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Abstract 

The Compressibility of Finite Nuclei* 
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Lawrence Berkeley Laboratory 

University of California 
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29 September 1994 
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A simple formula without adjustable parameters is derived for the ratio of the 

compressibility of a finite charged nucleus to the compressibility of standard nuclear 

matter. 
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1. Introduction 

The effective compressibility coefficient K(A,Z) of a finite nucleus of mass number A 

and atomic number Z can be considerably lower than the compressibility K0 of standard, 

uncharged nuclear matter. The reduction is typically by some 35%. Existing semi

empirical formulae for K(A,Z)fKo, based on expansions in powers of A-1/3 and 

containing corrections for the Coulomb energy, suffer from poor convergence and the 

presence of several poorly determined parameters. (See, in particular, Refs. 1-3 and 

references therein.) In what follows, we shall derive a formula for K{A,Z)fKo which is 

both simple and free of adjustable parameters. 

2. Compressibility and Binding Energy 

The physical input in the derivation is the observation that, apart from the Coulomb 

energy, the ratio K/K0 should be approximately proportional to EIE0 , where E is the bind

ing energy per particle of a finite nucleus and E0 the binding energy per particle of 

nuclear matter. The reason for this expectation is that if the density distribution of a finite 

nucleus is imagined stretched out radially by a scaling factor A.= RIR0 , say, the binding 

energy E(A.) will tend to vanish when the typical inter-nucleon distance has exceeded by a 

few times the range of nuclear forces. Since this implies a characteristic scaling Ac 

approximately independent of A, the appearance of a plot of E( A.) vs. A. (for A. ~ 1) will be 

a series of (inverted) bell-shaped curves of fixed range but different initial depths, the 

depths being proportional to E{l), the equilibrium binding energies of the nuclei in ques-

tion. Insofar as the bell-shaped curves can be assumed to have the same intrinsic shape 

for different nuclei, the curvatures at A. = 1, which are the stiffnesses K against scaling, 

will be proportional to the binding energies E(1). It follows then that, for uncharged 

finite nuclei, we might expect 

K(A,Z) E 0 (A,Z) 
:::::: 

Ko 
(1) 
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or 

(2) 

where we have written En(A,Z) for the nuclear binding energy per particle in the absence 

of the Coulomb energy, and a 1 for the magnitude of the binding energy per particle in 

standard nuclear matter: a1 = 16 MeV. 

This expectation is confirmed by the results of Ref. 4 where, for a series of model 

nuclei calculated according to the Thomas-Fermi method (Ref. 5), the binding energy per 

particle and the effective stiffness Keff against radial scaling were determined (in the case 

of N = Z and no Coulomb energy). In the range A > 8 the results could be accurately 

represented by 

-E = 16.527-20.268 x- 8.290 x2 + 15.951 x3 
= 16.527(1-1.2264 x- 0.5016 x2 + 0.9651 x3) 

(3) 

Keff = 301.27-406.55 x- 214.02 x2 +473.12 x3 
= 301.27(1-1.3495 x- 0. 7104 x2 + 1.5704 x3) , 

(4) 

where x =A -113. 

The ratio Kerr/E, listed in Table I, is remarkably constant (to within 10%) in a ra!lge 

where Keff changes by a factor of 3. 

Table I. Compressibilities and bindings of finite Thomas-Fermi nuclei (Ref. 4 ). 

A-113 =x 0 .1 .2 .3 .4 .5 

Keff 301.27 258.95 215.18 172.82 134.69 103.63 

-E 16.527 14.433 12.269 10.131 8.114 6.314 

-Keff/E 18.23 17.94 17.54 17.06 16.60 16.41 

(Note: The Thomas-Fermi model used in Ref. 4 had not been optimally fitted to nuclear 
data and is used here for illustration only. See Section 6.) 
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3. Effect of the Coulomb Energy 

In the presence of electrostatic forces the argument for the proportionality between 

K(A,Z) and E(A,Z) is no longer valid because the Coulomb energy, being produced by 

long-range forces, does not vanish at some finite characteristic scaling Ac. Even so, the 

modification of eq. (2) caused by the Coulomb energy is readily derived in the following 

way. (Compare Ref. 3). 

Let us express our assumption of a universal scaling dependence of the binding 

energy of finite nuclei by writing 

En(A,Z;.Q) E0 (.Q) 
= 

En(A,Z) 
(5) 

where En refers to the nuclear part of the binding energy per particle of a finite nucleus 

and E 0 to the binding energy per particle of standard nuclear matter. In what follows we 

shall find it convenient to use .Q = 1/A. as our scaling variable. The denominators in 

eq. (5) refer to .Q = 1. 

Let us write 

Eo(.Q) = atf(.Q) , 
• 

where f(.Q) is a dimensionless function with the property that 

f(l) = -1 , i.e., E0 =-at 

f'(1) = 0 (equilibrium condition). 

d2Eo(.Q) I = f"(1) = K 
d.Q2 O=t at o . 

(6) 

(7) 

(8) 

(9) 

The scaling dependence of the binding energy per particle of an uncharged finite nucleus 

may now be written as 

En (A,Z;.Q) = -Enf(.Q) , (10) 

where En, from now on, stands for En(A,Z). Let us add to this the Coulomb energy per 

particle, which we write in the form C.Q, where C is the usual Coulomb energy per parti

cle before scaling (i.e, for .Q = 1), and the proportionality to .Q (Le., to 1/A.) follows from 
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the definition of the electrostatic energy as an integral over 11r12, the reciprocal of the 

distance between charge elements. For example, in the case of a uniform spherical 

charge distribution of radius R0 we have 

C = ~ (Ze )2 = ~ e2 _!!:__ 
5 R0 A 5 r 0 A 4/3 ' 

(11) 

where e is the elementary charge and R 0 = r 0 A 113. The total energy per particle is thus 

E(A, Z;Q) = -Enf(Q) + CQ (12) 

Write Q = 1 + e and expand about Q = 1: 

(13) 

where the derivatives f", f"' are evaluated at Q = 1. The equilibrium value of e is given 

by 

which gives 

Eeq = C I Enf" 

to lowest order in C. 

The second derivative ofE(A,Z;e) at this value of e is the compressibility K(A,Z): 

K(A,Z) = -Enf"- Cf"' If" 

= -En K 0 - Cf"' I f" 
. a1 

(14) 

(15) 

(16) 

to lowest order in C. (We have checked that going to the next order produces a negligible 

modification). 

The first part of eq. (16) gives the previously derived correction to Ko, ~nd the second 

part the correction due to the Coulomb energy. The quantity f"' I f" is a dimensionless 

number, characteristic of the functional form of f(Q), which we shall now estimate. 

5 



4. The Value of f"' I f" 

To estimate f"' I f" we shall use for f( Q) the family of functions which results from 

the Thomas-Fermi treatment of nuclei, as introduced by Seyler and Blanchard (Ref. 6) 

and generalized in Refs. 5,7-11. In both the original and the generalized models, f(.Q) is 

a quintic of the form 

f(Q) = an2 _ bQ3 +ens , (17) 

where a, b, c are related to the adjustable parameters of the effective nucleon-nucleon 

interaction in the Thomas-Fermi model. Depending on the values of those parameters, 

the function f( Q) can describe situations ranging from the incompressible liquid drop, to 

super-soft nuclear matter about to lose the saturation property (see Ref. 5, Fig. 1). For 

our purposes, however, we need not go into a discussion of the Thomas-Fermi interaction 

parameters in eq. (17): all that matters is the general functional form of that equation. 

Thus, using eqs. (7-8), we have 

f(l) =a- b + c = -1 

f'(1)=2a-3b+5c=O · 

f"(1) = 2a- 6b + 20c = K 0 I a1 , 

and, in addition 

f"'(1) = -6b + 60c . 

Eliminating a, b, c between the above four equations we find 

f"' I f" = 7- 30 ~ 
. Ko ' 

a relation that makes no explicit reference to the values of a, band c! Using the 

illustrative values a1 = 16 MeV, K0 = 240 MeV, we find f"' If"= 7-2 = 5, with a 

relatively weak dependence on the precise value of K0 . (Compare the qualitatively 

similar result in Ref. 3.) The final formula relating K(A,Z) to the compressibility of 

standard nuclear matter reads 

6 

(18) 

(19) 

(20) 

(21) 

(22) 
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K(A,Z)=-K0 - 7-30- C En ( at J 
-at Ko 

Note that the effect on K of a change in En is given by 

~K K 0 --=-,.,-15MeV /MeV , 
~n -at 

and the effect of a change in C is given by 

~K ( at J -=- 7-30- '"'-5MeV /MeV 
~C Ko 

(23) 

(24) 

(25) 

Writing E(A,Z) =En+ C =total binding energy per particle, we can rewrite eq. (23) as 

K(A,Z) = E(A,Z) K0 + (30~ + Ko - 7J C (26) 
-at . K 0 at 

5. A Numerical Test 

The triangles, circles and squares in Fig. 1 show the effective stiffness against scaling, 

Keff, for finite nuclei calculated according to the Thomas-Fermi model of Ref. 5, as 

reported in Ref. 4. The three cases shown are for uncharged N = Z nuclei, and for nuclei 

along the valley of stability given by N- Z = 0.4 A2f(A + 200), without and with the 

Coulomb energy. The three curves in Fig. 1 illustrate eq. (23), written in the form 

K(A,Z) = (1-1.2264 x- 0.5016 x2 + 0.9651 x3- 1.
898412 

) 301.27 · 
1 + 1. 6902 X (27) 

-4.0939 z2f A413 MeV , 

where I= (N- Z)/A and x =A -t/3. The first line in eq. (27) represents the reduction of 

K0 due to the reduced nuclear binding energy (cf. eq. (3)), the last term in the brackets 

representing the effect of the symmetry energy (with a surface symmetry energy correc

tion in the denominator, Ref. 10). The second line is the Coulomb energy correction, 

eq. (11), with r0 = 1.13 fm (the parameters appropriate to the Thomas-Fermi model of 

Ref. 5 were used consistently). Equation (27) is seen to give a fair representation of the 

effective compressibilities calculated by scaling individual Thomas-Fermi nuclei. Note 
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once again that the Thomas-Fermi model on which Fig. 1 is based has not been fitted 

optimally to nuclear data. In the next section we use an up to date version of the Thomas-

Fermi model 

6. Compressibilities of Finite Nuclei 

In applying eqs. (23) or (26) in practice, one may use measured values of the binding 

energies per particle or suitable liquid drop, Droplet Model or other expressions for 

E(A,Z) and C. The Thomas-Fermi model of Ref. 5 has now been fitted to a large number 

of nuclear data (Refs. 9-11). The resulting properties of nuclear matter are described by 

r0 = 1.14 fm, a 1 = 16.04 MeV, Ko = 234 MeV. The binding energy per particle of finite 

nuclei is given, to an approximation sufficient for our purposes, by 

E(A Z) = -16.04+ 18.5 A-1/3 + 9.1 A-2/3 -11.6 A -1 + 
3212 

' 1 + 1. 87 A -113 
3 e2 z2 

+----MeV 
5 1.14 A413 

(28) 

This leads to 

K(A,Z) = 1-1.153 x- 0.567 x2 + 0. 723 x3- . 234 ( 
. 1.995 J2 J 

1 + 1.87 X (29) 

-3.75Z2f A413 MeV. 

Table IT lists the resulting estimated compressibilities of nuclei with N = Z and no 

Coulomb energy (first column), and of nuclei along the valley of stability without and 

with Coulomb energy (second and third columns). 

Finally, we would like to reiterate the need for caution when interpreting the 

measured giant monopole frequency ro in terms of a scaling mode of oscillation. A seal-

ing mode is only an approximation to the true normal mode, one that imposes a constraint 

on the vibration. As such it is bound to give for co a value higher than the true frequency 

(Rayleigh's principle). How serious the resulting error might be can be illustrated by the 

example of a compressible liquid drop model. In the notation of Ref. 12, eq. (6A-50), the 
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.• 

true normal mode (for which the bulk density does not remain uniform, contrary to the 

scaling assumption) has a frequency 

ro=~~bcomp 
Ro M 

(30) 

where bcomp = K/9, M is the nucleon mass (the mass per particle) and Rothe radius of 

the drop. The constrained scaling mode has a higher frequency 

ro _ ~- /5 1 IK 
sc- ~M(r2) -y3 R

0 
\fM . 

The ratio ffisc/ro = -{f5!1t = 1.233 illustrates the very serious inaccuracy of the scaling 

{31) 

assumption, at least in this simple model. (See Ref. 3 for a less pessimistic assessment of 

the inaccuracy of the scaling method). 

Table II. Compressibilities of nuclei with N = Z, and 
along the valley of ~-stability, without and with 
Coulomb energy. Based on the Thomas-Ferlni model of 
Refs. 9-11. 

A N=Z ~ ~ + Coul 

10 97.1 97.0 92.8 
20 125.1 134.7 118.3 
40 148.0 146.7 137.1 
60 159.2 156.6 144.7 
80 166.4 162.1 148.4 
100 171.4 165.5 150.3 
120 175.3 167.6 151.2 
140 178.3 169.0 151.4 
160 180.9 169.9 151.2 
180 183.0 170.4 150.8 
200 184.8 170.7 150.2 
220 186.4 170.8 149.4 
140 187.9 170.8 148.6 
260 189.1 170.7 147.8 
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7. Summary 

Using the assumption of a universal scaling dependence of the nuclear part of the 

binding energy of nuclei, as given by eq. (5), we derived a simple formula, eq. (23), for 

the stiffness against scaling of finite nuclei. The bottom line is, roughly speaking, that for 

each MeV of decreased non-Coulomb binding per particle of a finite nucleus the 

compressibility coefficient decreases by about 15 MeV, whereas for each MeV per parti

cle of unbinding produced by the Coulomb energy the compressibility coefficient 

decreases by about 5 MeV. 
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Figure Caption 

Figure 1. The effective compressibilities of nuclei with N = Z, and of nuclei along the ~-

stability valley without and with Coulomb energy. The symbols are from Ref. 

4 and the curves correspond to eq. (23) used with the illustrative parameters of 

that reference. 
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