel index. F~) is the 

jfh derivative of Fni· 

The regularization of these "composite" free functions is accomplished by 

multiplying the entire function (in both the exchange and non-exchange regions) 

by a cutoff function f(R). The function used for this purpose was developed by 

Groenenboom [93] and is defined by 

f(R) = ~ ju e-t
2 dt 

y7r -oo 

where 

X - A(R-B). 

(3.135) 

(3.136) 

(3.137) 

A, B, and C are parameters chosen to impart a physically reasonable char­

acter to the cutoff function, where~ is the center of the switching region, and A and 

C are strength parameters which determine the rate of switching. The final definition 

of Won is then given by (3.96). The use of the spline fit for the free function (rather 

than using the reciprocal R1 expansion for the entire range of the scattering coordi­

nate) allows maximum freedom in choosing the cutoff function parameters. Good use 

of this is made in the later discussion dealing with the computation of the free-free 

matrix elements. 
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3. 7 Calculation of the Bound-Free Matrix Ele-

ments 

The use of the S matrix Kohn variational principle requires the calculation 

of the bound-free matrix elements given by (3.11), 

(3.138) 

where as before t is a three-dimensional composite DVR index and n is an open 

channel index. (For simplicity it is assumed in this section that the L 2 DVR functions 

Ut are not yet put in their symmetrized singlet and triplet irreducible representations.) 

The procedure by which these matrix elements are calculated is now dis­

cussed. In the previous section, the method by which an analytical form for the free 

functions is calculated was described. The operation of the Hamiltonian given in (3.1) 

upon the free .function is then a simple matter which can be performed analytically 

and inexpensively, especially in light of the simplicity of the potential energy func­

tion. Following this, the usual procedure used in calculating the bound-free matrix 

elements within a discrete variable representation involves explicitly calculating the 

quantity (H- E)'I!on as a function of all the independent variables (in this case R1 , 

R2, and ; ) and multiplying this quantity by the corresponding quadrature weight 

factors which characterize the various DVR's used in each degree of freedom. So in 

the present system the bound-free matrix element would be given as 

where 

(3.139) 

(3.140) 

(3.141) 

where (as before) t = {tb t2, t3} and Wit; represents the Gaussian quadrature weight­

ing factor associated with the ith degree of freedom and the t~h one-dimensional DVR 
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point within that degree of freedom. In the case of a DVR derived from sets of orthog­

onal polynomials, these weighting factors are the corresponding Gaussian quadra­

ture weights [35, 29, 34, 28). In the case of the equally-spaced sine-function DVR 

[41, 44, 94), where 
. smx 

smc (x) = --, 
X 

the weights logically correspond to 6.x, the distance between DVR points. 

(3.142) 

Unfortunately, there is no easy prescription for. determining the weighting 

factors to be used in the presently employed potential-optimized DVR. The finite basis 

representation most directly associated with this radial DVR (the eigenfunctions of 

the hydrogen 2s static potential) are not associated with any Gaussian quadrature 

scheme. Therefore the matrix of weights .6. (in the notation of Light [29, p. 1403]) 

which is associated with its quadrature is not diagonal in the point index and unique 

weights are not able to be assigned to each DVR point. Without such an assignment 

the simple evaluation of (3.139) cannot be used to provide values for M 0 • And 

since (in general) the number of composite DVR points is quite large, the number 

of elements in M 0 prohibits a computationally intensive method of evaluating these 

multi-dimensional integrals . 

The key to evaluating M 0 lies in the realization that the DVR represen­

tation of the Hamiltonian given by (3.83) through (3.87) is inherently sparse. This 

means that the multiplicative application of the Hamiltonian operator on a state 

vector is a computationally inexpensive operation. (This, of course, is one of the 

primary reasons for working in a DVR representation.) Assuming that the composite 

potential-optimized DVR is sufficiently complete, unity can be inserted into (3.11) to 

get 

(Mo)tn = L {ut!H- Elut') (ut'l'l'on). (3.143) 
t' 

Now if the factor {utiH- Elut') is assumed to be available in the form of a subroutine 

which takes advantage of the inherent sparsity of the Hamiltonian to enable efficient 

multiplicative operation of the Hamiltonian onto a given column vector of the same 

dimensionality, the calculation of M 0 is then reduced to calculating and storing the 

values of the projections ( Ut'l Won). It is not apparent at first that any real progress 
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has been made, except when one realizes that the analytical form for ~on is given by 

(3.96) as 

(3.144) 

Therefore ~on is a simple sum of products of one-dimensional functions. (Of course, 

this is not in general true for (H- E)'I!on because of the eigenstate mixing effect of 

the inter-electron potential.) The three-dimensional projection given by ( Ut• I 'I! on} is 

easily calculated in terms of its component factors (<t't1 IFni}, (<t't2 1¢>~}, and (et3 l¢>f} 

where <p and e are the radial and angularDVR functions defined by (3.54) and (3.61) 

respectively, ¢>~ and ¢>f are the radial and angular portions of the ith open channel 

respectively. The three-dimensional projection is then given as 

(3.145) 

Evaluation of the one-dimensional radial projections is accomplished by cal­

culating the projections of Fni and ¢>~ onto the original Sturmian basis functions 

described by (3.44) using Gauss-Laguerre quadrature, and using the transformation 

matrix z12 defined by (3.53) to calculate the projections onto the one-dimensional 

DVR functions. Evaluating the one-dimensional angular projections is even simpler 

given that the angular portion of the hydrogen bound states corresponds exactly to 

the finite basis representation used to generate the Gauss-Legendre DVR. Projections 

are calculated by using (3.60). It is then a simple matter to calculate the quantity 

(ut' I 'I! on} and store it in a column vector. 

This procedure for calculating the bound-free elements is very much in the 

spirit of utilizing Lanczos methods for performing matrix inversions in the solution 

of simultaneous equations [32]. ~he generation of a Krylov space in such a procedure 

involves many multiplications of an initial column vector by the Hamiltonian matrix. 

In this case, the initial column vectors are simply the representations of the free func­

tions Won within the space spanned by the DVR. A single Hamiltonian multiplication 

(along with the total energy term) is sufficient to give (H- E)'I!on· 
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3.7.1 The Extended Radial DVR 

A cursory glance at (3.5) and (3.6) 

B - Moo - M6 · M-1 · Mo 

C - Mw - M~T · M-1 · Mo 
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together with the definitions of M 00 , M 10 , M 0 , and M given in (3. 7), (3.8), (3.10), 

and (3.11) 

(Moo)nn' {'l'oniH- El'llon'), 

(M1o)nn' - ('ll1n!H- El'l'on'), 

Mtt' - (ut IH- Elut') 

(Mo)tn - (ut IH- El'llon), 

reveal that if the DVR basis set used to represent M is exactly the same as that used 

to generate M 0 by the multiplicative method described in the previous section, the 

values of B and C generated will necessarily vanish, assuming that L 2 DVR basis is 

complete. Direct substitution into (3.5) gives 

(B)nn' (Moo)nn' ~ (M6' · M-1 · Mo)nn' (3.146) 

- ('lloniH- El'l'on')-

L('lloniH- Elut) (uti(H- E)-1lut') (ut'IH- El'l'on') (3.147) 
tt' 

- ('lloniH- El'llon') -

('lloni(H- E)(H- E)-1(H- E)l'llon') (3.148) 

- 0. (3.149) 

The matrix C vanishes in a similar way. It is fairly easy to see what the difficulty is. 

The quantity (H- E)'llon vanishes for R1 ---+ oo (since the reciprocal R1 expansion 

for 'l'on solves the coupled-channel equations in the asymptotic region), but this is 

obviously not true for 'l'on itself. Ther~fore any attempt to r~present 'lion in an L2 

representation is certain to fail since the proper boundary condition for the free func­

tion cannot be achieved. This difficulty appears frequently in scattering calculations 

using basis sets and is discussed elsewhere by Jang and Light [95]. 
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But in actuality, for the purposes of calculating the bound-free matrix ele­

ment Mo it isn't necessary that Won be represented correctly throughout the entire 

scattering coordinate. It is merely necessary that Won be accurately represented 

throughout the interaction region being spanned by the L 2 DVR grid basis. Now, the 

DVR grid basis is obviously composed of very localized functions. And the functions 

which have their particle density the furthest from the origin are not likely to ade­

quately represent either Won or its second derivative (arising from the kinetic energy 

operator) without additional contributions from DVR basis functions in neighbor­

hoods around themselves. But this is not possible since it has been posited that 

these DVR basis functions were the ones with density furthest from the origin. The 

solution to this dilemma is presented here. 

1. Create a different (more radially-extensive) DVR basis set to represent the free 

function Won as well as the Hamiltonian matrix H. 

2. Multiply this expanded Hamiltonian matrix by a column matrix representing 

the free function Won in the same expanded representation. 

3. Project the resulting column matrix into the original DVR basis set. 

Of course, there is nothing which says that the expanded L 2 basis set must 

be a DVR basis set. It is only necessary that it span the required space. But there 

are many benefits to using another DVR basis set which includes in it the original 

restricted DVR basis set. The required multiplication of the Hamiltonian H by the 

column matrix representing Won is much less time-consuming if the Hamiltonian is 

sparse, and storage requirements are greatly minimized. In addition, the process of 

projecting the column matrix representing (H- EJ)Won in the expanded space into the 

more restricted space involves merely setting certain elements in the original column 

vector to zero (or even omitting them). This is much easier than using stored overlap 

matrices to calculate the projection into a dissimilar basis set. Also, the bookkeeping 

routines used for generating parameters needed to perform the sparse Hamiltonian 

multiplication are very computationally inexpensive and it is very easy to reuse them 

multiple times· for different sets of DVR functions. Finally, merely extending the 
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DVR basis further in the scattering coordinate preserves the same density of DVR 

points in this degree of freedom. Since the same range of kinetic energies needs to 

be represented by both the restricted and extended DVR basis sets, it is logical that 

these densities should be the same. 

To summarize in equation form, the new forms for the B and C matrices 

are given as 

T - AT 1 A -

B - Moo- (v · M · P ) · M- · (P · M · v), and 
T - AT 1 A -

C - M10- (v* · M · P ) · M- · (P · M · v) 

(3.150) 

(3.151) 

where Pis a left-handed projection operator which projects from the extended DVR 

space into the restricted DVR space. The tilde indicates representation in the ex­

tended DVR basis set such that M is H - E in the extended DVR space, and v is 

the column matrix for the free function Won whose elements are defined as 

(v)tn - {utiWon) 

L (<piliFni) (<pi2I<P~) (eiai<Pf). 

(3.152). 

(3.153) 

(It is again temporarily assumed that the L 2 DVR functions Ut are not symmetrized.) 

3. 7.2 Symmetrization of the Free Functions 

By the same arguments presented in the section dealing with the sym-
' 

metrization of the L 2 Hamiltonian matrix elements, incorporation of proper spatial 

·symmetry into the free functions offers a complete separation of the singlet (S=O) and 

triplet (S=1) computations. Symmetrization of the free functions Won block diagonal­

izes the Moo and M 10 matrices defined by (3. 7) and (3.8), thereby block diagonalizing 

the matrices B and C defined by (3.5) and (3.6). This in turn block diagonalizes the 

S matrix of (3.4). After incorporating a normalization factor which preserves the 

particle flux associated with the free functions, symmetrization produces the correct 

form for the free function 

(3.154) 
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Incorporating the properly derived symmetrization of the L 2 DVR functions given in 

(3.71) and (3.72) gives the projection formulae 

(vhn = L [('Pi1 IFni} (c,oi2I<P~)(eiai<P1} ± (c,oi21Fni} (c,oili<P~} (eiai<P1}] (3.155) 
i 

for the case where it > i2, and 

(vhn = L v'2 (c,oiliFni} (c,oi2I<P~} (eiai<P1} (3.156) 
i 

for the singlet scattering case where i 1 = i 2 • (Once again, the tilde indicates repre­

sentation in the extended DVR space.) For the triplet scattering case where t1 = i 2 , 

this matrix element vanishes. As before, the "+" option indicates singlet scattering 

and the "-" option indicates triplet scattering. 

3.8 Calculation of the Free-Free Matrix Elements 

Since the form: of the cutoff function presented in (3.135) is of a somewhat 

complicated form, an analytical solution to the free-free matrix elements is not prac- · 

tically possible. And while the extended radial DVR method which was used in the 

calculation of the bound-free matrix M 0 may also be used in the calculation of the 

free-free matrices M 00 and M 10 defined by (3. 7) and (3.8), the number of open chan­

nels present in this calculation is only three and so the dimensionality of the M 00 and 

Mto matrices is quite small. Instead, these matrices were calculated by the use of 

automated numerical integration routines provided by NAG (Numerical Algorithms 

Group). The calculation of the free-free matrix elements begins with (3.154) 

1 
Won(Rt, R2, ;) = ~ y'2 [Fni(Rt)<Pi(R2, ;) ± Fni(R2)¢i(Rt, ;)] . 

Since the .form of the Hamiltonian given in (3.2) is invariant to exchange of R 1 and 

R 2 , substitution into (3. 7) gives 

(Moo)nn' ('ltoniH- El'l'on•) (3.157) 

L [ (Fni<PdH- EIFn'i'<Pi'} ± (Fni<PiiH- EI<Pi•Fn'i')] (3.158) 
ii' . 
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in which the first term in the summand is the direct term and the second term 

is the exchange term. As before, the order of the factors within the bra and ket 

determine whether the factor is a function of R1 or R 2 • It would be computationally 

advantageous to be able to assume that the exchange term vanishes, since this would 

cut in half the computational effort required for the calculation of each free-free matrix 

element. 

Various methods have been proposed for the elimination of the free-free 

exchange terms. Rescigno and Schneider [96] perform an explicit Gramm-Schmidt 

orthogonalization of the free functions Won to the composite L2 basis set. Now, the 

action of the Hamiltonian fi upon the free functions Won is likely to create components 

outside of this L2 space. These are explicitly removed with the projection operator 

p = L IAt} (Atl (3.159) 
t 

where At is a composite function in the L2 space. This ensures that the exchange 

matrix elements vanish. 

Here, a more physically intuitive approach is taken. The form chosen for the 

cutoff function given in (3.135) is quite general. Becaus~ the hydrogen eigenfunctions 

are of limited spatial extent, the parameters composing the cutoff function can be 

chosen such that the cutoff function vanishes for the vast majority of the region 

of the scattering coordinate in which the hydrogen eigenfunctions have finite density. 

Because each of the operators in the Hamiltonian is either of a multiplicative form or a 

second derivative form, the action of ii upon the free functions is unable to introduce 

particle density into the region where the cutoff function vanishes. It is therefore 

sufficient to introduce such parameters A, B, and C into the cutoff function of (3.135) 

such that the function has negligible overlap with. the hydrogen eigenfunctions. A 

glance at (3.158) indicates that this is sufficient to force the exchange term to vanish. 

This computationally simplifying approach is also utilized by Zhang and Miller [54]. 

The Hamiltonian is given in (3.2) as 

A 1 82 1 82 (. 1 1 ) A 2 1 1 1 
H = -2 8Ri - 2 oR~ + 2Ri + 2R~ L - R1 - R2 + IR1 - R2l. 
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For each term in the Hamiltonian other than that describing the inter-electron inter­

action, integrating out the R 2 and 1 degrees of freedom is a relatively simple matter 

to perform analytically since the analytical form of the hydrogen eigenfunctions is 

very simple. (Here, it is arbitrarily assumed that <Pi is a function of R2 and not R1.) 

For these terms this enables one to obtain a simple form for the integrand in the one 

degree of freedom remaining - R1 • For the term describing the inter-electron degree 

of freedom, the summand of the integrand for the R1 integration is given as 

(3.160) 

where (as described previously) the subscript R21 indicates the variables over which 

integration is to be performed. The standard multipole expansion then gives 

1 lmaz J(2l· + 1)(2[., + 1) Rl 

(<PiiiRI- R211<Pi')R2"Y = ·~ I 21 + 1 I [C(lili'l; 000)]2 (<Pil R']li</Ji,)R2 

(3.161) 

where the angle 1 has, been integrated out and notation similar to that in (3.99) 

is used. The integration over R2 present in the last term on the right-hand side is 

calculated numerically using an automated NAG routine. This is .performed for each 

applicable value of R 1 to obtain and integrand dependent only upon R1 . 

Using this routine for the calculation of the integrand as a function of Rt, 

the free-free matrix elements of M 00 and M 10 are determined using another NAG 

automated integration routine. It will be noticed that no discontinuous or cusp be­

havior is to be found in the R1 integrand since the spline fit used in calculating the 

free function Fni matched oth through 3rd order derivatives at the demarcation point 

between the reciprocal R1 expansion and the two-frequency sine/cosine expansion 

used in (3.130) for the interaction region. This lack of bad behavior in the R1 inte­

grand provides wider freedom in deciding which automated integration routines can 

be used effectively, and there is no need to split the integration into separate regions. 
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Chapter 4 

Results and Discussion 

4.1 Setting Parameter Values 

From the previous chapter detailing the theoretical background used in de­

veloping a discrete variable representation (DVR) useful for treating electron-atom 

collisions, it can be seen that there are numerous parameters involved in such a cal­

culation. Certainly, there are optimum values for each of these parameters which 

maximize the efficiency of the calculation. Some of the values of these parameters 

were determined based upon reasonable physical determinations. Other values were 

used as convergence parameters, whereby values of the particular parameter were var­

ied until stable values for S matrices and cross sections were achieved. This section 

describes the procedures by which the parameters present in the scattering calcula­

tions were determined. 

4.1.1 Setting ·Up the Radial DVR 

As was described within the previous theoretical chapter, the development 

of the radial DVR involves a series of two diagonalizations. The first diagonalization 

involves calculating eigenfunctions of the direct portion of the strengthened static 

hydrogen 2s potential energy surface given by (3.29) as 

- -R ( 1 3 1 1 2) '\r2 (R) = -o:e - +- + -R + -R 
s R 4 4 8 
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where a is the strength parameter. A primitive basis set of Sturmian functions is 

used in this diagonalization. These Sturmian functions are defined in (3.44) as 

<f>n(x) = J n(n 
8
+ l) e-sx/

2 sx Ln(sx) 

where s is a scale parameter. It is necessary to determine the total number of such 

Sturmian functions to include in the primitive basis set, as well as the value of the 

scale parameter s. An insufficient number of primitive basis functions will prevent 

the radial DVR from spanning a sufficient amount of the radial L 2 space. More 

specifically, high kinetic energy components of the scattering wave function near the 

origin will be badly represented. And since the zeroes of the Laguerre polynomials 

become widely spaced at large values of R, a large number of such functions (together 

with a large scale parameter) are needed to adequately represent the oscillations of 

the wavefunction at the edge of the interaction region. So it would seem that one 

should use as many primitive Sturmians as numerically feasible since the derivation 

of the radial DVR is only performed once for several scattering energies. In these 

calculations, the number of primitive Sturmians was set at 380. Attempts to use 

more than this resulted in numerical difficulties stemming from poor evaluations of 

"C2s matrix elements needed for the first diagonalization, most likely caused by poor 

evaluations of Gauss-Laguerre quadrature points and weights by the NAG routine 

employed. 

The determination of the Sturmian scale parameter s was found to be some­

what of a. difficult point requiring some empirical examination and experimentation. 

As described previously, in the interest of computational efficiency it is worthwhile 

to confine the particle density of the radial DVR basis to only that region of the 

scattering coordinate which requires it (the interaction/exchange region). As such, 

it would seem that confining the particle density of the primitive Sturmian functions 

to the same region would be the natural thing to do. But it has actually been found 

that the best radial DVR results from allowing the primitive Sturmian functions to 

extend radially well beyond the maximum desired reach of the ·radial DVR functions. 

With some reflection it is not difficult to understand why this is the case. 

For any particular set of primitive Sturmian. functions { <f>n}, only the function with 
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the largest index n will h~ve appreciable particle density at the largest possible values 

of the scattering coordinate R. If the farthest reach of the highest indexed Sturmian 

function also corresponds to a region of the scattering coordinate which needs to be 

represented by the radial DVR, it is reasonable to assume that the DVR functions 

centered at high values of the scattering coordinate are not likely to be well-formed 

since they would need to be represented by the relatively small number of primitive 

Sturmians with particle density in this region. 

It is particularly important that the highly localized radial DVR functions 

be well-formed. Since the kinetic energy matrix of the primitive Sturmians is known 

exactly by (3.48), the one-dimensional kinetic energy matrix for the DVR functions 

will also be exact. But, as in all discrete variable representations, the potential matrix 

elements of the composite DVR functions are approximated by the values of the 

potential energy surface at the composite DVR point. In order for this quadrature 

approximation to be accurate, it is important that the DVR functions be locally 

symmetrical. It has been found in this set of calculations that the only way to ensure 

that this requirement is met is to allow the primitive Sturmian basis to extend well 

beyond the anticipated interaction region. 

Previously a prescription was suggested which determined the scale parame­

ters by requiring that the final Gauss-Laguerre quadrature point used for calculating 

'V2s matrix elements of the primitive Sturmian functions be located at a particular 

value of the scattering coordinate. This prescription is followed in these calculations 

and the value of the scattering coordinate used for the final quadrature point has 

been set at R = 61 au, well beyond the end of the interaction region for all of the 

scattering energies studied in these calculations. 

Naturally, the use of the extended radial DVR (which was previously de­

scribed for the projection calculation of the bound-free matrix elements of M 0 ) also 

requires that the primitive Sturmian basis provide particle density beyond the fur­

thest reach of the extended radial DVR. But it is found that the extended radial DVR 

need not provide much more than one or two extra radial DVR functions in order to 

generate an accurate approximation to M 0 , and the value of R = 61 au previously 

given has been found to be quite adequate. 
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. 
Having determined the correct primitive Sturmian basis set, it is then neces-

sary to determine the optimum multiplicative strength parameter a associated with 

the strengthened static 2s potential given by (3.29) 

- R ( 1 3 1 1 2) V2 (R) = -ae- - +- + -R + -R . 
s R 4 4 8 

As was mentioned previously, one wishes to avoid choosing a value for a which is too 

close to zero since this will generate a radial DVR which is composed of equally-spaced 

points which will not adequately sample the region of the potential· energy surface 

close to the origin where the Coulomb interaction is strongest. Likewise, choosing 

a value for a which is too large will generate a radial DVR which has too sparse a 

distribution of points at the edge of the interaction region, such as in standard Gauss­

Laguerre DVR. This might be adequate in a bound state calculation where the edge 

of the interaction region is dominated by decaying exponential wavefunctions. But 

it would certainly not be so in a scattering calculation at typical asymptotic kinetic 

energies. 

A clue is suggested by the form of (3.12), which gives the differential equation 

satisfied by the Sturmian functions: 

(-.!_~ l(l + 1) _ anz _E) S (R) 
2 dR2 + 2R2 R nl = O. 

In this equation, anz is taken to be proportional to n. In the same way, one can expect 

the proportionality constant a associated with the strengthened 2s static potential 

~s to give better results when its value is roughly proportional to the number of 

radial DVR functions to be derived from the two successive diagonalizations used in 

generating the DVR. It would be instructive at this point to examine different distri­

butions of radial DVR points derived from various values of the strength parameter 

a. Figures 4.1 and 4.2 show such distributions for 50 radial DVR points. 

It is apparent here that as the strength parameter a is increased, the density 

of DVR points near the origin increases greatly. (Notice that the equally-spaced DVR 

resulting from setting a = 0 places its first radial DVR point more than a full atomic 

unit from the origin.) It is also apparent that since the total number of radial DVR 

points within the given range is constant, increasing the density of DVR points near 
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Figure 4.1: Radial DVR distributions for different values of the strength parameter 
a. From bottom to top: a = 0, a = 40, a = 80, a = 120 , a = 160. 

the origin necessarily decreases the density in the asymptotic region. In this way, the 

strength parameter a can be thought of as a tuning parameter which can provide a 

compromise between equally-spaced DVR and a DVR with greater variations in point 

density (such as Gauss-Laguerre DVR). The strength parameter a will be thoroughly 

examined as a convergence parameter later. 

It is useful at this point to actually examine the functional form of the local­

ized DVR functions, both deep within the interaction region where the strengthened 

static 2s potential 'V2s has a strong Coulombic character 

- a 
V:2 rv --

8 R' (4.1) 

and also within the more electronically shielded environment outside of the particle 

density of the bound hydrogen electron where 

(4.2) 
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Figure 4.2: Radial DVR distributions within the interaction region for different values 
of the strength parameter a. From bottom to top: a= 0, a= 40, a= 80, a= 120 , 
a= 160. 

Figure 4.3 shows that the radial DVR functions located in the shielded region 

of the scattering coordinate look very similar to the sine-functions of (3.142) which 

form the basis for the DVR of Colbert and Miller [41). In fact, the one-dimensional 

kinetic energy matrix elements formed between pairs of these calculated asymptotic 

DVR functions are almost identical to those resulting from this sine function DVR. 

This is to be contrasted with Figure 4.4 which shows an expanded view of one of the 

calculated DVR functions located well within the interaction region of the scattering 

coordinate where the shielding of the charge of the proton is low. This function is 

similar to the sine function in that its amplitude vanishes (or nearly so) at the values 

of the associated DVR points. But of course the density of the DVR points is not 

constant within this region. 

Figure 4.5 shows the calculated DVR function associated with a point near 

the end of the region covered by the primitive Sturmian function basis set. It can be 

seen here that while the section of greatest particle density_ for this function appears 
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Figure 4.3: Radial DVR function toward the end of the interaction region. Small ver­
tical lines indicate positions of radial DVR points computed with strength parameter 
a= 40. 

to be relatively well-behaved and symmetrical, the remainder of the domain of the 

function is extremely irregular. This is the main reason for requiring that the primitive 

Sturmian basis span a physical space extending well beyond the anticipated domain 

of both the restricted radial DVR (used in the Hamiltonian matrix inversion) and 

the extended radial DVR (used in calculating the free-free matrix elements). The 

irregularities present in the function shown in Figure 4.5 ensure that this function 

would not offer an accurate quadrature approximation of the potential energy at any 

composite DVR point which depends upon this one-dimensional function. 

4.1.2 Setting up the Free Function Expansion 

In this section the development of the free function Won is discussed. While 

there are a moderately large number of parameters associated with these functions, 

many of them can be set simply on the basis of physical constraints and need not 

be used as convergence parameters. By way of review, the free function is given in 
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Figure 4.4: Radial DVR function within the interaction region. Small vertical lines 
indicate positions of radial DVR points computed with strength parameter a = 40. 

(3.96) the form 

Won(Rt, R2, I)= L Fni(R1)¢i(R2, 1) 
i 

(4.3) 

where n is the open channel index, <Pi is the ith hydrogen atom quantum state, and 

Fni is the one-dimensional free function associated with this state. As described 

previously, the functions Fni take the form of (3.103) multiplied by a cutoff function 

giving_ 
·Co Pma.z 

Fni(R) = f(R) 2::: L [a;i"sin(k.cR) + ,a:i"cos(k.cR)] R-P (4.4) 
.c=l p=O . 

when R > Ro (Ro being a convenient demarcation point separating the exchange 

region from the asymptotic region which has been set at 20 au in these calculations) 

and f(R) is the cutoff function defined by (3.135). Within the exchange region when 

R < Ro, Fni takes the form of the spline fit in (3.130) multiplied by the same cutoff 

function, giving 

Fni(R) = f(R) [cnil sin ka(R) + Cni2 cos ka(R) + Cni3 sin kb(R) + Cni4 cos kb(R)]. 

(4.5) 
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Figure 4.5: Radial DVR function toward the end of the extended DVR region. Small 
vertical lines indicate positions of radial DVR points computed with strength param­
eter a= 40. 

The definition of the cutoff function given in (3.135) defines f as 

J(R) = ~ ju e-t
2 

dt 
V 7r -oo 

where 

X - A(R- B). 

(4.6) 

(4.7) 

(4.8) 

There are certain physical constraints which need to be satisfied for optimum results. 

The symmetrized form for the free-free matrix elements is given in (3.158) as 

(Moo)nn' = L [(Fni<PiiH- EIFn'i'</>i') ± (Fni</>iiH- El</>i'Fn'i')]. (4.9) 
ii' 

In order to be able to assume that the exchange term in this equation van­

ishes it is necessary to choose a combination of parameters A, B, and C such that the 

overlap of the individual components Fni of the free function have no overlap with 
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the radial. portions of the set of hydrogen bound state wavefunctions { </>i}. It is also 

desirable that the range of the cutoff function in which the value switches from 0 to 

1 be minimal, since a long switching distance increases the size of the region of the 

scattering coordinate which needs to be covered by the DVR function space. Unfor­

tunately, if the switching distance is too short this requires a high density of DVR 

points in this region. Optimally, the switching distance is then roughly proportional 

to the shortest wavelength which needs to be represented by the DVR grid. In this 

way, the physical wavefunction remains the factor which determines the density of 

DVR points, rather than the artificial cutoff function f. Figure 4.6 shows the spatial 

extent of the cutoff function used in this study together with the radial extent of the 

three hydrogen bound states present. 
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Figure 4.6: Cutoff function fin comparison to H bound states. Parameter values 
are A --:- 0.39, B = 20.0, and C = 0.05. Solid line: f(R); Long-dashed line: ra­
dial </>1s wavefunction; Dashed-line: radial </>2s wavefunction; Dotted-line: radial </>2p 

· wavefunction. 

Having set the p~rameters which determine the form of the cutoff function j, 

an examination of the representation of the free functions within the extended radial 

DVR is worthwhile since it offers an approximate idea of the density of radial DVR 
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points required in the calculation. Since the density of radial DVR points required is 

directly related to the shortest wavelength present in the system, projections of free 

functions onto the radial DVR space are examined for the highest kinetic energies 

present, since these energies present the greatest challenge to the projection technique. 

For this study, this corresponds to the free function component associated with a ¢Is 

state for an asymptotic ¢Is state scattering at a total energy just below the n = 3 

threshold. The number of extended radial DVR points used equals the number of 

eigenvalues of the strengthened static 2s potential ('t/;s) used in the diagonalization of 

the position coordinate. Figures 4.7 through 4.10 show these projections for various 

numbers of extended radial DVR points. 
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Figure 4.7: Projection of Fni for n = 1 and i = 1 forE= 0.88Ryd (30 x eigenstates). 
Solid line: analytical Fnii Dashed line: the projection approximation. Plus signs 
indicate radial DVR points and the long vertical line indicates the end of the extended 
radial DVR grid. 

As can plainly be seen, the accuracy of the projection of the free function 

onto the extended DVR grid begins to become accurate when approximately four 

radial DVR points are made available per wavelength. The region where the analytical 

free function component vanishes (inside the interaction region) appears to be the 
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Figure 4.8: Projection of Fni for n = 1 and i = 1 forE= 0.88Ryd (35 x eigenstates). 
Solid line is analytical Fnii dashed line is the projection approximation. Plus signs 
indicate radial DVR points and the long vertical line indicates the end of the extended 
radial DVR grid. 

most difficult region to emulate with the projection technique. 

4.2 Singlet and Triplet Scattering Calculations 

The calculations presented in this section were performed in double precision 

on a Sun SPARCstation 10. For reasons described in the next chapter of this thesis, 

the inversion of theM matrix described in (3.10) was performed using a full-storage 

L U decomposition (with partial pivoting) followed by Gaussian elimination. Solution 

vectors were iteratively refined to achieve machine accuracy. Calculation of the S 

matrix for a given energy required approximately 25 minutes of CPU time and 120MB 

of core memory. The singlet calculations were performed using a matrix composed 

of 2380 composite DVR points; the triplet calculations were performed with 2520 

composite DVR points. 
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Figure 4.9: Projection of Fni for n = 1 and i = 1 forE= 0.88Ryd (40 x eigenstates). 
Solid line is analytical Fni; dashed line is the projection approximation. Plus signs 
indicate radial DVR points and the long vertical line indicates the end of the extended 
radial DVR grid. 

4.2.1 Convergence of Singlet Transition Probabilities 

This section deals with the convergence of the calculation of transition prob­

abilities for the singlet (S=O) symmetry. Many of the convergence parameters deter­

mined here are used again in a later section without change for the calculation of 

transition probabilities for the triplet (S=1) symmetry. To facilitate the reporting 

of these results, the values of parameters in the final results are presented with the 

understanding that the intermediate convergence tests (which examine only one pa­

rameter at a time) differ from the final parameter values only in the value of the 

parameter being studied in that particular convergence test. 

As was mentioned previously, not all the parameters present in these cal­

culations were used as convergence parameters. In particular, parameters associated 

with the formulation of the free functions (including those determining the cutoff 

function) were fixed at the previously reported values since these were seen to be 

physically reasonable and it was judged (correctly) that the calculation would not 
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Figure 4.10: Projection of Fni for n = 1 and i = 1 forE = 0.88 Ryd ( 45 x eigenstates ). 
Solid line is analytical Fnii dashed line is the projection approximation. Plus signs 
indicate radial DVR points and the long vertical line indicates the end of the extended 
radial DVR grid. ! 

be very sensitive to small variations in these values. As a result, only the parameter 

determining the number of terms associated with the reciprocal R expansion (Pmax) 

was varied. Convergence tests were performed for five important parameters, which 

are described here: 

• a: the multiplicative strength parameter associated with the strengthened static 

2s potential "t12s defined by (3.29). The converged calculation uses the value 

a= 80. 

• n-y: the number of Gauss-Legendre DVR points used in the angular degree of 

freedom. The converged calculation uses the value n-y = 4. 

• Rmax= determines the value of the scattering coordinate associated with the ra­

dial DVR point located furthest from the nucleus. Convergence tests associated 

with this parameter also vary the positions of the furthest extended radial DVR 

point (used in the calculation of the bound-free m~trix elements) and the fur-
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thest reach of the primitive Sturmian functions such that the furthest extended 

radial DVR point is 13 au from the furthest radial DVR point actually used in 

the Hamiltonian inversion, and the zero of the highest-index Sturmian is set to 

be 13 au further still. The converged calculation uses the value Rmax = 35 au. 

• Pmax: the absolute value of the most negative R exponent present in the recip­

rocal R expansion which defines the free functions in (3.103). The converged 

calculation uses the value Pmax = 8. 

• nR: the number of eigenvalues of the strengthened static 2s potential ii;s used 

in the diagonalization of the position operator x. This parameter and Rmax 

therefore determine the density of radial DVR points used in the calculation. 

The superscript "e" indicates that it is not strictly equal to the number of radial 

DVR points used, but instead indicates the number of eigenvalues used in their 

calculation. The converged calculation uses the value nR =50. 

Because the transition probability matrix P (where Pi;= 1Si;l2
) is symmet­

ric, the following convergence plots only show transition probabilities for </>18 ---+ </>18 , 

4>Is ---+ </>2s, 4>Is ---+ </>2p, </>2s ---+ </>2s, </>2s ---+ </>2p, and </>2v ---+ </>2p transitions. It will be 

immediately noticed that the energy scale in these convergence plots is identical, but 

that the probability scale varies widely in order to show the most detail possible. The 

vertical line in all these convergence plots indicates the n = 3 transition threshold, 

while the beginning of the energy scale indicates the n = 2 threshold. 

A few general features in these convergence plots are worth noting. First, 

it is immediately obvious that the amount of mixing between the 4>1s state and the 

two n = 2 states ( </>2s and </>2v) is quite small. Second, the mixing between the </>28 

and </>2v states is very strong and energy-dependent between the n = 2 and n = 3 

thresholds. Third, there is an obvious resonance structure located just above 0.86 

Ryd which manifests itself in nearly all the convergence studies. 

Convergence of transition probabilities between the three open channels </>18 , 

</>2s, and </>2p with respect to the a: strength parameter are examined in Figures 4.11 

through 4.16. (The convention is introduced in which the </>18 , </>28 , and </>2p states are 
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referred to by the indices "1", "2", and "3" respectively.) Here, stronger strength 

parameters a have the effect of skewing the placement of radial DVR points so as 

to place a higher density of them closer to the origin, while slightly decreasing their 

density in the asymptotic region of the scattering coordinate. As one would expect 
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Figure 4.11: a convergence of </>18 --+ </>1 s transition probability Pn. Circle: a = 10; 
Square: a = 30; Diamond: a = 50; Solid line: a = 80. Vertical line is n = 3 
threshold. 

from the particle densities of the </>18 , </>28 , and </>2p hydrogen states, transition prob­

abilities whic;h involve scattering wavefunctions with large </>18 components require a 

high density of radial DVR points near the origin, and are mostly likely to exhibit 

slow convergence with respect to this parameter. This is clearly demonstrated in Fig­

ures 4.11 through 4.13, in which the transition probabilities out of the </>1s hydrogen 

state are almost universally incorrect throughout the energy region. Interestingly, the 

resonance structure just above 0.86 Ryd still manifests itself even when the density 

of radial DVR points near the origin is not particularly high. 

Not surprisingly, the transition probabilities between the </>28 and </>2p states 

converge much more rapidly with respect to this parameter. As mentioned previously, 

this is in all likelihood due to the fact that the total scattering wavefunction in such 

•. 
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Figure 4.12: a convergence of </>18 --+ </>28 transition probability P12 • Circle: a = 10; 
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threshold. 
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Figure 4.15: a convergence of </128 ~ </12p transition probability P23 • Circle: a = 10; 
Square: a = 30; Diamond: a = 50; Solid line: a = 80. Vertical line is n = 3 
threshold. 
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Figure 4.16: a convergence of </>2p -t </>2p transition probability P33. Circle: a = 10; 
Square: a = 30; Diamond: a = 50; Solid line: a = 80. Vertical line is n = 3 
threshold. 

transitions has a very small projection into the </>18 state and therefore very few radial 

DVR points are needed to accurately represent the wavefunction. 

One curious feature present in all six of the transitions represented by Fig­

ures 4.11 through 4.16 is the fact that errors incurred as a result of not having an 

adequate density of radial DVR points near the origin appear to overestimate the 

transition probability, regardless of energy. It is also evident that convergence is 

stronger nearer to the n = 3 threshold than near the n = 2 threshold. In fact, the 

ability of the calculation to attain quantitative results just above the n = 2 threshold 

is demonstrably weaker than anywhere else in this particular energy region. 

The reasons for this have been discussed elsewhere by Schwartz [18] and 

Burke and Schey [89]. The ability of the reciprocal Rexpansion to adequately repre­

sent the scattering free functions at low kinetic energies is not very good. As a result, 

the interaction region becomes quite large and the limited extent of the radial DVR 

becomes a serious liability as it is no longer able to compensate for the weakness of 

the reciprocal R expansion. 
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A similar problem is avoided just below the n = 3 threshold. In this part 

of the energy spectrum difficulties usually arise from the fact that the exponential 

tails on the projection of the scattering wavefunction onto the closed n = 3 chan­

nels become very long and therefore move outside of the interaction region. But the 

implementation of this particular radial DVR enables a better treatment of larger 

interaction regions by virtue of the fact that the density of such points becomes rela­

tively constant for scattering regions beyond a particular value of R, unlike densities 

associated with standard Gaussian quadrature DVRs. This results in an ability to 

place the radial DVR points more efficiently, and therefore to use them to span a larger 

interaction region. (As will be seen later in the section dealing with .the convergence 

> of the individual S matrix elements, the exponential tails of the radial wavefunction 

still pose difficulties at energies very close to the n = 3 threshold, but these difficulties 

are minimized with the present method.) 

The convergence of singlet transition probabilities with respect to the num­

ber of angular Gauss-Legendre DVR points n.,. in demonstrated in Figures 4.17 

through 4.22. Not surprisingly, the most rapid convergence is demonstrated for the 

¢>Is -+ ¢>Is transition. Once again, the lack of mixing between the ¢>Is and other 

hydrogen states permits this scattering wavefunction to be accurately represented by 

fewer angular DVR points. This must in large part be due to the spherical symmetry 

of the strongest bound state component. It will be noticed that convergence of the 

¢>2s -+ ¢>2s transition shown in Figure 4.20 is not nearly as strong, in spite of the 

spherical symmetry of the ¢>28 state. This is very likely due to the strong projection 

of the associated scattering wavefunction into the strongly mixing ¢>2P state, which 

does not have spherical symmetry. As a general rule, convergence of all transition 

probabilities is adequate with merely three Gauss-Legendre angular DVR points, with 

rather good convergence being attained with four. 

One of the most striking features of these particular convergence studies 

IS the almost complete lack of any resonance structure near 0.86 Ryd when only 

one angular DVR point is employed, even in Figure 4.17 which shows convergence 

of the ¢>Is -+ ¢>Is transition probability. This is clear evidence that while spherical 

symmetry obviously dominates the scattering wavefunction in the asymptotic region 
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Figure 4.17: n-y convergence of </>1s ~ </>18 transition probability P11 . Circle: n-y = 1; 
Square: n-y = 2; Diamond: n-y = 3; Solid line: n-y = 4; Up triangle: n-y = 5. Vertical 
line is n = 3 threshold. 
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Figure 4.18: n-y convergence of </>18 ~ </>25 transition probability P12 . Circle: n-y = 1; 
Square: n-y = 2; Diamond: n-y = 3; Solid line: n-y = 4; Up triangle: n-y = 5. Vertical 
line is n = 3 threshold. 
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Figure 4.19: n-y convergence of ¢18 ---+ ¢2p transition probability P13 • Circle: n-y = 1; 
Square: n-r = 2; Diamond: n-y = 3; Solid line: n-y = 4; Up triangle: n-y = 5. Vertical 
line is n = 3 threshold. 
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Figure 4.20: n-y convergence of <P2s ---+ ¢25 transition probabl.lity P22 • Circle: n-y = 1; 
Square: n-y = 2; Diamond: n-y = 3; Solid line: n-y = 4; Up triangle: n-y = 5. Vertical 
line is n = 3 threshold. 
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Figure 4.21: n-y convergence of </>28 ---+ </>2p transition probability P23 • Circle: n-y = 1; 
Square: n-y = 2; Diamond: n-y = 3; Solid line: n-y = 4; Up triangle: n-y = 5. Vertical 
line is n = 3 threshold. 
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Figure 4.22: n-r convergence of </>2p ---+ </>2p transition probability P33 • Circle: n-r = 1; 
Square: n-y = 2; Diamond: n-y = 3; Solid line: n-y = 4; Up triangle: n-y = 5. Vertical 
line is n = 3 threshold. 
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of the radial coordinate, such is not the case within the interaction region where inter­

electron repulsion evidently distorts this symmetry. Inclusion of two angular DVR 

points is sufficient to cause at least a slight manifestation of the resonance behavior 

in all of the transition probabilities. The ~ea.kest convergence is demonstrated in 

Figure 4.22, but full co~vergence appears to be attained with only four angular DVR 

points. 

Convergence of singlet transition probabilities with respect to the position 

of the last radial DVR point Rmax is shown in Figure 4.23 through Figure 4.28. 

Here Rmax represents the position of the center of the radial DVR function located 
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Figure 4.23: Rmax convergence of </>1s --+ </>1s transition probability P11 • 

Rmax = 27 au; Square: Rmax = 29 au; Diamond: Rmax = 31 au; Up 
Rmax = 33 au; Solid line: Rmax = 35 au. Vertical line is n = 3 threshold. 

Circle: 
triangle: 

furthest from the origin. As such, it is a direct measure of the extent of the interaction 

region spanned by the L 2 basis set. The highly localized DVR functions allow one 

to study the extent of this interaction region in a very physical way, without having 

to interpret results in terms of projections onto spatially diffuse functions (such as is 

required when conventional delocalized L2 basis functions are used). 

The most noteworthy characteristic present in these particular convergence 
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Figure 4.24: Rmax convergence of </>1s -+ </>2s transition probability P12· Circle: 
Rmax = 27 au; Square: R.nax = 29 au; Diamond: Rmax = 31 au; Up triangle: 
Rmax = 33 au; Solid line: Rmax = 35 au. Vertical line is n = 3 threshold. 
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Figure 4.25: Rmax convergence of </>1s -+ </>2p transition probability P13 . Circle: 
Rmax = 27 au; Square: Rmax = 29 au; Diamond: Rmax = 31 au; Up triangle: 
Rmax = 33 au; Solid line: Rmax = 35 au. Vertical line is n = 3 threshold. 
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Figure 4.26: Rmax convergence of cf>2s --+ c/>2s transition probability P22· Circle: 
Rmax = 27 au; Square: Rmax = 29 au; Diamond: Rmax = 31 au; Up triangle: 
Rmax = 33 au; Solid line: Rmax = 35 au. Vertical line is n = 3 threshold. 
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Figure 4.27: Rmax convergence of ¢>28 --+ ¢>2p transition probability P23 . Circle: 
Rmax = 27 au; Square: Rmax = 29 au; Diamond: Rmax = 31 au; Up triangle: 
Rmax = 33 au; Solid line: Rmax = 35 au. Vertical line is n = 3 threshold. 
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Figure 4.28: Rmax convergence of ¢2p --+ 4>2p transition probability P33· Circle: 
Rmax = 27 au; Square: Rmax = 29 au; Diamond: Rmax = 31 au; Up triangle: 
Rmax = 33 au; Solid line: Rmax = 35 au. Vertical line is n = 3 threshold. 

studies is the fact that (with the exception of energy r~gions just above the n = 2 

threshold, just below the n = 3 threshold, and immediately surrounding the resonance 

at 0.862 Ryd) the transition probabilities are relatively converged when Rmax = 27 

au. The strength and sharpness of this resonance increases steadily until it also 

becomes converged when Rmax = 35 au. This is most dramatically demonstrated in 

Figures 4.26 through 4.28 which show transition probabilities between the 4>2s and 

4>2p hydrogen states. When Rmax = 27 au, the resonance behavior does not seem to 

manifest itself at all, indicating that the free functions employed in the calculation 

near this resonance energy are not adequate to represent the scattering wavefunction 

without more assistance from the L 2 radial DVR basis set. 

Convergence with respect to the Rmax parameter is difficult in two other 

energy regions. For example, significant difficulty is encountered just above the n = 2 

threshold. In fact, even qualitatively correct results are not obtained below 0.76 

Ryd. This is not unexpected behavior. The reciprocal R expansion which has been 

employed in the calculation of the asymptotic form of the free functions has significant 
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sine/cosine character far from the origin, as evidenced by (3.103). But when the 

magnitude of the asymptotic wave vector k ~ 0, the physically correct wavefunction 

behaves more as R-P, where p can be as small as zero. This "straightline" behavior 

of the wavefunction is badly represented by the present sine/ cosine expansion, and 

requires inclusion of terms of the form 

for p = 0- oo. (4.10) 

where n indicates the barely open channel. (Terms of this kind are discussed by 

Schwartz [18] and Burke and Schey [89].) But a non-zero coefficient cannot be as­

signed to the p = 0 term (unlike the o:~nn and f3ffnn terms). They therefore cannot 

be included in the present recurrence expansion, which requires a non-zero starting 

coefficient. Another way to look at this behavior is to realize that when k ~ 0, the 

range of influence of the bound hydrogen atom on the wavefunction of the scattering 

electron increases, thereby requiring non-conventional asymptotic forms. A standard 

open-channel Numerov propagation would probably provide better results here since 

it imposes no functional form on the asymptotic wavefunction. 

Convergence is ~so slo~ just below the n = 3 threshold. Scattering energies 

just below a threshold require a diffuse L2 basis in order to represent the slow decay 

of the exponential wavefunctions associated with the negative kinetic energies of the 

nearby closed channel. Once again, this causes an effective increase in the range of 

the interaction region, and the value of Rmax in the present technique must therefore 

increase to prohibitively large values. 

Convergence of singlet transition probabilities with respect to the number of 

free function reciprocal R expansion terms Pmax is examined in Figures 4.29 through 

4.34. It is noticed that convergence of the transition probabiliti~s involving the ¢>18 

state is quite good regardless of the number of terms included in the expansion of 

the free function. Even a simple expansion in which no' reciprocal powers of R are 

included (equivalent. to a simple free particle wavefunction) gives good results and 

still demonstrates resonance behavior near 0.86 Ryd. 

The importance of additional terms in the reciprocal R expansion is most 

clearly de~onstrated in the transition probabilities between the ¢>28 and ¢>2P states. 
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Figure 4.29: Pmax convergence of ¢>Is--+ </>Is transition probability Pn. Circle: Pmax = 
0; Square: Pmax = 1; Diamond: Pmax = 2; Up triangle: Pmax = 3; Down triangle: 
Pmax = 4; Solid line: Pmax = 8. Vertical line is n = 3 threshold. 
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Figure 4.30: Pmax convergence of </>1s --+ </>2s transition probability PI2· Circle: Pmax = 
0; Square: Pmax = 1; Diamond: Pmax = 2; Up triangle: Pmax = 3; Down triangle: 
Pmax = 4; Solid line: Pmax = 8. Vertical line is n = 3 threshold. 
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Figure 4.31: Pmax convergence of <Pts--+ </J2p transition probability Pt3· Circle: Pmax = 
0; Square: Pma:r = 1; Diamond: Pma:r = 2; Up triangle: Pma:r = 3; Down triangle: 
Pmax = 4; Solid line: Pmax = 8. Vertical line is n = 3 threshold. 
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Figure 4.32: Pmax convergence of </J2s--+ </J2s transition probability P22 • Circle: Pmax = 
0; Square: Pmax = 1; Diamond: Pmax = 2; Up triangle: Pmax = 3; Down triangle: 
Pmax = 4; Solid line: Pmax = 8. Vertical line is n = 3 threshold. 
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Figure 4.33: Pmax convergence of </>2s ~ </>2p transition probability P23· Circle: Pmax = 
0; Square: Pmax = 1; Diamond: Pmax = 2; Up triangle: Pmax = 3; Down triangle: 
Pmax = 4; Solid line: Pmax = 8. Vertical line is n = 3 threshold. 
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Figure 4.34: Pmax convergence of </>2p --+ </>2p transition probability P33· Circle: Pmax = 
0; Square: Pmax = 1; Diamond: Pmax = 2; Up triangle: Pmax = 3; Down triangle: 
Pmax = 4; Solid line: Pmax = 8. Vertical line is n = 3 threshold. 
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Here the dipole moment coupling between these two states demands the additional 

terms of the·expansion, and it is seen that leaving them out gives a very poor result. 

Inclusion of just the first non-zero power of R is still not sufficient to attain truly 

converged results. Although, the resonance behavior near 0.86 Ryd is still quite 

evident. And as before in previous convergence studies, convergence of the scattering 

calculation at very low asymptotic kinetic energies is difficult, due to the inability 

of the reciprocal R expansion to adequately represent the free function with simple 

sine and cosine functions, thereby requiring an increase in the size of the interac~ion 

region spanned by the L2 functions. 

Convergence with respect to nR (the number of eigenvalues of the strength­

ened static 2s potential Vis used in the diagonalization of the position operator :X) is 

demonstrated in Figures 4.35 through 4.40. The parameter nR does not lend itself 

easily to a simple physical interpretation, but it is roughly proportional to the density 

of radial DVR points (with all other parameters held constant). Convergence with 

respect to this parameter is fairly typical. The resonance near 0.86 Ryd is visible at 

most of the DVR point densities represented, and convergence appears to be slowest 

just above the n = 2 threshold. Interpretation of this particular convergence study 

must be done cautiously since alteration of the value of nR causes changes in every 

region of the scattering coordinate within the interaction region, both close to the . 
origin (where representation of the ¢>1s function is most likely to be affected) and at 

the end of the interaction region (where representation of high kinetic energy free 

functions are mostly likely to be affected). 

4.2.2 Convergence of Singlet S Matrices 

In this section the convergence of the S matrix elements for singlet scattering 

is discussed. This gives a more complete picture of the convergence process since the 

S matrix contains ALL information about the asymptotic state of the scattering 

wavefunction in the form of both an amplitude and complex phase associated with 

a particular bound state. (The transition probability only provides a v.:Uue for the 

amplitude.) 
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Figure 4.35: n1l convergence of <P1s -+ <P1s transition probability Pn. Circle: n1l = 30; 
Square: n1l = 35; Diamond: n1l = 40; Up triangle: n1l = 45; Solid line: n1l = 50. 
Vertical line is n = 3 threshold. 
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Figure 4.36: n1l convergence of </>1s -+ <P2s transition probability P12 • Circle: nR = 30; 
Square: nR = 35; Diamond: nR = 40; Up triangle: nR = 45; Solid line: nR = 50. 
Vertical line is n = 3 threshold. 
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Figure 4.37: nR convergence of </>18 --+ </>2p transition probability P13. Circle: nR = 30; 
Square: nR = 35; Diamond: nR = 40; Up triangle: nR = 45; Solid line: nR = 50. 
Vertical line is n = 3 threshold. 
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Figure 4.38: nR convergence of </>2s --+ </>2s transition probability P22 • Circle: nR = 30; 
Square: nR = 35; Diamond: nR = 40; Up triangle: nR = 45; Solid line: nR = 50. 
Vertical line is n = 3 threshold. 
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Figure 4.39: nR convergence of </>2s --+ </>2p transition probability P23 • Circle: nR = 30; 
Square: nR = 35; Diamond: nR = 40; Up triangle: nR = 45; Solid line: nR = 50. 
Vertical line is n = 3 threshold. 
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Figure 4.40: nR convergence of </>2p --+ </>2p transition probability P33 • Circle: nR = 30; 
Square: nR = 35; Diamond: nR = 40; Up triangle: nR = 45; Solid line: nR = 50. 
Vertical line is n = 3 threshold. 
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The convergence of the unitarity of the S matrix is first examined. Because 

of the manner in which the S matrix formulation of the Kohn variational principle 

imposes the asymptotic boundary conditions on the scattering wavefunction, the cal­

culated S matrix is not necessarily unitary for a finite basis set. But the S matrix 

will approach unitarity as the basis set approaches completeness. As such, the uni­

tarity of the S matrix provides yet another criterion for judging the accuracy of the 

calculation. 

One of the most interesting parameters to vary in studying the convergence 

of the unitarity of the S matrix is the strength parameter a. As was discovered 

previously, increasing values of a have the effect of placing more radial DVR points 

nearer to the origin. It would be expected that the density of radial DVR points would 

have the greatest effect on the accuracy of S matrix elements associated with the </>18 

state (either as an incoming or outgoing channel) since this state has the highest 

percentage of its particle density close to the origin. This is in fact what is found. 

Examination of the diagonal elements of S · st reveals that the (S · st)11 element is 

the slowest to converge with respect to the a parameter. (The other two diagonal 

elements are actually quite converged for even modest values of a.) Table 4.1 shows 

convergence of the unitarity of the real portion of (S · Sf)11 for various values of the 

a parameter at several energies between the n = 2 and n = 3 thresholds (singlet). 

(The imaginary portion of the diagonal elements of S · st is uniformly zero since S is 

complex symmetric.) 

It is seen that the unitarity of the S matrix is weakest just above the n = 2 

threshold for all values of a studied. This is undoubtedly true because of the greater 

size of the interaction region in scattering calculations at very low asymptotic kinetic 

energies, and has little to do with the density of radial DVR points near the origin. At 

the higher kinetic energies close to the n = 3 threshold it is found that larger values 

of a give better unitarity. There is also an unusual cyclic pattern demonstrated in the 

unitarity as the asymptotic kinetic energy is increased. This probably results from the 

fact that the actual distribution of radial DVR points provides a good representation 

of the scattering wavefunction for certain wavelengths in which peaks and troughs 

correspond to actual positions of the radial DVR points. This cyclic pattern can be 
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E (Ryd) a=40 a= 70 a= 80 
0.75400 4.94327 7.37066 9.66050 
0.75856 1.75667 1.11999 1.11524 
0.76310 1.04507 1.02939 1.00731 
0.76766 1.02964 1.02657 1.00379 
0.77220 1.02125 1.02510 1.00205 
0.77676 1.01464 1.02354 1.00104 
0.78132 1.00938 1.02170 1.00063 
0.78586 1.00545 1.01961 1.00080 
0.79042 1.00286 1.01730 1.00154 
0.79496 1.00166 1.01482 1.00278 
0.79952 1.00182 1.01227 1.00445 
0.80406 1.00332. 1.00971 1.00643 
0.80862 1.00604 1.00728 1.00863 
0.81318 1.00983 1.00508 1.01096 
0.81772 1.01453 1.00322 1.01330 
0.82228 1.01991 1.00180 1.01554 
0.82682 1.02575 1.00090 1.01754 
0.83138 1.03181 1.00056 1.01921 
0.83594 1.03789 1.00082 1.02050 
0.84048 1.04380 1.00168 1.02140 
0.84504 1.04937 1.00311 1.02193 
0.84958 1.05451 1.00506 1.02215 
0.85414 1.05924 1.00748 1.02212 
0.85868 1.06445 1.01052 1.02217 
0.86324 1.07126 1.01739 1.02027 
0.86780 1.06426 1.01681 1.01834 
0.87234 1.06517 1.01954 1.01738 
0.87690 1.06516 1.02245 1.01608 
0.88144 1.06424 1.02522 1.01461 
0.88600 1.06252 1.02770 1.01306 

Table 4.1: Convergence of Re (S · st)11 with respect to a for a = 40, 70, 80 au. 
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expected to vanish as the density of radial DVR points increases such that several 

points are available to represent a single wavelength. 

Tables 4.2, 4.3, and 4.4 show convergence of the three S1x matrix elements 

associated with the incoming ¢>18 state with respect to the positioning of the final 

radial DVR point at Rmax for low, medium, and high kinetic energies between the 

n = 2 and n = 3 thresholds. (Convergence of the transition probabilities with respect 

to this parameter was shown in Figures 4.23 through 4.25. Once again, convergence 

of the S matrix elements which do not involve the ¢>18 state is much more rapid and 

is not shown here.) 

For ,~he section of the energy spectrum closer to the n = 2 threshold, the 

convergence of S1x is obviously quite good. This is also true for the more intermediate 

kinetic energies. Convergence at the higher kinetic energies is more problematic, 

although the calculation at Rmax = 35 au appears to achieve reasonable convergence 

for most of these energies also. But there is clearly much more difficulty entailed 

in converging S1x near 0.86286 Ryd, where there is a Feshbach resonance (a narrow 

resonance due to the temporary capture of the free electron by an excited state of 

the hydrogen atom). This difficulty was also seen in the convergence analysis of the 

singlet transition probabilities in Figures 4.23 through 4.25. 

One of the great benefits of this particular type of study (in which the L 2 

basis is so localized) is that it provides an excellent mechanism for examining how 

large the interaction region must be in order to achieve a successful result. Conven­

tional Slater-type basis sets utilize functions which are very delocalized and therefore 

cannot really provide this information in as pure a form. This series of calculations 

clearly shows that as the scattering energy approaches the n = 3 threshold, the con­

tributions of these closed channels becomes much more important. And while an 

interaction region 35 au in length is adequate to represent the radial portions of the 

n = 3 hydrogen states, the exponential tails of the scattering radial wavefunction 

at these higher kinetic energies are quite long and demand eventual inclusion of the 

closed n = 3 channels in the reciprocal R expansion composing the free functions. 

(It will be remembered that closed channels were not included in the reciprocal R 

expansion because of the inability to assign non-zero coefficients to such terms in the 
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E (Ryd) Re S11 Im Su Re S12 Im S12 Re S13 Im S13 
0.76000 -0.02886 0.93092 0.28691 -0.05804 0.03482 0.24548 

-0.04154 0.92259 0.29621 -0.05030 0.02521 0.25187 
-0.06999 0.92848 0.30157 -0.04003 0.00114 0.24974 
-0.08429 0.92610 0.30533 -0.03708 -0.00072 0.25464 
-0.07659 0.93575 0.30781 -0.03744 0.00092 0.25934 

0.76858 -0.02239 0.89314 0.22685 -0.25436 0.21253 0.21053 
-0.01673 0.89208 0.22677 -0.25365 0.21252 0.21071 
-0.03843 0.89739 0.22878 -0.26134 0.20526 0.20892 
-0.04797 0.89822 0.22771 -0.25461 0.20846 0.21006 
-0.04016 0.90523 0.22919 -0.25272 0.20954 0.21191 

0.77714 -0.01794 0.88623 0.09804 -0.33183 0.28830 0.12345 
-0.01521 0.88345 0.09748 -0.33387 0.28985 0.12348 
-0.03060 0.88353 0.10369 -0.34411 0.28969 0.12509 
-0.04052 0.88933 0.10477 -0.33685 0.28771 0.12705 
-0.03317 0.89405 0.10640 -0.33534 0.28734 0.12897 

0.78572 -0.01370 0.87623 -0.01881 -0.36441 0.31616 0.05295 
-0.01234 0.87124 -0.01759 -0.36913 0.31933 0.05428 
-0.02188 0.87273 -0.01306 -0.37241 0.32148 0.05737 
-0.03332 0.88215 -0.00907 -0.36916 0.31531 0.05895 
-0.02684 0.88341 -0.00764 -0.36883 0.31431 0.06056 

0.79428 -0.00464 0.86640 -0.11183 -0.37750 0.31329 -0.00206 
-0.00423 0.86192 -0.10938 -0.38139 0.31656 0.00170 
-0.01228 0.86422 -0.11142 -0.38077 0.31750 0.00384 
-0.02558 0.87549 -0.10517 -0.38173 0.31111 0.00328 
-0.01982 0.87297 -0.10416 -0.38158 0.31026 0.00398 

Table 4.2: Rmax convergence of singlet S 1x matrix elements at lower kinetic energies 
for Rmax = 27, 29, 31, 33, and 35 au. 
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E (Ryd) Re Sn ImS11 Re S12 Im S12 Re S13 lm S13 
0.80286 0.00591 0.86113 -0.18186 -0.37724 0.29035 -0.05043 

0.00313 0.85815 -0.18109 -0.37984 0.29145 -0.04657 
-0.00281 0.85814 -0.18566 -0.38017 0.29266 -0.04701 
-0.01756 0.86913 -0.18027 -0.38348 0.29035 -0.04882 
-0.01212 0.86305 -0.17960 -0.38294 0.29005 -0.04858 

. 0.81142 0.01362 0.85810 -0.23410 -0.36640 0.26124 -0.09950 
0.00743 0.85490 -0.23543 -0.36925 0.26213 -0.09793 
0.00578 0.85344 -0.23818 -0.37067 0.26404 -0.09788 

-0.00893 0.86288 -0.23628 -0.37546 0.26623 -0.09825 
-0.00381 0.85443 -0.23530 -0.37455 0.26567 -0.09793 

0.82000 0.01975 0.85372 -0.27482 -0.34868 0.23702 -0.14506 
0.01260 0.85006 -0.27637 -0.35291 0.23906 -0.14440 
0.01393 0.84949 -0.27601 -0.35338 0.23965 -0.14333 
0.00057 0.85742 -0.27754 -0.35925 0.24384 -0.14163 
0.00417 0.84799 -0.27588 -0.35823 0.24257 -0.14169 

0.82858 0.02748 0.84852 -0.30597 -0.32882 0.21858 -0.18172 
0.02080 0.84656 -0.30506 -0.33318 0.22092 -0.18071 
0.02196 0.84655 -0.30417 -0.33162 0.22006 -0.17977 
0.01061 0.85329 -0.30746 -0.33782 0.22430 -0.17714 
0.01109 0.84390 -0.30549 -0.33726 0.22295 -0.17786 

0.83714 0.03753 0.84550 -0.32707 -0.30785 0.20450 -0.20762 
0.03029 0.84685 -0.32353 -0.31003 0.20599 -0.20610 

. 0.03009 0.84520 -0.32447 -0.30864 0.20484 -0.20600 
0.02130 0.85095 -0.32759 -0.31443 0.20855 -0.20341 
0.01708 0.84275 -0.32598 -0.31489 0.20790 -0.20455 

Table 4.3: Rmax convergence of singlet S 1x matrix elements at medium kinetic energies 
for Rmax = 27, 29, 31, 33, and 35 au. 
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E (Ryd) Re S11 ImSn Re S12 Im S12 Re S13 Im S13 
0 .. 84572 0.04840 0.84696 -0.33851 -0.28574 0.19419 -0.22132 

0.03955 0.85107 -0.33359 -0.28586 0.19484 -0.21950 
0.03897 0.84722 -0.33512 -0.28717 0.19520 -0.21950 
0.03321 0.85217 -0.33646 -0.29205 0.19852 -0.21690 
0.02289 0.84642 -0.33592 -0.29391 0.19917 -0.21801 

0.85428 0.05933 0.85560 -0.33695 -0.26477 0.18988 -0.21685 
0.05002 0.86288 -0.32747 -0.26548 0.19262 -0.21072 
0.04996 0.86023 -0.32358 -0.26975 0.19676 -0.20508 
0.04782 0.86565 -0.31986 -0.27383 0.20090 -0.19899 
0.03082 0.86401 -0.31977 -0.27750 0.20352 -0.19858 

0.86286 0.06804 0.89107 -0.28828 -0.24378 0.19708 -0.14807 
0.04761 0.93294 -0.21705 -0.22205 0.18822 -0.05803 

-0.00749 0.97749 -0.13345 -0.12329 0.08591 0.07590 
-0.09784 0.97151 -0.15781 0.04234 -0.12852 0.09003 
-0.15010 0.95157 -0.20484 0.08374 -0.19492 0.04638 

0.87142 -0.12012 0.80776 -0.42620 0.10954 -0.29242 -0.23519 
-0.00458 0.78117 -0.49054 -0.10141 -0.03117 -0.38102 
0.01460 0.79100 -0.46966 -0.14987 0.03674 -0.36327 
0.02570 0.79871 -0.45761 -0.16661 0.06173 -0.35050 

-0.00118 0.80676 -0.45854 -0.17680 0.07219 -0.34836 
0.88000 0.03772 0. 78002 -0.48492 -0.11950 0.01137 -0.37669 

0.04651 0.80517 -0.45452 -0.15487 0.06255 -0.35067 
0.04309 0.81037 '-0.44228 -0.17046 0.08425 -0.33574 
0.05098 0.81455 -0.43360 -0.17886 0.09634 -0.32486 
0.01987 0.82834 -0.43412 -0.18772 0.10496 -0.32111 

Table 4.4: Rmax convergence of singlet S 1x matrix elements at higher kinetic energies 
for Rmax = 27, 29, 31, 33, and 35 au. 
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asymptotic region.) It is fairly clear that completeness within the spatial confines of 

the interaction region should not be the troubling factor, as the kinetic energies of 

the radial s~attering wavefunction are well represented by the grid spacing employed, 

as demonstrated in Figures 4.7 through 4.10. 

4.2.3 Transition Probabilities and S Matrices 

Tables 4.5 through 4.13 show values of calculated S matrices for singlet 

scattering using the convergence parameters previously reported. The tables show 

values for both the real and imaginary parts of the S matrix for a wide range of 

energies between the n = 2 and n = 3 thresholds, as well as individual transition 

probabilities. (Only values of S11 , 512 , 513 , 522 , S23 , and S33 are shown because of 

the inherent symmetry of the S matrix.) Calculations were performed in a series of 

sequences each using equally spaced values of total energy. In areas where Feshbach 

resonances were previously reported to have been found by Callaway [97] a finer 

energy grid was employed to attempt to duplicate these results. The spacing of the 

energy grid in these regions was based upon the widths of the resonances reported by 

Callaway. 

Callaway reports resonances just below the n = 3 threshold at 0.86199, 

0.88445, 0.88773, and 0.88799 Ryd for J = 0 and S = 0. Only the first (and widest) 

resonance at 0.86199 Ryd is seen in the current DVR calculations at 0.86200 Ryd. 

The other three resonances are located very close to the n = 3 threshold and it is 

suspected that the current calculation would encounter difficulty in this energy region 

because of the lack of extremely long range L 2 functions in the basis set needed to 

accurately represent the long exponential tails present in the scattering wavefunction 

when the scattering energy is just beneath a threshold. On the other hand, more 

recent calculations by Wang and Callaway [69] which employ a direct numerical solu­

tion (Numerov algorithm) for the same problem report only the first resonance and 

not the other three. 

Figures 4.41 through 4.43 show the final calculated values of the transition 

probabilities for singlet scattering from each of the ¢18 , ¢28 , and ¢2p states for energies 
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E (Ryd) Re Sn Re S12 Re S13 Re S22 Re S23 Re S33 
Im S11 Im S12 Im S13 Im S22 Im S23 Im S33 

ISnl2 ISI212 ISI312 IS2212 IS2312 IS3312 

0.75856 -0.15287 0.25947 -0.11315 0.25310 -0.86210 -0.43159 
0.97906 0.06473 0.22135 0.30388 -0.40211 -0.09755 
0.98193 0.07151 0.06180 0.15640 0.90491 0.19579 

0.76310 -0.05474 0.30296 0.10541 0.73666 -0.58857 -0.76255 
0.90127 -0.14155 0.26285 0.03303 -0.03458 0.10476 
0.81528 0.11182 0.08020 0.54376 0.34761 0.59246 

0.76766 -0.05068 0.24524 0.19406 0.8508-3 -0.29771 -0.86705 
0.89336 -0.23579 0.22303 -0.27393 0.03683 0.28975 
0.80066 0.11574 0.08740 0.79895. 0.08999 0.83573 

0.77220 -0.05087 0.17936 0.25100 0.79581 -0.04851 -0.86475 
0.88584 -0.29629 0.17829 -0.50026 -0.04028 0.40158 
0.78730 0.11996 0.09479 0.88357 0.00398 0.90906 

0.77676 -0.05031 0.11525 0.28715 0.67267 0.13805 -0.82188 
0.87844 -0.33517 0.13698 -0.61773 -0.17240 0.42238 
0.77419 0.12562 0.10122 0.83408 0.04878 0.85389 

0.78132 -0.04890 0.05507 0.30778 0.52914 0.27263 -0.76445 
0.87293 -0.35841 0.10008 -0.65354 -0.30670 0.38042 
0.76440 0.13149 0.10474 0.70710 0.16839 0.72910 

0.78586 -0.04817 -0.00206 0.31670 0.38083 0.38121 -0.69800 
0.86955 -0.37091 0.06689 -0.62685 -0.42856 0.28550 
0.75844 0.13758 0.10477 0.53797 0.32898 0.56871 

0 .. 79042 -0.04882 -0.05626 0.31659 0.22956 0.48236 -0.61195 
0.86697 -0.37789 0.03628 -0.54344 -0.52562 0.13540 
0.75402 0.14597 0.10155 0.34802 0.50895 0.39282 

0.79496 -0.05001 -0.10552 0.31002 0.07687 0.56866 -0.49522 
0.86395 -0.38287 0.00663 -0.42288 -0.58033 -0.04367 
0. 74891 0.15772 0.09616 0.18474 0.66016 0.24715 

0. 79952 -0.05035 -0.14778 0.30022 -0.06664 0.62292 -0.36039 
0.86033 -0.38634 -0.02264 -0.29718 -0.59227 -0.20827 
0.74270 0.17110 0.09064 0.09276 0.73881 0.17326 

Table 4.5: Converged S matrix elements for singlet scattering with a = 80, n-y = 4, 
Rmax = 35 au, Pmax = 8, and nR_ = 50. 
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E (Ryd) Re Su Re S12 Re S13 Re S22 Re S23 Re S33 
Im Su Im S12 Im S13 1m s22 Im S23 Im S33 

1Sul2 1Sd2 1St312 IS2212 IS2312 IS3312 

0.80406 -0.04890 -0.18268 0.28915 -0.19120 0.64592 -0.22769 
0.85698 -0.38743 -0.05047 -0.18542 -0.57520 -0.34006 
0.73681 0.18347 0.08615 0.07094 0.74807 0.16748 

0.80862 -0.04581 -0.21100 0.27703 -0.29858 0.64898 -0.10087 
0.85496 -0.38535 -0.07623 -0.09011 -0.53911 -0.44312 
0.73306 0.19302 0.08256 0.09727 0.71181 0.20653 

0.81318 -0.04200 '-0.23410 0.26401 -0.39399 0.63742 0.02228 
0.85468 -0.37966 -0.10038 -0.00797 -0.49111 .-0.52222 
0.73224 0.19894 0.07978 0.15529 0.64749 0.27321 

0.81772 -0.03835 -0.25371 0.25096 -0.47681 0.61158 0.13538 
0.85554 -0.37053 -0.12342 0.06445 -0.44074 -0.57932 
0.73342 0.20166 0.07821 0.23150 0.56828 0.35394 

0.82228 -0.03498 -0.27131 0.23888 -0.54255 0.57464 0.22765 
0.85657 -0.35897 -0.14516 0.12994 -0.39675 -0.61888 
0.73494 0.20247 0.07814 0.31124 . 0.48762 0.43484 

0.82682 -0.03137 -0.28751 0.22833 -0.58940 0.53345 0.29538 
0.85703 -0.34645 -0.16502 0.18954 -0.36187 -0.64699 
0.73548 0.20269 0.07937 0.38332 0.41552 0.50585 

0.83138 -0.02678 -0.30200 0.21950 -0.62039 0.49450 0.34412 
0.85684 -0.33416 -0.18238 0.24205 -0.33361 -0.66714 
0.73489 0.20287 0.08144 0.44347 0.35583 0.56349 

0.83594 -0.02065 -0.31396 0.21244 -0.64088 0.46163 0.38320 
0.85651 -0.32265 -0.19662 0.28559 -0.30860 -0.67958 
0.73404 0.20267 0.08379 0.49229 0.30834 0.60867 

0.84048 -0.01290 -0.32250 0.20715 -0.65541 0.43636 0.42008 
0.85687 -0.31185 -0.20697 0.31932 -0.28546 -0.68327 
0.73439 0.20126 0.08575 0.53153 0.27190 0.64333 

0.84504 -0.00383 -0.32667 0.20372 -0.66612 0.41981 0.45835 
. 0.85895 -0.30142 -0.21225 0.34333 -0.26537 -0.67677 

0.73781 0.19757 0.08655 0.56159 0.24666 0.66810 

Table 4.6: Converged S matrix elements for singlet scattering with a · 80, n1 = 4, 
Rmax = 35 au, Pmax = 8, and nR = 50. 
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E (Ryd) Re 511 Re 512 Re 513 Re 522 Re 523 Re 533 
Im 5u lm 512 Im 513 lm 522 lm 523 lm 533 

l5ul2 l5d2 151312 152212 152312 153312 

0.84958 0.00612 -0.32469 0.20270 -0.67310 0.41592 0.49982 
0.86412 -0.29126 -0.20992 0.35606 -0.25121 -0.65622 
0.74674 0.19026 0.08515 0.57984 0.23610 0.68044 

0.85200 0.01165 -0.31942 0.20367 -0.67492 0.42318 0.52461 
0.86910 -0.28604 -0.20335 0.35543 -0.24739 -0.63520 
0.75547 0.18385 0.08283 0.58185 0.24028 0.67869 

0.85306 0.01409 -0.31557 0.20456 -0.67513 0.42990 0.53658 
0.87211 -0.28377 -0.19851 0.35241 -0.24670 -0.62208 
0.76077 0.18011 0.08125 0.57999 0.24567 0.67490 

0.85410 0.01654 -0.31034 0.20579 -0.67481 0.43985 0.54957 
0.87587 -0.28144 -0.19191 0.34690 -0.24663 -0.60525 
0.76742 0.17552 0.07918 0.57571 0.25429 0.66835 

0.85414 0.01662 -0.31015 0.20583 -0.67479 0.44022 0.55000 
0.87600 -0.28137 -0.19167 0.34668 -0.24663 -0.60466 
0.76765 0.17536 0.07910 0.57553 0.25462 0.66811 

0.85516 0.01894 -0.30318 0.20735 -0.67367 0.45430 0.56384 
0.88067 -0.27894 -0.18285 0.33794 -0.24706 -0.58313 
0.77594 0.16973 0.07643 0.56803 0.26743 0.65796 

0.85622 0.02117 -0.29327 0.20914 -0.67110 0.47529 0.57955 
0.88699 -0.27600 -0.17019 0.32404 -0.24766 -0.55311 
0.78720 0.16218 0.07270 0.55538 0.28724 0.64181 

0.85726 0.02293 -0.27922 0.21077 -0.66577 0.50624 0.59651 
0.89560 -0.27197 -0.15206 0.30274 -0.24745 -0.51069 
0.80263 0.15193 0.06755 0.53490 0.31751 0.61663 

0.85832 0.02343 -0.25867 0.21093 -0.65449 0.55312 0.61299 
0.90784 -0.26527 -0.12506 0.26994 -0.24362 -0.44765 
0.8247-2 0.13728 0.06013 0.50122 0.36529 0.57615 

0.85868 0.02297 -0.24911 0.21002 -0.64777 0.57544 0.61771 
0.91348 -0.26159 -0.11229 0.25434 -0.24013 -0.41766 
0.83497 0.13049 0.05672 0.48429 0.38879 0.55601 

Table 4. 7: Converged S matrix elements for singlet scattering with a = 80, n-r = 4, 
Rmax = 35 au, Pmax = 8, and nR = 50. 
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E (Ryd) Re Sn Re S12 Re S13 Re S22 Re S23 Re S33 
Im S11 Im S12 Im S13 1m s22 Im S23 Im S33 

ISnl2 IS1212 ISI312 IS2212 IS2312 IS3312 

0.85936 0.02046 -0.22758 0.20542 -0.62888 0.62675 0.62165 
0.92611 -0.25156 -0.08295 0.21886 -0.22769 -0.34815 
0.85810 0.11508 0.04908 0.44339 0.44466 0.50766 

0.86040 0.00753 -0.18159 0.18057 -0.56653 0.74156 0.59436 
0.95323 -0.21883 -0.01686 0.14299 -0.17368 -0.18691 
0.90870 0.08086 0.03289 0.34140 0.58008 0.38820 

0.86042 0.00706 -0.18047 0.17963 -0.56452 0.74446 0.59294 
0.95390 -0.21778 -0.01518 0.14117 -0.17175 -0.18271 
0.90998 0.08000 0.03250 0.33861 0.58372 0.38496 

0.86080 -0.00371 -0.15956. 0.15767 -0.52055 0.79996 0.55650 
0.96649 -0.19447 0.01733 0.10742 -0.12758 -0.10001 
0.93412 0.06328 0.02516 0.28251 0.65621 0.31969 

0.86120 -0.02140 -0.13761 0.12022 -0.45324 0.86247 0.48648 
0.98015 -0.15839 0.05481 0.07347 -0.05462 -0.00030 
0.96115 0.04402 0.01746 0.21082 0.74684 0.23666 

0.86148 -0.03857 -0.12540 0.08257 -0.39110 0.90212 0.41075 
0.98831 -0.12465 0.07958 0.05651 0.01700 0.07028 
0.97824 0.03126 0.01315 0.15615 0.81411 0.17365 

0.86160 -0.04811 -0.12154 0.06117 -0.35749 0.91739 0.36607 
0.99121 -0.10624 0.08962 0.05226 0.05720 0.10116 
0.98481 0.02606 0.01177 0.13053 0.84488 0.14424 

0,86200 -0.08502 -0.12312 -0.02445 -0.23243 0.93826 0.17867 
0.99327 -0.03674 0.10757 0.06533 0.21516 0.17369 
0.99381 0.01651 \ 0.01217 0.05829 0.92663 0.06209 

0.86240 -0.12732 -0.15813 -0.12898 -0.09802 0.88539 -0.06629 
0.97730 0.04025 0.08626 0.14009 0.40242 0.16328 
0.97133 0.02663 0.02408 0.02923 0.94586 0.03105 

0.86252 -0.13972 -0.17768 -0.16153 -0.06092 0.84842 -0.14668 
0.96751 . 0.06222 0.06834 0.17882 0.45928 0.13421 
0.95560 0.03544 0.03076 0.03569 0.93075 0.03953 

Table 4.8: Converged S matrix elements for singlet scattering with a = 80, n1 = 4, 
Rmax = 35 au, Pmax = 8, and nil = 50. 
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E (Ryd) Re S11 Re S12 Re S13 Re S22 Re S23 Re S33 
Im 511 Im 512 Im 813 Im 822 Im 823 Im 833 

l5nl2 151212 I5IJ!2 l822l2 152312 153312 

0.86280 -0.16102 -0.23190 -0.22181 -0.00207 0.73716 -0.30394 
0.93939 0.09879 0.01163 0.28288 0.56158 0.02663 
0.90838 0.06354 0.04933 0.08003 0.85878 0.09309 

0.86320 -0.17207 -0.32351 -0.26696 0.01416 0.53263 -0.44506 
0.89005 0.11469 -0.09735 0.45260 0.62972 -0.20598 
0.82180 0.11781 0.08074 0.20505 0.68024 0.24051 

0.86324 -0.17179 -0.33264 -0.26834 0.01121 0.51132 -0.45226 
0.88504 0.11376 -0.10894 0.46920 0.63075 -0.23196 
0.81281 0.12359 0.08387 0.22027 0.65929 0.25834 

0.86358 -0.16183 -0.39813 -0.26046 -0.03601 0.35325 -0.46446 
0.84855 0.09281 -0.19615 0.58654 0.60531 -0.43413 
0.74623 0.16712 0.10631 0.34533 0.49119 0.40419 

0.86360 -0.16086 -0.40158 -0.25905 -0.03996 0.34463 -0.46288 
0.84660 0.09090 -0.20097 0.59262 0.60213 -0.44567 
0.74261 0.16953 0.10750 0.35280 0.48133 0.41288 

0.86400 -0.13856 -0.45234 -0.22057 -0.12388 0.21245 -0.40040 
0.81739 0.04878 -0.27603 0.68066 0.52265 -0.63115 
0.68733 0.20699 0.12484 0.47864 0.31830 0.55867 

0.86440 -0.11470 -0.47957 -0.17383 -0.20697 0.13365 -0.30857 
' 0.80101 0.00544 -0.32230 0.72579 0.43185 -0.75379 

0.65477 0.23002 0.13409 0.56961 0.20436 0.66341 
0.86464 -0.10200 -0.48795 -0.14782 -0.24947 0.10587 -0.25421 

0.79567 -0.01709 -0.33920 0.73881 0.38245 -0.80178 
0.64349 0.23839 0.13691 0.60808 0.15748 0.70747 

0.86568 -0.05917 -0.49420 -0.05683 -0.38515- 0.06321 -0.05209 
0.78996 -0.09015 -0.36806 0.74380 0.21353 -0.90042 
0.62754 0.25236 0.13870 0.70158 0.04959 0.81347 

0.86674 -0.03436 -0.48452 -0.00335 -0.45702 0.06943 0.07482 
0.79424 -0.12927 -0.36742 0.72408 0.11655 -0.91793 
0.63200 0.25147 0.13501 0.73316 0.01840 0.84819 

Table 4.9: Converged S matrix elements for singlet scattering with a = 80, n-y = 4, 
Rmax = 35 au, Pmax = 8, and nR = 50. 
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E (Ryd) Re 8 11 Re S12 Re 813 Re 822 Re 823 Re 833 
Im 8 11 Im 812 Im 813 Im 822 Im 823 Im 833 
ISnl2 151212 151312 . 152212 152312 153312 

0.86778 -0.01898 -0.47409 0.02898 -0.49744 0.08374 0.15537 
0.79957 -0.15118 -0.36085 0.70502 0.05878 -0.91422 
0.63967 0.24762 0.13105 0.74450 0.01047 0.85994 

0.86780 -0.01894 -0.47405 0.02906 -0.49754 0.08379 0.15559 
0.79959 -0.15124 -0.36083 0.70497 0.05863 -0.91420 
0.63970 0.24760 0.13104 0.74453 0.01046 0.85997 

0.86884 -0.00857 -0.46539 0.04978 -0.52195 0.09738 0.20965 
0.80426 -0.16425 -0.35386 0.69010 0.02203 -0.90539 
0.64691 0.24357 0.12769 0.74867 0.00997 0.86368 

0.86990 -0.00094 -0.45848 0.06395 -0.53777 0.10877 0.24841 
0.80812 -0.17244 -0.34766 0.67890 -0.00274 -0.89595 
0.65306 0.23994 0.12496 0.75010 0.01184 0.86443 

0.87094 0.00501 -0.45302 0.07406 -0.54851 0.11797 0.27751 
0.81128 -0.17774 -0.34238 0.67053 -0.02019 -0.88718 
0.65820 0.23682 0.12271 0.75047 0.01432 0.86410 

0.87200 0.00988 -0.44864 0.08155 -0.55613 0.12536 0.30032 
0.81388 -0.18124 -0.33791 0.66422 -0.03294 -0.87934 
0.66250 0.23413 0.12083 0.75047 0.01680 0.86343 

0.87234 0.01131 -0.44740 0.08359 -0.55816 0.12745 0.30680 . 
0.81464 -0.18211 -0.33659 0.66250 -0.03637 -0.87696 
0.66377 0.23333 0.12028 0.75045 0.01757 0.86319 

0.87690 0.02599 -0.43606 0.10027 -0.57470 0.14566 0.36772 
0.82191. -0.18731 -0.32339 0.64837 -0.06309 -0.85197 
0.67621 0.22523 0.11464 0.75066 0.02520 0.86107 

0.88144 0.03741 -0.42805 0.10926 -0.58830 0.15623 0.41158 
0.82739 -0.18925 -0.31251 0.63747 -0.07550 -0.83179 
0.68597 0.21904 0.10960 0.75246 0.03011 0.86127 

0.88322 0.04165 -0.42461 0.11228 -0.59631 0.16022 0.42848 
0.82968 -0.19073 -0.30762 0.63068 -0.07929 -0.82356 
0.69010 0.21667 0.10724 0.75334 0.03196 0.86185 

Table 4.10: Converged S matrix elements for singlet scattering with a= 80, n7 = 4, 
Rmax = 35 au, Pmax = 8, and nR = 50. 
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E (Ryd) Re Sn Re S12 Re S13 Re S22 Re S23 Re S33 
Im S11 Im S12 lm S13 lm S22 Im S23 Im S33 

1Snl2 IS1212 IS1312 IS2212 IS2312 IS3312 

0.88348 0.04223 -0.42409 0.11269 -0.59766 0.16080 0.43085 
0.83002 -0.19101 -0.30688 0.62949 -0.07979 -0.82238 
0.69072 0.21634 0.10687 0.75346 0.03222 0.86194 

0.88372 0.04282 -0.42357 0.11311 -0.59909 0.16139 0.43325 
0.83035 -0.19132 -0.30613 0.62822 -0.08029 -0.82119 
0.69131 0.21601 0.10651 0.75357 0.03249 0.86206 

0.88396 0.04340 -0.42303 0.11352 -0.60061 0.16199 0.43567 
0.83070 -0.19167 -0.30536 0.62685 -0.08077 -0.81997 
0.69195 0.21569 0.10613 0.75367 0.03276 0.86216 

0.88420 0.04399 -0.42247 0.11393 -0.60222 0.16261 0.43811 
0.83104 -0.19204 -0.30457 0.62539 -0.08125 -0.81875 
0.69256 0.21536 0.10574 0.75378 0.03304 0.86229 

0.88446 0.04459 -0.42190 0.11435 -0.60394 0.16325 0.44057 
0.83140 -0.19245 -0.30376 0.62380 -0.08172 -0.81750 
0.69321 '0.21504 0.10535 0.75387 0.03333 0.86241 

0.88470 0.04519 -0.42132 0.11476 -0.60578 0.16390 0.44307 
0.83176 -0.19290 -0.30292 0.62209 -0.08218 -0.81623 
0.69387 0.21472 0.10493 0.75397 0.03362 0.86254 

0.88494 0.04579 -0.42071 0.11517 -0.60775 0.16457 0.44559 
0.83212 -0.19340 -0.30206 0.62022 -0.08263 -0.81494 
0.69452 0.21440 0.10450 0.75403 0.03391 0.86268 

0.88518 0.04640 -0.42009 0.11559 -0.60988 0.16525 0.44814 
0.83249 -0.19396 -0.30117 0.61819 -0.08306 -0.81364 
0.69519 0.21410 0.10406 0.75411 0.03421 0.86284 

0.88542 0.04702 -0.41944 0.11600 -0.61218 0.16596 0.45072 
0.83286 -0.19457 -0.30026 0.61596 -0.08347 -0.81231 
0.69587 0.21379 0.10361 0.75417 0.03451 0.86300 

0.88568 0.04765 -0.41877 0.11641 -0.61467 0.16669 0.45334 
0.83323 -0.19525 -0.29931 0.61351 -0.08386 -0.81095 
0.69654 0.21349 0.10314 0.75421 0.03482 0.86316 

Table 4.11: Converged S matrix elements for singlet scattering with a= 80, n..,. = 4, 
Rmax = 35 au, Pmax = 8, and nR =50. 
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E (Ryd) Re S11 Re S12 Re S13 Re S22 Re S23 Re S33 
Im S11 Im s12 Im S13 Im S22 Im S23 Im S33 

1Snl2 !Sd2 !Sd2 IS2212 IS2312 IS3312 

0.88600 0.04851 -0.41782 0.11696 -0.61838 0.16771 0.45692 
0.83374 -0.19630 -0.29799 0.60981 -0.08432 -0.80910 
0.69748 0.21311 0.10248 0.75426 0.03524 0.86342 

0.88742 0.05270 -0.41292 0.11920 -0.64197 0.17271 0.47341 
0.83591 -0.20356 -0.29136 0.58470 -0.08499 -0.80056 
0.70152 0.21194 0.09910 0.75400 0.03705 0.86501 

0.88748 0.05291 -0.41266 0.11928 -0.64343 0.17296 0.47417 
0.83600 -0.20404 -0.29103 0.58306 -0.08493 -0.80017 
0.70170 0.21192 0.09893 0.75396 0.03713 0.86511 

0.88754 0.05313 -0.41240 0.11936 -0.64495 0.17320 0.47494 
0.83608 -0.20454 -0.29070 0.58135 -0.08486 -0.79978 
0.70185 0.21191 0.09875 0.75393 0.03720 0.86522 

0.88760 0.05335 -0.41213 0.11945 -0.64652 0.17345 0.47572 
0.83617 -0.20506 -0.29036 0.57956 -0.08477 -0.79939 
0.70203 0.21190 0.09858 0.75388 0.03727 0.86533 

0.88766 0.05357 -0.41186 0.11952 -0.64815 0.17370 0.47650 
0.83625 -0.20560 -0.29001 0.57770 -0.08467 -0.79900 
0. 70218 0.21190 0.09839 0.75384 0.03734 0.86545 

0.88772 0.05380 -0.41157 0.11960 -0.64985 0.17395 0.47728 
0.83634 -0.20617 -0.28966 0.57575 -0.08455 -0.79860 
0.70236 0.21190 0.09821 0.75379 0.03741 0.86556 

0.88780 0.05403 -0.41128 0.11967 -0.65161 0.17420 0.47807 
0.83642 -0.20676 -0.28930 0.57370 -0.08442 -0.79821 
0.70252 0.21190 0.09802 0.75373 0.03747 0.86569 

0.88786 0.05427 -0.41099 0.11974 -0.65344 0.17445 0.47887 
0.83649 -0.20738 -0.28894 0.57156 -0.08427 -0.79781 
0.70266 0.21192 0.09782 0.75366 0.03753 0.86582 

0.88788 0.05438 -0.41085 0.11978 -0.65430 0.17457 0.47923 
0.83653 -0.20767 -0.28878 0.57056 -0.08419 -0.79763 
0.70274 0.21192 0.09774 0.75365 0.03756 0.86588 

Table 4.12: Converged S matrix elements for singlet scattering with a= 80, n"'Y = 4, 
Rmax = 35 au, Pmax = 8, and nR = 50. 



CHAPTER 4. RESULTS AND DISCUSSION 123 

E (Ryd) Re S11 Re S12 Re S13 Re S22 Re S23 Re S33 
Im S11 Im S12 Im S13 Im S22 Im S23 Im S33 

ISnl2 JSuJ2 IS1312 IS2212 IS2312 IS3312 

0.88790 0.05449 -0.41071 0.11980 -0.65514 0.17468 0.47958 
0.83656 -0.20796 -0.28862 0.56957 -0.08411 -0.79746 
0.70280 0.21193 0.09765 0.75362 0.03759 0.86594 

0.88792 0.05452 -0.41068 0.11981 -0.65536 0.17471 0.47967 
0.83657 -0.20803 -0.28858 0.56932 -0.08409 -0.79742 
0.70282 0.21193 0.09763 0.75362 0.03759 . 0.86596 

0.88794 0.05460 -0.41058 0.11983 -0.65599 0.17479 0.47993 
0.83659 -0.20825 -0.28846 0.56857 -0.08403 -0.79729 
0.70286 0.21194 0.09757 0.75359 0.03761 0.86600 

0.88796 0.05471 -0.41044 0.11986 -0.65686 0.17491 0.48028 
0.83663 -0.20855 -0.28829 0.56754 -0.08395 -0.79711 
0.70294 0.21195 0.09748 0.75357 0.03764 0.86605 

0.88798 0.05477 -0.41037 0.11988 -0.65735 0.17497 0.48048 
0.83664 -0.20872 -0.28820 0.56696 -0.08390 ~0.79702 
0.70297 0.21197 0.09743 0.75355 0.03765 0.86610 

0.88800 0.05482 -0.41030 0.11989 -0.65775 0.17502 0.48064 
0.83666 -0.20885 -0.28813 0.56649 -0.08386 -0.79694 
0.70301 0.21196 0.09739 0.75355 0.03766 0.86613 

0.88802 0.05493 -0.41016 0.11991 -0.65865 0.17513 0.48099 
0.83669 -0.20916 -0.28797 0.56541 -0.08377 -0.79677 
0. 70307 0.21198 0.09731 0.75351 0.03769 0.86619 

0.88804 0.05503 -0.41004 0.11994 -0.65943 0.17523 0.48129 
0.83672 -0.20944 -0.28782 0.56448 -0.08369 -0.79662 
0.70313 0.21200 0.09723 0.75349 0.03771 0.86624 

0.88808 0.05516 -0.40988 0.11996 -0.66050 0.17536 0.48170 
0.83675 -0.20981 -0.28763 0.56319 -0.08357 -0.79642 
0.70319 0.21202 0.09712 0.75344 0.03774 0.86632 

0.88810 0.05528 -0.40973 0.11999 -0.66146 0.17547 0.48206 
0.83678 -0.21014 -0.28746 0.56204 -0.08346 -0.79625 
0.70326 0.21204 0.09703 0.75342 0.03776 0.86640 

Table 4.13: Converged S matrix elements for singlet scattering with a = 80, n-y = 4, 
Rmax = 35 au, Pmax = 8, and nR = 50. 
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between the n = 2 and n = 3 thresholds using the same scattering parameter values 

employed in the previous reporting of the individual S matrices. The resonance 
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Figure 4.41: Converged transition probabilities P1x for singlet scattering from <!>Is 
state with a= 80, n7 = 4, Rmax = 35 au, Pmax = 8, and nR =50. Solid line: l5nl2

; 

Dotted line: I5I21 2 ; Dashed line: I5I312. Vertical line: n = 3 threshold. 

feature located at 0.862 Ryd has been resolved with a fine energy grid. It is apparent 

that within this energy region there is not much mixing between the </>Is state and 

the two degenerate </>2s and </>2p states. But there is a great deal of mixing between 

the </>2s and </>2p states, with transition· probabilities between the two states being 

very dependent on the total energy of the system. Interestingly, there is a region just 

above 0. 77 Ryd in which there is virtually no transition between these two degenerate 

states. Here, the S matrix is strongly diagonal. Results below 0. 76 Ryd were found 

to be inaccurate due to poor unitarity and symmetry of the S matrix. Therefore, 

transition probabilities slightly above then= 2 threshold are not shown here. 

Tables 4:14 through 4.16 show values of calculated S matrices for triplet 

scattering using the convergence parameters previously reported. Interestingly, it 

was found that achieving the same quality of unitarity for the triplet S matrix as 

for the singlet S matrix was more difficult. Errors in the triplet unitarity extended · 
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Figure 4.42: Converged transition probabilities P2x for singlet scattering from <hs 

state with a= 80, n,. = 4, Rmax = 35 au, Pmax = 8, and nR =50. Solid line: IS21I2; 
Dotted line: IS22I2; Dashed line: IS23j2. Vertical line: n = 3 threshold. 
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Figure 4.43: Converged transition probabilities P3x for singlet scattering from ¢2p 

state with a = 80, n,. = 4, Rmax = 35 au, Pmax = 8, and nR = 50. Solid line: jS31I2; 
Dotted line: jS32I2; Dashed line: IS3312. Vertical line: n = 3 threshold. 
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E (Ryd) Re S11 Re S12 Re S13 Re S22 Re S23· Re S33 
Im S11 Im S12 Im S13 Im S22 Im S23 Im S33 

!Sul2 ISt2!2 ISt312 IS2212 IS2312 IS3312 

0.75400 -0.99856 0.01374 -0.13154 -0.40855 1.83792 -0.74746 
0.11547 0.15578 0.01537 -2.64079 -0.51728 2.31402 
1.01046 0.02446 0.01754 7.14068 3.64553 5.91339 

0.75856 -1.00111 0.06888 -0.16490 -1.13417 0.83114 -0.17078 
0.10130 0.16642 0.01846 -1.25745 -1.19904 1.55523 
1.01248 0.03244 0.02753 2.86752 2.12849 2.44791 

0.76310 -0.99504 0.01063 -0.01552 -0.08840 -0.71895 -0.22735 
0.12343 0.02078 0.01043 0.24044 -0.65187 0.11985 
1.00534 0.00054 0.00035 0.06563 0.94182 0.06605 

0.76766 -0.99357 0.01439 -0.01040 0.29462 -0.80564 -0.46841 
0.12923 0.01440 0.01327 0.37145 -0.37279 0.02612 
1.00388 0.00041 0.00028 0.22478 0.78803 0.22009 

0.77220 -0.99212 0.01878 -0.00757 0.59488 -0.74083 -0.65670 
0.13481 0.01011 0.01520 0.30222 -0.14009 0.07234 
1.00248 0.00045 0.00029 0.44522 0.56845 0.43649 

0.77676 -0.99073 0.02287 -0.00496 0.78601 -0.61199 -0.76959 
0.14032 0.00590 0.01659 0.13627 0.01797 0.18649 
1.00124 0.00056 0.00030 0.63638 0.37485 0.62705 

0.78132 -0.98943 0.02626 -0.00226 0.88354 -0.46264 -0.82152 
0.14577 0.00160 0.01754 -0.05546 0.10081 0.31826 
1.00022 0.00069 0.00031 0.78372 0.22420 0.77618 

0.78586 -0.98822 0.02880 0.00059 0.91170 -0.31783 -0.82777 
0.15113 -0.00267 0.'01811 -0.23866 0.12494 0.44513 
0.99942 0.00084 0.00033 0.88816 0.11663 0.88334 

0.79042 -0.98713 0.03049 0.00356 0.89130 -0.19035 -0.80006 
0.15638 -0.00681 0.01836 -0.39991 0.10806 0.55861 
0.99888 0.00098 0.00035 0.95434 0.04791 0.95214 

0.79496 -0.98617 0.03143 0.00655 0.83894 -0.08527 -0.74867 
0.16148 -0.01073 0.01832 -0.53416 0.06395 0.65454 
0.99861 0.00110 0.00038 0.98915 0.01136 0.98893 

Table 4.14: Converged S matrix elements for triplet scattering with a= 80, n1 = 4, 
Rmax = 35 au, Pmax = 8, and nR = 50. 
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E (Ryd) Re S11 Re S12 Re S13 Re S22 Re S23 Re S33 
Im S11 Im S12 Im S13 Im S22 1m S23 Im S33 

1Snl2 iSt2i2 ISt312 IS2212 IS2312 IS3312 

0.79952 -0.98534 0.03174 0.00948 0.76719 -0.00355 -0.68217 
0.16640 -0.01437 0.01803 -0.64102 0.00320 0.73149 
0.99858 0.00121 0.00041 0.99949 0.00002 1.00043 

0.80406 -0.98464 0.03154 0.01227 0.68453 0.05589 -0.60663 
0.17111 -0.01774 0.01750 -0.72318 -0.06608 0.79055 
0.99879 0.00131 0.00046 0.99157 0.00749 0.99297 

0.80862 -0.98408 0.03096 0.01489 0.59631 0.09528 -0.52614 
0.17559 -0.02087 0.01675 -0.78436 -0.13837 0.83384 
0.99925 0.00139 0.00050 0.97081 0.02822 0.97211 

0.81318 -0.98365 0.03010 0.01730 0.50618 0.11731 -0.44382 
0.17984 -0.02380 0.01578 -0.82769 -0.21029 0.86323 
0.99991 0.00147 0.00055 0.94129 0.05798 0.94214 

0.81772 -0.98332 0.02906 0.01953 0.41705 0.12472 -0.36239 
0.18386 -0.02658 0.01463 -0.85551 -0.27970 0.88020 
1.00072 0.00155 0.00060 0.90583 0.09379 0.90608 

0.82228 -0.98307 0.02792 0.02158 0.33123 0.12002 -0.28393 
0.18768 -0.02925 0.01332 -0.86994 -0.34505 0.88633 
1.00165 0.00164 0.00064 0.86651 0.13346 0.86620 

0.82682 -0.98289 0.02673 0.02347 0.25029 0.10535 -0.20966 
0.19136 -0.03183 0.01187 ..:0.87311 -0.40510 0.88338 
1.00269 0.00173 0.00069 0.82497 0.17520 0.82432 

0.83138 -0.98275 0.02549 0.02524 0.17508 0.08255 -0.14002 
0.19494 -0.03433 0.01032 -0.86713 -0.45908 0.87313 
1.00380 0.00183 0.00074 0.78257 0.21757 0.78196 

0.83594 -0.98260 0.02421 0.02692 0.10598 0.05318 -0.07505 
0.19851 -0.03678 0.00868 -0.85386 -0.50667 0.85699 
1.00491 0.00194 0.00080 0.74031 0.25954 0.74006 

0.84048 -0.98241 0.02288 0.02853 0.04322 0.01865 -0.01476 
0.20215 -0.03915 0.00697 -0.83481 -0.54793 0.83602 
1.00599 0.00206 0.00086 0.69878 0.30058 0.69915 

Table 4.15: Converged S matrix elements for triplet scattering with a = 80, n-r = 4, 
Rmax = 35 au, Pmax = 8, and nR = 50. 
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E (Ryd) Re S 11 Re 512 Re 513 Re S22 Re 523 Re 533 
Im 5n Im 512 Im S13 Im S22 Im 523 Im 533 

1Snl2 ISt212 l5d2 152212 152312 IS3312 

0.84504 -0.98215 0.02146 0.03011 -0.01310 -0.01975 0.04075 
0.20593 -0.04145 0.00520 -0.81133 -0.58308 0.81105 
1.00703 0.00218 0.00093 0.65843 0.34037 0.65946 

0.84958 -0.98179 0.01994 0.03167 -0.06302 -0.06090 0.09142 
0.20993 -0.04365 0.00340 -0.78466 -0.61232 0.78289 
1.00798 0.00230 0.00101 0.61966 0.37864 0.62127 

0.85414 -0.98129 0.01830 0.03321 -0.10692 -0.10380 0.13732 
0.21424 -0.04572 0.00159 -0.75594 -0.63585 0.75233 
1.00883 0.00243 0.00111 0.58288 0.41508 0.58486 

0.85868 -0.98062 0.01653 0.03474 -0.14539 -0.14769 0.17865 
0.21889 -0.04762 -0.00022 -0.72611 -0.65392 0.72009 
1.00953 0.00254 0.00121 0.54837 0.44942 0.55045 

0.86324 -0.97977 0.01462 0.03623 . -0.17913 -0.19200 0.21571 
0.22394 -0.04931 -0.00202 -0.69573 -0.66691 0.68668 
1.01010 0.00265 0.00132 0.51613 0.48163 0.51806 

0.86780 -0.97871 0.01260 0.03766 -0.20872 -0.23628 0.24867 
0.22938 -0.05079 -0.00382 -0.66508 -0.67537 0.65245 
1.01049 0.00274 0.00143 0.48590 0.51195 0.48753 

0.87234 -0.97745 0.01046 0.03904 -0.23451 -0.28018 0.27757 
0.23521 -0.05203 -0.00560 -0.63422 -0.67986 0.61762 
1.01073 0.00282 0.00156 0.45723 0.54071 0.45850 

0.87690 -0.97598 0.00824 0.04033 -0.25668 -0.32330 0.30240 
0.24140 -0.05304 -0.00737 -0.60328 -0.68092 0.58251 
1.01081 0.00288 0.00168 0.42983 0.56817 0.43076 

0.88144 -0.97431 0.00598 0.04154 -0.27538 -0.36514 0.32320 
0.24790 -0.05385 -0.00912 -0.57265 -0.67893 0.54766 
1.01073 0.00294 0.00181 0.40376 0.59427 0.40439 

0.88600 -0.97245 0.00374 0.04263 -0.29095 -0.40493 0.34017 
0.25462 -0.05445 -0.01081 -0.54307 -0.67413 0.51410 
1.01049 0.00298 0.00193 0.37958 0.61842 0.38001 

Table 4.16: Converged S matrix elements for triplet scattering with a= 80, n..,. = 4, 
Rmax = 35 au, Pmax = 8, and nR = 50. 
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further in energy from the threshold regions near n = 2 and n = 3, and this is reflected 

in the tabulated results for the triplet S matrix. The same oscillatory pattern found 

in the unitarity of the singlet S matrix is manifested here also. The most striking 

feature of these triplet tables is the almost complete lack of transition from the <!>Is 

state to either the <f>2s state or </>2p state. One may then conclude that (at least within 

this energy region) the excitation of the hydrogen </>Is state must be accomplished 

by collision with an electron of opposite spin to that of the bound electron. This is 

very likely due to the fact that the Pauli exclusion principle prevents the scattering 

electron from penetrating the <!>Is electron cloud. The bound 1s electron then acts as 

a "hard target" during triplet scattering. 

Figures 4.44 and 4.45 show the final values of the transition probabilities 

for triplet scattering from the </>2s and </>2p states for energies between the n = 2 and 

n == 3 thresholds using the same scattering parameter values employed in calculating 

the individual S matrices. (Transition probabilities for triplet scattering from the <!>Is 

state are not shown here since 1Snl2 is essentially unity and both 1Sd2 and IS13I2 

are vanishingly small.) There is an interesting region near 0.80 Ryd where transitions 

from </>2s to </>2p (and vice versa) do not occur. This makes the tripletS matrix at this 

energy completely diagonal. It will be noticed that de-excitation from the <f>2s and </>2p 

states into the <!>Is state has a very low probability for the triplet symmetry. This, of 

course, is a natural consequence of the symmetry of the transition probability matrix 

P and the extremely low </>1s triplet excitation probabilities described previously. 

4.2.4 Cross Sections 

Figures 4.46 and 4.47 show elastic and inelastic cross sections composed of 

properly statistically weighted singlet and triplet contributions. The formula for the 

cross section is given by 

(4.11) 

where the superscripts "1" and "3" indicate singlet and triplet respectively. In the 

elastic scattering case, one can see that the sharpness of the Feshbach resonance near 
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Figure 4.44: Converged transition probabilities P2x for triplet scattering from </>2s 

state with a= 80, n-y = 4, Rmax = 35 au, Pmax = 8, and n1l =50. Solid line: IS21I2; 
Dotted line: IS22I2; Dashed line: IS23 I2. Vertical line: n = 3 threshold. The solid line 
is barely distinguishable from the energy axis. 
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Figure 4.45: Converged transition probabilities P3x for triplet scattering from ¢>2p 

state with a= 80, n-y = 4, Rmax = 35 au, Pmax = 8, and n'R =50. Solid line: jS31j2
; 

Dotted line: jS32 j2 ; Dashed line: jS33j 2
• Vertical line: n = 3 threshold. The solid line 

is barely distinguishable from the energy axis. 
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Figure 4.46: Elastic cross section o-15--. 15 (in units of 1ra6) derived from singlet and 
triplet calculations with a = 80, ni = 4, Rmax = 35 au, Pmax = 8, and n'R = 50. 
Vertical line: n = 3 threshold. 
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Figure 4.47: Inelastic cross sections o-18 ..... 28 and o-18 ..... 2p (in units of tra5) derivedfrom 
singlet and triplet calculations with a = 80, n..,. = 4, Rmax = 35 au, Pmax = 8, and 
nR = 50. Solid line: <its-+2si Dotted line: <its-+2pi Vertical line: n = 3 threshold. 

0.862 Ryd has been smoothed out by the triplet contribution, leaving only a small 

deviation from a nearly straight line. But this sharpness is retained in the case of 

inelastic scattering. 

4.2.5 "Distinguishable" Electrons 

In order to gain some insight into the effect ofsymmetry constraints on the 

results of these calculations, it is instructive to examine the hydrogen states resulting 

from the scattering of "distinguishable" electrons whose total wavefunctions (spatial 

and spin) are not subject to the constraint of being anti-symmetric. A simple linear 

combination of singlet and triplet scattering wavefunctions provides the correct for­

mulae for transition probabilities pertaining to distinguishable (albeit non-physical) 

electrons. 

p.d_ir 
IJ 

1 1 3 2 -IS··+ S··l 4 tJ t} ' 

~ lls .. - 3s. ·12 
4 IJ IJ 

and (4.12) 

(4.13) 
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where Pi~ir and P{f are the direct and exchange scattering transition probabilities 

respectively, and 1 Sij and 3 Sij are singlet and triplet S matrix elements. 

One of the first features which is noticeable is the nearly constant value 

of Pft throughout the entire energy region in Figure 4.48 except for the small area 

around the resonance at 0.862 Ryd. This is in contrast to the singlet scattering results 

0.80 

~ 0.60 ---A ·:a 
il 
£ 

-----
0.40 

···-·-··-·-·--·--·-·-·--·-··---------------------------·-····-·--·-·-_...···\ ____ .... ---
\ .. -~··"" 
:,/ 

0.20 

0.00 ~~~~~~--~~--~~--~~----~~--~~ 
0.75 0.80 0.85 0.90 

Energy (Ryd) 

Figure 4.48: Direct and exchange transition probabilities Pf{r and P:i for distin­
guishable elastic e- scattering from c/>18 state. Solid line: Pft; Dotted line: P:i. 

seen in Figure 4.41 where there is slightly more variation.in the transition probability. 

Figures 4.49, 4.50, and 4.51 demonstrate how the importance of electron 

exchange varies greatly for scattering between the two n = 2 hydrogen states. It is 

especially seen to be important in the resonance region. It is particularly interesting 

to note that there is a peculiar oscillation in the direct and exchange contributions 

to the transition probabilities. (This is particularly noticeable in the cf>2P --t cf>2P 

transitions shown in Figure 4.51.) 

Another interesting feature is the near perfect destructive interference be­

tween the direct and exchange contributions to the c/>28 --t cf>2P transition probability 

at 0.80 Ryd, shown in Figure 4.50. This causes the triplet contribution to 'this transi­

tion to completely vanish (making the triplet S matrix almost completely diagonal at 
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Figure 4.49: Direct and exchange transition probabilities Pf4r and P;: for distin­
guishable elastic e- scattering from <P2s state. Solid line: PfJr; Dotted line: P;:. 
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Figure 4.50: Direct and exchange transition probabilities Pft and P;f for distin­
guishable. inelastic e- scattering from <P2s state to </J2p state. Solid line: Pf~r; Dotted 
line: P;f. 
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Figure 4.51: Direct and exchange transition probabilities Pf~r and Pi3 for distin­
guishable elastic e- scattering from ¢>2p state. Solid line: Pf~r; Dotted line: pe33. 

this energy). It is also interesting to see that the rather complicated structure seen in 

the direct and exchange </>28 ---+ </>2p transition probabilities results in a rather simple 

triplet transition probability structure in Figure 4.44. 

4.3 Comparisons with other Theoretical Results 

4.3.1 Cross Section Comparisons 

In this section, the results from the present potential-optimized DVR are 

compared with other theoretical studies which have examined Jtotal = 0 electron 

scattering from a hydrogen atom at total energies between the n = 2 and n = 3 

thresholds. A comparison of singlet cross sections is first performed. Table 4.17 shows 

a comparison of the present DVR results with calculations performed by Callaway [97] 

and Wang and Callaway [69] respectively. These results show calculated elastic and 

excitation cross sections for singlet scattering at five representative energies between 

the n = 2 and n = 3 thresholds. 
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P (Ryd) Study O"ts.:...ls O"ts-+2s O"ts-+2p 

0.76000 c 0.663 0.0373 0.0281 
- we 0.678 0.0381 0.0265 

DVR 0.664 0.0328 0.0233 
0.78000 c 0.611 0.0411 0.0349 

we 0.627 0.0434 0.0349 
DVR 0.598 0.0416 0.0334 

0.80000 c 0.578 0.0534 0.0294 
we 0.581 0.0545 0.0285 

DVR 0.576 0.0539 0.0282 
0.81000 c 0.562 0.0591 0.0257 

we 0.561 0.0578 0.0279 
DVR 0.562 0.0603 0.0252 

0.82000 c 0.547 0.0616 0.0245 
we 0.557 0.0584 0.0265 
DVR 0.551 0.0617 0.0238 

Table 4.17: Comparison of singlet excitation cross sections (in units of 1ra6) for dif­
ferent theoretical methods. C: Variational close-coupling calculation by Callaway 
(97]; WC: Direct numerical calculation by Wang and Callaway (69]; DVR: Present 
Potential-optimized DVR method. All cross sections contain the proper statistical 
weighting factor for singlet scattering. 

\ 
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The two Callaway calculations are very different in character. The earlier 

calculation by Callaway utilizes a more conventional variational calculation which 

expands the wavefunction in a basis of pseudo-states. A basis of 7s, 5p, 3d, 2f, and 1g 

states are used to describe the hydrogen atom. This basis includes exact hydrogenic 

eigenfunctions through n = 3 plus the exact atomic 4f state. Eleven other pseudo­

states ( 4s, 3p, 2d, lf, and 1g) are also included. The parameters describing the entire 

basis are given in Table 7 of Callaway [12]. 

The later calculation by Wang and Callaway utilizes a direct numerical ap­

proach to the solving of the Schrodinger equation in which the total wavefunction is 

expanded in angular states (up to l = 3 for the individual electrons), symmetrized 

according to spin, and the remaining two radial degrees of freedom solved on a grid 

of equally-spaced points through a N umerov propagation mechanism.. (A detailed de­

scription of the method is provided by Poet [68].) For the particular results quoted, 

the Numerov propagation was performed out to a value of the radial coordinate 

Rmax = 40 au with a step size h = 0.2. The S matrix is then determined by a 

least-squares fit with known asymptotic solutions provided by the method of Burke 

and Schey [89]. It will be noted that these are the same solutions which provide 

asymptotic functions in this present DVR method. 

It is immediately apparent that the closest agreement of the present method 

is with the earlier variational close-coupling method of Callaway. This is perhaps not 

very surprising in light of the fact that the basic equations in the present DVR method 

are variational in character also; Callaway also includes in his basis set functions of 

the form described by (3.101). This can be thought of as partially substituting for 

the reciprocal R expansion of Burke and Schey [89] used in the present DVR method. 

Although the present DVR method is derived from equations which are variational in 

character' it must be pointed out that there can be no rigorous variational principle 

associated with the resulting calculation. This is because the potential energy matrix 

elements calculated in this method are necessarily a quadrature approximation in the 

spirit of the method derived by Harris, Engerholm, and Gwinn [25]. Of course, in 

the limit of a large set of closely-spaced, localized DVR functions true variational 

character will be approached as the quadrature approximation improves. In all, the 
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cross section~ calculated by the present method appear to duplicate the results of the 

two Callaway calculations to a large degree. 

4.3.2 Eigenphase Sum Comparisons 

A better comparison of different methods is achieved through calculation of 

the eigenphase sum. A diagonalization of the calculated S matrix yields a sequence 

of diagonal elements each of which is associated with a single open channel. These 

values can be placed in the form 

S- .. _ e2i6;; 
u- (4.14) 

where the index i is an open channel index and the tilde indicates diagonalization. 

The sum L:i 8ii is then the eigenphase sum. It will be noticed that an arbitrary 

integral number of terms 7r can be added to or subtracted from bii while sii will not 

change. A unique convention must be established for deriving a unique bii from a 

value of sii in order for the concept of an eigenphase to have meaning. 

The usefulness of the eigenphase sum as a measure of the effectiveness of 

a particular calculation is based on the fact that the exact values of the tangents of 

the eigenphases are upper bounds on the same quantities calculated in close-coupling· 

calculations in which exact target wavefunctions are present in all open channels [4, 

p.132]. The size of the eigenphase sum can therefore be thought of as a measure of 

the quality of the scattering calculation. 

Table 4.18 compares the singlet eigenphase sums calculated with the present 

DVR method to those calculated with the direct numerical (Numerov) method of 

Wang and Callaway [69], the conventional variational close-coupling method of Call­

away [97], and the R matrix· propagation methods of Taylor and Burke [98] and 

Geltman and Burke [99]. The two calculations of Callaway are described previously 

in the comparison of singlet cross sections. 

Both of the Burke calculations use the R matrix propagation method which 

is described in some detail in a lengthy review article by ~urke and Smith [11]. Gen­

erally, the method involves transforming the Schrodinger equation for the electron­

hydrogen system into a set of coupled-channel equations through the conventional 
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Ei bii 
P (Ryd) DVR C-NUM C-VAR TB GB 

0.76000 -0.464 -0.434 -0.455 -0.508 -0.535 
0.78000 1.697 1.714 1.706 1.640 1.620 
0.80000 1.645 1.657 1.625 
0.81000 1.686 1.673 1.659 1.618 1.559 
0.82000 1.719 1.687 1.675 
0.83000 1.701 1.615 1.562 
0.85000 1.695 1.695 1.665 
0.85500 1.749 1.806 1.726 
0.86000 2.037 2.241 2.127 
0.86200 2.626 3.094 3.085 

Table 4.18: Comparison of singlet eigenphase sums. DVR: Present results; C-NUM: 
Direct numerical (Numerov) results of Wang and Callaway [69]; C-VAR: Variational 
close-coupling results of Callaway [97]; TB: R matrix propagation method of Taylor 
and Burke [98]; GB: R matrix propagation method of Geltman and Burke [99]. 

expansion of the total wavefunction in terms of hydrogen eigenstates supplimented 

by various types of pseudo-states in order to attain some measure of completeness. 

The resulting coupled differential equations are then solved by numerical integra­

tion from the origin step by step (by a Runge-Kutta algorithm or other techniques). 

Because closed channels may be included in the coupled-channel expansion, the prop­

agation of the coefficient matrix is stopped before the non-physical rising exponential 

solutions associated with the closed channels become too large. A second propaga­

tion is started in the asymptotic region, and the resulting wavefunction is matched 

to the previously propagated solution at some convenient value of R. (oth and pt 

order derivatives are matched.) Explicitly symmetrizing the form of the total wave­

function to include electron exchange effects transforms the resulting equations into 

integro-differential equations which are then solved iteratively until self-consistency 

of a desired degree is attained. 

The calculation of Geltman and Burke [99] used only six states in the 

coupled-channel expansion - the exact 1s, 2s, and 2p eigenstates of hydrogen and 

three pseudo-states. The calculation of Taylor and Burke [98] used the lowest six exact 

hydrogen eigenstates (through the 3d state) together with variationally-determined 
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( 

Hylleraas-type correlation terms given by 

(4.15) 

where]{ is a length scale parameter and 

yt{;-,
2 
(rti-2) = 2::: C(Ztl2L; mtt mz2ML)Yi~11 (r1)Y,:'2 (i-2). (4.16) 

m11 m12 

All exponents are integers and provide powers of r1 and r 2 which satisfy the proper 

boundary conditions at the origin for their corresponding values of It and l2. (These 

are the same types of functions used by Schwartz [18].) 

Examination of the comparison between these different methods indicates 

that the present DVR method achieves the most improvement over the other methods 

at the intermediate range energies which are furthest from the threshold regions. For 

example, just above the n = 2 threshold the DVR method does not attain as large an 

eigenphase sum as the two Callaway calculations. This can be explained by the fact 

that the reciprocal R expansion forming the asymptotic form of the total wavefunction 

is weakest just above and just below thresholds, energy regions which will therefore 

require an L 2 basis set to span a wider range of the scattering coordinate. (Wang and 

Callaway [69] comment that terms beyond R-3 have little effect on results except at 

k2 = 0. 76 Ryd.) Beyond the n = 2 threshold the DVR method achieves equally good 

or better eigenphase sums up until the energy enters the Feshbach resonance region 

around 0.862 Ryd. Within this resonance region the results are not as good as those 

achieved by the two Callaway calculations. (This mirrors the previously noted lack 

of convergence in the value of the S matrix in this energy region.) 

It should be noted that the direct numerical (N umerov) calculation per­

formed by Callaway carried the propagation up to a value of R = 40 au in the 

scattering coordinate. The present DVR calculation placed the center of the furthest 

DVR basis function at R = 35 au. This fact may account for inaccuracies at energies 

just above the n = 2 threshold due to the increase in size of the interaction region 

caused by weakness in the reciprocal R expansion. Lack of convergence within the 

Feshbach resonance region may indicate that the spatial extent of a resonant virtual 

state extends beyond the maximum value for R spanned by the DVR basis functions. 
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Table 4.19 compares the triplet eigenphase sums calculated with the present 

DVR method to those calculated with the 18-state variational close-coupling method 

of Callaway [97], the R matrix propagation methods of Taylor and Burke [98] and 

Geltman and Burke (99], and the 11-state variational close-coupling method of Call­

away and Wooten [87]. Each of these methods has been described, with the exception 

L:i bii 
k2 (Ryd) DVR c TB GB cw 

0.76000 1.038 1.030 2.634 1.024 1.01 
0.78000 2.904 2.953 2.924 2.947 2.94 
0.81000 2.059 2.112 2.097 2.104 2.10 
0.83000 1.675 1.721 1.693 1.714 1.71 

Table 4.19: ,Comparison of triplet eigenphase sums. DVR: Present results; C: 18-state 
variational close-coupling results of Callaway [97]; TB: R matrix propagation method 
of Taylor and Burke [98]; GB: R matrix propagation method of Geltman and Burke 
[99]; CW: 11-state variational close-coupling results of Callaway and Wooten [87]. 

of the Callaway and Wooten calculation. This study is similar to the 18-state calcula­

tion of Callaway [97], except that only eleven basis functions are used. These include 

the exact 1s, 2s, 2p, and 3d states together with seven pseudo-states. 

Unfortunately, the eigenphase sums calculated with the present DVR do not 

seem to give as large eigenphase sums as those calculated with the other methods. As 

was mentioned previously, the attainment of good convergence and unitarity for the 

S matrix in the triplet scattering calculation was more difficult than in the singlet 

case. This weaker convergence was demonstrated throughout the entire energy range 

from the n = 2 to n = 3 threshold. The most reasonable explanation for this is a 

need for a larger region of the scattering coordinate being spanned by the L2 DVR 

basis in the triplet case than in the singlet case. This would not be surprising since 

the symmetry of the triplet spatial wavefunctions of the electrons requires that they 

not occupy the same regions of space. 
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Chapter 5 

Improvements 

One of the most attractive features of discrete variable representations is 

that the resulting Hamiltonian matrix is very sparse (due to the fact that the poten­

tial energy matrix V is diagonal). This sparsity normally permits the use of special 

iterative algorithms in the solution of simultaneous equations (such as Lanczos-based 

algorithms [100, 32]) as well as in the finding of eigenvalues [33]. Such algorithms have 

the tremendous advantage that they do not require the storage of the entire Hamilto­

nian matrix, but usually only require a user-provided subroutine which performs the 

multiplication of the Hamiltonian by a column vector input: 

y=H·x. (5.1) 

Such a subroutine can usually be easily construCted in such a way as to require only· 

a small amount of core memory, far less than is required by complete storage of the 

Hamiltonian matrix. For example, in this work such a subroutine is used to calculate 

the bound-free matrix elements in M 0 of (3.11). 

Unfortunately, the rate of convergence (and hence the usefulness) of these 

iterative algorithms depends heavily upon the condition numb~r of the matrix which 

is being inverted. The'condition number"' of a symmetric matrix A is given by [101] 

as 

(5.2) 
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where IIAII is the Euclidean norm of the matrix A given by 

IIAII =max !!Axil 
llxll 

for (x-:/= 0). 
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(5.3) 

This can be thought of as the maximum "amplification" ability of the matrix A. This 

is obviously equal to the largest value of !AI where {A;} is the set of all eigenvalues of 

A. Therefore the condition number of the matrix A is 

(A)= max !AI 
"' min !AI. (5.4) 

Unfortunately, the present formulation of the electron-atom scattering DVR 

requires the inversion of a matrix with a very large condition number K, and this en­

sures that the convergence of an iterative sparse matrix simultaneous equation solving 

algorithm is prohibitively slow, much slower than full-storage inversions utilizing a 

simple L U decomposition. The large matrix which requires inversion in the S matrix 

formulation of the Kohn variational principle is the matrix H-E. Upon examination 

of the L 2 basis, it is not difficult to see why this matrix has a large condition number. 

It has already been mentioned that one of the greatest difficulties encoun­

tered in trying to develop a DVR for electron-atom scattering is the requirement that 

a high density of radial points be present near the nucleus in order to adequately 

represent wavefunctions with a significant amount of S-wave character. The lack of 

a centrifugal barrier in this partial wave together with the presence of a Coulomb 

singularity requires the presence of such points. 

But because the L 2 space is composed of a direct product of the two radial 

spaces with the angular space, these points which are very close to the nucleus are 

also used to represent wavefunctions with finite angular momentum. Because these 

points are very close to the nucleus (and hence well-within any centrifugal barrier 

associated with the non-S-wave scattering), this is equivalent to including very high 

energy basis functions in the L 2 basis set. This has the undesirable effect of greatly 

increasing the largest eigenvalue of the H-E matrix, thereby increasing the condition 

number of the matrix and causing a lack of convergence in any iterative simultaneous 

equation inversion algorithm. In fact, one witnesses a dramatic increase in the con­

dition number of the H - E matrix as one increases the value of the scale parameter 
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a defined in (3.29). It will be remembered that this "tuning" parameter determines 

the density of radial DVR points near the origin. 

The usual procedure used to reduce the condition number of the H-E 

matrix is to simply remove those points in the direct product composite space which 

contribute to including unwanted high energy L 2 functions in the basis set. This 

technique is commonly used in current applications of DVR to molecular scattering 

processes [41], and typically involves establishing a potential energy "cutoff" value 

Vcut· Associated with each composite DVR point there is a value for the potential 

Vi;kl ... · This point is included in the basis set only if Vi;kl ... < Vcut· The rationale is 

that the wavefunction is likely to vanish at composite DVR points located in high 

energy regions of the potential energy surface, and therefore these points need not be 

included in the L 2 basis. 

Unfortunately, this prescription does not work well in the present study 

of electron scattering. The composite DVR points most responsible for raising the 

condition number of the H-E matrix are those associated with states in which at 

least one of the electrons is very close to the nucleus. And while truncating these 

points from the L 2 basis would reduce the condition number of the H - E matrix, it 

would also prevent an accurate representation of the most-important S-wave portion 

of the scattering wavefunction. Since each element of the one-dimensional angular 

DVR is used to represent both the low and high angular momentum states, it is not 

possible to eliminate any of these points without compromising accuracy. 

But because the number of one-dimensional angular DVR points is quite 

small compared to the number of points in the radial DVR, it is possible to transform 

the representation of the angular degree of freedom from a DVR to an FBR (finite 

basis representation) without sacrificing much of the inherent sparcity of the H-E 

matrix. This is accomplished through the use of the one-dimensional transformation 

matrix A defined by (3.60). Since this is an orthogonal matrix, the sparcity of 

the three-dimensional· kinetic energy and overlap matrices is ·not decreased. The 

transformation of the potential energy matrix preserves its diagonal character with 

the respect to the radial DVR indices; only the diagonal character with respect to the 

angular index is sacrificed. This transformation is tantamount to using the potential-
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optimized DVR in the two radial degrees of freedom only, and a standard Legendre 

polynomial basis set in the angular degree of freedom. 

(5.5) 

is transformed into 

(5.6) 

Following this transformation, the centrifugal barrier can then be included in 

the potential energy used in the Vc:ut-based truncation of the L2 basis. Then the only 

radial DVR points located close to the origin which will be included in the L 2 basis 

will be those associated with S-wave scattering. This transformation will then keep 

the condition number K of the H-E matrix low enough that an iterative inversion 
. . 

algorithm becomes viable. The calculation of the new 'Viinn' matrix elements can be 

performed inexpensively using the original Gauss-Legendre quadrature. Figure 5.1 

shows graphically the result of eliminating the angular DVR in favor of an angular 

FBR. 

Figure 5.1: Effect on V of transforming the angular DVR to an FBR. The majority of 
the sparcity is preserved. The angular index is here assumed to be the fastest varying 
index. 

The substitution of an angular FBR for a DVR would permit calculations 

requiring expansion of the scattering wavefunction in a much larger number of L 2 basis 

functions, since L U decomposition and Gaussian elimination (with their considerable 

core memory requirement) would no longer be needed to perform the inversion of the 
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H - E matrix. An alternate technique is presented by Groenenboom and Colbert 

[43] in which the high energy states associated with DVR points close to the origin 

in combination with high angular momentum states are projected out of the Krylov. 

space at each iteration of the algorithm. This clearly would have the same effect as 

the current proposition. 

It is clear than the study of an electron scattering from a hydrogen atom 

does not demonstrate the full power of applying sparse matrix inversion methods 

to electron-atom scattering. The low core memory requirements of such techniques 

suggest that more dramatic applications can be found in studying scattering events 

involving many more degrees of freedom, such as in electron-atom scattering involving 

multi-electron target atoms; 
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