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We report on computer simulations of oscillating Woods-Saxon or cavity potentials 

filled with either a classical or a quanta! gas of independent particles. We have now 

available of the order of 600 excitation histories of such gases undergoing usually one 

period of oscillation (but sometimes several), classified according to frequency and 

multipolarity of the oscillation and of the degree of diffuseness of the potential. We are 

still in the process of displaying and interpreting some of the results, but certain important 

features are already apparent. A notable finding is that, contrary to concerns sometimes 

voiced in the literature, the classical wall formula [ 1] does not fail catastrophically when 

confronted with quanta! calculations. This is true even for relatively small systems-in 

our case 112 neutrons in doubly degenerate eigenstates. On the contrary, the wall 

formula, in addition to reproducing accurately the classical computer simulations, gives 

also an approximate account of the quanta! results in the regime where it is expected to be 

valid, namely for not too small oscillation frequencies and not too large surface diffuse

ness. In those cases it is gratifying to observe that the deviations from the wall formula 

actually correlate (semi-quantitatively) with the wave-mechanical corrections derived by 

Koonin et al. [2]. 

*Talk presented by J. B1ocki at the Fourth KINR International Conference on Nuclear Physics, Kiev, 
August 29-September 7, 1994. 
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1. Introduction 

In a previous paper [3] we reported on preliminary results concerning the elastic or 

dissipative response of a gas in a container to the container's time dependence. Here we 

present a broad comparison between classical and quantal calculations of the excitation of 

a gas of independent particles during one period of oscillation, and the results are com

pared with the predictions of the classical wall formula [ 1]. In both the classical and 

quanta! calculations two entirely independent numerical codes were developed, one for a 

diffuse Woods-Saxon potential, the other for a "billiard" or cavity potential with zero 

diffuseness. Results obtained in a billiard can be directly compared to the wall-formula 

predictions, whereas those obtained in a Woods-Saxon potential enable us to study in 

addition the dependence on diffuseness. With the help of those codes we study the 

behavior of classical and quanta! gases in time-dependent integrable shapes like a 

spheroid, and in non-integrable shapes described by Legendre polynomials P3, P 4, Ps and 

P6, where the particle trajectories are largely chaotic. (Since at this stage we are more 

interested in comparing classical and quanta! results in well-defined idealized situations 

rather than in making contact with experiments, we chose the Woods-Saxon potential to 

be very deep--200 Me V-in order to prevent the escape of particles from the potential 

well.) 

2. Description of the Calculations 

2.1. Classical Calculations 

In the classical calculations the trajectory of a particle is followed by solving a classi

cal equation of motion. In the case of the billiard, particles between bounces off the 

container walls move along straight lines. The numerical problem in this case is to find 

the point in time and space of the collision of a particle with a moving wall. In the case 

of the diffuse Woods-Saxon,potential the equation of motion must be integrated numeri

cally all the way along the trajectory. This integration is performed by a four-point 

predictor-corrector method. The particles' initial conditions are chosen in a random 
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Monte Carlo way assuming a uniform distribution in phase space, simulating a density 

21h3, where h is a Planck's constant. Thus the filling up of the potential with particles 

proceeded as follows. At each point in space the particle density is proportional to the 

third power of the local Fermi momentum, which is proportional to the square root of the 

depth of the potential with respect to the chemical potential (i.e., the Fermi level). 

Integrating such a density and equating the result to the number of particles in the quantal 

case (N = 112) we establish the Fermi energy. (This Fermi energy turned out to depend 

quite significantly on the diffuseness of the potential, being about 45 MeV for a Woods

Saxon diffuseness parameter a= 0.1 fm and about 75 MeV for a= LO fm. This reflects 

the fact that the effective radius of the bottom part of the potential well decreases with 

increasing a.) In order to get good statistics, 20000 trajectories were followed in each 

case. 

2.2. Quanta! Calculations 

In the quantal calculations we follow the time evolution of 112 uncharged fermions 

(neutrons) in a billiard or in a Woods-Saxon potential. In both cases the numerical solu-

tion is based on an expansion of the wave functions in a suitable basis. In the case of a 

billiard the basis wavefunctions are eigenfunctions of the spherical billiard, and in the 

case of a Woods-Saxon potential they are eigenfunctions of a deformed harmonic 

oscillator. The size of the potential was taken to correspond to a nucleus with A= 184 

and a radius Ro equal to 1.16 A 1/3 fm = 6.5978 fm. 

Explicitly, we have 

R(t)= '~Ro (1+an(t)Pn(cos8)+atPt(cos8)) 
A(t) 

for polynomial deformations, or 

R(t) = 11 ~(sin 8)2 I b2 + (cos8)2 I c2 
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for spheroidal deformations, where 

b= Rof~ 1 + a(t) 

c = Ro(l + a(t)) 

Here 

(2n+T 
an(t) = ~-s (co +ct cos( cot)) (4) 

where n = 2, 3, 4, 5, 6 determines the order of the Legendre polynomial Pn(cose), and the 

coefficient c1 specifies the amplitude of the oscillation around the shape specified by co. 

The factor ~ 2n 
5
+ 1 

ensures that the RMS deviation of the surface from the spherical 

shape is the same for all n. The factor A..(t) ensures volume conservation and a1(t) 

ensures fixity of the center of mass in the case of odd polynomials P n· (For details see 

Ref. [4].) 

In both cases (billiard and a diffuse potential) we first solve the static part of the 

-
Schroedinger equation. Due to the axial symmetry the projection m of the angular 

momentum on the symmetry axis is a good quantum number. In case of reflection 

symmetry (even Legendre polynomials) the parity 1r is also preserved. For each m or mtr 

we calculate single particle energy levels by diagonalizing the hamiltonian. After that we 

fill up the lowest levels with particles uptoN= 112, taking into account the degeneracy 

of the levels, equal to 2 form= 0 and 4 form> 0. The relative excitation energy (E(t)

Eo)!Eo is then followed by solving the time dependent Schroedinger equation using a 

suitable static deformed oscillator basis (Eo is the initial energy of the gas). 

In the case of the billiard the kinetic energy operator is transformed to new coordi

nates, ; = r/R( 0), 0, ¢, where r, 0 and ¢ are the usual spherical coordinates, and R( 8) 

specifies the shape of the axially symmetric cavity. In these new coordinates the cavity is 

spherical but the kinetic energy operator no longer takes the form of the Laplace operator. 

In order that a basis fulfill boundary conditions at any instant of time we choose it to be a 
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set of eigenfunctions of the spherical cavity in the ~, (}, </> variables. Specifically, these 

eigenfunctions are: 

(5) 

where j 1 and a~ are the spherical Bessel functions and their roots, respectively, ?'(" are the 

associated Legendre polynomials, l;::::: m, and Nm,L,n are constant normalization factors. 

The basis states included in the present ~alculations were those with l :s; 19 and n :s; 9, 

with additional cutoff on the roots of the Bessel functions: a~ :s; 32.5, which corresponds 

to the energy of spherical states less than 32.52 in units of 2mR~l(2. In the same units, 

the Fermi energy of the system considered is around 100. As an example, the dimension 

of the basis in the m = 0 subspace was 60 for positive parity, and 59 for negative parity 

states. 

In solving the time dependent Schroedinger ~quation in the case of a diffuse Woods

Saxon potential, there are three parameters which influence the results: the number of 

oscillator shells No, the number of Gauss-Laguerre and Gauss-Hermite integration points 

used in evaluating the matrix elements of the potential, and the number of time steps. We 

have checked the convergence of the results as a function of all these parameters. For 

example, the relative excitation of the gas after one period of the P 4 vibration with an 

amplitude a= 0.2 and Tf = 0.06 was 0.0205, 0.0196 and 0.0193 for No= 18, 20 and 22. 

The adiabaticity parameter 1j is defined as before [4]: 1] = Roct rolvp, where v F is the 

Fermi velocity of particles in the bulk. This parameter defines the ratio of the fastest 

speed of the wall to the fastest speed of the particles. The number of time steps required 

to get convergence changes with 7]. For higher 7], fewer time steps are needed. We found 

that for one period of vibration an adequate number of time steps was 16000 for 17 = 0.02 

and 800 for 17 = 0.60. We do not calculate the matrix elements of the hamiltonian at each 

time step, but after one hundred time steps for 1] = 0.02 and after twenty for 17 = 0.60 . 

For the intermediate time steps we calculated the matrix elements by linear interpolation. 

For the P 4 vibration with 1] = 0.02 the relative excitation was 0.062089, 0.059250 and 
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0.059105 when the number of points NH at which we calculated the matrix elements was 

40, 80 and 160, respectively. 

3. Results 

In Fig. 1 the quanta! results of EexdEo for the spheroid and for the P4 shape are 

shown as a function of time for one period of oscillation. The shapes are vibrating 

around a sphere (co = 0) with an amplitude c 1 = 0.2 and a frequency m corresponding to 

an adiabaticity parameter 71 = 0.48. This corresponds to a value of Jim around 20 MeV. 

This energy is much higher than the average spacing between single particle levels. We 

find in this case a characteristic dissipative behavior, especially for the cavity. 

The solid curves in Fig. 1 show the predictions of the one-body dissipation formula 

for a billiard [4], i.e., for a diffuseness a= 0. The other curves correspond to the results 

of quantal calculations for a = 0, 0.2, 0.4, 0.6, 0.8, and 1.0 fm. (Increasing diffuseness 

corresponds to decreasing excitation energy.) As one can see, the results of the 

calculations are somewhat lower than the one-body predictions even for a = 0, and the 

suppression of the excitation increases with the diffusenesses of the potential. 

In Fig. 2 the corresponding classical results are shown. The solid curves correspond 

again to the predictions of the one-body dissipation formula for a = 0 and the other curves 

are coded as in Fig. 1. The case a= 0 fm (closely spaced dots) corresponds to the billiard 

case, which can be directly compared to the wall formula predictions. As one can see the 

agreement in this case is close not only for the case of P 4 but also for the spheroid, which 

for lower values of 71 is known to show an elastic rather than a dissipative behavior. This 

seems to be due to the fact that for 71 = 0.48 the time for one oscillation allows the 

particles to make typically only one collision with the wall. This means that there is not 

enough time for the particles to realize that the potential is integrable. . 

In Figs. 3 and 4 the quantal and classical values of EexciEo after one period of 

oscillations are shown for different values of 71 and different shapes P3, P4, Ps and P6. 
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In the quanta! case one sees an almost linear dependence of the excitation on diffuse

ness. In the classical case the dependence on diffuseness is, somewhat unexpectedly, 

more complicated. We are in the process of analyzing this behavior. The analysis is 

complicated by the fact noted earlier that increasing the value of a for a very deep 

potential implies that the value of the effective radius of the lower part of the potential 

(where the particles reside) is decreased. 

Figure 5 summarizes the relative excitations calculated after one period for all multi

poles and frequencies ( 1J values) in the case of zero diffuseness. The classical results 

(squares) agree with the \Yall formula (solid line) in all cases except for P2 and the 

spheroid, which show the expected deviations for small 7]. The quanta! results are 

systematically below the wall formula prediction. The dashed line is the result of using 

the following expression derived in [2], which corrects the wall formula for the wave

mechanical suppression of the dissipation due to the finite ratio of the wavelength of the 

quantized particles to the wavelength of the multipole ripples of the oscillating cavity: 

~ =( ~~L~~[l+ x: _ 16(;:~~~~2 ) ( x: ( x: -+{z+~4-xx2 J] , (6) 

where x = (Fermi wavelength)/(Ripple wavelength). 

Acknowledgements 

This work was supported in part by the U.S.-Polish Maria Curie-Sklodowska Fund 

PAA/NSF-91-68, by the Fund KBN-2660/2/91 ofthe Polish Scientific Committee and by 

the Director, Office of Energy Research, Division of Nuclear Physics of the Office of 

High Energy and Nuclear Physics of the U.S. Department of Energy under Contract No. 

DE-AC03-76SF00098. 

7 



References 

1. J. B{ocki, Y. Boneh, J.R. Nix, J. Randrup, M. Robel; A. Sierk and W.J. Swiiitecki, 

Ann. Phys. 113 (1978) 330. 

2. S.E. Koonin, R.L. Hatch, and J. Randrup, Nucl. Phys . .A283 (1977) 87. 

3. J. B{ocki, F. Brut, and W.J. Swiiitecki, Acta Physica Polonica B25 (1994) 637. 

4. J. B{ocki, Y.J. Shi, and W.J. Swiiitecki, Nucl. Phys. A554 (1993) 387. 

Figure Captions 

. Fig. 1. The time-dependence of the relative excitation energy of a gas of 112 fermions 

in a time-dependent potential in the course of one complete period T. The solid 

curves are the predictions of the classical wall formula, and the other curves are 

the numerical results for various degrees of diffuseness of the potential, given 

by a = 0 (next highest dissipation), 0.2, 0.4, 0.6, 0.8 and 1.0 fm (lowest 

dissipation). 

Fig. 2. This is like Fig. 1 but for a classical gas. The coding of the curves is the same 

as in Fig. 1. 

Fig. 3. The relative excitation energy of 112 fermions after one period of oscillation, as 

a function of the diffuseness parameter a, for various speeds of oscillation (as 

given by T]), and for four different polynomial deformations. 

Fig. 4. This is like Fig. 3 but for a classical gas. 

Fig. 5. The relative excitation energy after one period of oscillation in the case of a 

(zero diffuseness) billiard potential, for six different shapes. The squares refer 

to a classical gas and the solid curves are the corresponding predictions of the 

wall formula. The stars refer to a gas of 112 fermions and the dotted curves 

refer to the wall formula modified by the wave-mechanical correction from Ref. 

2. 
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