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Abstract 

A quantum mechanical theory of single-particle motion under the influence 
of a stochastic potential is presented. By solving the Dyson equation, the 
one-particle Green's function can be determined approximately. Assuming a 
Gaussian distribution, an explicit expression is derived for the spectral func
tion. The analytical results are in good agreement with numerically calculated 
data. The theory is applied to excitons on rough interfaces. The optical ab
sorption of excitons on rough surfaces can be traced back to the one-particle 
Green's function for the center-of-mass motion. In contrast to the classical 
treatment, the asymmetry of the lines and the redshift of the maxima can be 
explained. The coefficients for linewidth and asymmetry can be expressed in 
terms of the excitonic wavefunction and the binary correlation function of the 
stochastic potential. 
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I. INTRODUCTION 

The progress in crystal-growth techniques and nanometer lithography allow the produc
tion of various semiconductor microstructures which are of great scientific and technological 
interest [1]. Even in high-quality samples the interfaces are far from perfect [2]. In quantum 
wells, the fluctuations of the thickness lead to a strong inhomogeneous broadening, compared 
to bulk semiconductors [2,3]. In quantum-well wires, opposite tendencies can be observed, 
depending on the method of fabrication [4-6]. Besides a broadening, the absorption lines of 
the. excitons are asymmetric and their maxima are shifted towards lower energies. 

Weisbuch et al. [7] and Singh et al. [8] have developed theories to explain the broadening 
in terms of weighted interference of luminescence lines. Zimmermann [9] has treated the 
effect of layer-thickness variations in more detail by solving a Schrodinger equation. The 
problem of inhomogeneous broadening and Stokes shift is treated classically by Yang et 
al. [3]. There exist earlier works on the quantum mechanical treatment of disorder where 
exact solutions for certain one-dimensional problems were found [10]. A straightforward 
generalization to higher dimensions, however, is not possible. 

In this paper we develop a quantum mechanical theory for the motion of a single par
ticle in a random potential for arbitrary dimensionality. Explicit expressions are given for 
Gaussian randomness. The results are applied to excitons in quantum wells and are able to 
explain the asymmetry and the shift of the absorption profile. 

' 

II. BASIC EQUATIONS 

Let us consider a one-particle Hamiltonian fi ·of the form 

~2 

ii = L + V(r) 
2m 

where V is a random potential, and r is. a vector in an n-dimensional space. 
The random potential is completely characterized by its correlation functions 

(1) 

(2) 

where the brackets denote the configuration average. The function lJI(2) is called autocorre
lation function. 

An important quantity is the probability density 

p( E, r) = ( ~ [ E - V ( r) ] ) . (3) 

·The expression dE p( E, r) can be interpreted as the probability of finding V ( r) in the interval 
[ E, E +dE]. For physical reasons we assume macroscopic homogeneity, i.e., the correlation 
functions (2) are invariant under translation and the probability density {3) is independent 
of the space coordinate. 

The one-particle Green's function in the momentum representation (p = n k) is defined 
as: 

G(k,k',z) = (H- nz)-1 (k,k'). (4) 
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,; 

Due to the assumed spatial homogeneity it holds that ( G(k, k', z)) = c5k k' g(k, z ). If 
V(r) = 0 is assumed in the definition (1), the Green's function is given by G(0)(k,k',z) = 
bkk' g(O)(k, z), where g(O)(k, z) = [ n2 k2 /(2m)- nz r 1. 

The Dyson equation for G yields: 

00 

g(k,z).~ L (-1)mg(m)(k,z), 
m=O 

where 
., 

im)(k,z) = [g(0)(k,z)] 2 L g(o)(kt,z) ··· g(0)(km-1,z) X 

k1 · · · km-1 

X (V(k-k1)···V(km-1-k)) for m>O. 

(5) 

(6) 

On the other hand, the configurationally averaged Green's function g can be generated 
by a convolution of g(o) with a spectral function, A, according to 

+oo 

g(k, z) = j d(nw) A(k,w) g(o)(k, z- w) 
-oo 

00 

g(k,z)= L (-1)mAm(k)[g(O)(k,z)t+1 , (7) 
m=O 

+oo 

where Am(k) = j d(1iw)(1iw)m A(k,w). 
-oo 

The moments, Am, of the spectral function can be uniquely determined by expanding 
the functions g(m) (6) in powers of the unperturbed Green's function g(o) and comparing 
the coefficients. Obviously, it holds that A0(k) = 1 which means, physically, that the 
total oscillator strength is not changed by the fluctuations. The spectral function A can be 
determined by 

A(k,w) = 2~1> Tdte""' fo Am{k)~~it/h)m 
-oo 

(8) 

In the next section we will give·an explicit expression for a Gaussian stochastic potential. 

III. SOLUTION FOR GAUSSIAN RANDOMNESS 

Now, we assume that the random potential (1) is given by a superposition of plane waves 
with definite amplitudes but random phases according to 

1 
V(k) = 1A C(k) s(k), vn 

(9) 
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where the C(k) are statistically independent quantities, equally distributed on the unit circle 
and n denotes then-dimensional normalization volume. The fact that V(r) is a real function 
requires that s(k) = s*( -k) and C(k) = C*( -k). The probability density is a Gaussian 
one, and the binary correlation function is given by the Fourier transform of ls(k)l 2 • 

The functions g<m) defined in Eq. (6) can now be visualized by diagrams, where the nodes 
mark the points k 11 ••• , km-ll the straight lines stand for the potential V(ki- ki+I) and the 
dashed lines specify couples of vectors where ki- ki+I = kj+I - kj. In Fig. I all diagrams 
of the order m = 4 are shown. 

In the zeroth order of approximation, all (m-I)!! diagrams of g(m) have the same value 
and it holds that 

Am(k) = { (m- I) !!crm for m even 
0 for m odd 

I n2w 2 

A(k,w) = y'2;;ii exp(-), (10) 
21rcr2 2 cr2 

where cr2 = ~ L.ls(k)l2 = ( [V(k) ]2) . 
k 

As expected, the spectral function coincides with the probability density which can be deter
mined directly from the definition (9). This .result holds for arbitrary stochastic potentials. 

The first order contributions of g<m) to the moment Am+I are given by the number of 
dashed lines that cross the nodes in all diagrams of the order m. By recursion this number 
can be found to be m (m +I)!!/ 6. Hence, we obtain 

Am(k) = { (m- I)!! crm Jor m even 
. -~(m-I)m!!crm-3 r3 form odd 

T
3 

· d3 I n2w2 

A(k,w) = [ I-6 d(nw)3] ~ exp( 2cr2)' (11) 

I n2 k 2 n2 

where r
3 = 0 L -

2
-ls(k)l 2 =- (I\7V(k)l

2
). 

H k m 2m 

In this approximation, which is exact up to the third moment, the spectral function is 
independent of k and is determined by only two parameters, cr and r, for _the linewidth 
and asymmetry, respectively. These parameters reflect the probability distribution and the 
spatial correlation of the fluctuations. 

In order to verify our analytical results, we have carried out numerical calculations for a 
Gaussian potential of the form (9) with 

I 
ls(k)l 2 = 1 2 exp( --).2k2

) (I2) 
2 

in one dimension. The potential is characterized by a strength 1 and a correlation length >.. 
The explicit results are represented in units of n, m, and >.. 

In Fig. 2 both approximations (IO) and (11) for the spectral function are compared for 
1 = 1.0 and 2.0. For numerical reasons a homogeneous linewidth ·he = O.I is introduced. 
Whereas the zeroth order approximation can reproduce only the broadening, in the first 
order the agreement is excellent. The small parameter for the validity of the approximation 
( 11) is T / cr which is lower than 1 for the parameters used. 
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IV. APPLICATION TO EXCITONS ON ROUGH INTERFACES 

In this section we will apply our theory to the excitonic absorption of a quantum well 
with fluctuating thickness. The two-dimensional optical susceptibility of a quantum well is 
given by 

x(z) = 
2 ~1

2 

Afd2rjd2r'(H-hz)_(r,r,r',r'), (13) 

where J.L is the dipole matrix element of the allowed optical transition and c:0 is the vacuum 
dielectric constant. The Hamiltonian 

A2 A2 2/(4 ) 
HA Pe Ph (A ) Tl' (A ) e 7rC:oC: 

= -
2 

- + -
2 

- + Ve r e + Vh rh - I A A I 
me mh re-rh 

describes the motion of an electron-hole pair in a plane under the influence of the Coulomb 
potential and stochastic potentials, Ve and vh, stemming from the fluctuations of the well 
thickness. 

In the case of fluctuations small compared to the binding energy of the exciton, the 
eigenstates of the internal motion can be looked upon as decoupled. Then for each internal 
state with wavefunction 'Pn a stochastic potential 

Vn(R) = j d2r I'Pn(r)l2 
X (14) 

X [ Ve(R+ mh r) + Vh(R- me r)] 
me+mh me+mh 

can be defined. With this assumption, the optical susceptibility (13) takes the form 

IJ.L 1
2 

x(z) = -- L I'Pn(O)I2 
9n(O, z). 

C:o n 
(15) 

The 9n are the averaged Green's functions ( 4) of a particle with mass me + mh under the 
influence of the potential Vn (14). 

In the remaining treatment we will assume electron-hole symmetry, i.e., me=mh and 
Ve(r)=Vh(r)=t V(r). For a stochastic potential of the form (9) the coefficients of broadening 
and asymmetry for each exciton are given by 

(16) 

where <I>n is the Fourier transform of the probability density I'Pn(r)l 2 of the n-th exciton. 
In the case of white Gaussian noise, i.e., ls(k)l 2 = lsl 2

, the lineshape is determined by the 
exciton wavefunction alone, and it holds 

(17) 
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The r.p 4-rule for u is already known [9]. 
By means of Eq. (13) and with our findings from the last section we are now able to 

calculate a whole absorption spectrum that is given by~ x(w + ie). Here 1iw is the photon 
energy relative to the two-dimensional gap, and 1i€ is the homogeneous broadening. Again, 
we assume a Gaussian autocorrelation function (12) All results are represented in excitonic 
units, the binding energy Ea and the Bohr radius aa of the three-dimensional exciton. 

Fig. 3 shows complete absorption spectra. The correlation length is fixed at A = 2.0 aa , 
and a homogeneous broadening n€ = 0.1E8 is introduced. The values for 1 are 0.0 (a), 
0.2 (b), and 0.4Eaaa (c). For 1 = 0 (a) the absorption line of the first exciton shows 
a Lorentzian broadening. The broadening increases for increasing 1 (b-e) and becomes a 
Gaussian one, leading to a decrease of the peak height compared to the continuum level 
that is hardly affected. For 1 > 0 (b- c) the lines are asymmetric and show a redshift of the 
maximum and slower decay on the high-energy side. 

V. SUMMARY 

We have developed a quantum mechanical theory to determine the single-particle Green's 
function under the influence of a stochastic potential. For Gaussian randomness, an ana
lytical formula is given which approximates the numerical results very well. The theory is 
applied to excitons in quantum wells with fluctuating thickness. The basic features, the inho
mogeneous broadening, the asymmetry of the lines and the shift of the absorption maximum 
can be explained. 
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FIGURES 

FIG. 1: All fourth-order diagrams of the averaged Green's function. The nodes mark 
the integration variables kt, ... , k3 • The solid lines correspond to the stochastic potential, 
and the dashed lines specify opposite arguments of the potentials. 

FIG. 2: C~mparison of the numerical solution (solid line) for the spectral function with 
the Oth and 1st order approximation (dashed line) for 1 = 2.0 (a) and 4.0 (b). 

FIG. 3: Imaginary part of the optical function vs. frequency in the region of the exciton 
bound states for 1 = 0.0 (a) 0.2 (b) and 0.4Eaaa (c). The correlation length of the 
potential fluctuations is fixed to be >.c = 2.0 aa. A homogeneous broadening fu. = 0.1 Ea is 
introduced. 
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