
•• 

' ·r J ., . ' 

LBL-36207 
UC-405 

Lawrence Berkeley Laboratory 
UNIVERSITY OF CALIFORNIA 

Physics Division 
Mathematics Department 

To be submitted for publication 

An Approximation of Fluid Motion Due to 
Boundary Forces Using Impulse Variables 

R. Cortez 

September 1994 

Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098 

---
::a , 

(") ""' .... o, 
ao::u tD, 
sen~ 
!»ZITI 
c+O 
tDr+(") 

0 
CD 

~ 
-< ..... Ill.---CQ ... 

~ 

(") 
0 
'tJ 
'< 
.... 

..... 
CD ..... 
I 

w 
0\ 
N 
& ...... 



DISCLAIMER 

This documcut was prepared as ao accouut of worlc sponsored by the Uoited States 

GovemmeaL While this document is believed to coataia correct iafonnatioo, aeither 
the Uoited States Goverameat aor aay ageacy thereof, aor The Regents of the 
Uoiversity of California. nor aoy of tbeir employees, makes aoy warranty, express or 
implied, or assumes aoy legal responsibility for the accuracy, completeness, or 
usefulDess of any iafonnation, appararus, product, or process disclosed, or represents 
that its use would not infringe privately owaed rights. Reference herein to aoy specific 
commercial product, process, or servioe by its trade aame, trademark, manufacturer, or 
otherwise, does not necessarily constitute or imply its endorsement, recommendation, or 
favoring by the Uoitcd States Goveromeot or aoy agency thereof, or The Regents of the 
University of California. The views aod opioioas of authors expressed herein do not 
DCCCSSarily state or reflect those of the Uoitcd States Goverameot or aoy agency thereof. 
or The Regents of the Uoiversity of California 

Lawrence Ber:lceley Labora!ory is an equal opponuoity employer. 

.. 

,. , 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 



LBL-36207 

AN APPROXIMATION OF FLUID MOTION DUE TO BOUNDARY 
FORCES USING IMPULSE VARIABLES 1 

Ricardo Cortez 
Department of Mathematics and Lawrence Berkeley Laboratory 

University of California 
Berkeley, CA 94 720, USA 

·September 1994 

1 This work was supported in part by the Applied Mathematical Sciences Subprogram of the Office of 
Energy Research, U.S. Department of Energy under Contract DE-AC03-76SF00098 and by the University 

of California Affirmative Action Dissertation-year Fellowship. 



.' 



Abstract 

The motion of an incompressible, inviscid fluid in a region surrounded by a 

massless, elastic membrane can be approximated by transmitting the effect of the 

boundary forces to the fluid through vortex dipoles. We present a Lagrangian nu

merical method for approximating this motion based on the impulse ( a.k.a. magne

tization) variables introduced by Buttke (see [4]). In particular, we explain the cor

respondence between impulse variables and vortex dipoles with a prescribed dipole 

moment. Numerical examples that illustrate the application of impulse variables in 

this context are given. 
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1 Introduction 

There are many interesting situations in which a fluid flows in a region bounded by 

elastic membranes. Examples of such situations are air flow inside the lungs, blood 

flow through the heart, and water sloshing inside a balloon. A key feature of these 

·examples is the interaction between the elastic forces that arise on the boundary 

as the membrane stretches, and the fluid inside. When the fluid is incompressible, 

these forces immediately affect the motion of the entire fluid; in turn, this motion 

changes the configuration of the boundary which determines the forces. Our goal is 

to solve problems with this type of force-fluid interaction. 

One approach for the numerical treatment of the interaction between boundary 

forces and fluid uses the forces to generate vorticity on the boundary and lets the 

vorticity induce the motion of the fluid (see [14, 13]). Typically the boundary is 

idealized as infinitely thin. This gives rise to a situation in ~hich forces are singular 

since they act on a set whose dimension is lower than the spatial dimension of the 

problem. The singularity of the force field has been a source of instabilities (see [13]). 

Mendez [14] tracked the motion of an elastic ellipse immersed in an inviscid fluid 

by introducing pairs of vortex blobs along the boundary to approximate dipoles. 

The blobs used were of low order and questions regarding changes of the dipole 

strengths remained unresolved. In the present paper we improve on these ideas by 

presenting a method which uses higher-order blobs and in which the d.ipole strengths 

are updated with the appropriate equation. 

McCracken & Peskin [13] applied a vortex-grid hybrid method to the study of 

blood flow through heart valves. This method made use of a simple vortex layer to 

introduce the effects of normal boundary forces over each time step and a layer of 

discrete vortex dipoles to introduce the effects of tangential forces. By a discrete 
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.. 
vortex dipole we mean a pair of vortex blobs with equal but opposite strengths, a 

small distance apart . 

Our method for introducing the effects of elastic forces on the fluid is based 

on impulse rather than vorticity. This feature is attractive since the boundary 

forces naturally interact with the fluid by imparting impulse. Furthermore, the use 

of a discrete approximation of dipoles is no longer necessary because the impulse 

variables in fact represent dipoles. 

Buttke [4] recently proposed a Lagrangian numeri'cal method for incompressible 

Euler flow which uses a computational variable that he called velicity. The method 

is based on the Hamiltonian formulation proposed by Oseledets [15] which is valid 

in any number of space dimensions. Velicity, the variable conjugate to position, is 

equal to impulse density for fluids with constant density (see [2, 4]), so here we refer 

to this computational variable simply as impulse. The same variable is also known 

as magnetization (e.g. [5, 7]) 

In two dimensions the discretization of the impulse field in terms of impulse 

blobs is equivalent to representing the vorticity in the flow by vortex dipoles with 

a given dipole moment. This interpretation of impulse allows us to estimate the 

accuracy with which a given impulse discretization approximates a configuration of 

vortex pairs; and as a consequence, how this approximation deteriorates in situations 

when the vortices <;>f a pair drift away from each other. In this paper we explain 

the equivalence of vortex dipoles and impulse blobs, the relationship between the 

strength of an impulse vector and the dipole moment, and illustrate the usefulness 

of impulse variables by presenting examples in which we compute the motion of a 

fluid confined to a region with elastic boundary. 

In section 2 we give the definition of impulse density and its relation to the fluid 
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velocity. We also write the equation of motion for impulse and show its consistency 

with Euler's equations. In section 3 we present the main ideas of Buttke's method. 

Section 4 displays the equivalence between discrete impulse in two dimensions and 

vortex dipoles with a prescribed dipole moment. Section 5 contains the discussion 

of boundary forces, and section 6 contains two numerical examples. 

2 Definition and evolution of impulse 

Consider the incompressible Euler equations in d-dimensional free space (assuming 

uniform unit density) 

Ut + u . V' u = - V' p + F' V' . u = 0, (1) 

where U is the fluid velocity, t is time, Ut is shorthand notation for ouj Ot, \7 · U = 0 

is the incompressibility condition, p is the pressure, and F represents external force. 

We define m as a vector field equivalent to u up to a gradient, that is 

m = u+ \7</J. (2) 

An immediate consequence of Eq. (2) is that the vorticity ~ can be found through 

u or m by ~ = V' X u = V' X m. Furthermore, for an arbitrary function ¢, u 

is the divergence-free part of the Hodge decomposition (see e.g. [8]) of min free 

space. The fluid velocity u is uniquely determined from m by finding the free-space 

projection of m onto the field of divergence-free vectors, denoted by u = lPm. If 

the vorticity is confined to a bounded region, then the function <P can be chosen to 

cancel the velocity away from the support of~' restricting m to a set which contains 

the support of~-
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Impulse, I, is the total amount of linear momentum required to start the given 

motion from rest (see [2]). In two dimensions and under the assumption of uniform 

fluid density p, impulse is defined by the equation 

I = p j IR2 (y, -x) ~ dx, 

To see that m is equal to impulse density, assume that m has compact support, use 

the definition of impulse, and (2) to obtain (in two dimensions) 

where the last equality follows after integration by parts. The same result is true in 

three dimensions. From this point on, we refer to m as impulse. 

The evolution equation for m is ([4]) 

mt + u · V'm = -(V'uf m + F, (3) 

where V'u is a matrix with entries (V'u)ij = ouifoxj, and T denotes a transpose. 

Euler's equations in projection form are 

1P(t1t + u · V'u) = 1PF. (4) 

In order to see that Eq. (3) is consistent with (4), we substitute Eq. (2) into (3) 

to obtain 

where D / Dt = Ot + u · V' is the material derivative. We now apply the projection 

operator to the last equation and we obtain ( 4). 

For a derivation of the continuous Hamiltonian formulation of incompressible 

fluid flow using impulse variables, see [12, 11, 15]. 
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3 The numerical method in two dimensions 

A Lagrangian numerical method based on impulse can be outlined in the following 

way: (1) approximate the impulse field by some discretization, (2) find u from m 

via a projection, (3) advance the particles and update the impulse strengths. 

3.1 The approximate impulse field 

Let m(x) represent the exact impulse field. Following Buttke [4], we approximate 

m(x) by a collection of impulse blobs m(x) = I: mi fo(x- xi) centered at locations 

xi. The impulse strengths mi are initially set equal to the m(xi) multiplied by 

an area element. The cutoff function fo is a smooth approximation to the delta 

function and, as in a vortex method, is chosen to satisfy certain conditions for the 

purpose of accuracy. In particular, f 0(x) = c- 2 ft(xjc), where the cutoff radius cis 

a small but fixed parameter and h is a smooth function satisfying: 

1. I h(x)dx = 1 

2. Ix"' f1(x)dx = 0, 0 <lad < k- 1 

3. Ix"' /1(x)dx < oo, lal = k. 

Here a is a 2-dimensional multiindex and k a fixed positive integer. A function 

satisfying the conditions outlined above is referred to as a kth-order cutoff function 

because in the context of vortex methods, the replacement of the vorticity ~(x) 

by I ~(y)fo(x- y)dy causes changes in the velocity field which are O(ck). For 

a detailed analysis of cutoff functions see [3]. In this paper we use the radially 

symmetric function h ( r) = 2~ ( e-r
2 + te-r2 

12 ), of order 4. The appropriateness of 

adopting cutoff functions from vortex theory into impulse methods is discussed in 

section 4. 
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3.2 The particle velocities due to impulse 

In order to update the impulse particle positions, we must compute the velocity at 

each particle location. The projection, the process of finding the velocity u in terms 

of m, can be done exactly for a good choice of radially symmetric function fs. This 

is done as follows: 

1. The velocity field u is related to impulse by an approximation of Eq. (2); 

namely m = u + V </>, . for some </>. Take the divergence of this equation to 

obtain 

Suppose that a function 'ljJ satisfies /}.'1/J = fs, then we could write </> = 

I: mi · V'lj;. This observation is important because 'ljJ does not depend on 

the flow and so '1/J can be found once and for all. 

2. Since fs is radially symmetric, the equation for 'ljJ can be written in polar 

coordinates 

1 
-(r'l/Jr)r = fs(r), , 
T 

where the subscript r represents a partial derivative with respect to r. Ul-

timately we only need the gradient of 'ljJ, not '1/J itself, so we solve the last 

equation for '1/Jr and obtain 

liT 1 '1/Jr(r) =- qfs(q)dq = -
2 

F(r), 
T 0 'lrT 

where F( r) = flxl~r fs( lxl)dx is called the shape factor, and depends only on 

the cutoff function. 
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3. We can now find an expression for ¢, which we differentiate to find V' <P and 

finally let u = m :- V' ¢. The final result in terms of the shape factor is 

( ) ="'"' j [rF'(r)- F(r)] _ AJ( j. Aj) [rF'(r)- 2F(r)] 
U X L...Jm 

2 2 X m X 
2 2 , 

rrr · rrr 
(5) 

where x.J = (x- x3)fr and r = lx- xJI. 

The particle positions are advanced using dxj jdt = u(x3). 

3.3 The update of impulse strengths 

The impulse strengths must be updated with an equation approximating Eq. (3). To 

this end we differentiate the expression for u to obtain the matrix V'u, and calculate 

any forces at x3. The impulse strengths are updated using dm3 jdt = -(V'uf mi +fl, 

where fl is the force on the piece of boundary represented by the j-th particle· (see 

section 5). 

In summary the algorithm looks like this: 

1. Given m(x) =I:: mi fs(x- xi), find expressions for u(x) = IPm and V'u. 

2. Update the particle positions and impulse strengths with 

dxi 

dt 
dmi 

dt 

u(xi) 

-(V'u)T mi +fl. 

4 Impulse and vorticity in two dimensions 

(6) 

(7) 

In this section we explain the connection between a collection of impulse blobs and a 

collection of vortex dipoles. This connection leads to the conclusion that a discrete 

vortex dipole (two vortex blobs a small distance apart) induces a velocity field which 
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is a centered-difference approximation of the velocity field induced by an impulse 

blob which uses the same cutoff function. This observa~ion allows us to import into 

the analysis of the impulse method the role of the cutoff function in the accuracy of 

vortex methods. 

A collection of impulse blobs, m(x) = L:i mi fs(x- xi), immediately defines 

the vorticity in the flow. Since ~ = v X m, we have 

~(x) =LV" j 0(x- xi)·, (mi X z), 
i 

where z is the unit vector normal to the plane. Each term in the sum is lmil 

multiplied by the derivative of fo in the direction of (mix z). Let hi be a vector of 

magnitude hi in the direction of (mi X z) (see Figure 1), and write the derivative 

of fo in the direction of hi as 

~(x) = L lmil lim fo(x + h3
- xi)- !s(x- hi- xi) 

hi-o 2hi 
J 

= L lim ~i [!s(x +hi- xi)- j 5(x- hi- xi)], 
' hJ--+0 

J 

(8) 

where the vortex strengths ~i are found with the formula ~j = 1~;1. Expression (8) 

shows that the vorticity induced by the collection of impulse blobs is exactly the 

vorticity generated by a collection of smoothed vortex dipoles. Each dipole is the 

limit of two vortex blobs of equal but opposite strength as their separation vanishes; 

the limit is taken in a way that keeps the vortex dipole moment equal to z x mi. 

We note that the vortex blobs use the same cutoff function as the impulse variables. 

Boundary forces naturally interact with the fluid by imparting impulse. The 

impulse blobs of our numerical method are precisely what is needed to introduce 

the effect of forces on· the fluid by the use of vortex dipoles, since impulse blobs are 

vortex dipoles. Furthermore, our method includes equations for the evolution of the 
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Figure 1: Vortex Pair Approximation to Impulse Vector 

dipole strengths. Previous methods did not include an adequate system for updating 

dipole strengths, and used vortex pairs to approximate dipoles, which introduced 

an additional error corresponding to the centered-difference approximation of the 

derivative in (8). 

The velocity at an arbitrary point x due to a collection of impulse blobs is given 

by Eq. (5) 

( ) -""' i[rF'(r)-F(r)]_·i( i.·i)[rF'(r)-2F(r)] 
U X - L..,.m . 2 X m X 2 • 

2~r 2~r 

This equation can be manipulated to look like 

u(x) = [DKs(x)]{m X z), (9) 

where Ks(x) = (-y,xfF(r)/2n2 is the kernel of the vortex method. The deriva

tive in (9) is the result of taking the limit of the velocity field due to two vortex 

blobs as their separation vanishes while maintaining a constant dipole moment. 

It is important to point out that a collection of impulse variables that initially 

induces vorticity which can be approximated by a collection of vortex blobs, may 

later evolve into a configuration whose induced vorticity is no longer approximated 

by the evolved vortices with the same accuracy. For a detailed description of how 

this happens and of ways to prevent accuracy loss see Cortez [9]. This type of 

accuracy loss is not present in the examples discussed in this paper. 

10 
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5 Boundary forces 

The forces exerted by an elastic membrane on the fluid are given by (see [13]) 

F(x) = j f(s)o(x- x(s)) ds, (10) 

where s is the arclength parameter, x( s) is a parametrization of the boundary, f is 

the force density, and 8 is the two-dimensional Dirac delta function. Note that F is 

singular since the integral is taken along a curve and 8 is two-dimen,sional. 

The force density is of the form f(s) = d(Tf)jds, where Tis tension, and f is 

the unit vector tangent to the boundary (see [16]). We apply the product rule to 

the definition of force density to get 

ti( ) - d(Tf) - dT A Tdf - dT A T A 

8 
- ds - ds 7 + ds - ds 7 + ~>.n, 

where K. is the curvature and ii is the outward unit vector normal to the boundary. 

Since in Euler flow tangential forces will simply make the boundary slip and not 

affect the fluid, we conclude that f must be in the direction normal to the boundary 

and ddT = 0 along the membrane at any moment in time. The forces are then found 
s • 

from the equation 

f( s) = T ~>.n. (11) 

In practice, the forces are found at points on the boundary where impulse vectors 

are located. Each force vector is associated with a piece of arclength corresponding 

to the discretization of the boundary. Equation (10) is discretized by 

F(x) = L fi fs(x- xi), 
j 

where fi = f(xi)hi(t), and hi(t) is the discretization size of the j-th particle. Each 

piece of arclength (the discretization size) is thought of as a rubber band with a 
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stiffness constant and a rest-length. Denote by hb the rest-length corresponding to 

hi(t), then the tension at xi is defined by the equation 

hi(t) > h~ 

hi(t) ~ h~, 

where CT is a stiffness constant. We will only consider the case when all h~ are equal. 

F?r in viscid flow, the tension must be constant along the membrane at any 

instant in time. To enforce this condition for equal hb, the boundary points xi must 

be equally distributed at the end of every time step. This is accomplished by placing 

a cubic polynomial between two consecutive boundary points matching the slopes 

at those points, and moving one of the points along this curve to the appropriate 

location. T~e initial point in this process is chosen arbitrarily. 

The curvature in Eq. (11) is also found using a cubic polynomial to interpolate 

the boundary. This time the polynomial is chosen to match the location of three 

adjacent points and the slope at the middle point.· The curvature at the middle 

point is approximated by the curvature of the polynomial. 

6 Numerical examples 

In this section we present two numerical examples of the motion of a massless, elastic 

membrane immersed in an incompressible, inviscid fluid. The membrane is assumed 

to move with the local fluid velocity and to be initially under tension. We begin 

with a few comments on the time-stepping procedure. 
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6.1 Time stepping 

At each time step we must update the particle positions and the impulse vectors as 

described by Eq. (6) and (7). We use the following time-splitting procedure: 

1. Since .P is a rate of change of impulse, At .P is the impulse imparted by a 

constant force .P during one time step At. Given the current impulse vectors 

and particle positions, add the effect of the forces at the beginning of the time 

step: 

(12) 

2. Update the positions and impulse strengths: 

{13) 

(14) 

The unit normal vectors needed to add the effect of the forces are found by 

updating and normalizing vectors initially perpendicular to the boundary. Vectors 

normal to the boundary which are evolved using Eq. (14) remain normal to the 

boundary ([9]). 

A Runge-Kutta method of order 5 was used to solve Eq. (13) - (14). The 

numerical results were compared with results from an iterative method in which the 

configuration at the end of the time step was the one used to calculate the forces 

acting during that step. This comparison showed no significant differences and so 

we opted to use the procedure described above for its simplicity. 

6.2 Example 1: An ellipse moving under tension 
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Figure 2: Initial Configuration for Example 1 

The first example begins with the membrane in the shape ofthe ellipse (3x/2?+y2 = 
1 (see Figure 2). This curve was discretized with 240 equally spaced points. The 

rest-length of all elements was set to half the initial discretization size, and the 

stiffness CJ was set to 1/2. The cutoffTadius 6 (for fs) was fixed at 0.12. 

The motion of the membrane as is goes through one cycle (from vertical to 

horizontal and back) is depicted in Figure 3. Although the membrane appears 

to return to its initial configuration, there is no confirmation that the motion is 

periodic, starting from the given initial conditions. One might ask the question: 

is the membrane elliptical for t > 0? The eccentricity of ellipses of constant area 

defines their arclength. The graph of eccentricity versus arclength for ellipses of 

area equal to the area enclosed by the initial membrane is shown as a solid line in 

Figure 4. The eccentricity of an ellipse is defined as (1-( ajb )2) 112 , where a and bare 

the minor and major axes respectively. If we assume that the membrane remains 

elliptical for all time, its eccentricity can be calculated at every step and plotted 

against the arclength. The results for 0 ~ t ~ 4.48 shown in Figure 4 and the 

convexity of the region inside the membrane validate this assumption. We conclude 
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from the figure that the membrane is approximately elliptical during the motion. 

We now present numerical evidence of the convergence of the method. Each 

particle used to represent the boundary is associated with a piece of the membrane 

whose length we call the discretization size. Suppose the initial discretization size is 

h (corresponding to N particles) and the solution is found up to a time T > 0. We 

then solve the problem again with h/2 as the discretization size (corresponding to 

2N particles) and compare the positions of the N particles in the first run with the 

positions of the corresponding particles in the second run; that is, those particles 

which have the same initial positions as the original N particles. We define the error 

e( XN, x 2N) to be the maximum of the distances between corresponding particles. 

The ellipse problem was solved up to time T = 5.76 using tl.t = 0.16 and 0.08, 

as well as three levels of refinement of the discretization size, those corresponding 

to 120, 240, and 480 particles. The maximum distance between the 120 particles 

common to all runs was calculated at times t = 3.2, 4.48, and 5.76. These times 

yield results that are representative of the entire motion. The results, Tables I and 

II, show that as the time step decreases, the errors also decrease. It is also evident 

from the tables that for a small enough time step, the errors decrease by about a 

factor of 4 when the discretization size is halved, indicating 2nd order convergence. 

This reflects the fact that the midpoint rule is being used to approximate the line 

integral needed to compute the forces along the membrane. 

- Throughout the motion of the membrane, two quantities that must remain in

variant are the area inside the membrane and the total energy. Since the fluid is 

incompressible, the area of the region bounded by the membrane must remain con

stant in time. In addition, the kinetic energy of the fluid must balance the changes 

in the elastic energy of the membrane. Thus, another invariant of the motion is the 

15 
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Figure 3: Motion of the membrane of example 1 for time t = 0 -. 4.48, with tlt = 
~ 

0.008. 
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5.30 .----.---r----.---r----.---.----.-----, 

5.28 

5.26 

5.24 
.r: 
g> 5.22 
Q) 

~ 
Ill 5.20 

5.18 

5.16 

5.14 

5·12 o!:---=o....,. 1=------=o'-=.2=------=o'-=.3=------=o....,.4::------=o'-=. 5=------=o'--..6=-------=o:'-:. 7=--~o. 8 
eccentricity 

Figure 4: Eccentricity vs. arclength. The solid line is the graph for ellipses of fixed 

area equal to the initial area enclosed by the membrane; the dots are points obtained 

for the motion of the membrane in example 1. 

Table I 

Errors for tit= 0.16 at t = 3.2, 4.48, and 5.76. 

tlt = 0.16 

t = 3.20 t = 4.48 t = 5.76 

e(x12o, X24o) 0.5338E-3 0.7033E-3 1.651E-3 

e(x24o, x4so) 0.2006E-3 0.2750E-3 0.5631E-3 

Error ratio 2.66 2.56 2.93 
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Table II 

Errors for 11t = 0.08 at t = 3.2, 4.48, and 5. 76. 

11t = 0.08 

t = 3.20 t = 4.48 t = 5.76 

e(x120, X240) 0.4427E-3 0.3032E-3 1.0943E-3 

e(x24o, X4so) 0.1084E-3 0.0743E-3 0.2633E-3 

Error ratio 4.08 4.08 4.16 

total energy: kinetic plus elastic. 

The kinetic energy, is given by J( E = 1/2 I: mi · u(xi) (see [4]), while the elastic 

energy is EE = ~I: (hi(t)- h~)2 jh~, when hi(t) > h~, and zero otherwise. Note 

that the kinetic energy depends explicitly on the cutoff function fs since u does. 

' 
The approximate conservation of area and energy over a period of time long enough 

for the membrane to go through more than two cycles is shown in Figure 5. At 

t = 10, both quantities are still conserved to within 0.5% of their initial values (for 

11t = 0.008, 8 = 0.12, and 240 particles). We found that the relative deviation of 

area and total energy from their initial values was proportional to the time step. The 

slight changes of these invariants are a consequence of the interpolation procedures 

during the redistribution of points on the boundary, and can be reduced by the use of 

better interpolation methods. In problems where interpolation is not required, the 

solution of the Hamiltonian system (6)- (7) (for fi = 0) with Runge-Kutta methods 

has been shown to conserve area and kinetic energy to an accuracy of 1 x w-7 with 

comparable time steps [4]. 
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Figure 5: Relative change of invariants of example 1 for 240 particles and At = 0.008. 

6.3 Example 2: A non-convex membrane 

The initial setup for the second example consists of a membrane in a shape that 

simulates a water balloon being poked with a finger (see Figure 6). When we 

remove the finger, the strong forces on the indented part of the boundary make 

this portion move faster than the rest, creating waves which propagate along the 

boundary. The exact shape of the initial membrane is given in polar coordinates by 

x(O) = r(O)cos(O) and y(O) = r(O)sin(O), where r(O) = 1- 1~(1-10q3 + 15q4 - 6q5
) 

and q = 28/ 1r on the right half plane, and r( 0) = 1 on the left half plane. 

The boundary was discretized using 300 equally spaced particles and the rest-

length of all elements was set to half the initial discretization size. The stiffness u 

was set to 1/2 for all elements and the cutoff radius 6 was fixed at 0.12. 

The motion of the membrane for time 0 through 5.4 and At = 0.004 is seen in 

Figure 7 and Figure 8. In this example, as well as the first one, the initial impulse 

field was identically zero. It is the forces created by the initial membrane config-

uration that get the motion started by introducing impulse along the membrane. 
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Figure 6: Initial Membrane configuration of example 2 

Of the two invariants, the energy is typically more sensitive than the area to the 

boundary treatment. In this example the energy was conserved to within 4% of its 

initial value and area to within 0.5% of its initial value for times up to 5.4. 

In Figure 7 one can detect waves propagating along the boundary from right to 

left. These get started when the initially indented portion of the boundary moves 

out. The first frame of Figure 8 shows the waves beginning to travel back and one 

can see new waves forming as the left side of the membrane slightly vibrates. These 

new waves have frequency components essentially of the same size as the original 

wave. We observe that while the waves are on one side of the membrane, the other 

side remains fairly smooth and circular. This smoothness gets disturbed only when 

several waves have formed and interacted with one another. By then, the radial 

distance to the smooth part of the boundary slightly oscillates around a constant 

value. 

'- Since the forces are normal to the boundary, the impulse field at the beginning 

/ 
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Figure 7: Motion of the membrane of example 2 for timet= 0- 2.4,_ with tlt = 0.004. 
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of each time step is also normal to the boundary. As m evolves with Eq. (14), it 

remains normal to the boundary (see [9]). Figure 9 shows the impulse field at times 

t = 1.2 and t = 5.0. For clarity, the vectors have been scaled by a factor of 2 and only 

every other vector is shown. Note that most vectors, but not all, point inward since 

most of the impulse has been imparted toward the interior of the region bounded 

by the membrane. Since force is a rate of change of impulse, the impulse field at 

any time represents the accumulation of forces up to that time. As a consequence, 

the size of the impulse vectors generally increases in time. (since most of the time, 

force on any piece of boundary points inward) even though the discretization size 

stays near but below its initial value. The growth of the impulse vectors is observed 

in Figure 9. 

7 Conclusions 

We have shown that the approximation of impulse field in two dimensions is equiv

alent to approximating the vorticity in the flow with vortex dipoles. We have also 

shown the connection between the strength of an impulse blob and the vortex dipole 

moment. The equation of motion for impulse automatically evolves the strengths 

of the dipoles. A numerical method for the incompressible Euler equations based 

on impulse was applied to problems in which a fluid is surrounded by an elastic 

membrane. The calculations show evidence of the convergence of the method. Two 

attractive features of the method are that the treatment of forces is simple and that 

it preserves well at least two invariants of the flow: the area inside the membrane 

and the total energy. Of course, the simple nature of the treatment of the boundary 

forces is a result of the assumption that the forces are constant during each time 

step, and thus their impulse can simply be added to the existing i~pulse at the be-
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Figure 9: Impulse field of example 2 at times t = 1.2 and t = 5.0. 
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ginning of each step. Since the forces are proportional to the local curvature of the 

membrane, high curvatures will produce strong forces, which in turn will require a 

reduction of the time step until the configuration of the boundary allows the return 

to larger steps. 

We expect this method to be useful in approximating flow in regions with more 

complicated geometries, such as the interior of the human heart, and in situations 

that account for viscous effects and include physical constraints. A physical and 

geometrical constraint might be portions of the boundary with corners or cusps. 

This requires a mechanism for computing forces along those portions of the boundary 

which does not rely on curvature, since curvature is infinite there. This feature is 

not part of the current implementation of the method. Such situations will be the 

focus of future work. 
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