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Hai Li and SimonS. Yu 
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Abstract 

As high power rf extraction cavities, traveling wave structures (TWS) have 

demonstrated significant advantages due to their inherent low field gradients. For 

applications involving long, multi-cavity devices such as a relativistic klystrons two

beam accelerator (RK-TBA), the extraction cavities must be inductively detuned to 

maintain longitudinal beam stability. In this paper, the theory of inductively detuned 

traveling wave cavities is developed within the framework of a coupled-cavity circuit 

description of TWS. We determine the output cell parameters (eigenfrequency m0 and 

quality factor Q) required for proper matching to avoid unwanted reflections. We then 

derive the power balance equation which quantifies the generation and the transmission 

of electromagnetic energy in each cell of the TWS. An analytic formula for predicting 

the power output from a TWS is obtained. Finally, using the analytic results derived we 

check the applicability of the computer code RKS for inductively detuned TWS's. 

1. Introduction 

In our recent work [1] on the design study of longitudinal dynamics of the drive beam in a 1 

TeV relativistic klystron two-beam accelerator (RK-TBA) [2-3] we employed the so-called 

"inductive detuning" concept on the traveling wave (TW) extraction cavities to counter the 

debunching of the drive beam caused by space charge and rf-induced energy spread so that the 

level of output power can be maintained stably for many cavities. In this scheme the extraction 

cavities are inductively detuned so that the phase velocity of the operating wave mode is larger 

than the speed of light, c, and therefore, is off-synchronism with the drive beam. The particle 

* Work supported in part by the Director, Office of Energy Research, Office of High Energy and Nuclear Physics, 
Division of High Energy Physics, of the U.S. Department of Energy, under Contract No. DE-AC03-76SF00098 at 
the Lawrence Berkeley Laboratory. 
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bunches lag behind the decelerating crest of the wave (as illustrated in Figure 1), and the energy 

loss becomes phase dependent. This eventually leads to stable rf buckets [1]. 

The above design study was carried· out via a computer code named "RKS" which was 

previously developed by Ryne and Yu [4], and is suitable for numerical investigations of beam-rf 

interactions in traveling wave structures (lWS's) that are used to extract power from RK's. To 

apply the RKS code to a lWS we need to know the eigenfrequency and the quality factor for the 

output cell (normally the last cell) of the lWS, so that only a forward wave is propagated and 

amplified, and there exists no reflected wave. This is the so-cal!ed "matching condition". 

Although such a matching condition was previously obtained in analytic work by Ryne and Yu 

[5], it applies only to the synchronism case when the wave and the beam are in phase. To use the 

RKS code to study the inductive detuning cases, a more general theoretical framework is needed 

and is derived in this paper. 

Particles 

Fig. 1. Schematic of the "inductive detuning" concept 

In this study, we start with the coupled circuit equations. We first derive the "matching 

conditions" under which a lWS propagates and amplifies only a forward traveling wave with the 

phase advance of the rf field being arbitrary with respect to that of the drive beam. We then 

obtain a power balance equation which quantifies the generation and the transmission of 

electromagnetic energy in each cell of the lWS. We also derive in this study an analytic formula 

that expresses the power extracted from the output cell of a lWS in terms of the induced current, 

the operating frequency and the cavity related parameters. This formula is useful for predicting 

the power output from a lWS. Finally, we derive the analytic expressions that characterize the 

amplitudes and the phases of a rf field in a detuned 3-celllWS, and then use the obtained formula 

to check the applicability of the RKS code to the inductively detuned TWS's. 
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2. Theory of Inductively Detuned Traveling Wave Structures for Power Extraction 

We adopt the analytical approach employed by Ryne and Yu in ref. [5]. Consider a TW 

structure consisting of N cells. Let the electric field in the nth cell of the structure be given by 

(1) 

where En denotes the eigenmode of the nth cell with eigenfrequency mn, and where we have 

assumed that mn ::::: m, with m being the frequency of the RF field. It can be shown that, in the 

steady state, the excitation amplitudes an are governed by the following difference equations: 

(2) 

where n = 1, ... , Nand a 0 = aN+l = 0. In the above equations, K~- 1 and K~+ 1 describe the 

coupling of cell n to cell n-1 and cell n+1, respectively. The quantity Qn denotes the quality 

factor of the nth cell. j 1 denotes the first harmonic of the RF current associated with the bunched 

beam. For the purpose of our analytic study, we assume that 

K n-1 _ Kn+1 = K 
n - n - • 

Then the difference Eqs. (2) can be rewritten as 

where Sn = zm (d3r)n· En· J1 is the drive term. . J ... * ... 
. Eo 

(3) 

(4) 

Most of the previous theoretical works on the TWS's as~ume an infinitely periodic structure, 

the treatment of which is straightforward. In this study, we too start by deriving the dispersion 

equation for an infinitely periodic structure. We then proceed to focus on the case of a structure 

with finite number of cells and develop a theory to show that if coN and QN for the last cell (the 

output cell) satisfy certain "matching conditions", the structure behaves just like a structure with 

infinite number of cells and there exists only a forward propagating wave. The properties of an 

infinitely periodic structure then applies also to this finite structure. The derivations are valid 

whether the wave is in synchronism with the particles or not. 
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2.1. Dispersion equation for an unloaded TWS with infinite number of cells 

We will first review briefly the case with no source (Sn = 0) and no loss (Qn --> oo ). We may 

assume a plane wave solution an- eintlp and.obtain from (4) 

COn- OJ= K cos(l/Jp), 
OJ 

(5) 

where l/Jp = kLp is the phase advance of the wave across a single cell, k is the wave number and Lp 

is the longitudinal dimension of the cell. In obtaining (5) COn + m = 2m is used. The coupling 

constant K can be expressed in terms of the group velocity, Vg. Taking the derivative on both 

sides of Eq. (5) with respect to k, it is found that 

. K= mVg (6) 
Lp·sin(l/Jp) 

Substituting (6) into (5) we find that for an unloaded TWS with infinite number of cells (i.e., 

N ---7 oo) the operating frequency m and the eigenfrequency of cell n, OJn, are related by the 

following dispersion equation 

Vg 
COn = OJ + r-ctg(kLp). \ 

p 

2.2. Matching conditions for a TWS with finite number of cells 

(7) 

In reality, a TWS has only finite number of cells. We consider the case where, except for the 

first and last cells which may serve, respectively, as the input and the output cavities, the cells in 

between are identical, i.e. 

(n=2, ···,N-1), 
(n = 2, · · ·, N-1). 

(8) 

We will show that ml> Qb ~ and QN can be determined in such a way that (i) for the other N-2 

cells the TWS behaves just like an infinitely periodic structure, and (ii) there is no reflected wave 

in the structure but only a forward propagating wave. (i) is essentially the boundary condition(s), 

while (ii) is the so-called "matching condition(s)" in its original sense. 

To obatin m1, Q J> mN and QN that satisfy the above conditions, first, we solve difference 

equations (4) analytically. Since a0 = aN+l = 0, the equations for the 1st (n=l) and the last (n=N) 

cells are different in forms from those for the rest of the cells (n = 2, ... , N-1). By choosing 
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appropriate m1, Qb OJ,. and QN, the equations for the first and the last cells may be written in the 

same form as those for the rest of the cells. Introducing parameters J1 and 1J we define 

(n = 1, ... , N) (9) 

where 

(10) 

In above, the first two equations of (9) combined with equations (10) form the so-called boundary 

conditions. In this way the system acts like a structure with infmite number of cells (for n = 2, ... , 

N-1), where COv can be determined by formula (7) (Qv >> 1 is normally assumed). We may now 

rewrite Eq. (4) in the following form (with "hats" removed for simplicity of notation): 

an+ I- 2an·cos( a) + an.J = fn (n = 1, ... , N), (11) 

where the phase advance of the field from cell to cell, a, and the drive terms, fn, are defmed, 

respectively, as follows 

(12) 

and 
· !n=-SJK. (13) 

The difference equations (11) with constant coefficients can be solved analytically [5]. The 

general solution is given by 

· n . n 
an= eian[ . -z I, /r·e-iar + Ct] + e-ian [ . I, /r·eiar. + Cil, 

2sm (a) r.=I 2sm (a) r.=l 
(14) 

where Cz and C2 are constants that need to be determined by the boundary conditions and the 

matching condition. In obtaining (14), it is assumed that 

0 ±i" I, fr·e ar = 0 (15) 
r=l 

and also that a is not equal to an integral multiple of 1t. 
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We now apply the above results to a TW output structure. Before proceeding further we 

assume a stiff beam, i.e., the drive terms, fn. have constant amplitudes, but the phases of fn 

increase from cell to cell by a' (to be distinguished from the corresponding phase advance of the 
field, a). When a = a', the field and the beam travel in phase ( m /k = c for a relativistic beam), 

we call it the synchronism case, the theory of which has been developed in ref. [5]. When a ::F-

a', the field and the beam are out of phase, we call it the non-synchronism case; in particular, for .. 
a< a', the inductive detuning case, is the case we are most interested in [1]. By assuming a stiff 

beam we can write 

, 
fn =feian. (16) 

Substituting (16) into (14) and after a few steps of algebra we have 

(17) 

± , 
where L1 = a ± a with L1 - being defined as the so called detuning angle. Then, L1- = 0 

corresponds to the synchronism case, while L1- ::1:-0 corresponds to the non-synchronism case(s). 

Since we have assumed that the fields vary as e-imt, so, in Eq. (17) the first term (eian) represents a 

wave traveling in the forward direction (from n = J·to n = N) and the second term (e-ian) 

represents a wave traveling in the backward direction. By appropriate choice of C 1 and C z, the 

backward component can be eliminated. 

We should now apply the boundary conditions given by (9) and (10). Substituting ao and a1 

into (14), respectively, and using (15) and (9) for a0 we find that the condition relating a0 and a1 

may be expressed as 

(18) 

Since for the cases we are most interested in, there is no input cavity [1], therefore, in the 

following, we specify that the 1st cell in the TWS is the same as the N-2 cells that are behind it 

and only the last cell (n=N) is different from the rest We then immediately fmd from (10) that 

J1 = 0. (19) 

Equation (19) leads to C1 =- Cz from (18). 
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Our next task is to choose c:qy and QN such that the resulting solution would consist of just a 

forward traveling wave. Referring to (17), the backward traveling wave will vanish when 

~+ c
2 

= _ if --=e __ 
2sin a 1 _ e~ + • 

(20) 

Substituting aN and aN+b respectively, into (17), assuming periodic boundary condition for a', i.e., 

cos(Na') = 1, 

sin(Na') = 0 
(21) 

(e.g., in our present 1 TeV RK-TBA conceptual design [1], a'=21r13 and N=3) and then 

employing some mathematical manipulations, we find that 

eia'.(l _ eiNa) 
aN=} , 

(eiA- -l)·(ei.A+ -1) 

eia'·[eia' _ ei(N+I)a] 
aN+ I= f -------

(eiA-- 1)·(ei.a+- 1) 

In obtaining (22), C1 = -C2 and (20) are used. Plugging (22) in (9) for 7J, we get 

11 
= eiL1 +12[sin (N+1)A-/2]. 

sin (NA-12) 

(22) 

(23) 

It is noted that for the synchronism case when A-= 0, the above relation recovers (25) of ref. [5]. 

The "matching conditions" for the eigenfrequency and the external quality factor of the output cell 
of a detuned N-cell TWS can now be obtained by equating (23) to the 2nd equation of (10), and 

they are given as follows: 

WN= mv- Vg r-in (N+1)A-/2 cos A+/2)] 
2Lp·sin (a) sin (NA-12) (24) 

(~)-1 = Vg r-in (N+1)A-/2 sin (A+/2)] 
WNLp·sin (a) sin (NA-12) 

In deriving (24) relation (6) is used and Qv >> 1 is assumed. 

Now, we have obtained the formula for the conditions which, once satisfied, will guarantee a 

TWS to propagate a single forward traveling wave. The formula applies to the non-synchronism 

cases as well as the synchronism case, and therefore, once incorporated in the RKS code it will 

allow the code to simulate the physical processes of beam-rf interactions in detuned TWS's. 

7 
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2.3. Power balance equation 

Since this work is motivated by the need in our recent RK-TBA design study [1] to achieve 

stable power output for many TWS's with the inductive detuning scheme, it is helpful to obtain 

the power balance relation for a detuned TWS to quantify the generation and the transmission of 

EM energy inside the TWS so that we can have a better understanding of the physical process 

associated with it. 

We start with equation (2). Applying Eq. (2) to the last cell of a N-cell TWS and taking the 

real portion of the equation after multiplying i( aN*) on both sides of the equation, we have 

(25) 

Rewriting Re(iKaN-taN) as Re(-iKaZ_1aN) and then repeating the above procedure sequentially 

from the (N-l)th cell to the 1st cell, we come to the following relation 

~2 = I Re[(mJ d3rn· -;;. jt)·an*], 
~ n=l Eo 

(26) 

where Qn >> 1 with n = 1, 2, ... , N-1 are assumed. Since we also know that the power extracted 

from the last cell of a N-cell TWS can be quantified by the following expression 

p - IDt.lUN 
out=~ 

= ~eof (d3r)~~2] 
Qr-.2 

= {t[~2~ (d3rhJE.~l. 

(27) 

where UN = ~ J ~2(d3r)N is deimed as the stored energy in the cell N. Then, choosing the 

normalization convention J (d3r)JE,~2 = I and substituting (26) into (27) we find the following 

power balance relation 

N 1 J 3 -* - * Pout= L -2Re[(- d Tn· en· lt}an ]. 
n=l 

(28) 

Now, if we further define 
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(29) 

as the induced current and 

(30) 

as the voltage across the cell n, respectively, we may rewrite the power balance equation (28) in 

the following form 

(31) 

It is seen from (31) that the output power from a TWS is equal to an accumulation of the EM 

energy generated in each cell which is proportional to the induced current, Iff and the voltage 

across each cell, V n· It is also ·seen that the maximum output power is achieved for the 

synchronism case when the beam and the rf field have the same phase advance across each cell 

(i.e., <l>n-lfln = 0). For the non-synchronism cases the output power declines as the detuning angle 

increases. 

2.4. Power extraction formula 

For a stiff beam it is possible to derive an analytic expression for Pout in terms of the induced 

current and the cavity related parameters, e.g., the shunt impedance R/Q and the group velocity 

Vg. This formula is useful for zeroth order cavity design [1]. 

First, we treat the synchronism case when A = 0. In this case, the matching conditions (24) 

reduce to 

Vg (N+ 1 )·cos( a) 
2Lp·sin (a) N 

Vg N+1) 
WN·Lp·sin (a) N 

the power balance equation (31) becomes 

P(O) = Pour( fl.- = 0) 

=l.f (-[~d·Vn) 
2n=l 
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and the field evolution ( 17) reduces to 

. -i 
an= e'an[(

2 
. ( ))·nf]. 

sm a 

Also, from the definition of Sn ((4)), Eq. (11) and Eq. (16) we know that 

Substituting (34) and (35) into (28) we then have 

P(O) = [ Kt:o f2l ~(N+l) ]. 
4ro·sin(a) 2 

Introducing, respectively, the axial voltage across one cell 

and the induced current 

we fmd that the corresponding shunt impedance may be expressed as 

(34) 

(35) 

(36) 

(37) 

(38) 

(39) 

with Us= ~e01an12 being the stored energy in the cell, and also we find that Eq. (35) may be 

rewritten as 

(40) 

From Eqs. (39) and (40) we have 

(41) 

10 



·. 

Substituting (41) into (36) and after a few steps of algebra we obtain a formula that relates the 

extracted power from the TWS to the induced current (lind) of the beam, the frequency (m) of the 

operating wave and several key cavity parameters - the shunt impedance RJQ, the group velocity 

Vg, the longitudinal dimension Lp and the cell number N. The formula is given as follows 

(42) 

It is noted in (42) that P(O) is proportional to N(N+l). 

Next, for the detuning cases when L1- :;:. 0, the extracted power may be expressed as 

(43) 

where the coefficient nA -) is a function of the detuning angle A-. From Eq. (31) it is seen that 

nA -) = 1 if A- = 0, and nA -) < 1 if A- :;:. 0. For any given A-, nA-) may be determined from 

numerical simulation using the RKS code [1] .. 

Eqs. (42) and (43) relate the output power requirement to $e detuning angle and several 

other key cavity parameters. The cavity structure that meet the specific requirement(s) can then 

be designed with the URMEL [6] and the MAFIA codes [7], as has been done in ref. [1]. 

2.5. Field amplitudes and phases 

In our present RK-TBA conceptual design, each TWS has 3 cells [1]. In the following we 

present two set of analytic formula to quantify the amplitudes and the phases of the rf field in a 

detuned 3-cell TWS: 

(i) Between two adjacent cells in the TWS (with detuning angle A-) 

(44) 

(44) describes how the rf field evolves across the TWS. 

(ii) Between the cells in the detuned TWS (a;) and the corresponding cells in the corresponding 

non-detuned TWS (a;(O)) that is used as the base case 

11 



__!!!__ = e-i(A-12). [ sin(~') ], 
at(O) sin(/1 /2) 

_EL_ = e-i(A-). [ sin( a') sin(A) ], 

a2(0) sin(/1 +12) 2sin(!1-12) (45) 

~ = e-i(3A-12). [ sin( a') sin(3f:t}2) ]. 

a3(0) sin(/1 +/2) 3sin(!1-12) 

( 45) quantifies the effects of the cavity detuning on the amplitude and the phase of the rf field in 

each cell of the 1WS. 

3. RKS Code Checking For Detuned TWS's 

RKS is a computer·code developed by Ryne and Yu [4] for studying the interaction of a 

charged particle beam with an electromagnetic wave in a 1WS or a standing wave structure 

(SWS) that are used. to extract power from a RK. The code solves self-consistently the single 

particle equations of motion for the beam and the coupled circuit equations that govern the cavity 

excitation, and it includes the calculation of the space charge effect. It assumes a single dominant 

mode and cylindrical symmetry of its fields inside the cavity. The code has been checked against 

the relativistic klystron experiments conducted by the Microwave Source Facility group at LLNL 

[4] and has also been employed to assist in the design of the reacceleration experiment [8]. These 

studies have shown that results from the code are consistent with experimental results. 

However, in all the previous RKS simulations of 1WS's the beam bunches and the operating 

fields were in synchronism [4,8], while we are mostly interested in the nonsynchronism cases [1], · 

therefore, in the following we use relations (45) to check the RKS code to ensure that the code 

can also be used for the inductive detuning cases. The ratio of the rf field (amplitude and phase) 

in each of the 3 cells of the detuned 1WS to the corresponding one in the non-detuned 1WS is 

evaluated both analytically (with (45)) and numerically (with RKS) for four different detuning 

cases, and the results are tabulated in Table 1 and Table 2, respectively. It is seen that in general 
the agreements are fairly good for the phases (ljli, i = 1,2,3) although there exists a 1-2° systematic 

discrepancy for almost all the cases. The agreements for the amplitudes (lail, i = 1 ,2,3) are not as 

good as that of the phases (the discrepencies are 5-12%), but still, for any given detuning angle 

the ratio of the amplitudes does go down across the 1WS in accord with the analytical calculation ,, 

prediction. 
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Table 1. Analytical Results 

, 
a-a 00 100 20° 300 400 

la11aJ<O)I 1. 0.956 0.922 0.896 0.879 

la2 /ai0)1 1. 0.952 0.908 0.865 0.826 

la3 /aj{O)I 1. 0.946 0.884 0.816 0.742 

lj/1 - ljli0) 00 -5.00 -10.00 -15.00 ,..20.00 

ll'2 - "'!..0) 00 -10.00 -20.00 -30!00 -40.00 

ll'3 - "':l..o> 00 -15.00 -30.00 -45.00 -60.00 

Table 2. Numerical Results (from RKS code) 

, 
a-a 00 100 200 300 400 

la11 a.r(O)I 1. 1.04 1.07 1.07 1.02 

la2/aJ..O)I 1. 1.02 1.03 1.00 0.94 

la3 /aj{O)I 1. 1.02 1.01 0.948 0.84 

lj/1 - lj/1(0) 00 -3.1° -8.3° -13.00 -18.20 

l1'2 - lj!J..O) 00 -9.00 -18.5° -28.4° -38.30 

lj/3 - lj!J{O) 00 -14.2° -29.0° -44.00 -59.00 

4. SQ.mmary 

In this study we developed an analytic framework for using the inductively detuned TWS's to 

extract power from RK's. We obtained the "matching conditions", the power balance equation 

and also an analytic formula for predicting the power output from a TWS. We also checked the 

RKS code against a set of analytic formula for the cases of the detuned 3-cell TWS's, and found 

that the numerical results basically agree with the analytic ones although some small 

discrepancies do exist. 
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