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I ABSTRACT 

LBL-3611 

The additive Quark model relates 11 to vector meson production. 

The predictions of this model are formulated and compared to the data in 

a number of reactions involving vector mesons and 11 production. In all 

cases excellent agreement with the data has been found. With the quark 

model we generalize the vector dominance relation proposed by Cho and 

Sakurai to the 11 case. Experiments agree well with the predictions. 

Empirically the predictions appear to be valid also in other reactions 

like A1 production. 
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1. INTRODUCTION 

In the additive quark model (hereafter AQMO of Bialas et. al. [1], 

any hadronic reaction is described by a sum of all possible combinations 

of quark-quark or quark-antiquark interactions which are possible with 

the quark content of the external particles. In this paper we want to 

discuss the predictions of the AQM in the special case of reactions 

involving a ~. Since the spin of the ~ is greater than ~' the number of 

independent quark amplitudes is less than the number of independent helicity 

amplitudes for the original reaction. Therefore the helicity amplitudes 

have to satisfy certain constraints, which are usually called Class A 

relations [ 1]. These constraints imply that a p~ vertex, as it occurs 

in the reaction 

++ ap + b~ (1.1) 

with arbitrary particles a and b, has the same spin structure as the 

reaction 

(1. 2) 

where V denotes a vector meson. If one identifies this 1rV vertex with 

real vertices TrP or Trw depending on the internal quantum numbers, one 

gets relations between ~ production and V production amplitudes (so called 

Class B relations). These Class A and B predictions are discussed in 

Section 2 and compared with recent data. 

The dynamical assumption that the basic quark-quark interaction 

conserves helicity leads to helicity conservation for the whole reaction 
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(Class C predictions). However, it has been argued [2] that in a relativ-

istic version of the quark model they cannot be valid. Empirically, these 

Class C relations have been found incompatible with experiment [3]. 

Nevertheless it is interesting to see whether reactions (1.1) satisfy 

more constraints than those given by Class A. One possible approach is 

that of Cho and Sakurai [ 4]. From the requirement that the p production 

amplitudes in nN + pN should extrapolate smoothly to the corresponding 

ones in photoproduction of n, they derived relations between the 

longitudinal and transverse p production amplitudes. These relations 

we call vector meson dominance relations (VMDR). In Section 3 we generalize 

these ideas to the following special case of reaction (1.1) 

++ np + Vt:J. (1. 3) 

++ under the assumption that the !:J. p vertex satisfies the Class A constraints. 

In the derivation of these VMDR, only a smooth dependence of the production 

amplitudes on the vector meson mass is involved, but not the actual 

existence of a massless vector meson. Since the AQM relates the t:J.p 

vertex to a nV vertex, we can apply the ideas of ref. [4] to the t:J.p 

vertex in reaction (1.3). Finally we compare the experimental predictions 

of the VMDR with the data on reactions of the type (1.3). 

One important consequence of the AQM is the reduction in the number 

of independent amplitudes for reactions (1.1) or (1.3), which allows one 

to perform an amplitude analysis for these reactions even in the case of 

a bubble chamber experiment with limited statistics and no information 

about the polarization of the nucleons. Various possibilities are 

"· 
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discussed in Section 4. The remainder of the paper is devoted to applications 

of the VMDR in other reactions than (1.3). 

Cho e:t. al. [ 4] compared the VMDR for the reaction 1T-p + p 0 n with 

the data before the accurate data of the CERN-Munich group [ 5] became 

available. The purpose of Sect1~n 5 is to show that the new data confirm 

these VMDR. 

As the example of the D. reaction (1. 3) shows, VMDR are not confined 

to vector mesons. One can go even further and demand the same relations 

for the production amplitudes for axial vector meson states; for example, 

A1 production in the reaction 1T-p + 1T-1T+1T-p. By A1 we mean as-wave 1Tp 

state in the 3n system, but not necessarily a resonance. The experimentally 

observed spin structure of this _;reaction is sufficiently simple that the 

corresponding VMDR leads to helicity conservation for the A1 along a 

direction between the s-channel helicity (SCH) and the t-channel helicity 

(Tal) direction (Section 6). If helicity conservation is true for this 

diffractively produced system, it should also be observed in Q or N* 

production. Th~s we investigate in the case of reaction pp + (n+n)p. 

The notation for spins and momenta of the particles in the quasi 

tWo body reaction ab + cd will be the same throughout the paper (see 

fig. 1). The four momenta of particle a(b,c,d) are denoted by p(p' ,k,k') 

and their masses by m(m' ,M,M'). If particle b(c,d) carries spin, the 

helicity is denoted by rp(r,r'). In many cases c(d) will be a resonance 

decaying into two particles. The unit vector of the three momentum of the 

decay particle in the c (d) rest frame is described by q (q') . If c is 
++ + 

a w + 37T, q denotes the normal to the 31T plane. In the decay D. + p1T 

the proton carries helicity y. The abbreviations P = p' + k' and 
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pI = k + P Will be USefUl. ThrOUghOUt the paper the SQI COOrdinate 

system will be used, unless stated otherwise. As usual S is the total 

energy squared and t the momentum transfer t = (p - k') 2
• We will 

always assume that lt/sl << 1. 

2. QUARK MODEL PREDICTIONS FOR ~ REACTIONS 

In this section we want to sketch the derivation of Class A and B 

predictions of the AQM for reactions involving a p~ vertex. Then we 

consider the special case of associated vector meson-~ productions. 

Finally we compare the Class A and B predictions with the data. 

The most general two body reaction involving a ~ reads as 

Particles a and c will be specified later on. The amplitude for the 

process (2.1), including the~ decay, can be written as 

where H. , 
Tpr 

= !. ~ H 
'IT L r r' 

Y' p 

3f: * 
• D 2 (') r'y q (2. 2) 

denotes the amplitudes for the incoming proton with helicity 

rp and the outgoing ~ with helicity r'; the D function describes the 

~ decay into 'IT+ p decay depending on the hel ici ty y of the decay proton 
A 

and its momentum direction q in the ~ rest frame. For reasons which 

will be clear later on, we .introduce the relative proton-~ spin ~ = 1,2 

and its magnetic quantum number, m, is equal to the helicity flip 

• 
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H r r' (2. 3) 
p 

For application, helicity amplitudes are not the best ones to use because 

of the constraints due to parity conservation. The following linear 

combinations of Htm are eigenamplitudes of the parity operator P times 

a rotation around the normal to the production plane with angle ~= 

(2.4) 

u. = L: €~(m) H2m 1 
(2.5) 

lml~l 

v± = L: lJJ±(m) H2m (2.6) 

lml=2 

where the coefficients € and lJi are given by 

"'(m) = i ~ 
"'+ -.JZulml,l' 

m 
Vz 

(2. 7) 

lJJ(m) = i 0 
+ - Vz lml ,2 ' 

m 

2.../2 
(2.8) 

The phrases in Eq. (2.7) have been chosen such that the vector 
+ 
T = (T_, T+, T0) transforms under rotations like an ordinary vector . 

Parity conservation implies that T+, u0, U_, V+ are related to natural 

and T0 , T _, U +, V _ to unnatural exchange. The cross section, including 

the ~ decay, for not observing any proton polarization is given by 
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w = 1 ~IF 12 2L...J ry p 
rp'Y 

(2. 9) 

and the normalization factors in Eqs. (2.2) and (2.3) are chosen such· 

that the 6~production cross section reads as 

~ (1til 2 
+ 1Uil

2 
+ 1Vil

2
) 

1 

(2.10) 

As explained in ref. [ 6] , the relative spin .Q, is equivalent to the 

spin of the two interacting quarks in the p and 6.. This spin cannot be· 

bigger than 1. Therefore the Class A prediction of AQM in this case is 

H2m = o ' or u. = v. = 0 
1 1 

(2 .11) 

Prediction (2.11) is not limited to the quark model. Any interaction of 

basically vector type will involve only H1m as the dipole model of ref. [7]. 

For pure natural exchange, the Stodolsky-Sakurai model [8] predicts only 

T+ being nonzero. To see the experimental consequences from Eq. (2.11) 

we write the cross section (2.9) in terms of the quark model amplitudes T. 
1 

(2.12) 

where the matrix A is given by 

(2 .13) 

The matrix A in the more complicated case of nonvanishing U amplitudes 

is given in the Appendix. For the remainder of the paper, we will always 

assume that the 6p coupling obeys the AQM. This assumption allows us to 

.... 

• 
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express the amplitudes in terms of measurable moments of the cross section W: 

(2.14) 

In order to compare the AQM predictions with experiment, we now 

specify particles a to be a rr and c to be a p. By p we mean a P-wave 

resonance state plus an S-wave contribution, as it occurs in the reaction 

+ + - ++ 
Tr p -+ 1T 1T 1:!. (2 .15) 

with the dipion mass M in the p mass band. To obtain the amplitudes 

for reaction (2.15) we have to expand the general production amplitude 

T i on the meson side into 1r1r S and P waves 

T. 
1 

= 1 

y'4; 
L v'3 P. q + s. 
n 1n n 1 

(2.16) 

where P. describes the P wave and S. the S-wave emission of the 1r 1n 1 

Pair·, qA - (qA A A ) corresponds to the unit vector of 1r + momentum n - _, q+, qo 

in the 1r1r rest frame. P. are related to the helicity amplitudes H1 r m m, 

of p production in 1r +p -+ p 0 1:!. ++ in the same way as T. are related to 
1 

the I\m amplitudes for the 1:!. in Eq. (2.4): 

P. 1n =~ 
m,r 

£~*(m) E:R(r) H 1 n lm,r (2.17) 

The joint decay angular distribution for reaction (2.15) is obtained by 

mn (2.18) 



-8-

The matrix Aik is given _by (2.13). The following moments of this 

distribution allow the determination of the various interference terms: 

w.k 1 ,mn (2.19) 

w.k 1 ,m (2. 20) 

The explicit relation between those moments and the amplitudes reads as 

follows: 

w.k 
1 ,mn (2. 21) 

w.k 1 ,m = (2.22) 

The simplicity of Eqs. (2.21) and (2.22) compared to the usual complicated 

formalism [9] makes it very easy to extract the amplitudes from the 

measurable moments. The number of nonzero moments and amplitudes is 

restricted by parity. An even number of + indices has to occur in the 

amplitudes P S and the moments (2.21) and (2.22). Therefore, only mn, m 

one amplitude with natural exchange occurs, P++, four P-wave unnatural 

exchange amplitudes P00 , P0_, P_ 0, P __ and two S-wave amplitudes with 

unnatural exchange s0 and S_. In addition the moments have to be 

synnnetric in both ik and mn indices. This leaves us with 20 independent 

moments of the type (2. 21) and 10 S-P interference moments (2. 22). This 

means 17 constraints among the moments, if AQM holds. There are two types 

of constraints: equality of moduli lead to linear, equality of phases 

..... 

• 
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lead to nonlinear constraints between the moments in Eqs. (2.19), (2.20). 

The linear ones we can visualize in the following way: moments with 

natural exchange at the ~ vertex and unna~ural exchange at the meson 

vertex must vanish by parity conservation. Therefore we get 
.1 

w wo = 0 ++,--

= = 0 

(2. 23a) 

(2.23b) 

To get a connnon scale we have divided the··moments by the total intensity 

w0. The experimental moments in the p region for reaction (2.15) are 

shown as a function of~ in fig. 2 for the 7 GeV/c data of ref. [10]. 

The agreement with the P.Q-1 predictions (2.23) is very good. 

The same investigation can be done for 

+ + - ++ 
K p -+ K 1r .~ (2.24) 

' in the K* region. The AQM prediction are again in good agreement with 

the data at 12 GeV/c [11] as fig. 3 shows. We can replace the 1r1r state 

in reaction (2.15) by a 3n state in the w region. Since there is little 

background [12,13] under the w, we are studying the reaction 

+ 
7T p A++ 

-+ Wu (2. 25) 

Besides the constraints (2.23a), we can obtain additional constraints by 

projecting out natural exchange at the wn vertex. The same argument as 

before leads to 

= w __ ++ w0 = o 
' 

(2.26) 
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Both the moments (2.23a) and (2.26) are shown in fig. 4 for reaction (2.25) 

as a ftmction of v:t." The data are taken from ref. [12] at 7 GeV/c. The 

agreement with the AQM predictions is excellent. 

These comparisons tell us that the quark model type coupling for 

the ~p vertex are substantiated by the data for associated production of 

vector mesons and ~- A meaningful test of the nonlinear constraints 

requires much higher statistics than available in present experiments. 

Now we turn to the so called Class B predictions of the AQM. They 

identify the ~ in reaction (2.15) with real vector mesons. Therefore 

the vector meson ~ production amplitudes P. should be synunetric 
lll 

p. = p . 
m n1 (2. 27) 

Due to the different masses of p and 6, (2. 27) can hold only in one 

reference frame. According to ref. [14] Eq. (2.27) should be used in 

the TCH frame, which has been verified experimentally at 3.9 GeV/c [3]. 

Due to this model dependence we want to make only a few tests of the 

Class B relations. Even if Eq. (2.27) holds, the single 6 and p decay 

moments are not the same, as one can see from the different factors 5 

and 5/2 in front of the quadratic terms in q and q' in Eq. (2 .19). 

These terms give rise to ordinary L ~ 2 decay moments (Y~). From the 

synnnetry of P we get therefore, a relation between the single 6 and p 

decay moments 

(Y~) 
p 

2 (Y2
) 

m t::, 

(2.28) 
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These decay moments in the TCH system for the three reactions n+p + w~++, 
+ ++ + +o ++ n p + p 0~ at 7 GeV/c [10,12], and K p + K ~ [11] at 12 GeV/c are 

shown in figs. 5 and 6 as a ftmction of v'-T". The data indicate that the 

Class B prediction (2.28) is in reasonable agreement with experiment . . 
Equation (2. 28) is not restricted to cases where p and ~ ++ are produced 

in the same reaction. Comparing the two reactions n-p + p0 n and pp + ~++n, 

the same relation (2.28) should hold provided the production mechanism is 

the same. Both reactions are dominated by absorptive n exchange at low 

ltl and natural exchange at high ltl [5,16]; therefore a common production 

mechanism seems to be a reasonable assumption. Both reactions have been 

measured at 17 GeV/c by a CERN-MUNICH-UCLA collaboration [5,16]. The 

comparison of the ~ moments in' pp + ~ ++ n and p moments in n-p + p 0 n 

as ftmction of ~ (fig. 7) indicates good agreement with the Class B 

prediction (2.28) also in this case. Recently Field [17] compared K* 

production K+n + K*0 p at 6 GeV/c with pp + ~++n data with a polarized 

beam and found the Class B relation in good agreement with the data. 

3. VECTOR DOMINANCE RELATION OF CHO AND SAKURAI 

Cho and Sakurai [4] derived relations for the p-production amplitudes 

for the reaction 

from the requirement that the p couples like a photon to a conserved 

current. We will give a slightly different derivation for the simple 

(3.1) 

case that the nucleons in reaction (3.1) are spinless particles of opposite 

parity and generalize these ideas to the more complicated case of 
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++ 1Tp -+ VtJ. 

where V stands for w or p. The original reaction (3 .1) will be 

(3.2) 

discussed in the next section. Since the AQM relates a ptJ. vertex in 

reaction ( 3. 2) to a 1TP vertex, we can apply this fonnal ism also to the 

!J.. Finally we compare the prediction for reaction (3.2) with the data. 

The amplitude F for reaction (3.1) with spinless nucleons including 

the decay p -+ 1T1T are given by 

(3. 3) 

A 

where q denotes the decay 1T direction in the p rest frame. Parity 
-+ 

conservation requires P + = 0. The vector P is in the same way related 

to the helicity amplitudes as before in Eq. (2.4). Invariant amplitudes 

are introduced by 

I e::R(r) e:J.l(r)jJ.l = 
r 

(3.4) 

The four vector e: (r) is l.Dliquely determined by e: kJ.l = 0 (k is the 
J.l J.l J.l 

p momentlDTl) and e: = e: R in the p rest frame. By adding terms 'V k 
, J.l m J.l 

to j J.l, we can always achieve the conservation law 

(3.5) 

-+ 
Using (3.5) the explicit relation between the amplitudes P and the 

"current" j J.l becomes very simple 
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+ 7 ( M)AA-t p = J - 1 - k: k(k•J) 
0 

(3.6) 

where M denotes the vector meson mass. In the rest frame Eq. (3.6) 
+ + 

reduces to P = j. · In a general reference it reflects the spin rotation. 

For massless vector mesons only transverse components of j can contribute 
+ 

to P. Since j is a four vector, it can be decomposed into scalar 
~ . 

amplitudes A and B by: 

j~ = 2(C A + K B) 
~ ~ 

with · 

t-m 2 
!k c = p~ + p 

~ 2S ~ 2 ~ 

and 

K 
M2 1 = 2S p~ -- k 

~ 2 ~ 

(3. 7) 

(3.8) 

(3.9) 

These linear combinations of the particle momenta (see fig. 1) are chosen 

such that Eq. (2.5) is satisfied up to 0(1/s) terms. Inserting j into 
~ 

Eq. (3.6) and choosing the SOH-direction as z-axis, we find for P0 and P_ 

P0 = M(A- B) (3.10) 

P = -2v:T · A (3.11) 

The crucial difference between the amplitudes A and B is that .B enters 

with K into j , which is explicitly M2 dependent. B does not give 
~ ~ 

any contribution to production of a massless vector particle (y). Presence 

of a significant B term would make any relation between p and y production 

meaningless-. To impose a smooth transition between y and p production 
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we require B = 0. This means that P 0 and P must satisfy the relation 

M - __.__ p (3.12) 
2...;-::t 

Due to the derivation, we call -Eq. (3.12) and the analogous relations in 

other cases vector meson dominance relations (VMDR). Equation (3.12) has 

·been derived in ref. [4] by writing. j as a linear combination of the 
~ 

external momenta and imposing the conservation law (3. 5) as an identity 

in M. This masks, however, the important omission of any M2 dependent 

term "' K in j . 
~ ~ 

Note that Eq. (3.5) can always be satisfied by adding 

appropriate terms "' k to j . 
lJ ~ 

An obvious consequence of the VMDR is the 
+ 

following. Choosing as quantization axis the vector C in the V rest 
+ 

frame, only P0 can be nonzero. This means helicity conservation along C. 

This direction lies between the Ta-I direction p and the SQ-I direction P 
zv=t + forming an angle e = arc tg M with p. Therefore the Donahue-Hogaasen 

angle [18] is predicted to equal e. As we will see, this helicity 

conservation holds only in this simple case where we have pure unnatural 

exchange. It will be true in general if only one amplitude contributes. 

Before we can apply the same idea to reaction (3.2), we have to find 

the analogue of the AQM coupling (2.4) for the invariant amplitudes for 

reaction (3.2). Ignoring for the moment the V-meson spin, the helicity 

amplitudes H , for the £\P vertex are given in the Rarita-Schwinger 
yp y 

representation [19]: 

H = u,(k' ,r') J~ u(p' ,rp) r r' ,.. p 
(3.13) 

·- ~--
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The AQM for the invariant amplitudes means that J does not depend 
ll 

on any y-matrices connecting the ~ spinor u and the proton spinor u. 
. ll 

To see this, we insert the explicit form of u in terms of a direct 
ll 

product of spin t and 1 represe~tations 

ull = L<ia.lmlfY') e:ll(m,k') u(a.,k') 
m,a. 

(3.14) 

into Eq. (3.13). By taking JfJ. outside the spinor product and comparing 

this expression with (2.3) we find 

(3.15) 

(3.16) 

Absorbing the kinematical factor in Eq. (3.15) into the definition of J , 
ll 

we see that the relation of the AQM between the ~p amplitudes H , and 
- ypy 

an effective vector meson production amplitude Hlm holds also for the 

invariant amplitudes. With the help of Eq. (3.15) we can now express the 

production amplitudes Pnm of Section 2 for reaction (3.2) in terms of 

invariant amplitudes 

pnm = x* (k') x* (k) J~v m nv (3.17) 

The tensors X are given by Eqs. (3.4) and (3.6). The most general tensor 

J~v which satisfies the conservation laws k~J~v = ~J~v = 0 on both 

vertices is obtained by 
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= 

k: k~ p: k k' P AN + 4K'lJ Cv B + 4K'lJ Kv B 
/\1 /\2 /\3 K1 K2 K3 1 2 

(3.18) 

The vectors C and K are given by Eqs. (3.8, 3.9) and c' ,K' are the . )J )J 

analogous vectors for the 11 side: 

2 

c' 
t-m 1 I ' p p = p)J + 2" k)J )J 2S )J (3.19) 

K' M' 2 
I !_k = 2S pll )J 2 ll 

(3.20) 

The physical meaning of the various terms in Eq. (3.18) can be read off 

from the connections between the scalar amplitudes and the SCH amplitudes: 

p++ = CA - 4t ~ (3.21) 

p = -CA - 4t Au (3. 22) 

Po- = -2M' VT (A - B ) (3. 23) u 1 

P_o = -2M v-:t Au (3.24) 

Poo = MM' CAu - B1 + B2) . (3.25) 

CA contributes to both natural and unnatural exchange spin flip amplitudes 

and can be finite at t = 0. It is therefore dominated by Regge cut 

contributions. AN appears only in P++ which means it describes A2 

exchange. Au' B
1 

and B
2 

describe the various unnatural exchanges. The 

vector dominance arguments discussed before for the vector meson in 

, 
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reaction (3.2) require B
2 

= 0 in order to forbid the M dependent tenn 

rvK in (3.18). This is equivalent to, the VMDR for the helicity amplitudes 
ll 

= (3.26) 

These VMDR are a consequence of a smoothness property of Jllv and jP for 

reaction (3.1) but do not necessarily require the existence of a massless 

vector meson. Therefore we can postulate the same smoothness property 

for the ~ as far as the M 1 dependence concerns. This leads to the 

requirement of B
1 

= 0 and to the following VMDR for, the ~p side: 

2 .v-=t 
Ml (3. 27) 

-+ 
The VMDR (3.26) and (3.27) do not mean helicity conservation along C or 
+I 
C , since CA and A2 will not be zero; however, (3.26) and (3.27) lead 

to constraints for the moments Wik,mn which can be tested experimentally. 

Before doing so we want to make a comment on the possible validity of the 

VMDR (3. 27) in n exchange dominated reactions. The n exchange pole tenn 

gives the following expression for Jllv 

JTI 
).IV 

4 I G = p).l p\) 2 
m - t 

'IT 

(3.28) 

Using Eqs. (3.8) and (3.19) to express p and p 
1 

in tenns of our 

I 1 d 12 .J. 2 vectors C, C , K and K we see that, ue to m r m , 
1T 

B
2 

nrust contain 

the n-pole and cannot be neglected. Therefore we expect both VMDR (3.26) 

and (3.27) to be valid only for the reaction 
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+ 0 ++ 
7f p -+ w I:J. (3.29) 

where 1r-exchange is impossible. For the reaction 

+ 0 ++ 7rp-+ pi:J. (3.30) 

only (3.26) holds and for K+p-+ K*I:J.++ none of the two relations will be 

valid, since in this case both B
1 

and B
2 

contain 1r-pole contributions. 

To test the VMDR experimentally we first investigate the p VMDR 

(3.26). Inserting the relation (3.26) into the moments (2.18) leads as 

before in the test of Class A relations to linear and nonlinear constraints. 

We consider only the following three linear constraints among the normalized 

moments 

(3.3la) 

(3.3lb) 

(3.3lc) 

where a. = 2v'""T 
M 

Note that for reaction (3.30), w00 ++is not zero due 
' 

to the S-wave background under the p. The S-P interference moments have 

to satisfy the following constraint if Eq. (3.26) holds 

(3.32) 

The experimental values for the four moments (3.31) and (3.32) for reaction 

(3.30) at 7 GeV/c [10] in the SOH system are shown as functions of v'-l: 

in fig. 8. This indicates that VMDR are in reasonable agreement with the 
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data. For the w reaction (3. 29), the Eq. (3. 31) holds with w00 ,++ = 0. 

Imposing in addition the VMDR (3.27) for the tJ. side, we find five more 

linear constraints among the moments 

[WO- 00 + a.'Woo ooJ/wo = 0 , (3. 33a) 
' ' 

rw __ oo + a.'Wo- ooJtwo = 0 (3.33b) 
' ' 

[W_+ 0+ + a. 'Wo+ O+ J Mo = 0 (3.33c) 
' ' 

[W a. 'Woo -- + 2a. wo_ o_]lwo = 0 (3.33d) 0- --' ' ' 

[W a.W + 2a.' w0_ 0_]/w0 = 0 (3.33e) --,0- --,00 ' ' 

where a.' = 2~ In fig. 9 we show the linear combinations of the M' • 

moments as in Eqs. (3.31) and (3.32) as functions of~ for n+p + w~++ 

at 7 GeV/c [10] in the SOH coordinate system. From the reasonable agreement 

we conclude that the VMDR holds also for the tJ. in reaction (3. 29). From 

• the 12 amplitudes allowed by parity conservation A~ predicts only five 

nonzero. The additional VMDR reduce this number to three. In Table 1 

we list the number of independent amplitudes in the case of reactions 

(3.29) and (3.30) together with the number of measurable moments, linear 

and nonlinear constraints, if one imposes the AQM and/or t~e VMDR. 

4. TI-p + p 0n REVISITED 

The VMDR have been derived originally in ref. [4] for the reaction 

(4 .1) 
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We want to repeat the treatment here for two reasons. First, there are 

more amplitude analyses done for reaction (4.1) which clearly confirms 

the VMDR, and, second, there is an important difference between our 

treatment and that of ref. [4]. Writing the helicity amplitudes for 

reaction (4.1) in terms of invariant amplitudes, we can omit all combinations 

leading to spin no flip at the pn vertex for unnatural exchange [21]. With 

this restriction the helicity amplitudes H , in the SOH system can be 
rpr ,r 

decomposed as 

(4. 2) 

with 

J = 2C A + 2K B + o kv C 
~ ~ n ~ ~v A 

- p"3)A~;f) 
(4. 3) 

where An and B are related to n-exchange, CA corresponds to the n-cut 

(the poor man's absorption model [21] sets .cA = 1) and A~(A~f) to the 

helicity flip (no flip) natural exchange contribution from A2 exchange. 

We use the same vectors C,K as defined in Eq. (3.8) and (3.9) to ensure 

the validity of the conservation law k J~ = 0. In principle the Dirac 
~ 

equation for u and u can be used to express the A~ in terms o.f An, B 

and CA as done. in ref. [2], but this will lead to a VMDR which is incompatible 

with experiment. 

The restrictions imposed by the arguments of Cho and Sakurai [2] lead 

to B = 0. Since we use a linearly dependent set of scalar amplitudes, this 

has no consequence for the helicity amplitudes. Nevertheless we can make 
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the following qualitative comparison. At It I< 0.1 GeV2 A2 exchange can 

be neglected compared ton-exchange. With B = 0 one obtains from (4.2) 

and (4.3) for the r = 0 helicity amplitude 

Hr r' 0 · = 
p ' 

The usual n-pole exchange amplitude is given by 

-Ft 0 I cos X t 1 F ( t) 
rp, -r s m2 _ t 

1f 

(4 .4) 

(4. 5) 

where xst is the crossing angle between SGI and t-channel helicity (TGI) 

system with 

M + 

cos xst = 

2 t-m 
1f 

M 
(4.6) 

and F(t) a form factor. Using the form (4.4) for n-exchange is equivalent 

to replacing the numerator in the crossing angle (4.6) by its value at the 

n-pole (the additional weak t-dependence in the denominator can be absorbed 

into the form factor F(t)). This approximation has been made by all 

amplitude analyses [22] done on the CERN-Munich data [5), mainly because 

there is no experimental evidence for a zero at It I = M2 - m2 in the r = 0 
1f 

amplitude. Another consequence of using Eq. (4.3) for n exchange is that 

B = 0. This and CA "' 1 leads to a vanishing (Y~) in the TCH system, which is 

in good agreement with the data (see fig. 7). All these comparisons have to 

remain qualitative since they depend on neglecting the A
2 

exchange amplitudes, 
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which are dominant for ltl ~ 0.5 GeV2. This was not known at the time, 

when Cho and Sakurai derived the VMDR for reaction (4.1). This relation 

is obtained by requiring B = ~ = 0. Then the helicity amplitudes become 

linearly ~ependent, which gives the VMDR of ref. [4]: 

M 
(4. 7) 

However, equality of r = 0 and r = 1 amplitudes is incompatible with the 

known dominance of natural exchange for It I > 0. 3 GeV2. Even if the original 

VMDR of ref. [ 4] turns out to be incorrect, its weaker form B = 0 explains 

why in cosx t for the n exchange in Eq. ( 4. 5) the factor M2 + t - m2 
s 1T 

has to be replaced by its value at the pole t = m2
• Finally we mention 

1T 

that B = 0 is required by the so called electric Born term model [ 4] (which 

is a special solution of the VMDR (4.7)) and by some dwl models [23]. 

5. APPLICATION TO AMPLITUDE ANALYSES 

As Table 1 shows, an amplitude analysis for a reaction like n+p + Vb++ 

cannot be done without polarized target experiments. The least restrictive 

assumption for such an analysis is the neglection of the double flip 

amplitudes V. (in the notation of Section 2) at the b vertex, which 
1 

leads to a constraint fit. Usual statistics of bubble chamber experiments 

still require more assumptions. In this case the AQM assumption U = V = 0 

may be used. In the analysis of reaction n+p + w6++ at 3.9 GeV/c [24] 

some nonquark model amplitudes have been claimed, which contradicts our 
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our finding. In ref. [27] A~l has been used to determine the cross section 

for the S-wave under the p 0 and K* in reactions 1r +p -+ p 0 11 ++ and 

K+ K*O ++ p -+ !:,. • This cross section turned·. out to be in reasonable agreement 

with the most recent 1T1T phase shift analysis [16]. Together with VMDR 

for the p the phase between P 00 and P ++ has been determined [ 25]. 

For an amplitude analysis of the reaction 

+ + - ++ 1T p -+ 1T 1T 1To !:,. (5.1) 

both in the w region and for high 31T masses using V. = 0 we refer to future 
1 

future publications [13,27]. An application to inclusive reactions as 

+ 
TIP -+ X/5.++ . ( 5. 2) 

seems to me especially worthwhile to pursue. Extrapolating the cross 

section for reaction (5. 2) to t = m~ gives a measurement of the TITI total 

cross section. However, in general the background makes this rather 

unreliable. The background can be (hopefully) reduced under the assumption 

of the AQM, if one extrapolates the ~ moments (2.14) in the TCH system: 

t J d2"'(5"'2 4) C + ++) = L q ~ -3 W1Tp-+XA 
X + . 

jr0 j2 at the pole is related to the 1T1T cross section and 

IT+I 2 should extrapolate to zero which serves as a check of 

the method. 

(5. 3) 
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6. VECTOR MESON DOMINANCE RELATIONS AND HELICI'IY CONSERVATION 

In the simple case of the reaction studied in Section 3, we established 
-+ 

helicity conservation along c for the vector meson, if the VMDR is valid. 

Presence of other exchange mechanisms prevent this from being true as a 

general rule. The following reaction is experimentally known to be 

particularly simple 

(6.1) 

+ + 0 ± By Ai we mean a 1 S-wave state between p 'IT , but not necessarily a 

resonance. The data show [28,29] that this state is produced only by 

natural exchange and by spin coherent nucleon amplitudes. So the protons 
' 

can be considered as scalar particles, and the formalism of the example 

in Section 3 can be applied (reversing the role of unnatural and natural 

exchange). If the argtm1ents for the current j can be also generalized 
lJ 

to the axial current involved in reaction (6.1), we predict helicity 
-+ 

conservation along direction c. That means the experimental values 

of the Donahue Hogaasen angle [18] should coincide with the angle 8 

between TCH direction p and t given by 

8 
[ 

2 J 2 y-:-:r m'IT - t 
= arctg M 2 · 

2 3'JT M - 3t - m 3'JT 'IT 

(6. 2) 

The measured angles at 40 GeV/c from ref. [28] are displayed in fig. 

10 for two intervals of the 3'1T mass M3'1T. In view of the many assumptions 

entering the experimental analysis we consider the agreement as surprisingly 

good. In contrast to the reactions studied in the preceding sections, 

reaction (6.1) is dominated by Pomeron exchange. If this helicity 
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conservation is not accidental, the same should be true for other Pomeron 
' + 

exchange reaction~, for example pp + (n n)p. Due to the limited statistics 

available and the increased spin complication, no amplitude analysis has 

yet been performed. However, helicity conservation along a certain axis 

should result in a flat distribution in the corresponding tjJ angle. This 

tjJ distribution for the data on pp + n+n p at 24 GeV/c [30] integrated 

2 over Mn+n ~ 1.7 GeV and ltppl ~ 0.3 GeV is shown in fig. 11 for the three 

coordinate systems TQ-1, SQ-1 and using ~ as axis. The data neither allow 

srn or TQf helicity conservation, but the ~ direction is compatible with 

helicity conservation. 

Finally we mention that the nonresonant 3n background in the reaction 
' + + - 0 ++ . n p + n n n 8 at 7 :GeV/c [27] follows nicely the rule of helicity 

conservation in that coordinate system. 

7. SUMMARY AND CONCLUSIONS 

We investigated the consequences of the AQM relating a p8 vertex 

to a nV vertex. The restrictions imposed on the 8 couplings led to 

constraints for the joint decay moments in associated vector meson 8 

production. These have been found in excellent agreement with the data 
+ ++ 

on n p + w8 , 
0 ++ d K+ K*0 ++ p 8 an p + 8 . The assumption of a quark type 

coupling turns out to be a very useful tool for amplitude analyses of 8 

reactions. 

Cho and Sakurai proposed a smoothness relation for the p production 

amplitudes in n-p + p0n from vector dominance. Since the AQM treats the 

8 as a spin 1 particle, this idea can also be applied to the 8. We found 
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the VMDR in good agreement with the data on 1rp -+ wl1 for both w and 11 , 

and on 1rp-+ p!1 for the p. In cases with one amplitude dominating the 

process, VMDR lead to helicity conservation along a direction t between 

the SCH and TCH direction. Surprisingly enough we found this helicity 

conservation to be true also in diffractive processes. While the 

theoretical justification seems to be rather poor, the experimental 
-+ success in various cases makes us believe this distinction of the c 

vector may be~ a general rule. Apart from theoretical implication, such 

a rule may be helpful in future amplitude analyses of 1rp + 1r(p1r1r) or 

pp-+ p(p7r1r). . + 0 ++ The LBL analys1s on 1r p -+ (37r) 11 [27] demonstrates the 

advantage of using t as quantization axis. 
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APPENDIX 

An observed asymmetry for the tJ may indicate the need for ~ S-wave 

backgrmmd. To include this we add to Eq. (2.2) the corresponding j =~ 

tenn .; 

2j + 1 Hj "* F = D J C ') 
I L: r'r q rpy 41T rpr 

j=~,% 
r' 

¥z H is identical to that Eq. (2.3) and 
rpr 

~ H r'r p 
= or'r • s 

p 

1 
H':i 

r r 
p 

given by 

(A.l) 

(A.2) 

Ignoring the double flip amplitudes V' we can order the amplitudes into 

a vector X~= (T+, T0 , T_, S, U+, u0 , U_). The integrated cross section 

is simply given by 

and the decay angular distribution as 

w = (A.3) 

-
~,~ 

with the symmetric matrix A: 
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TABLE 1. Number of Amplitudes and Constraints 

Meson State Assumptions P-Wave s-wave Measure- Lineqr 
Present Amplitudes Amplitudes ments Constraints 

p - 12 - 20 

s + p - 12 4 30 

p v. = 0 9 - 20 -
1 

s + p v. = 0 
1 

9 2 30 -

p u -v - o i- i- 5 - 20 6 

s + p u.=v.=o 5 2 30 5 
1 1 

p u -v - o i- i- 3 - 20 14 

+ VMDR(3.26), 
(3. 27) 

s + p u = v = 0 4 2 30 9 
+ VMDR(3.26) 

Nonlinear 
Constraints 

3 

9 

5 

12 

1 

10 

. ,, 

I 
V-1 
N 

I 
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FIGURE .CAPTIONS 

Fig. 1. Notation for quasi two body reaction . 

Fig. 2. Nonnalized moments from Eqs. (2. 2 3) for TI + p + TI +TI-t-,++ 

Fig. 3. 

Fig. 4. 

at 7 GeV/c [10] in the p region (0.70<M < 0.86 GeV) as a 
1T1T 

fllllction of~ in the SGI system. Quark model Class--A 

relations predict them to be zero. 
+ Nonnalized moments from Eqs. (2.23) for K p 

at 12 GeV/c [11] in the K*0 region (0.84 < MK < 0.94 GeV) as 
1T. 

fllllction of ~ in the SGI system. Quark model Class A 

relations predict them to be zero. 
+ ++ Nonnalized moments from Eqs. (2.23a) and (2.26) for 1r p + wt, 

at 7 GeV/c [12] as function of ~in the SGI system. Quark 

model Class A relations predict them to be zero. 

Fig. 5. Comparison of vector meson and t, decay moments (Y~) in the TQ-1 

. * system as fllllction of ..;-::t (p-data from ref. [10], K -data 

from ref. 11 ). Quark model Class B predicts (Y~)v,= 2(Y~)t, 

Fig. 6. Comparison of w and t, TGI decay moments <-/i > in the reaction 
. + ++ 
1r p + wt, at 7 GeV/c [12] as fllllction ~ . Quark model 

Class B relations predict <~>w = 2<~>t,. 
Fig. 7. Comparison of p TGI decay moments in 1r-p + p 0 n and t-, ++ decay 

TGI moments in pp + t,++n at 17 GeV/c [5,16] as function of VCf 

The p-moments are represented by the solid lines. Quark model 

2 1 2 Class B relations predict <YM>t, = z <YM>p. 
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Fig. 8. Normalized moments from Eqs. (3.31) and (3.32) for ~+p + p0~++ 

Fig. 9. 
c 

at 7 GeV/c [10] as function of~. a), b), c) and d) correspond 

to Eqs. ( 3. 3la -c) and ( 3. 32) . The VMDR for p predicts them to 

be zero. 
+ ++ Normalized moments from Eqs. (3.31) and (3.33) for ~ p + w~ 

at 7 GeV/c [12] as function of~. a) through h) correspond 

to Eqs. (3.33b), (3.3lc), (3.33d), (3.33e), (3.3lb), (3.33c), 

(3. 3la), and (3. 33a) .. VMDR for w and ~ predict them to be zero. 

Fig. 10. Donahue-H¢gaasen angle relative to the TCH system for A1 production 
- - + -in ~ p + ~ ~ ~ p at 40 GeV/c [28] as function of -t in two 3~ 

mass intervals. The data represent the result of a partial 

wave analysis and the curve the prediction of VMDR for axial 

vector mesons. 

Fig. 11. Azimuthal angle 1/J distribution for pp + (~ +n)p in a coordinate 

system using t as defined by Eq. (3.8) as Z axis, the TCH 

system and the SOH system. A 1/J distribution should be isotropic 

if the helicity is conserved. 
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