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I review phenomenologically interesting aspects of supersymmetry. First I point out 
that the discovery of the positron can be regarded as a historic analogue to .the would
be discovery of supersymmetry. Second I review the recent topics on the unification 
of the gauge coupling constants, mb-mr relation, proton decay, and baryogenesis. I 
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currents. Finally I argue that the measurements of supersymmetry parameters may 
probe the physics at the Planck scale. 
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1 INTRODUCTION 

Low-energy supersymmetry was introduced into particle physics in early 80's mainly because 
of a theoretical motivation, namely stabilizing 

m~ « M~ 

against radiative corrections (1], where Mp is the Planck mass. This is still the main mo
tivation for the theorists (at least for me) to· regard low-energy supersymmetry as a serious 
candidate of physics beyond the standard model. If this idea is true, we expect the discovery 
of supersymmetry in near-future collider experiments. This would be 'really exciting and a 
historic event in particle physics. 

Recently there has been a revival of interest in supersymmetry because LEP measure
ments on sin2 Bw [2] have shown that the gauge coupling constants extrapolated up to very 
high energies beautifully meet at a single point using the supersymmetric particle content 
(3]. More attention is now being paid to phenomenological success of supersymmetry. 

We should not believe in supersymmetry in a religious way, even after the LEP measure-:
ment on sin2 Bw. Only experiments can decide whether the world is supersymmetric. The 
aim of this talk is not to convince the .audience to believe in supersymmetry. I am trying to 
demonstrate how interesting supersymmetry is, from the theoretical, phenomenological, and 
cosmological aspects. In particular, I wish to emphasize another virtue of supersymmetry in 
this talk, namely, supersymmetry may offer us the unique possibility that the measurement 
of supersymmetry breaking parameters at collider experiments supplies us with a "window 
t.o the Planck world" [4]. 

2 MOTIVATION FOR SUPERSYMMETRY 

It is often stated that the progress of elementary particle physics has revealed an "onion
like" structure of microscopic substances. If history repeats itself, then we may find another 
substructure of the particles which appea~ to be elementary, especially in the Higgs sector 
of the standard model. This understanding of the history leads to speculations like .preons 
or subquarks, or technicolor type scenarios. · 

However, I wish to remind the audience first that there is another history which is often 
overlooked. A repetition of that history would lead to a discovery of supersymmetry. It is 
the discovery of the positron. 

At theend of 19th century, there was a problem in electrodynamics that the self-energy 
of the electron diverges. To see this, let us suppose that the electron is a uniformly charged 
sphere with radius re. Then a simple calculation shows that the electron has a self-energy 
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due to the Coulomb potential generated by itself, 

3 1 e2 

Eself = ----. 
5 47r€o re 

(1) 

The self-energy is linearly divergent in the point-like limit re --* 0. This contribution can be 
depicted by a diagram where the electron emits a photon and then re-absorbs it. 

The observed mass o(the electron is then a sum of the "bare" mass and its self-energy, 
i.e., 

(2) 

As we reduce the "size" of the electron, the smaller we should take its "bare" mass (me)0, 

maybe down to a negative value. It requires increasing fine-tuning to reproduce the observed 
electron mass. Such a theory cannot be true down to a small distance r ;S 4;£o e2 / mec2 ~ 4 fm 
[5] .1 But of course we now know the "size" of the electron is smaller than w-3 fm! 

The cure to this problem was supplied by the discovery of the positron. The existence of 
the positron suggests that there is a fluctuation in the. vacuum where an electron positron 
·pair is created and then annihilated. Then another process is possible that an, electron "hits" 
a positron created by the vacuum fluctuation and annihilates it, while the other electron in 
the vacuum fluctuation remains and pretends it were the origi_nal electron coming in. This 
gives us an intrinsic uncertainty in the position of the electron. of the order of the Compton 
length rcompton = Tifmec ~ 400 fm. Indeed, the self-energy is cut-off at this scale due to 
a cancelation between two processes (re-absorption and vacuum fluctuation) down to mild 
logarithmic divergence [6], 

3 1 e2 
mecre 

Eself = --- ln--
47r 47t'Eo T Compton 1i 

(3) 

1Let me quote some sentences by Landau and Lifshitz (5). 
"Since the occurrence of the physically meaningless infinite self-energy of the elementary particle is related 

to the fact that such a particle must be considered as point-like, we can conclude that electrodynamics as 
a logically closed physical theory presents internal contradictions when we go to sufficiently small distances. 
We can pose the question as to the order of magnitude of such distances. We can answer this question by 
noting that for the electromagnetic self-energy of the electron we should obtain a value of the order of the 
rest energy me?. If, on the other hand, we consider an electron as possessing a certain radius Ro, then its 
self-potential energy would be of order e2 I Ro. From the requirement that these two quantitieS be of the 
same order, e2 I R.o - me?, we find 

e2 

&- mc2' 

"This dimension (the "radius" of the electron) determines the limit of applicability of electrodynamics 
of the electron, and follows already from its fundamental principles. We must, however, keep in mind that 
actually the limits of applicability of the classical electrodynamics which is presented here lie much higher, 
because of the occurrence of quantum phenomena." 
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where the "size" of the electron appears only in the log. Even for a size equal to the Planck 
length, the self-energy is only about 10 %correction to the "bare" mass·. 

The cancelation of the linear divergence is a consequence of a new symmetry, (softly
broken) chiral symmetry.2 This symmetry transform electron to positron.3 The discovery 
of a new symmetry lead to the cure of the problem of the linear divergence in the electron 
self-energy. 

The motivation for supersymmetry is very similar to the above situation. If we consider 
the Higgs potential of the standard model and calculate the self-energy of the Higgs field, 
it turns out to be quadratically divergent. Therefore, the standard model with a naive 
H}ggs potential cannot be a true theory applicable to a length scale much smaller than 
w- 17 em. Though a fermion mass can be protected by chiral symmetry as we have seen 
above, a scalar mass cannot be protected by any symmetry of the scalar field alone. The 
way supersymmetry cures this problem is as follows. First, chiral symmetry protects fermion 
masses against quadratic and linear divergences. Second, supersymmetry relates the scalar 
mass to the mass of its superpartner, the fermion. The combination of these leads to only 
a mild logarithmic divergence in the scalar mass. In diagrammatic language, there is a 
cancelation between the diagrams of particles and their superpartners. 

To be more realistic, supersymmetry should be (softly) broken because we have never 
observed a superparticle degenerate with the particles which we already know. The effects 
of breaking can be characterized by the supersymmetry breaking scale, msu sv. Then the 
self-energy of the Higgs boson is roughly4 

(4} 

where r is the "size" of the Higgs boson. Since the Higgs mass parameter is supposed to be 
around the mz scale, we also expect5 . 

msusv I'V mz. (5} 

All these arguments are highly heuristic. For instance, another possible cure for the 
problem of the quadratic divergence in the Higgs mass is the replacement of the Higgs boson 

2The chiral symmetry is exact only in the limit where the electron is massless. Though explicitly broken 
by non-zero electron mass, the chiral symmetry prohibits the appearance of a huge self-energy, because 
the breaking parameter me is dimensionful and does not change the short-distance behavior of the theory. 
Explicit breaking of a symmetry which does not change the short-distance behavior of the theory is called 
"soft breaking." 

3More precisely, it transforms a positive energy solution of the Dirac equation to a negative energy 
solution, and the absence of an electron in the negative energy state corresponds to a positron. 

4 This is in exact analog with chiral symmetry. Chiral symmetry is softly broken by the non-vanishing 
electron mass. The self-energy is proportional to the explicit breaking. 

5Note that the suppression factor by coupling constants is roughly compensated by a large log, if we take 
r at the Planck length. 
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Figure 1: The renormalization group evolution of the gauge coupling constants with 
msusy = mz. 

by a fermion pair bound state. This is the idea of technicolor theories [7]. Though this idea 
itself is very beautiful and intuitive, it is, unfortunately, hard to implement fermion masses 
into this scenario; there is a competition between realizing large enough top quark mass and 
small enough flavor changing neutral current. There is the further logical possibility that the 
"bare" mass of Higgs and the self-energy cancel to many digits to give a Higgs mass at the 
100 GeV scale. But I do not think we can rely on such a theory as a framework to explain 
physics at its most fundamental level. This is the point where individual taste comes into 
the discussion. I do not think one can argue that supersymmetry is the only possibility to 
solve this problem. Supersymmetry is one good candidate which is known to be consistent 
with the present phenomenology. I will concentrate on more phenomenological aspects of 
supersymmetry in the next sections. 

3 UNIFICATION OF GAUGE COUPLING CONSTANTS 

Three gauge coupling constants are measured precisely at LEP /SLC [2, 8). If we extrapolate 
them to very high energies assuming the particle content of minimal supersymmetric version 
of the standard model, they beautifully meet at a scale ~ 2 x 1016 Ge V, as everybody knows. 
This observation revived strong interest in supersymmetric grand unified theories. The real 
excitement of this observation is that the naive choice 

msusy "'mz 

is consistent with the unification of the gauge coupling constants (see Fig. 1). 
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After this simple but exciting observation, many people refined the renormalization-group 
analysis to include threshold corrections both at the GUT- and SUSY-scales [9, 10, 11, 12, 
13, 14, 15, 16]. 

The questions asked in these works are the following. 

1. How robust is the success of unification? Can it be destroyed by threshold corrections? 

2. Can we constrain msusv if we require unification? 

3. Is the particle content of the MSSM unique to achieve the unification? 

4. What can we learn about GUT-scale physics? 

Concerning the first question, it was found that the unification is in general not destroyed 
even with threshold corrections. The threshold corrections at the SUSY-scale are in general 
small. A simple parametrization of msusv in terms of superparticle masses was found, and 
in general msusv appearing in the renormalization group analysis may be very different 
from the actual superparticle masses [14]. Also, one has to take care of the difference of 
definitions in MS and DR schemes where the latter definition is "more supersymmetric." 
Even the effects of the SU(2} x U(1} breaking in superparticle masses have been discussed 
[16]. In the end, SUSY-scale threshold corrections do not do any harm to the unification of 
the gauge coupling constants. 

Threshold corrections at the GUT-scale can in general be large. For example, while the 
minimal SU(5} model [17] does not give us large corrections, the missing partner model 
[18] which includes large SU(5} .representations leads to a systematic difference in the as 
prediction [15]. More complicated SO(lO} models also may lead to big threshold corrections 
[19]. These corrections may somewhat weaken the beauty of unification, again they do not 
destroy the unification. 

The second question is a natural question especially in view of near-future collider ex
periments. Unfortunately, the renormalization-group analysis is only weakly sensitive to 
msusY· The dependence is only logarithmic with a small coefficient, and a naive analysis 
shows that any msusY between mz and 10 TeV equally well leads to unification. Further
more, it was pointed out that the GUT -scale threshold correction can completely destroy 
any more precise prediction of msusY [11]. This is sad, but c'est la vie. 

The correct particle content is crucial in achieving unification of gauge coupling con
stants. The MSSM particle content is usually assumed in renormalization group analyses. 
It is interesting that the minimal supersymmetric extension of the standard model leads to 
unification, without the .addition of arbitrary new fields into the model. On the other hand, 
the particle content below the GUT-scale is now severely constrained by the unification con
dition. For instance, the MSSM has two Higgs doublets, while models with four doublets 
are in contradiction with unification. In general, addition of gauge non-singlet fields destroy 

5 



unification. There is still room for adding SU(5) complete multiplets to the MSSM particle 
content, since they change the slope of the renormalization group running of the three gauge 
coupling constants by the same amount. But again there is a severe constraint from the 
requirement that the gauge coupling constants do not blow up below the GUT-scale. Intro
duction of one family and anti-family at the TeV scale leads to the gauge coupling constants 
blowing up exactly at the GUT-scale [20].6 Therefore, the particle content one can introduce 
at the TeV scale is completely classified to be (i) 5* + 10 (fourth generation), (ii) up to three 
pairs of 5 + 5*, and (iii) 10 + 10*. Of course, the introduction of singlets is completely 
harmless as far as the gauge coupling constants are concerned.7 · 

An interesting possibility is that there is an enhanced gauge symmetry below the GUT
scale, so that the contribution from new gauge multiplets and new matter multiplets sum 
up to achieve the correct unification (23, 24]. Though the unification is somewhat accidental 
in this case, there are interesting aspects to these models. There is a right-handed neutrino 
at an intermediate scale in accordance with the MSW solution to the solar neutrino deficit 
as well as r-neutrino hot dark matter. 

The last question is a very ambitious question, and one has to completely specify one 
particular GUT model to answer it. The simplest example is the minimal SU(5) model (17]. 
The new particle content at the GUT-scale is an adjoint Higgs E(24) and Higgs quintets 
H(5), H(5*), where the doublet components of H, [I are contained in the MSSM. Then the 
mass spectrum at the GUT-scale can be parametrized by three quantities, Mv, the mass of 
the heavy gauge fields corresponding to broken generators of SU(5), M'E, the mass of the 
adjoint Higgs, and MHc, the mass of the color-triplet partner of the Higgs doublets in Hand 
[I. What is interesting in this simple model is that the current precision of LEP /SLC data 
can already constrain the mass spectrum at the GUT-scale, on one combination (M~MI;) 113 

and MHc separately [12]. 
Using LEP data in 1992, one obtains (12] 

0.95 x 1016 GeV < (M~MI;) 113 < 3.3 x 1016 GeV 

2.2 X 1013 GeV < MHc < 2.3 X 1017 GeV 

(6) 
(7) 

at a 90 % confidence level. SLD data on sin2 Bw prefers a lower value of MHc with central 
value down by a factor of 37, while new a 8 (mz) = 0.127 ± 0.005 from LEP prefers a larger 
value of MHc· The constraint on MHc is crucial to the prediction of the proton decay rate, 
and it will be interesting to see what values of a 8 and sin2 Bw the data converge to. 

6In this case, sin2 9w turns out to be at an "infrared fixed point," so that its value at mz does not depend 
on the initial (large) values of gauge coupling constants. Then one obtains the correct sin2 Ow even without 
grand unification. . 

71t should be noted that the introduction of singlets has a potential danger to destroy the hierarchy 
[21, 22}. 
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Figure 2: Constant mb contour in (mt, tan ,B) plane assuming mb = mT at the GUT-scale 
[27]. 

The phenomenological success of SUSY -GUT is now not only the gauge coupling constant 
unification, but also the mb-mT relation. Simple GUT models predict that mb and mT are 
the same at the GUT-scale. The disparity between their observed masses is supposed to 
arise from renormalization effects as we scale down from MGuT to their mass shells (25], in 
a similar manner to the gauge coupling constants. 

Recently there have been active discussions of the mb-mT relation in the literature (26]. 
The first observation is that the successful unification of mb and mT at the GUT-scale requires 
heavy top, or more precisely, large top quark Yukawa coupling to the Higgs boson; namely 
~ 1.1 at the mz scale. This does not directly lead to a prediction of the top mass since 
there are two Higgses in the MSSM, and we should introduce a parameter tan ,8 to relate 
the Yukawa coupling constant to the physical top mass. An interesting point is that for 
any given tan ,8 the top mass should be nearly at its maximum possible value allowed by 
perturbation theory. 

Further speculation is that even m 1 may be unified with mb and mT at the GUT-scale. 
This is possible when tan ,8 rv 55, the smallness of mb/m1 being explained by the smallness 
of one Higgs expectation value to the other. This led to a prediction of the top quark mass 
since we know tan/3 in this assumption; typically mt ~ 180 GeV (28]. This looks consistent 
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with the top mass "evidence" found by CDF [29]! However, it was found later that one needs 
to include a finite threshold correction for mb due to superparticle loops [28], that weakened 
the predictive power. 

To test whether mb and mr really unify at the GUT-scale, w.e need to know m~ more 
precisely, and also need to measure tan f3 by studying the Higgs bosons in the MSSM. Also 
in the large tan f3 region, we need to know (at least roughly) the superparticle spectrum. 

5 PROTON DECAY 

It is often stated that the non-SUSY SU(5) GUT was excluded by the proton decay experi
ments. It is true historically, but now it is an empty statement because the gauge coupling 
constants do not meet in non-SUSY SU(5), so th_at one cannot predict where the GUT-scale 
is. Therefore one first has to build models where the coupling constants are unified to make 
predictions in non-SUSY GUT models [30]. I will not go into this direction in this talk. 

There is another claim that SUSY GUT's do not have the same problem with proton 
decay because the GUT -scale turns out to be much larger than that of non-SUSY theories. 
This is true for proton decay induced by exchange of heavy gauge bosons, leading to p -7 

1r0 e+ as the dominant mode. However, in most of the SUSY GUT models there is another 
potentially more. dangerous problem, namely proton decay via dimension-five operators [31].8 

Let us restrict ourselves to the minimal SUSY SU(5) model for a while. · 
Dimension-five operators are caused by the exchange of the color-triplet Higgs, which is 

the SU(5) partner of the doublet Higgs in the MSSM. Because of supersymmetry, there is 
also a color-triplet Higgsino which is a fermion. While exchange of heavy bosons induces 
operators suppressed by their mass squared ex 1 J M{;uT• exchange of heavy fermions induces 

'operators suppressed only linearly in their ma.Sses, ex 1/MauT· Therefore, exchange of the 
color-triplet Higgsino is potentially a very dangerous mechanism of rapid proton decay. 

Fortunately, dimension-five operators have very small Yukawa coupling constants in front, 
since the color-triplet Higgsino couples to the quark/lepton fields with the same strength as 
that of the doublet Higgs in the MSSM because of SU(5) symmetry. Furthermore, exchange 
of a fermion cannot directly induce four-fermi operators which cause proton decay. One needs 
to "dress" the dimension-five operators with a loop of superparticles to obtain operators 
which are directly responsible for proton decay. This gives us another small factor of ad 47r 
or so. In the end, the proton decay rate in the minimal SUSY SU(5) model turns out to 
be marginally allowed by the experiments, mainly Kamiokande [32]. It is noteworthy that 
proton decay prefers a light chargino (maybe observable at LEP200?) and heavy squarks 
(at the margin of LHC reach). 

8There is yet another problem on proton decay by dimension-four operators, but they can be forbidden 
by a discrete symmetry called R-parity. 
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Figure 3: Constraints on Mnc from the renormalization group analysis (from above) and 
the present nucleon decay experiments (from below) in the minimal SU(5) SUSY-GUT [32]. 
The shaded regions are excluded at 90 % C.L. The horizontal axis is tan f3 of the MSSM 
Higgs sector. 

As I explained in section 3, LEP /SLC data.are already sensitive to the GUT-scale particle 
spectrum, and we have an upper bound on the mass of the color-triplet Higgs, Mnc < 
2.3 x 1017 GeV. On the other hand, proton decay (actually, neutron decay can give better 
bounds in some cases) puts a lower bound on Mnc, and it is interesting to see whether there 
is a remaining region. The present lower bound is (see Fig. 3) [32) 

Mnc > 5.3 X 1015 GeV, (8) 

when taking the most conservative parameter set of hadron matrix element etc. 
As seen so far, proton decay in the minimal SUSY SU(5) GUT is predictive and can be 

probably tested by the superKamiokande experiment. However, one may be suspicious of 
this model because it gives us the wrong predictions m~' = ms and me= md at the GUT
scale. If we take the current quark masses determined by chiral perturbation theory, more 
appropriate relations are m~' = 3ms, me = md/3 [33]. We have to modify the GUT-model 
to reproduce the correct fermion mass spectrum. Then the prediction of proton decay is 
also affected by the same modification, since the dimension-five operators are induced by 
Yukawa interactions. For example, the relation m11 = 3ms would increase the proton decay 
rate by a factor of four compared to the minimal model. On the other hand, one can make 
a complicated Higgs sector to kill dimension-five operators completely [34). Therefore, an 
improved lower bound on the proton lifetime imposes stronger constraints on the SUSY-GUT 
models, but cannot exclude them completely. 

It is noteworthy that proton decay puts constraints even on the physics at the Planck 
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scale. If we allow arbitrary baryon-number violating interactions at the Planck scale (as 
in some of the superstring theories), they cause too-rapid proton decay. These dangerous 
dimension-five operators can be forbidden using "B-parity" [35], but_ this discrete symmetry 
is not cmisistent with grand unification. One needs to resort on a flavor symmetry to ensure 
the absence of dangerous operators. This puts strong constraint on flavor physics model 
building (36]. In this way, an improvement in proton decay experiments may lead to a 
deeper understanding of :flavor physics in the future. 

6 NEUTRALINO DARK MAT'l'ER 

One of the virtues of low-energy supersymmetry is that it leads to a natural candidate for 
cold dark matter particle, the lightest neutralino. 

As explained in the previous section, one usually imposes a discrete symmetry, R-parity, 
in the MSSM. This is a pure assumption, but seems a plausible method to kill the danger
ous dimension-four operators which may cause too-rapid proton decay (with a life time of 
0(10-12) sec!). R-parity is a very simple symmetry which assigns even parity to all the fields 
of the standard model while odd parity to their superpartners. An immediate consequence 
of this symmetry is that the lightest superparticle (LSP) is stable. Then any LSP produced 
in the early universe (at a temperature of.T "' 102 GeV) may possibly remain until the 
present. 

Actually, cold dark matter is needed anyway to explain structure formation in the uni
verse in a way consistent with the fluctuation in the cosmic microwave background mea
sured by COBE (37]. For a typical particle x with a perturbative annihilation cross sec
tion, u ~ 1ra2 fm~, its contribution to the present energy density of the universe is nx I"V 

w-5(mx/GeV)2 • The coincidence between the typical SUSY breaking scale msusY "'mz 
and nx fV 1 from this rough estimation is suggestive. 

The precise calculation of the cosmic abundance depends on the details of the superparti
cle mass spectrum. What is usually done is to assume the "minimal supergravity" boundary 
condition on the SUSY parameters at the GUT-scale, which introduces five additional pa
rameters to the standard model. In this framework it turns out that the LSP is almost a 
pure bino, the superpartner of the hypercharge gauge boson [38, 39]. A rough formula for 
the cosmic abundance is (40] 

( 
m- )-2( m- )4 

08 "' 60 ct:v 140 ~ev ' {9) 

and the requirement to avoid a charged dark matter m iJ < mi leads to an upper bound on 
superparticle masses, miJ, mi :5 500 GeV, or m9 < 3 TeV. This is an interesting constraint 
on the superparticle masses without resorting on the naturalness arguments, though heavily · 
relying on the assumption of a bino-like LSP. 
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There are continuing active discussions/experiments relating to the detection of the neu
tralinos in the halo in our galaxy [41]. Unfortunately, neutralinos have a very weak mainly 
spin-dependent interaction with nuclei (weaker than the neutrino). We still have only a very 
weak limit on neutralino dark matter from direct search experiments, while heavy neutrino 
dark matter is almost excluded [42]. A recent topic is the discussion of constraints from an 
indirect search at Kamiokande [43]. Neutralinos in the galactic halo may be accumulated in 
the Sun or Earth, and they may annihilate with each other to produce energetic neutrinos. 
The neutrinos may then convert to energetic muons before entering the neutrino Cerenkov 
detectors to leave an "upgoing muon" signature. Here the constraints are very sensitive to 
the SUSY parameters, especially to the masses of the Higgs bosons. 

7 BARYOGENESIS 

Baryogenesis has been regarded as one of the main virtues of grand unified theories [44]. 
There are many new particles at the GUT-scale whose interaction violates baryon number. 
When they decay in the very early universe, the decay may generate an asymmetry in the 
baryon number by CP-violation. Unfortunately, the minimal SU(5) SUSY-GUT does not 
share this virtue. The predicted baryon asymmetry turns out to be too small because CP
violation in the decay of the color-triplet Higgs appears only at two-loop order. One needs 
to extend the Higgs sector of the model to begin with [45]. 

Furthermore, there are general constraints on baryogenesis in the SUSY-GUT models 
which prefer new physics at an intermediate scale, rather than generating the baryon asym
metry by a decay of a GUT -scale particle. The first constraint is the monopole problem. 
Monopoles necessarily exist in any grand unified theory based on a simple group [46]. If the 
universe starts at a very high temperature where the 'GUT-symmetry is restored, monopoles 
are produced basically one for each horizon [47]. Usually the annihilation of monopoles is 
negligible [48]. Then the energy density of the universe is completely dominated by the 
monopoles, and the universe is very short-lived; it turns back to a "Big Collapse." One can 
avoid this problem if there is inflation [49], but the temperature after inflation (reheating 
temperature TRH) cannot be beyond the GUT phase transition temperature so as not to 
produce monopoles again. Therefore it is not easy to produce GUT-scale particles after 
inflation. The situation becomes even more severe in supersymmetric theories. In super
gravity, there exists a spin 3/2 partner of the graviton, the gravitino, whose mass is supposed 
to be of the same order as the other superparticles. The lifetime of the gravitino is very 
long, I'V 10 minutes for m3/2 rv 1 TeV. Then it decays after the nucleosynthesis producing 
many high-energy 1's, destroyip.g the light elements. To avoid this, the number density of 
gravitinos should be small, and this requires the reheating temperature TRH to be smaller 
than TRH ;S 1010 GeV [50]. If we take this constraint seriously, GUT-scale particles cannot 
play any role in generating the baryon asymmetry. 
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On the other hand, it is now widely accepted that the standard model itself violates 
baryon (B) and lepton (L) numbers at high temperature due to the anomaly effect [51). 
Even if the decay of a GUT-scale particle could generate a baryon asymmetry, it would be 
wiped out except as far as there is a non-vanishing B-L asymmetry. Therefore it is necessary 
to generate a B- L asymmetry at some stage in the early universe.9 However, simple SU(5) 
GUT models preserve B- L symmetry and hence no asymmetry can be generated. 

These problems can be cured just by adding right-handed neutrinos N to the MSSM 
particle content (MSSM+N) (54). Then baryon asymmetry is generated "automatically" 
irrespective of details in the inflationary scenario. 

We introduce the right-handed neutrino supermultiplets to the MSSM. The superpoten
tial of this model is 

1 
WMSSM+N = WMSSM + h;jNiLjHu + 2MijNiNj, {10) 

and the mass term breaks L and B - L invariance. I wish to remind the audience that the 
existence of a right-handed neutrino is also preferred in explaining the small neutrino mass 
in the MSW solution [55) to the solar neutrino problem via the seesaw mechanism (56). The 
neutrino mass is characterized by Am2 "' 10-5 eV2 [57]. If we assume that the MSW effect is 
due to the Ve-llp. oscillation and take an 80(10)-like ansatz for the neutrino Yukawa matrix 
hii, one obtains M ~ 1010-1013 GeV. This mass range has also a cosmological interest since 
the r-neutrino mass turns out to be around m11, "' 1-100 eV, and can contribute to the hot 
dark matter density of the present universe. Therefore, the MSSM+N can naturally lead to a 
co-existence of the neutralino cold dark matter and vT hot dark matter (mixed dark matter), 
which is favored now by the observed spectrum of the density fluctuation from COBE to 
galaxy clusters [58]. 

The important point is that the MSSM+N "automatically" generates a lepton asymmetry 
if the mass M of the right-handed neutrino is smaller than the expansion rate during the 
inflation [54). The scalar component of the right-handed neutrino supermultiplet is driven to 
large values at the end of inflation due to the quantum fluctuations in the de Sitter spacetime 
(59]. It oscillates after inflation, and decays. The decay generates a lepton asymmetry via 
CP violation in the neutrino Yukawa matrix. Finally electroweak sphaleron effects partially 
convert the lepton asymmetry to a baryon asymmetry [60). This scenario depends on the 
assumption that there is an inflationary period, but does not depend on the details of the 
inflationary models. Then everything occurs without any further assumptions; hence an 
"automatic" scenario. 

Actually one may be even more ambitious to expect that the scalar component of the 
right-handed supermultiplet itself can drive a chaotic inflati~n [61 ]. Then the simplest exten-

9There are two other possibilities discussed in the literature. One is to generate baryon asymmetry at 
the electroweak phase transition (52). The other is to employ some mechanisms to keep baryon asymmetry 
even when B - L = 0 [53]. 
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sion of the MSSM, namely the MSSM+N can accommodate chaotic inflation, baryogenesis, 
mixed dark matter, and solve monopole and gravitino problems. The only price one has to 
pay is to assume that the quadratic potential V = M2INI2 persists beyond Mp [62). 

8 FCNC PROBLEM 

Though I have been presenting various phenomenological virtues of supersymmetry in the 
previous sections, there is a big embarrassment due to the existence of the superparticles 
below 1 TeV. The exchange of squarks and gluino may lead to an unacceptably large flavor
changing neutral current, especially in K-~ oscillations. This requires the squark masses 
to be highly degenerate at least ford and s [63), 

2 2 
mJ- ms < 6 x 10-3 ( mJ) 
m~ - TeV . 

d 

(11) 

We need an understanding of why squarks are so degenerate in mass. 
The standard lore to explain the degeneracy is the following. Suppose supersymmetry 

is broken in a "hidden sector," which interacts with our "observable sector" of quarks and 
leptons only through gravitational interactions. Let us denote the scale of supersymmetry 
breaking in the hidden sector as Asu sv. The masses of squarks and sleptons are generated 
by gravitional interactions with the hidden sector, at the order of A~usvfMp or A~usv/M~ 
depending on the hidden sector models, and turn out to be the same for any scalar par
ticles because gravity is flavor-blind. Though this may sound plausible, the supergravity 
Lagrangian does not have this feature in general. No symmetry principle restricts the inter
actions between the hidden and observable sectors to be flavor-blind. 

Recently, there have appeared several interesting proposals to ensure the absence of 
FCNC processes due to superparticle loops. I'll briefly describe the basic ideas in the para
graphs below. 

The first one is based on superstring theory (don't be afraid; I myself am an amateur). 
In four-dimensional superstring models, there is a so-called "dilaton" field which plays a 
unique role in superstring theory. It has a completely flat potential to any finite order in 
perturbation theory, but is supposed to have an expectation Ya:lue due to non-perturbative 
effects. This expectation value determines the gauge coupling constants dynamically. The 
point is that the dilaton field has a universal coupling to all fields. If the dilaton plays 
another role in breaking supersymmetry, the squarks and sleptons acquire the same masses 
at the Planck scale [64). The assumption is that the dilaton has two expectation values, one 
is the usual scalar expectation value which determines the gauge coupling constants and the 
other is the so-called F -component which breaks supersymmetry. Though this scenario is 
based on relatively firm theoretical grounds, so far no concrete model of the hidden sector 
is known which gives rise to an expectation value of the F -component of the dilaton field. 
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Another possibility that has been pointed out is that the supersymmetry breaking effects 
are fed to quarks and leptons by the gauge rather than the "gravitational" interactions. 
Since the gauge interactions are flavor-blind, the generated supersymmetry breaking terms 
would be also flavor-blind. Though the idea sounds very simple, it actually requires a drastic 
modification of supersymmetric models. First of all, the gauge interactions are characterized 
by dimensionless coupling constants, and the supersymmetry breaking masses of the squarks 
and sleptons are not suppressed by 1/Mp, rather msusy ,...., (aj47rr AsusY with n being 
model-dependent. Therefore this scenario requires many new particles at multi-Te V energies. 
An explicit realization was worked out recently (65], which has a rather complex structure 
with a symmetry group SU(7) x SU(2) x SU(3)L x SU(3)R in addition to the standard model 
gauge group. Attractive features are that there is no gravitino problem, supersymmetry is 
broken dynamically, and the model can be embedded into SU(5) unification. The most 
unattractive feature is that the vacuum is only a local minimum. 

The two proposals which I have described above deal with the physics of supersymmetry 
breaking to explain the smallness of the flavor changing neutral currents. Other scenarios 
below take a different attitude with emphasis on the flavor dynamics, the physics of the 
Yukawa coupling. 

A simple solution to the FCNC problem is to assume a symmetry among squarks of 
different generations to ensure the degeneracy of squarks. This sounds a very natural idea, 
but it is in apparent contradiction with the non-degeneracy of quarks. First of all, one needs 
a non-abelian flavor symmetry so that (at least the first two generations of) the quarks lie 
in an irreducible representation to ensure mJ = m 8 • Then it also restricts the form of the 
Yukawa couplings. Therefore such a scenario should explain both the observed structure 
of the Yukawa coupling matrix and the degeneracy of squarks at the same time. One such 
example is based on a non-abelian discrete group .d(75) (66]. It is noteworthy that this 
symmetry also prohibits dangerous dimension-five operators at the 1/MP level [36]. However 
one needs a relatively complicated Higgs sector to break the flavor symmetry in the desired 
pattern. No explicit Higgs potential has been presented so far. 

A completely different direction is to give up the degeneracy of the squarks, and try to 
explain the smallness of the flavor-changing neutral current by yet another flavor symmetry. 
One of the reasons why an exchange of the squarks can lead to large flavor-changing neutral 
current processes is that the mass eigenstates of quarks and squarks may be completely 
unrelated in the flavor space. One possible way to suppress the flavor changing neutral 
currents is to align the mass eigenstates of quarks and squarks [67]. This sounds miraculous, 
but it was shown that a certain abelian horizontal symmetry can restrict the form of both 
the Yukawa matrix and the squark mass matrix in such a way that the diagonalization of 
both matrices can be done with almost the same rotation. An unattractive point is that the 
assignment of horizontal charges is rather ad hoc, fitted to explain the hierarchical structure 
of the Yukawa matrix. Once one accepts it, however, the alignment of the quark and squark 
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bases is automatic. 
Cur~ently, there is no reason to choose one scenario over the others except from the 

aesthetic point of view. We will, however, be able to discriminate among them experimentally 
after we find the superparticles. This will be the topic of the last part of my talk. 

9 FUTURE PROSPECJ'S 

First of all, supersymmetry predicts a relatively light Higgs boson. In the MSSM, it has long 
been known that the lightest Higgs boson should be lighter than the Z 0 [68]. Thus LEP-200 
could have made a definitive test of the MSSM. Unfortunately, a large top quark Yukawa 
coupling induces an important corr~ction to this prediction at the one-loop level. The upper 
bound is pushed up to around 130 GeV, well beyond the reach of LEP-200 [69]. We should 
recall that the current LEP bound on the MSSM Higgs is not so tight: mh ;(; 45 GeV for 
standard bb mode and;(; 25 GeV in the worst case when it decays invisibly into a neutralino 
pair. There is still a wide parameter space which LEP-200 will explore. 

It is very nice that the proposed hadron facility, LHC, will cover most of the parame
ter space of the MSSM Higgs sector.10 Recently there has been the interesting suggestion 
that the Tevatron can search for a MSSM Higgs up to 120 GeV if a luminosity upgrade is 
performed [72]. 

What is more encouraging is that the upper bound on the lightest Higgs mass does not 
change much even if we consider more complicated models, with singlets, four.th generation, 
etc. The mass of the Higgs boson is proportional to (the square root of) the strength of 
the self-interaction among the Higgs bosons, just like the mass of a fermion is proportional 
to its Yukawa coupling. The self-coupling tends to become stronger at higher energies due 
to the renormalization-group running. If the self-coupling is too strong, it can happen that 
it becomes infinite at some scale below the GUT-scale. Requiring that the theory remains 
within the validity of the perturbation theory up to the GUT-scale, we can put an upper 
bound on t);le strength of the self-coupling, leading to an upper bound on the Higgs mass. 
At tree-level, models with singlets have an upper bound of 150 GeV [73]. This bound is 
pushed further up by one-loop effects, but never beyond 180 Ge V [74}. The same is true for 
models with heavy fermions beyond the top quark [75]. An e+e- collider of v's = 300 GeV 
can definitely exclude supersymmetric theories based on the GUT idea (76]. 

Concerning the superparticles, the following characteristic of the mass spectrum is impor
tant to future searches. Colored particles tend to be heavy, while colorless particles are light. 
This is because the form of the renormalization group equations implies that the gauge in
teractions make the superparticle masses heavier. Colored particles have the strongest gauge 

.
10It has been known that there is a region in the parameter space of the MSSM Higgs sector ("ozone hole") 

which is very hard to be covered at LHC [70]. However, continuous efforts are being devoted' to ensure the 
covering of the whole MSSM parameter space at LHC [71). 
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interactions and hence become the heaviest among the superparticles. Typical mass ratio 
of the gluino to the lighter chargino is about a factor of 4. Therefore, supersymmetry is 
an ideal target of the high-energy experiments that e+ e- and hadron colliders literally play 
complementary roles. I refer further discussions to the talk by Michael Peskin [77]. 

Currently the most stringent bounds on supersymmetry come from LEP and Tevatron 
experiments. LEP has excluded charginos below 45 GeV in a model-independent way, while 
CDF excluded gluino masses below 100 GeV. 11 These two bounds are comparaqle because 
of the above-mentioned characteristics of the superparticle mass spectrum. A Tevatron with 
Main Injector would extend the reach up to 300 GeV or so with like-sign dilepton and $T 
when m9 ~ mq [78], while LEP 200 will find charginos below 90 GeV. So far constraints 
from hadron and e+ e- colliders will improve more or less in parallel. 

Meanwhile, HERA can search for the superparticles produced singly if R-parity is broken. 
For instance, a squark below 270. GeV may be found if it is produced as an s-channel 
resonance in eq collision [79]. 

To go beyond the reach of the present machines, we must wait until LHC begins operation. 
Depending on parameters and analyses, LHC will extend the reach of the gluino search 
up to 1.2-1.8 TeV [80, 81]. This would basically cover the whole "natural" region of the 
superparticle mass spectrum. · 

In view of these numerous experimental programs in the near future, I strongly expect 
the discovery of supersymmetry in a few to ten years. 

10 WINDOW TO THE PLANCK WORLD 

Once supersymmetry is discovered, one may worry about losing one's job. Actually it will be 
exactly the opposite. Since there are so many superparticles which await detailed studies, 
it will be just the beginning of a whole series of experiments. Indeed, measurement of 
superparticle masses and mixings will give us information crucial to distinguish between 
various GUT -models, scenarios of flavor physics and supersymmetry breaking. In this sense, 
low-energy supersymmetry is a messenger of the physics of the very high-energy scale to the 
scale which is accessible by experiments. 

First of all, I should emphasize that precision measurements of supersymmetry parame
ters to several percent are possible at an e+ e- linear collider with a high beam polarization 
(83]. I refer to the talk by K. Fujii [84] concerning this point on which we worked together. 
We have demonstrated that the measurements of the superparticle masses and cross sections 
at a few percent level enable us to extract parameters in the supersymmetric Lagrangian, 
for example, the mass parameters of SU(2)L and U(l}y gauginos.12 

. 11 This bound depends weakly on an assumption of the MSSM parameters. 
12It was also pointed out that one can measure the gluino m~s at a pp supercollider with a precision better 

than 10 % (82]. One has to assume the low-lying superparticle spectrum to do the analysis. Presumably the 
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Figure 4: A x2 = 1 contour in (M1,M2) plane extracted from chargino and selectron pair 
production processes at an e+ e- linear collider after detector simulation (83]. One can test 
whether the gaugino masses unify at the GUT-scale with a 5% precision. 

There is a simple prediction in the SUSY-GUT models that the mass oJithe gauginos 
should satisfy the relation 

M1 M2 M3 
-=-=-.- (12) 
a1 a2 eta 

at any scale. We already know a 1, a2 and a3 precisely thanks to LEP /SLC. They turned out 
to be consistent with SUSY-GUT as we all know. The measurements of M1 and M2 would 
allow us to make another test on SUSY-GUT models at the few percent level, namely a 
test whether the gaugino masses unify at the same scale where the gauge coupling constants 
unify (see Fig. 4). It would be even more exciting if the gluino mass measured at a hadron 
collider also fits into the same relation. If the gaugino masses will be consistent with the 
SUSY-GUT prediction, it would leave little doubt about unification, at least of some kind. 

The GUT-relation of the. gaugino masses holds as far as the standard model gauge group 
is embedded into a simple group, irrespective of the symmetry breaking pattern [24]. For 
instance, a model based on the chain breaking (Pati-Salam) 

S0(10)--+ SU(4)ps x SU(2)L x SU(2)n--+ SU(3)c x SU(2)L x U(1)y (13) 

predicts the same relation among the gaugino masses. Therefore, this relation, if confirmed 
experimentally, would suggest a unification based on a simple group, 13 but does not tell us 

combination of data from e+ e- on low-lying superparticle masses and from hadron supercolliders on missing 
lfrr and multi-lepton signals would allow us a measurement of tpe gluino mass at this precision. 

13It is noteworthy that the superstring with dilaton F-term also leads to the same relation [85). This is 
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Figure 5: The renormalization group running of the scalar masses in SU(5) SUSY-GUT. 
They should unify at the same scale where the gauge coupling constants unify [4]. 

about the existence of an intermediate scale or the symmetry breaking pattern. On the other 
hand, models not based on a simple group (e.g., SU(5) x U(l) or superstring models with 
moduli F-term) does not predict this relation. 

Though all the GUT -models give the same relations for the gaugino masses, the scalar 
mass spectrum distinguishes different models. Let me discuss the "vertical" direction first, 
the spectrum within the same generation. I will discuss the "horizontal" direction later, 
comparing the masses of different generations. 

The di:fferen~e of the masses for different quantum numbers reflects the physics of the 
gauge symmetry. The first and the second generations have tiny Yukawa interactions which 
can be neglected to a good approximation. Then the splitting of the scalar masses within 
the same generation arises only by their renormalization-group running due to the gauge 
interactions. The pattern of the scalar mass spectrum will tell us the pattern of the symmetry 
breaking. For instance, SU(5) SUSY-GUT predicts the scalar masses of en, ilL, JL and fin 
unify at the GUT -scale in the same manner as the gauge coupling constants unify (see Fig. 5). 
Similarly for eL, VL and dn. On the other hand, the cases with an intermediate symmetry, 
such as Pati-Salam, predict certain "sum rules" of the scalar masses [24], 

m~(Mps)- mf(Mps) - m~(Mps) - mJ(Mps), 

g~R(Mps)(m~- m~)(Mps) - g~(Mps)(m~- m3)(Mps). 

(14) 

(15) 

amusing because one needs rather big threshold corrections for the gauge coupling constants to reconcile the 
difference between the apparent GUT-scale and the string scale [86]. Exactly the same correction appears 
both for the gauge coupling constants and the gaugino masses to give the same relation as in the (field 
theoretical) GUT models. . · 
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ai Mi/ai m~ 
t 

8U(5) ~ GsM natural common testable 
80(10) ~ GsM natural common testable 
80(10) ~ Gps ~ GsM adjustable common testable 
80(10) ~ Ga221 ~ GsM adjustable common not testable 
80(10) ~ Ga211 ~ GsM adjustable common not testable 
8U(5) x U(1) ~ GsM adjustable common only for i = 2, 3 testable 
superstring with dilaton F-term adjustable common testable 
superstring with moduli F-term adjustable not common not testable 

Table 1: The "score sheet" of how well we can distinguish between various models [22]. 
The intermediate groups are defined as Gps = SU(4)ps x SU(2)L x SU(2)R, Ga221 = 
SU(3)c x SU(2)L x SU(2)R x U(1)s-L, Ga2u = SU(3)c x SU(2}L x U(1)y x U(1)s-L· The 
row ai refers to the unification of the gauge coupling constants, where "natural" means that 
the unification is automatic, while "adjustable" employs either particular particle content or 
threshold corrections to reproduce observed gauge coupling constants. The row Md ai refers 
to the gaugino masses. The row m; states whether the model predicts a definite pattern 
which is testable using the low-energy scalar mass spectrum. 

at the scale Mps where Pati-Salam symmetry is broken. Though one of the relations should 
be used to determine Mps, the other relation can be used to test the prediction. For models 
with lower symmetry, predictivity becomes lower, so that they may not be able to be tested. 
In any case, the scalar mass spectrum in the "vertical" direction reflects the pattern of 
gauge symmetries at high energies. Table 1 summarizes' the "score sheet," of how different 
observables can distinguish various models. 

The "horizontal" direction in the scalar mass spectrum carries information on flavor 
physics at high scales. For instance, non-abelian flavor symmetry gives us the degeneracy 
between the scalar masses of different generations, for given gauge quantum numbers. Su
perstring theories based on the dilaton F -term breaking also give the same degeneracy, but 
with a further prediction of the ratio of the scalar mass to the gaugino mass. On the other 
hand, a flavor group which leads to an' alignment of the quark and squark bases does not 
need a degeneracy among the squarks, and we expect a baroque spectrum in the horizontal 
direction. 

In any case, the point is that we will be able to play the same game with the superparticle 
masses as we play now with the gauge coupling constants. We can make numerous checks 
whether experimentally independent masses unify at higher energies. This is what I mean 
by ''window to the Planck world" [4]. This is a truly ambitious program, but would become 
possible if supersymmetry were true. 
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11 CONCLUSION 

I reviewed interesting aspects of supersymmetry with emphasis on recent topics. There are 
many more virtues and problems in supersymmetric models which were not covered in this 
talk. 14 Though supersymmetry is certain.ly a very interesting candidate of physics beyond 
the standard model, we theorists do not know whether the nature is supersymmetric; only 
experiments can decide it. And once supersymmetry is found, we will gain many hints on 
the physics at ultra-high energy scales. 
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