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ABSTRACT 

LBL-3626 

The isobar model for a + b -+ 1 + 2 + 3 is reexamined in light of 

the requirements of subenergy unitarity. Discontinuities of the amplitude 

across the subenergy variables are removed and a unitarized version of 

the isobar amplitude is presented. We make a comparison of the amplitudes 

with and without the unitarity corrections and suggest a ratio test to 

check the validity of the isobar model. 
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I. INTRODUCTION 

In recent years there has been considerable interest in doing 

partial wave analysis of the reactions of the type a + b -+ 1 + 2 + 3. In· 

analyzing such a process, one finds it convenient to assume that the 

reaction proceeds through an intermediate state dominated by a two-particle 

resonance or an isobar which ultimately breaks up into its constituents in 

the final state. Now, it may nappen that many such isobars are likely to 

be present in the intermediate state. In such a case, it has been 

customary to simply add the various amplitudes corresponding to different 

isobars to obtain the total amplitude. This is the so-called isobar 

model which has been widely employed in such reactions as TIN -+ TITIN. 1,2,3 

This simple scheme, however, is only an approximation and has been criti

cized lately on grounds that it does not satisfy unitarity.4 

In the present paper, we outline the isoQar model, state the various 

assumptions that go into it, derive the necessary unitarity constraints to 

modify it and suggest some tests to check its validity. In doing so, we 

shall confine ourselves to considerations of normal thresholds in subenergy 

variables only. Our aim is to carry the formal results to a stage where 

numerical estimates can be easily made. For this reason, we shall present 

all the necessary details for performing such estimates as we develop the 

formalism. 

In Section II we introduce the necessary representations in the 

Hilbert space of two- and three-particle systems. Then in Section III we 

discuss the isobar model as currently practiced. Next, in Section IV we 

develop the unitarity constraints and write down the new version of the 

amplitude. In Section V we deal with the comparison of the isobar 
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amplitude and the unitarized amplitude. Finally, in Section VI we offer 

our concluding remarks. 

II. REPRESENTATIONS 

We consider particles with spin and use relativistically invariant 

normalization of states. 

A. Two Particles 

Quite generally, in an arbitrary reference frame, the plane wave 

states are normalized as 

= 
-+ -+ -+,-+ 

2E. 2Eb <5 (p' - p ) <5 (Pb - Pb) <5, 0, 
a a a ~a~a ~b~b 

(II-I) 

Here ~. denotes the z-component of spin a. which we shall suppress. 
1 1 

Going over to the angular momentum representation, the states of total 

-+ 
momentum P, energy E, angular momentum J and its z-component M have 

the following normalization. 

(I I-2) 

where the center of mass (c.m.) momentum and energy are denoted by q and 

. Vs, respectively. The total spin a and the relative angular momentum R, 

in the c.m. are coupled in the usual manner. 

-+ -+ -+ a = aa + °b 
(II-3) 

-+ -+ -+ 
J = R, + a 

I 
~. 
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B. Three Particles 

The normalization of plane wave states in an arbitrary reference 

frame is given by 

2E Q (p' -p ) Q, • •• Q , 
y y y ~a~a ~y~y 

(II-4) 

In contrast to the case of two particles, a three-particle system 

has three linearly independent angular momentum representations. We may 

couple particles Sand y and obtain a state given in (11-2). In particular, 

we may construct this state in the overall center of mass system (o.c.m.) 
-+ -+ -+ 

so that P
SY 

= -~ where ~ is the momentum of a in the o.c.m. This state, 

in fact, can be regarded as representing a "particle Sy" which can then be 

coupled to a, again using the prescription (11-2). Finally, the state thus 

realized in the o.c.m. can be given a Lorentz boost. We shall indicate the 

dynamical variables of this state by superscript a. It is normalized as 

= Q 
-a'-a a a 

a' a Q (s - s ) 

(II-S) 

In the above, sa and qa for the S,y pair have the same meaning as defined 

earlier. Wa is the total energy of the entire system in the o.c.m. The 

meaning of various angular momenta will be clear from the following coupling 

scheme which is an extension of (11-3). 

"!"a -+ -+ 

t a = as + a y 

"ta t a 
+ 

"!'a 
J = a 

) 
(II-6) 

-+a -m -+ 
L = J + a a 
-+a -+a -+a 
J = L + L: 
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For further details of this canonical representation we refer the reader 

to refs. 8, 9 or 10. 

C. Transformation Functions 

The states introduced so far describe the two- and three-particle 

systems in an arbitrary frame. Since relativistic normalization is used, 

the final result will not depend on the choice of the frame which we shall 
-+ 

now take as the o.c.m., omitting the label P = 0 from the states. 

The states defined by (II-I) and (II-2) are connected by a trans-

formation function which is given by 

= 
4W 
- C(cr crbcr;l1 11b)C(,Q,crJ;M - (ll + 11b) ,11 + 11b) x q a a .. a . a 

y~WM) ( ) o(p + Pb)o(W - (E + E )) 
IV, - 11a + 11b a a b 

(II-7) 

where W = (e,~) are the spherical coordinates in the c.m. with arbitrary 

orientation of the axes. Similarly, the connection between (II-4) and 

(II-5) is given by 

-+ -+ -+ I a Qn a a.a a-a a (p PoP ;11 11011 W J M L E J ,Q, cr s ) a I-' y a I-' Y = 4~ ~ C(o 0 cpov v ) x 
a L...J Sy'Sy 

q a 
m ,vo'v 

I-' y 

-+ -+ -+ 
o(p + Po + P ) x a p y 

(II-B) 

c.m. of Sy and the o.c.m. respectively (see Fig. 1). The presence of the 
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D-functions is due to the fact that the spins undergo Lorentz rotation. 

Later we shall give explicit formulas for their arguments. 

D. Recoupling Coefficients , 
At this point, it is convenient to introduce our choice of the 

coordinate axes in the o.c.m. For the la) representation, we take the 
+ 

z-axis in the opposite direction to Q , the x-axis toward 8 and orthogonal a 

to z-axis and y-axis out of the paper so that Oxyz forms a right-handed 

system (see Fig. 2). Similar choices are made for the 18) and Iy) repre-

sentations by cyclic permutations of a, 8, y. 

The three representations la), 18), Iy) for the three-particle 

system are equivalent in the sense that they are connected by unitary 

transformations. Indeed, it is this transformation function that plays 

an important role in the partial wave analysis of a three-body final state 

process and also in i~s unitarity calculations. For he1icity representa

tions, this recoupling coefficient has been given by Wick. 11 Calculations 

for the canonical case proceed along similar lines. Here we only give 

the final result referring the interested reader to ref. 10 for details. 

The recoupling coefficient between the la) and Iy) representations is given by 

. 
(WaJ~aLaEajataaasalwYJYMYLYEYjYtYaYsY) 
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= rna + ~' + ~' + ~' 
a 8 Y 

= mY + ~a + ~8 + ~Y 

(II-9) 

The angles e and X are shown in Fig. 2. Each angle is to be calculated 

in the inertial frame located at its vertex. The Lorentz spin rotations 

are given by 

F,;8 = 
y 

e 
ya 

a -X + 8 . + e 
ya ay 

with the angles 8 as indicated in Fig. 2. The spherical harmonics only 

depend on the polar angles and can be expressed in terms of the associated 

Legendre polynomials. All angles are in the x-z plane and the entire 

expression of (11-9) is real. Our convention for the rotation operators 

~s that of Rose. 12 S" h d 1· t t" th h t I" ~ 1nce we ave use cyc 1C no a 10n roug ou , recoup 1ngs 

between other representations·can be easily obtained by permutation of the 

indices in cyclic order. 

E. Isospin States 

Finally, to complete our discussion of representations, we give 

the necessary formulas for the isospin states. As usual, the states have 

unit normalization in terms of kronecker a-functions. The transformation 

coefficients, analogous to (11-7) and (11-8), are, in an obvious notation, 



o 0 o o 6 5 2 

-7-

= (II-10) 

( 10.113\; io,iSiy I 1001Sly; Io,io,io,) = C (113\10.; iSiy)C cio,lo,lo,; is + i y ' io,) 

(11-11) 
-+ 
Iy is the intermediat.e isospin. 

As in the configuration space, there are three equivalent isospin 

representations whos'e relationship to the "plane wave" states in isospin 

space can be obtained by cyclic permutation in (11-11). The unitary 

transformation b,etween these representations, similar to (II-9)', can be 

expressed in terms of the Racah coefficients, W. 12 . 

= 

x C(lo,ISiY;io"iS)C(IYlylY;io, + is,iy ) 

I + 10. _ 10. 
0. r-~~--~~---

(\o,IY (\o,iY (-) V (210.+ 1) (2IY + 1) W(lo,ISIo,Iy;JYio,) 

(II-12) 

In what follows, we shall always understand these states to be included 

in our representations. 
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III. ISOBAR MODEL 

Let T 23 be the scattering operator for the process a + b -+ a + 8 + y. 

In the isobar model, one decomposes this operator into a linear sum of 

products of two operators. 

= 1,2,3 (III-I) 

The operator M13 describes the process y + a -+ y + a and in the context of 

the isobar model it is sometimes called the decay operator. The other 

operator TI3, on the other hand, describes the process ,a + b -+ 8 + (ya) and 

is often referred to as the production operator. The kinematical factor 

~13 is included for convenience and will be defined shortly. 

We can now take the matrix element of (III-I). As we are primarily 

interested in the partial wave amplitudes, we use the angular momentum 

representation. For the final state we may choose anyone of the three 

equivalent representations', say la). Then, indicating the initial angular 

momentum state by la), we have 

= L ( a I M13T131 a) 

8 ~13 
'" ds' dW' 

,/ CIII-2) 

where we have inserted the unit operator implied by (11-5), with 

(III-3) 

and the sum 13' extending over all the discrete variables in the 113) repre-

sentation. For brevity, we shall omit the superscript 13 wherever possible. 

Again, using the unit operator, 
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5 J 

(13' I Mf3Tf3 I a) = L J (13' IMSI 13") p" (13;' IT f3 la) ds" dW" 

13" . 

Now the meaning of ( 13' I Mf3l f3") is that 

x , 

that is, the matrix element describes the two-body elastic process 

o.+y+o.+y. For the Tf3 term we have . 

= 

(III-A) 

(III-S) 

(III-6) 

A similar expression holds for the left hand side of (111-2). After sub-
, 

stituting (111-3) through (111-6) and using (11-9) and (11-12) to replace 

(0.113'), one can carry out the sums and integrals in (111-2) utilizing the 

o-functions to get 

= L· f(~~) (p'f32) (0.1'13') M~'f3"(S') T~,,(W,S~)dS' 
13,13',13" 6. (III-7) 

where, for brevity, the notation is 

(III-B) 
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( 0.113') = (II-lO) x (II-13) with Y -+ 13' and excluding 

the c-functions C(wo.-Wi)CJo.
J

, C~M' 15 10.1' cia.i' 
(III~8) 

E = 
13' ,13" 

We now choose 

= q' (III-9) 
4vfs1 

so that (p') 2 (~~) 6113 = p' and we have 

(III-IO) 

This is the basic expression for the total partial wave amplitude in terms 

. 13 
of the production and. decay amplitudes. .The decay amplitude M13 , 13" is 

usually a known function so that the production parameters T~ .. ·can be 

determined by using (111-10) in the expression for cross-section (which we 

shall not go into). In the rest of the paper we shall be primarily inter-

ested in ~N -+ ~TIN for which we have, when conservation of parity is taken 

into account, 

R.' = R." 

so that the 13" label becomes superfluous and will be dropped from now on. 

The parameters TI3 are functions of continuous variables Wand sl3. 
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In order to further simplify the task 0; fitting the data, it has been 

customary to approximate TB by a threshold factor times another parameter 

which is independent of subenergy. 

T~, (W, s ' )' ~ f~, (W, s ') A~, (W) (III-11) 

We shall call this "minimal approximation". Equation (III~10) now becomes 

(III-12) 

With a suitable choice of barriers f, the integral can now be carried out 

to obtain 

= I (III-l3) 

BB' 

where 

(III-14) 

Index S', signifying the sum over different isobars in the IB) representation, 

will henceforth be absorbed in the index B; Expression (111-13) is a direct 

outcome of (III-I) and (III-II). It contains the recoupling coefficients 

explicitly whose presence is due to the fact that we have expressed the 

entire amplitude T23 in one final state representation la). Indeed, if we 

carry out the partial wave expansion of Eq. (III-I), we get 

(fIT231i> = I J<fla)pa<aIT23Ia) Pa <ali>ds
a 

a,a . 
(III-IS) 

where the sum and integral are over the relevant variables in the two- and 

three-particle states and the transformation functions < fla) and < ali> are 

as given by (II-8) and the complex conjugate of (II-7) respectively. Then, 
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making use of CIII-lO) and CIII-11) in the above, we get 

(III-17) 

3 

= L L L 
0.=1 L~o.jo.R.o.cro. a 

m '\)/3,\)y,M 
JR.a 

CC no.-o. .o. a C· ) ) C· o. ~o.o. ) x .A. a J ; m - \) Q + \) , \) Q + \) C J a L. ; m l.l 
~ Y ~ Y a a 

. (III-IS) 

Thus Eq. CIII-16) with the recoupling coefficient in it is equivalent to 

Eq. (111-17) which does not contain that term. Because of this reason, 

the latter is used in the analysis. We shall, however, find later that 

Eq. (111-16) is more suitable for comparison with the unitarized amplitude. 

Equation (III-IS), apart from an overall energy-momentum o-function, is our 

expression for the total partial-wave amplitude. It is entirely in the 

canonical representation and differs from, for example, the Berkeley-SLAC 
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. 16. h h" h h 1" t verS10n 1n t at t e1r sp1n states are tee 1C1ty sates. For details 

see ref. 10. It should be noted that our procedure for introducing sub-

energy unitarity [Eqs. (IV-16) and (IV-17) below] does not, of course, 

depend upon the specific representation chosen. 

The shortcoming of the model lies in assuming that the reduced 

-amplitudes A introduced in (III-ll) are independent of the sub energy 

variables. We therefore concentrate on this problem in the next Section. 

IV. UNITARITY CONSTRAINTS 

For the amplitude a + b -+ 0. + 8.+ y, we shall be primarily interested 

in the normal threshold singularities in the three~particle subenergy 

variables so.. For a given subenergy variable,· say sa, we have for the 

d . " 13 1scont1nu1ty 
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Here we have suppressed the signs of the total energyW and the two sub

energies sSsY which should be fixed at the same values in both amplitudes 

on the left-hand 'side , say +++. For the =<)= amplitude on the right-hand 

side, only W(+) and sU(_) can be specified, sS and sY being integration 

variables carry a more complicated prescription. For details we refer to 

article 4.7 of ref. 13. Similar expressions can be written down for 

discontinuities in sS and s Y and the three expressions can be added. 

The total discontinuity due to subenergy variables is then given by 

(IV-I) 

It will also be useful to define the usual two-particle K-matrix by 

=0= - :::=0== = ~==0=(g= = ~==[Q=0== (IV-2) 

=(J= - ==@= = -~ =0=0== = -~=0=0= (IV-3) 

We now introduce a reduced, ampli tude J by 

==(j)= ': =z2r + ~ L ~ (IV-4) 

and show that it is free from sub energy discontinuities. Toward this end, 

we continue (IV-4) around the subenergy thresholds and let J -+ I. Then we 

have 

(IV-S) 

where the minus sign is a consequence of the two-particlephase space. 

Now, subtracting (IV-S) from (IV-4), we get 

" 
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=0= -=0= = ~ + ~~(~ d3:0=) 
(IV-6) 

Using (IV-3), 

~='~'+~~ 
and using (IV-2), 

Substitution of these in (IV-6) gives 

which, in view of (IV-I), implies that ~ = ~ , i.e., J has· 

no subenergy discontinuities. 

Next, following Smadja,7 we go a step further and take 

=CV== = L 1 ~ !J.(J. 
(J. 

~ L 
1 

~ = !J.(J. 

(J. 

(J. q(J. 
where division by the two-particle phase-space!J. = ~--~ ensures the 

4.Jsa 
required smoothness of J, so that (IV-4) becomes 

~_1~ 
L..J!J.(J.~ 

.', (J.: 

~J'" 
~+~ 

+ 

(IV-7) 

(IV-8) 
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where we used (IV-2) in the last step. Cancellation of the left-hand side 

with the second term on the right hand side yields 

A possible solution of the above is 

= (Iv-g) 

Decomposition (IV-7) is similar to the one used in (III-I). Equation 

(IV-g) is a set of coupled inte~ral equations which relates each production 

amplitude Ta to ~ther amplitudes TB, BF'a. The term Ja is free from sub-

energy discontinuity and hence represents Ta in the isobar model approximation. 

The integral term provides the required correction to the model. 

In the terminology of Section III, (IV-g) reads' 

(IV-lO) 

and can be 'written in the angular momentum representation by a procedure 

similar to the one used in'obtaining (III-IO) from (III-II). 

= Ja(W,sa) + i/},a L f<aIB)MB(sB}TB(W,sB)pBdsB (IV-II) 
2 BFa , . 

The above can be written in a more compact form 14 

T = J + 3{'T (IV-12) 

and can be formally solved to yield 

T - J('T = J 
or (IV-13) 

T = '(I-J()'-IJ = HJ 

We shall refer to H as the mixing matrix. 
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To deal with the barriers, we set 

(IV-14) 

(IV-IS) 

a -a -a Notice that s is retained in T , thus distinguishing it from A of Eq. 

(III-ll), but not in ja which we assume to be constant over the Dalitz 

plot. This assumption, however, is not crucial to our analysis; that is, 

we could use a series expansion in sa for Ja(W,sa) at the expense, of 

course, of additional parameters to be determined by the data. Substitution 

of (IV-14) and (IV-IS) in (IV-II) gives 

or - -
T = J + J{'T 

L J<aIB>MB(sB) fB(W,sB)T8(W,s8)p Bds8 

a;B 
(IV-16) 

which again implies a new mixing matrix through 

(IV-17) 

a a -a-a Furthermore, since T and J are related to T and J , we can derive 

-a relation between Ii and H. Using (IV-13) and (IV'-l7) in .... (IV-lS), we have 

Putting (IV-14) in the left-hand side of this equation 

or 

L J HaB (W,sa,s8)fB(W,sB)jB(W)ds B 

B 
=~(W,sa) L J Has (W,sa,s8)J8(W)ds 8 

B 
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Since the 'j8,s are linearly independent parameters, we get 

This result can now be incorporated into (IV-17). 

= II}:{ls'jedss = 
13 

-where the barriers are explicit. Calculation of H, in contrast to H, does 

not require knowledge of the barrier factors which are somewhat arbitrary. 

Equation (IV-19) is our solution of the unitarity equations (IV-16). 

V. ISOBAR MODEL AND UNITARITY 

We now wish to include the unitarity corrections in the isobar 

amplitude. Replacing AS in (III-17) by IS as given by (IV-19), we get 

= 

x I :JCt(W) I HSCt(W, s8,sCt) fCt(W,sCt)ds Ct x pSdsS 

Ct 

= L P
a 

(ali> L :JS(W) II (fICt)MCt(SCt)fS(W,s8)HCtf3(W,sCt,s8)pCtdsCtdSS. 
a Ct8 

(V -1) 

where a and B were interchanged in the last step. This is the unitarized 

amplitude which should replace (III-H). 
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If a fit to the data has already been performed using the isobar 

model, the question naturally arises as to how good the results are, i.e. 

whether the Aa'sdetermined from it would be much different from the Ja,s 

determined from (V-I) if a refit were performed. Equation (V-I), in contrast 

to its counterpart (111-17), involves a and B indices which are intermixed. 

This does not make the comparison quite obvious. If, however, we retain 

the partial wave character of T23 we find that the two amplit!Jdes can be 

written in closely analogous forms. Thus, working with (III-16), we include 

unitarity through (IV-19)., 

-
= I Pa (al i> I J (fla) pa dsa I f(aly) MYpY I JB f HYBfBdsBdsY 

a a Y B 

with 

- I Pa (ali> I j(fla) padsa I JSGaS(W,sa) 
a a S 

GaBeW,sa) = J fS [I'(aIY)'MYpYHYBdsY ] dsS 

Y 

To recast the isobar amplitude, we use (111-13) in (III-IS). 

= I Pa(ali> IJ(fla}padSa L AS pa8eW,sa) 
a a B, . 

(V-2) 

eV-3) 

eV-4) 

Expressions eV-2) and eV-4) are now similar, their only difference coming 

from the F and G functions. Indeed, if the mixing matrix H is weak, we 

can write it as 

eV-S) 
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and easily verify that G ~ F. Thus, the effective strength of mixing may 

by defined by a ratio of the two ,functions. Following our practice of 

separating out the barrier factors, we can set 

= 

I J(CY.ly) MYHYBpYdsY 
Y eV-6) 

which is the ratio of the bracket terms in eV-3) and (III-14) . The full 

ratio R is, on the other hand, 

= 
GCY.B(W,sCY.) 

FCY.B(W,sCY.) 
(V-7) 

and includes the barrier terms in it. If these ratios are much different 

from unity or their subenergy dependence is appreciable, a refit is justified. 

VI . CONCLUS ION 

We have presented the formalism of the isobar model and the subenergy 

unitarity constraints in a systematic manner with sufficient details. For 

the most part, the results derived here are quite general and can be applied 

to many reactions of interest of the type a + b -+ 1 + 2 + 3. There are several 

versions of the three-body partial wave analysis as described in ref. 2; 

the one used here corresponds to the Berkeley-SLAC version in all but one 

respect - we use canonical, instead of helicity, representation. 

Our main, results are the set of coupled integral equations for 

production amplitudes, (IV-16), their formal solution (IV-17), the total 

unitarized amplitude e V-I) and the ratio (V-6) or (V-7). The method 

presented here essentially involves the calculation of the mixing matrix 
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H and its substitution into the usual expression for the partial wave 

amplitude to obtain the unitarized amplitude. 

-ex The reduced amplitudes J have been treated as though they have no 

subeIiergy depe~dence at all. This assumption is a convenient' one as it 

retains the basic character of the production amplitudes used in the isobar 

model (only W dependence). Another point we should mention is that we 

have only dealt with the subenergy discontinuities here. Other disconti-

nuities, in the total energy, arising from the two and three-particle 

5 6 intermediate states have been removed by many authors. ' 

We have paid special attention to the handling of the barrier factors. 

Pulling them out from the production amplitudes will invoive them in the 

mixing matrix. O~r preliminary results, indicate that the mixing matrix can 

be quite sensitive to small changes in the barrier factors. For this reason 

we have tried to separate them out as far as possible. 

The tests suggested in Section V should 'help determine the validity 

of the isobar model. If the H matrix is roughly diagonal, unitari ty 

corrections are not necessary. If it is not diagonal, then one must see 

how their mixing actually modifies the isobar amplitude. This is the 

motivation for the ratio test. An important feature of this test is that 

it can be carried out before any fit is performed, i.e., it does not 

depend on any fitting parameters at all. Thus it provides an answer to 

the question often asked: How much is the overlap between two given isobars? 

If the ratio test fails, then of course one is obliged to fit the data using 

a unitarized version of the isobar model such as that presented here. 

Finally, we have left out the important discussion on identical 

particles in the final state. The kernals ~. have certain symmetry property 

with respect to the interchange of identical particles. This, along with 
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the use of properly symmetrized amplitudes, enables us to reduce the number 

of independent integral equations. This and other related topics are 

discussed in ref. 10. An application of the results derived in this 

paper to nN + nnN can be found in ref. 15. 
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FIGURE CAPTIONS 

Fig. 1. Three-particle state in the overall center'-of-mass frame with 

arbitrary orientation of the coordinate axes (see Eq. (11-8)). 

Fig. 2. Three-particle state in the overall center-of-mass frame with 

the three different sets of coordinate axes as defined in 

Section II-D. 
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