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Abstract 

We analyse cellular patterns which appear spontaneously in a number of 

nonequilibrium systems governed by the dynamics of a complex field and 

show that their structure can be understood in very simple terms. In the 

case of the complex Ginzburg-Landau equation disordered cells of effectively 

frozen spirals appear, separated by thin walls on a scale much larger than 

the basic wavelength of the spirals. We show that the walls are segments of 

hyperbolae and that their transverse structure depends on the angle with the 

phase contours and that it can be oscillatory. 

Pattern formation in nonequilibrium systems is an extremely rich subject which relates 

many different branches of the natural sciences. It is fascinating that even the simplest non­

linear partial differential equations (PDEs) can exhibit a bewildering variety of patterned, 

disordered or turbulent states. In this paper we are interested in systems describable in 

terms of a complex "order parameter" [1,2) whose phase field exhibits phase singularities 

and shocks. Examples include oscillatory chemical reactions [3-6), surface catalysis [7), 

multimode lasers [8], intracellular waves [9), colonies of social amoebae [10], and cardiac 

arrhythmias [5,11). In large-scale simulations, stable (or metastable) disordered cellular 

(glass-like) structures have recently been observed in such systems [12). An example is 

shown in figure 1. The dark dots in figure 1a represent phase singularities and the network 
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of walls are shocks (of finite width), where the phase gradients become almost discontinuous. 

Superficially these structures resemble soap films [13] or Voronoi cells [14), but, as we shall 

show, there are fundamental differences from the Voronoi construction due to the coexistence 

of spiraling phases of a complex scalar field. The presence of shocks has been noted in 

numerous .experiments. See e.g. [15). 

The so-called complex Ginzburg-Landau (CGL) equation is perhaps the simplest PDE 

modelling this behaviour. It describes an extended medium for which the parameter values 

are in the vicinity of a Hopf bifurcation, i.e., a system where a stable equilibrium has just1 

become a global limit cycle. [6,1,2). It exhibits two kinds of simple travelling waveforms: 

plane waves and spiral waves. The latter can be seen as defects in the phase pattern of the 

plane waves since the iso-phase contours (figure 1b) terminate on the spiral cores. The CGL 

equation for the scalar complex field A is 

(1) 

It has long been known [16) that the uniformly rotating solution A(x, t) = e-icd becomes 

unstable to long-wavelength phase disturbances, when 1 +a:/3 becomes negative, the so-called 

Benjamin-Feir (BF) transition (from the analogous instability of ocean waves). It was only 

recently realized, however, that (i) the transition to turbulence [6,17) is not governed by the 

BF instabiiity - it can indeed occur even in the BF-stable regime- and (ii) the excitations 

that drive this transition, the spiral waves, can form bound states which play an important 

role [18-22,12). 

In [18] such bound states were termed entangled. But, in fact, looking at the modulus 

of the field (figure 1a), one sees that the spiral waves (or vortices) simply divide the space 

between them. Over most of space the modulus is uniform, but at the vortex centers, where 

the phase becomes ill-defined, the modulus goes to zero. Furthermore the territory of each 

vortex is clearly marked by an. increase of the modulus on a thin shock line or wall. Each of 

these domains (or cells) is occupied by an almost perfect spiral. 

The existence of such well-defined vortex domains was a mystery for a while, but seems 
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now, at least for the case of two vortices to be understood. Early work on the interaction of 

vortices was based on linear superposition of spiral waves [23,24] and predicted a power-law 

interaction, disallowing bound vortex states. Subsequently the importance of shock lines 

was noted [25,21] and the strong screening of the interaction produced by the shocks was 

calculated [22,26]. 

Patterns like figure 1 appear to consist very accurately of a collection of unperturbed 

spirals separated by thin shocks. Each vortex is thus described by a phase cjJ such that the 

i 'th vortex has the phase of a simple Archimedian spiral 

(2) 

where the direction of spiraling is specified by the charge </i ( = ±1) of the i'th spiral (which 

seems, on figure 1, to be rather randomly distributed). ()i and /i are the polar coordinates 

measured from the center of that spiral (with respect to a fixed direction), and Ci is a phase 

constant for the spiral. The wavenumber q is the same for all spirals; it is the selected 

wavenumber for a given set of parameters a and j3. On the shock lines, the phases of two 

vortices are equal, and the domain of each vortex is simply the region where its phase is 

larger than the phase of any others. 

This phase matching strongly constrains the geometry of the pattern. If, say, three 

shocks meet at a corner, the location of the corner as well as the locations and charges of 

the three surrounding vortices uniquely determine the three shock curves emanating from 

that corner. In particular, since the three phases cPi match at the corner, the three constants 

Ci are determined only up to an additive constant. We have checked this using figure 1, 

by examining groups of four vortices meeting at two corners and we find that the above 

construction reproduces the wall structure precisely to within the wall thickness. Also it is 

possible to see why corners predominantly have three, and not four or more shocks emanating 

from them: two phases become equal on a line, three phases are typically equal only at single 

points and four phases only become equal under special conditions. 

To a good approximation, the shocks are segments of hyperbolae with the two nearest 
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vortices as foci. This has been noted from numerical computation [27] and can be easily 

understood. The shocks follow lines where the phases of two vortices, </J1 and </J2 are equal. 

If we assume that the distance from each vortex to the shock is much larger than the 

characteristic wavelength A = 2n) q, we find simply 

(3) 

and the locus of points having constant difference in distance from two centers is a hyperbola 

with focal points at those centers. 

Within this approximation there is a simple rule giving the local direction of a shock 

line: For any point P on a shock line, the direction of the line is such that it bisects the 

angle from P to the two neighbouring vortices. This follows directly from the fact that the 

difference between the distances has to remain constant along the shock. The distances to 

the two vortex centers changes proportionally to cos fh where ei is the angle between the 

tangent of the shock line at P and the ray from the i'th vortex center to P (i = 1 or 2). 

Thus cos 01 = cos B2 and B1 = B2. 

In figure 2a we display a close-up of the wall-pattern. In figure 2b we have reproduced 

almost the same pattern (aside from the small edge-vortices) by feeding the position of the 

vortex centers and the constants Ci, estimated from the distances to the walls, into (3). 

In contrast, the so-called Voronoi construction [14] finds the region nearest to any vortex 

by constructing the perpendicular bisectors of all connecting lines. Obviously the vortex 

domains are non- Voronoi, but at the same time our construction represents a generalization 

of the Voronoi construction, to which it corresponds when all ri ~ A and all the Ci are 

identical. 

The sharpness of the walls between the spirals is not uniform. As can be seen in figure 

2a, parts of the walls are broad and shallow to the point of disappearing, whereas others are 

sharp and oscillatory in the sense that the transverse profile of IAI is non-monotonic. This 

can be simply understood by approximating the two impinging states as plane waves, and 

looking for kink-like solutions of (1) connecting these two states (a sink in the terminology 
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of [28]). From the above analysis, we know that the wall must bisect the angle between 

the two plane waves. Thus, to analyse a wall through a point P, we choose a system of 

coordinates with the y-axis along the tangent of the wall through P, and x orthogonal to it. 

The wavevector to the left of the wall is then, say k~ = (- kx, ky) with k~ = ( kx, ky) to the 

right of the wall. Thus the angle e is the angle between the wall and the iso-phase contours 

for the plane waves, so that kx = cos e and kx = sine. e = 0 means that the waves move 

head-on into the wall, whereas e - 1r /2 is the limit where the plane waves move parallel to 

the wall and the walls become very weak. Thus the structure of the walls depend crucially 

upon e. 

For a given set of parameters, a and j3 in ( 1) the spiral waves have a selected wavelength .\. 

To find the transverse structure of the walls by the approach outlined above, we assume that 

the field can be written as A = Rkeikyy-iwtr(x )ei<f>(x), where the frequency w, the modulus 

Rk and the wavenumber k, through ( 1), must satisfy w = aRk 2 + j3 P and Rk = .f.l -

k2
• Introducing a dimensionless distance as ~ = xkx = xk cos e and a local dimensionless 

wavenumber as y =</>'(e) we find the following equations for r(x) and y(x): 

r"- r(y2 -1) = Ar(r2 -1) (4) 

ry' + 2r'y = Br(r2
- 1) (5) 

where A= i~~f~f and B = ~;,t; !if. To find the wall structure, we should solve (4) and 

(5) on -oo < ~ < oo such that r - 1 and y - ±1 as ~ - ±oo. But then the position 

of the wall would not be given. Therefore it is easier to fix the wall center at 0 by solving 

( 4) and (5) on 0 < ( < oo with the boundary condition y(O) = r'(O) = 0 and r, y - 1 as 

~ - oo. That leaves as unknown the wall height r(O), which has to be found by solving the 

equations. 

Figure 3 shows the wall structure at angles e = 0 and e = 1r /3. Clearly the structure is 

not monotonic- the modulus oscillates and creates "ripples" around the walls. For e = 1r /3 

the wall has become weaker and very close to e = 1r /2 they become monotonic as can be 
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seen from linear stability analysis around the two plane asymptotic plane wave states. In 

figure 2 the dashed line is the solution of ( 4) and ( 5) and the fully drawn line is a result of 

a lattice simulation of 1. Obviously the plane wave approximation leading to (4) and (5) 

works very well. The structure of the shocks will be explored in more detail in a forthcoming 

publication [29]. 

We have emphasized that the pattern depends strongly on the phase constants C;. One 

would expect that a simplified particle-like theory for these systems should be based not 

only on dynamical equations for the spiral centers R;, but on coupled equations for both 

R; and C;. The formulation of such a theory is a challenging task to which we hope to 

contribute in the future. 

TB acknowledges support from Novo-Nordisk fonden, and GH from the Applied Math­

ematical Sciences subprogram of the Office of Energy Research, Department of Energy 

(contract DE-AC03-76SF00098). EO was supported by the Office of Naval Research. 
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/ FIGURES 

FIG. 1. The pattern obtained by simulating a discrete form [18] of (1) with a= 0.792 

and f3 = -1, with periodic boundary conditions and starting from random initial conditions. 

Figure 1a shows the amplitude of the complex field A and figure 1b is a contour plot of the 

phase of A. In the regime of transient turbulence [19,22] a turbulent state appears, but 

after a period of nucleation [12], the system settles into a frozen disordered state as shown. 

Here some of the vortices have developed several spiral windings and become large, while 

others, termed edge vortices, get pushed into the corners of the networks formed by the 

shocks between the big ones. Note that the group velocity is directed away from the vortex 

centers into the walls, thus sweeping the edge-vortices into the corners. The state is glassy 

or metastable in the sense that small rearrangements can continue, especially where several 

edge vortices form a braid [27], whereas the big vortices and the shocks between them are 

fixed in time. 

FIG. 2. a) Close-up of the wall structure. b) Reconstruction of the wall structure using 

the hyperbolic approximation (3). 

FIG. 3. Transverse structure of the walls or shocks separating the spiral waves. The 

dashed line is the solution of the static equations ( 4) and (5) for a shock between two plane 

waves and the full lines are the result of a lattice simulation. The large figure shows the 

head- on case where the angle between the phase contours and the shock is 0. The inset 

shows the case, where that angle is 7r/3. The parameters were a= 0.792 and f3 = -1. Note 

that the structure of the wall is non-monotonic for the cases shown. 
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Figure l(a) 
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Figure l(b) 
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Figure 2(a) 
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