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Exclusive measurements ha.ve been ma.de of Au+ Au reactions with"bea.m energies ranging from 
0.25 to 1.15 A GeV. We present measurements of directed collective flow a.vera.ged over a.ll light 
fragments up to alphas, as well a.s sepa.ra.te measurements for protons, deuterons a.nd alphas. The 
results show a. strong increase of the directed flow with fragment ma.ss a.t a.ll energies measured. 
Experimental results a.re compared with a. Quantum Molecular Dynamics (QMD) model. We find 
tha.t neither the "soft" nor the "ha.rd" equation of state ca.n describe the da.ta. over the entire range 
of bea.m E-~1ergies. 
PACS numbers: 25.75.+r, 25.70.Pq 

Collective phenomena in particle emission have been established in high energy nucleus-nucleus collisions [1]. Their 
existence has been connected to the response of quasi-bulk hot and dense nuclear matter created during the collision. 
process. The preferential emission of particles, or directed flow, is considered an important signature of nuclear 
compression and indirectly, the nuclear matter equation of state. Prior experiments indicated an energy dependence 
of flow based on measurements that averaged over particle species. Larger flow for heavier mass fragments was 
observed from the partial identification of the charge Z=1 and Z=2 species at energies up to 0.4 A GeV [2-7]. This 
observation suggests that heavier fragments may carry more direct information on the bulk properties of nuclear 
matter. Thus a complete study of fragment formation and directed flow would provide valuable data on the equation 
of state. Previous experiments, however, had limited detector capabilities and the data, considered all together, could 
not constrain the dynamical parameters used in theoretical models. In this paper we present new measurements on the 
energy dependence of fragment flow for Au+ Au collisions using beam energies of 0.25, 0.4, 0.6, 0.8, 1.0, 1.15 A GeV. 
This substantial body of data is made available by a detector which measures the majority of the observable signal 
and thus avoids the earlier experimental problems. 

The experiment was conducted with a state-of-the-art Time Projection Chamber (TPC) at Lawrence Berkeley 
Laboratory's Bevalac heavy ion accelerator facility. The details of the design of the TPC can be found in reference [8]. 
The Au target was located near the entrance of the active TPC volume to allow a large solid angle acceptance in the 
center-of-mass system. This setup provided nearly complete acceptance in the forward hemisphere and, depending on 
the beam energy, a decreasing coverage in the backward hemisphere. The detector measured the rigidity and specific 
energy loss associated with each track. The resolution was sufficient to identify 71"±, protons, deuterons, tritons, 3 He, 
4He, 6Li, 7Li, and charge states of fragments up to Z=8 in events containing up to several hundred charged tracks. 

Approximately 12, 000 events have been analyzed at each beam energy. The global transverse momentum analysis 
of Danielewicz and Odyniec [9] was used to estimate the reaction plane of each event. The sub-event method of 
Ref. [9] was used to account for effects of uncertainties in the the determination of reaction plane. These corrections 
were included and ranged from 6% to 10%. 

tcurrent address: Sung Kwun Kwa.n University, Suwon 440-746, Republic of Korea.. 
1Current a.ddress:Depts. of Physics a.nd Chemistry, SUNY, a.t Stony Brook, Stony Brook, NY 11794 
**Current address: Department of Pharmacology, UCLA School of Medicine, Los Angeles, CA 91776 
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The impact parameter of the collision is inferred from the measured charged baryon multiplicity. The data are 
divided into multiplicity bins in a manner similar.to the Plastic Ball analysis [1]. This method has the advantage that 
the multiplicity bins become wider as the beam energy increases, providing bins that correspond to similar ranges of 
impact parameters at each energy. 

The collective flow of matter from the participant region is characterized by the slope parameter, F, at midrapidity 
of the {Px/A) vs Yn curve [10]. Here Yn = Y/Yb is the fragment rapidity normalized by the beam rapidity Yb and Px is 
the projection of the transverse momentum onto the reaction plane. The slope is a function of the transverse velocity 
imparted to the participants during the collision. In principle, the maximum value of (Px(Yn )/A) should provide 
complementary information further away from midrapidity,. but in practice it is influenced by bounce-off spectator 
fragments. 

Figure 1 shows {Px /A) vs Yn for the six different beam energies where all fragments up to 4 He are included. In the 
Plastic Ball convention, these events belong to multiplicity bins M3 and M4 where the observed flow is a maximum. 
The curves display the typical "S" shaped behavior, however, they are not completely antisymmetric about Yn = 0 
because the TPC has reduced acceptance in the backward hemisphere. We have fit the data in the region 0 < Yn < 0.77 
with a function of the form f(Yn) = ao + Fyn +as~. The coefficient, F (slope parameter), is extracted and plotted 
in Fig. 2 as a function of beam energy. The data exhibit a "logarithmic-like" behavior below 0.8 A GeV with an 
indication that a plateau might be attained at the higher Bevalac energies. This is significant since the value of F 
was expected to plateau and subsequently decrease with increasing beam energy [11]. A simple logarithmic curve has 
been fit to the data points at 0.8 A GeV and below and is shown as a solid line. The energy at which F vanishes 
is called the "balance energy" and is extracted from the fit to have a value of 71 ± 13 MeV per nucleon. From low 
energy studies, the balance energy for a Au+Au system was extrapolated to be < 60 MeV per nucleon [12]. 

The effects of geometrical acceptance and track reconstruction efficiency on the measurements have been studied 
using Monte Carlo event generators and simulations of the detector response. The results show that a detector 
bias could produce a systematic 4-7% underestimate of the true values of F. Also, selecting a different fit region or 
function could produce slight variations in the values ofF. Therefore, comparisons ofF from different experiments or 
theoretical calculations should be made with care. The Plastic Ball data [13] are also shown in Fig. 2. At low energies 
the two measurements agree very well, the discrepancies at the higher energies can be explained by the fact that the 
Plastic Ball data are not corrected for the effects of detector acceptance which were significant for their high energy 
data. 

The individual proton, deuteron, and alpha particle excitation functions of F are depicted in Fig. 3. As before, 
the solid curves represent logarithmic fits to the data. Two observations are readily made from the data. 'First, the 
heavier fragments demonstrate greater values of F at all beam energies. Second, the energy dependence ofF is more 
pronounced for the heavier fragments. The differences in magnitude and energy dependence of F for the separate 
fragment species are features that are averaged-out in the data shown in Fig. 2. This mass dependence is the subject 
of particular interest as its origin is not entirely understood. It may be due in part to thermal dispersion which is 
more significant for the lightest fragments; in this case, the heavier fragments provide a more sensitive measure of the 
collective motion. However, it has been shown that the increase in sideward flow per nucleon with fragment mass is 
generally described by momentum-space coalescence for particles with transverse momentum above 0.2 A GeV /c [14]. 

The parameters of the nuclear equation of state are deduced via comparisons of theoretical calculations with 
experimental data. To that end, we have performed calculations using the Quantum Molecular Dynamics (QMD) 
[15,16] model. This model provides a microscopic treatment of the space-time evolution of a collision by using local 
two and three-body Skyrme, Coulomb, and Yukawa interactions. Neither global nor local equilibrium is assumed and 
the nuclear equation of state is simulated by different parameterizations for the nuclear interactions. The strength of 
the nuclear compression is normally quoted in terms of the incompressibility constant K. A "soft" equation of state 
is represented by a value of K = 200 MeV while a "hard" equation of state is represented by a value of K = 380 
MeV. In these QMD calculations, Momentum Dependent Interactions (MDI) are included which provide an additional 
repulsion between nucleons resulting in a stiffer equation of state than would otherwise be implied by a particular 
value of K. We have performed QMD calculations [16] at beam energies of 0.25, 0.4, 0.6, 0.8 and 1.0 A GeV, for 
both hard and soft equations of state. For the nucleon-nucleon cross sections we use unmodified, experimental cross 
sections. 

The results of our calculations are shown in Fig. 3 as open circles for the soft EOS with MDI (sm) and open triangles 
for the hard EOS with MDI (hm) for protons and deuterons only. The QMD calculations qualitatively reproduce the '· 
trend of increasing flow with increasing beam energy but lack quantitative agreement with the data. At low energy, 
calculations with a soft EOS seem to reproduce the data for protons and deuterons, whereas at higher energies a 
hard EOS appears to be favored. The mass dependence of F in QMD resembles the data only to the extent that the 
deuteron results are always greater than the proton values. There were insufficient alpha particles in the calculations 
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to provide an accurate comparison. In light of the observed mass dependence of flow, the relative yield of different 
fragments is very important when comparing experimental quantities averaged over fragment species to predictions; 
for example, it would be difficult to interpret the QMD model calculations of the observable shown in Fig. 2 since the 
relative yields are not correctly reproduced by QMD. 

Fragment flow has recently drawn theoretical attention because of its greater sensitivity to collective behavior. 
This sensitivity may help resolve the competing explanations of nuclear matter flow. Unlike earlier cascade model 
calculations [17], Kahana et a/. [18] have asserted that collective flow is well described by using the hadronic cascade 
model, ARC, without the need for an explicit mean field to simulate the nuclear equation of state. However, using the 
relativistic BUU approach, Blat tel et al. [19] found that while stochastic N-N collisions can provide a sizable transverse 
flow, the most important quantity for the mean-field contribution is the height of the potential in the participant zone 
which, in turn, is determined predominantly by the momentum dependence of the interaction. Moreover, Jaenicke and 
Aichelin [20] show that microscopically derived potentials exhibit a strong momentum dependence in contradistinction 
to the usual forms of mean field parametrizations. Consequently they argue that very little compression is achieved 
at Bevalac energies and thus flow may not be sensitive to the equation of state. 

Most theoretical studies with transport or wave packet models use mean field potentials appropriate for cold nuclear 
matter. Recently, Puri et a/. [21] have suggested that the interactions between nucleons in a hot nuclear medium can be 
significantly different from cold nuclear matter. They have studied heavy ion reactions within the conventional QMD 
formalism but substitute temperature dependent potentials derived from the solution of the Bethe-Goldstone equations 
for nuclear matter at finite temperatures. Several interesting observations are made but of particular note here is 
that nuclear matter becomes softer (smaller compressibility K) due to elevated local temperatures. Consequently, 
calculations show less directed flow as compared to the cold potential. This effect is of the same order as the difference 
between the usual soft and hard EOS. Although a detailed comparison cannot be made with our data, we can draw 
an inference based upon the following information. The conventional "soft" EOS including momentum dependence is 
almost identical to the temperature dependent mean field potential in the limit of zero temperature as indicated by 
Table 1 and Fig. 3b of Ref. [21]. Thus, with temperature dependence included, one could expect less flow compared 
with the QMD predictions using a "soft-cold" EOS at all beam energies above 0.25 A GeV and for all fragments. 
Unfortunately, this would further compound the discrepancy between our data and theory. In general, the disparity 
in the models with regard to momentum dependent interactions, stochastic N-N collisions, and temperature effects 
must be settled before drawing any inferences about the nuclear matter equation of state. 

In summary, we have presented the first comprehensive measurement of directed flow for protons, deuterons, and 
alphas from Au+Au collisions using beam energies in the range 0.25 to 1.15 A GeV. An increase of the directed flow 
with fragment mass is observed at all energies. Also, the differences in fragment flow become progressively larger with 
rising beam energy. These flow measurements provide rigorous constraints on competing microscopic theories. In 
particular, our QMD calculations reflect the trends but neither a soft nor a hard equation of state is able to reproduce 
the measurements over the entire energy range. 

This work was supported in part by the Director, Office of Energy Research, Office of High Energy and Nuclear 
Physics, Division of Nuclear Physics of the U.S. Department of Energy under contract DE-AC03-76SF00098, DE
FG02-89ER40531, DE-FG02-88ER40408, DE-FG02-88ER40412, DE-FG05-88ER40437 and by the National Science 
Foundation under Grant PHY -9123301. 
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FIG. 1. (P:r/A) vs Yn for each beam energy. The data are from events in multiplicity bins 3 and 4. The fragments included 
are p, d, t, 3 He, 4 He. The curves are fits to the data and indicate the region in which the fits were made. 
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FIG. 3. Directed collective flow, F, for different fragment species and QMD model calculations using a hard equation of state 
with momentum dependent interactions (hm) and a soft equation of state with momentum dependent interactions (sm). 
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