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Abstract 

Thermal Modeling of the Lithium/Polymer Battery 

by 

Carolyn Renee Pals 

Master of Science in Chemical Engineering 

University of California at Berkeley 

Professor JohnS. Newman, Chair 

Research in the area of advanced batteries for electric-vehicle applications has 

increased steadily since the 1990 zero-emission-vehicle mandate of the California Air 

Resources Board. Due to their design flexibility and potentially high energy and power 

densities, lithium/polymer batteries are an emerging technology for electric-vehicle 

applications. Thermal modeling of lithium/polymer batteries is particularly important 

because the transport properties of the system depend exponentially on temperature. 

Two models have been presented for assessment of the thermal behavior of 

lithium/polymer batteries. The one-cell model predicts the cell potential, the 
I 

concentration profiles, and the heat-generation rate during discharge. The cell-stack 

model predicts temperature profiles and heat transfer limitations of the batte;Y. 

Due to the variation of ionic conductivity and salt diffusion coefficient with 

temperature, the performance of the lithium/polymer battery is greatly affected by 

temperature. Because of this variation, it is important to optimize the cell operating 

temperature and design a thermal management system for the battery. Since the thermal 

conductivity of the polymer electrolyte is very low, heat is not easily conducted in the 

direction perpendicular to cell layers. 
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Temperature profiles in the cells are not as significant as expected because heat-

generation rates in warmer areas of the cell stack are lower than heat-generation rates in 

cooler areas of the stack. This nonuniform heat -generation rate flattens the temperature 

profile. Temperature profiles as calculated by this model are not as steep as those 

calculated by previous models that assume a uniform heat -generation rate. 
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Chapter 1: Introduction 

1.1 Motivation 

In 1990, as part of its Low-Emission Vehicle and Clean Fuels regulations, the 

California Air Resources Board adopted a zero-emission-vehicle (ZEV) mandate. I The 

ZEV mandate requires that by 1998, tWo percent of passenger cars and light trucks 

offered for sale in California by each major automobile manufacturer must be ZEV s. In 

2001, the percentage increases to five percent, and in 2003, ten percent. The only ZEV 

technology advanced enough to meet the 1998 mandate is the battery-powered electric 

vehicle. 

To streamline electric-vehicle battery research efforts so that the 1998 ZEV goal 

could be reached, the United States Advanced Battery Consortium (USABC) was 

formed in 1991. The USABC is comprised of the "big three" American automobile 

manufacturers: Chrysler, Ford, and General Motors, along with the United States 

Department of Energy and the Electric Power Research Institute, which is a research 

organization funded by utilities in the United States. The goals of the USABC are to 

expand battery technology in order to mass-produce electric vehicles potentially in this 

decade, and also to produce electric-vehicle batteries with performance competitive with 

today's internal combustion engines by early in the next decade. 

Important performance factors characterizing electric-vehicle batteries include 

energy density and specific energy, along with power density and specific power. The 

energy density is the energy the battery can store per unit volume, and the specific 

energy is its energy storage per unit mass. The power density and specific power of the 

battery are important factors in vehicle acceleration. The power density is the maximum 

power per unit volume that the battery can deliver at a specified depth-of-discharge, and 

the specific power is the power per unit mass. For electric-vehicle applications, we 
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would like to minimize both the weight and the volume of the batteries, while 

maximizing energy and power. 

Another important characteristic of electric-vehicle batteries is their cycle life. 

The cycle life of the battery is the number of times that the battery can be discharged and 

charged before a significant loss of performance occurs. For rechargeable batteries 

cycle life should be maximized. 

The USABC has specified mid-term and long-term goals for electric-vehicle 

battery technology. Mid-term goals are to be met by the end of this decade, and the 

long-term goals are to be met by sometime in the next decade. These goals are given in 

Table 1-1. 

Table 1-1. USABC goals for electric-vehicle battery technology. 

Mid.;. Term Long-Term 

Specific Energy (W·h/kg)* 80 200 

Specific Power (W/kg)t 150 400 

Cycle Life+ 600 1000 

Battery Cost ($/kW·h) Under 150 Under 100 

* At the three-hour discharge rate. 
t At 80% depth-of-discharge for 30 seconds. 
+ When discharged to 80% depth-of-discharge on each cycle. 

1.2 Lithium/Polymer Batteries 

In line with the goals of the USABC given above, lithium batteries have 

emerged as one of the most promising options for both mid-term and long-term electric

vehicle batteries. Lithium is the lightest and most electronegative of the alkali metals, 

and therefore lithium batteries are expected to have a high theoretical energy density. 

.. ,.. 
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Since reversible intercalation reactions are utilized in most lithium batteries, the batteries 

will also have high cycle lives. 

Despite being an' active research area for over a decade, only within the last few 

years have rechargeable batteries based on solid lithium2-4 reached the consumer 

market. This has been partly attributed to concerns over the safety of the solid lithium 

electrode. These concerns are likely to become even more important for larger-scale 

electric-vehicle batteries. 

It is advantageous to use polymer electrolytes in lithium batteries for several 

reasons. Although polymer electrolytes have a much lower ionic conductivity than 

liquid electrolytes, they allow the battery to have high energy density because they can 

be manufactured as thin films. Since the thin-film polymer acts as electrolyte, separator, 

and adhesive between layers of the thin-film battery, eliminating the need for other 

battery components, the energy and power densities are predicted to be high. 5 

1.3 Thermal Modeling 

Heat is generated in batteries during discharge due to both reversible and 

irreversible phenomena.6 Thermal management is particularly important in all-solid

state thin-film polymer-electrolyte batteries because heat transport out of the battery is 

made difficult by the low thermal conductivity of the polymer, and by the thin-film 

arrangement. Since the ionic conductivity and salt diffusion coefficient in the polymer 

vary exponentially with temperature, the performance of the battery is greatly affected 

by its temperature. 

Computer simulations are useful in the design of batteries because of the 

possible savings in both time and materials. Modeling can also provide information that 
. 

is difficult or impossible to obtain experimentally. Thermal modeling will help us 
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predict how the battery behavior will vary with temperature, as well as help us design a 

thermal-management system. 

Doyle et al. 7 presented a one-dimensional isothermal 'model for the behavior of 

the lithium/polymer/insertion cell. Their model describes the performance of the cell for 

different current densities and gives detailed concentration profiles. Bernardi et al. 8 

presented a general energy balance for battery systems. In this energy balance a 

uniform temperature is assumed throughout the cell, but the temperature is allowed to 

vary with time. The complete energy balance accounts for reactions in the cell, changes 

of heat capacity of the system, phase changes, mixing, electrical work, and heat transfer 

with the surroundings. 

Two thermal models of the lithium/polymer battery are presented in this thesis. 

The first, the one-cell model, predicts the galvanostatic discharge beh~vior of the 

lithium/polymer cell for adiabatic and isothermal operation, as well as for limited cases 

of heat transfer. The second model, the cell-stack model, uses heat-generation rates 

calculated by the one-cell model to predict temperature profiles in cell stacks, and is 

useful in designing a thermal-management system. 

The one-cell model is a combination of the works of Doyle et al. 7 and Bernardi 

et al. 8 presented above to study the effects of temperature rise on the galvanostatic 

discharge of the lithium/polymer cell. Using this model, battery performance at 

different temperatures can be assessed, and battery operating temperature can be 

optimized. This model is helpful in designing a thermaJ management system for the 

battery, as the heat released during operation is predicted. Temperature rise in a cell 

affects its performance because transport properties depend on temperature. In the one

cell model, the sal~ diffusion coefficient and the ionic conductivity vary with 

temperature. Other models have neglected the effect of temperature changes on the 

performance of the.cell. 

l\ ' 
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The cell-stack model uses heat-generation rates calculated by the one-cell model 

to predict one-dimensional temperature profiles of cell stacks in the direction 

perpendicular to cell layers. Since the heat-generation rate varies with time, 

temperature, and position in the cell stack, the cell-stack model will give us useful 

information about heat transport in cell stacks not attainable from the one-cell model or 

previous thermal models discussed below. Required heat-transfer coefficients, as well 

as maximum cell-stack thicknesses can be predicted by the cell-stack model. Results of 

both models are presented for a specific lithium/polymer cell configuration. 

Chen and Evans9, 10 have presented two thermal models of lithium/polymer 

batteries. Their models. focus on the two-dimensional heat transport inside the cell 

stack. Heat generation is calculated using experimental discharge curves. However, 

unlike under the present approach, in their work the electrochemistry of the cell is 

decoupled from the thermal model; thus, the effect of temperature changes on the 

performance of the cell can not be assessed. 

Newman and Tiedemann 11 presented a three-dimensional analytical model for 

temperature rise at the center of a battery module assuming a heat-generation rate that is 

. uniform throughout the module, but is allowed to vary with time. Temperature profiles 

were not presented. Their model assumes that the temperature at the edge of the cell 

stack remains constant throughout discharge. This assumption may not be valid for 

large temperature changes and high energy-generation rates. Like the model of Chen 

and Evans, this model also neglects the effect of temperature change on battery 

performance. 

1.4 Conclusion 

In response to regulations imposed by the California Air Resources Board, 

advanced electric-vehicle batteries are quickly being developed. Because of its high 
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energy density and design flexibility, one promising electric-vehicle battery is the 

lithium/polymer battery. Thermal considerations are especially important for the 

lithium/polymer system because of its thin-film configuration and the low thermal 

conductivity of the polymer. 

Two thermal models of the lithium/polymer battery are presented in this thesis. 

The first model, the one-cell model, predicts how the battery will respond to temperature 

changes caused by discharge. The second model, the cell-stack model, predicts 

temperature profiles in batteries using heat-generation rates calculated from the one-cell 

model. The advantage of the cell-stack model over previous models is that the heat

generation rate is allowed to vary with time and position in the cell stack. 
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Chapter 2: One-Cell Model Development 

- 2.1 Introduction 

This chapter presents the development of the one-cell model. The one-cell 

model is a modified version of the isothermal model given by Doyle eta[. I with the 

addition of an energy balance in the form given by Bernardi et az.2 First, the cell that is 

modeled is described, and its structure is explained. Next, a detailed summary of the 

model of Doyle et al., along with the general energy balance given by Bernardi et al., is 

presented, and applications to the thermal model are explained~ Finally the variation of 

transport properties with temperature is given. 

The one-cell model allows us to study the adiabatic and isothermal behavior of 

the system. It also allows us to study heat-transfer behavior in thin cells, those which 

can be assumed to have no temperature gradient. Results, along with an explanation of 

limiting cases, will be presented in Chapter 3. 

2.2 The Cell 

Figure 2-1 shows a schematic of the lithium/polymer cell sandwich that we are 

considering. The full cell consists of a negative electrode, a separator, a positive 

electrode, and a bipolar partition. The model is general and can be applied to many 

lithium/polymer battery systems. Results presented in this thesis are for the LiiPE01s

LiCF3S03ITiS2 system. In this TiS2 cell, the negative electrode is a lithium foil, and 

the separator consists of an inert polymer, polyethylene oxide (PEO), which acts as a 

solvent for the lithium salt, LiCF3S03. The composite positive electrode is made up of 

the insertion electrode material, polymer electrolyte, and inert filler which provides 

additional electronic conductivity. The insertion electrode material in the composite 



lithiu~ 
foil 

(75 J..Lm) polymer 
separator 
(50 J..Lm) 

composite 
electrode 
(100 J..Lm) 

Overall cell thickness: 245 J..Lm 

bipolar 
partition 
(20 J..Lm) 

Figure 2-1. Schematic of the lithium negative electrode/ 

solid polymer separator/insertion positive electrode cell. 

Dimensions of cell layers are given on the figure. 

9 
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positive electrode is TiS2, and the inert filler is carbon black. The bipolar partition is 

made up of a layer of copper and a layer of aluminum. To maintain good contact 

between cell components, cells are placed under pressure. 

2.3 The Model of Doyle et al. 

The one-cell thermal model is a modified version of the isothermal, one

dimensional lithium/polymer/insertion cell ~odel presented by Doyle et az.l As 

summarized in detail below, this model considers transport of Li+ from the lithium 

negative electrode, through the polymer separator, and its insertion into the composite 

positive electrode. The model is general, and several lithium/polymer battery systems 

can be considered. Concentrated solution theory is used to describe transport in the 

polymer electrolyte. A binary electrolyte and single-phase polymer solvent are 

assumed, and physical properties are allowed to vary with concentration. The 

composite insertion electrodes are modeled using porous electrode theory, assuming 

Butler-Volmer kinetics . for the insertion process. The model includes diffusion 

limitations inside the solid insertion particles. This earlier model is isothermal; it 

includes no energy balance. 

In the model of Doyle et al., concentrated solution theory is used to model 

transport in the polymer electrolyte. The gradient in electrochemical potential is the 

driving force for transport in concentrated solution theory.3 The equation describing 

transport in the polymer phase is 

CjV'J.li = L Kij(Vj - Vj). 

j * i 
(2-1) 

The Kij are frictional coefficients that account for interactions between species i andj, 

and can be related directly to the transport properties D, e, and K.4 For a polymer 

• 
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electrolyte, we assume that the reference velocity is that of the polymer, which is taken 

to be zero. For a polymer solvent with a binary electrolyte, two equations of the form 

of Equation 2-1 are inverted to obtain flux equations for the ionic species. 

and 
·to 

N_ = -v_DVc+ IF_. 
z. 

Doyle et al. give a material balance on the salt in the polymer separator; 

(2-2) 

(2-3) 

Next it is assumed that the partial molar volume of the solvent is constant. This 

assumption implies that the solution density is a linear function of salt concentration. 3 

The potential variation in the separator is given by 

• _ ( )n.m. K(c)RT (l ()InfA) ( s+ t2(c)) n 1 Iz--Kc v-vz- +-- -+-- v nc 
F ()Inc nv+ z+v+ 

(2-4) 

where <1>2 is measured with a lithium reference electrode. For the LiiPE01sLiCF3S031 

TiS2 system, the activity coefficient data, fA( c), are not known. 

Following Sequeria et az.,5 Doyle et al. assume that the reaction at the negative 

electrode is given by 

Li + E> H Li+-e + e· p p 

where E>p represents a reaction site in the polymer lattice. The total number of sites 

available is assumed to correspond to the solubility limit of the lithium salt in the 
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polymer solvent. The reaction is assumed to follow Butler-Volmer kinetics. The 

Butler-Volmer equation is given by 

I _. [ JaaiFllsl)- _f_ UciFTJsi)J 
- 101 exP\ RT exP\ RT (2-5) 

The exchange current density for the TiS2 system is given by Sequeria et al. 5 The form 
I 

of the exchange current density is 

(2-6) 

where kai and kc1 are reaction rate constants for the anodic and cathodic reaction~. 

respectively. The local value of the surface overpotential, TJ.1, is given by 

(2-7) 

where U 1, the theoretical open-circuit potential, is zero when using a Li reference 

electrode. 

At the lithium foil, x=O, the potential of the solid lithium is set to zero. The 

other boundary conditions are that the lithium ion flux is equal to the current at the 

interface, 

N+ =l at x=O 
F ' 

(2-8) 

and that the flux and concentration of each species, as well as the potential in the 

solution phase, are continuous at x = 05 • 

Doyle et al. use porous electrode theory to describe transport in the composite 

positive electrode. The three phases of the composite electrode in the TiS2 system are 

, 

,.\ 
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assumed to be superimposed continua, so that a material balance on the salt in the 

polymer phase gives 

(2-9) 

where c. is the volume fraction of the polymer. In this expression Jn represents the pore 

wall flux, which is the flux of lithium ions from the solid phase ent~ring the solution 

phase. The pore wall flux is given by 

-s· 
ajn =-1 V • i2 

nF 
(2-10) 

In the composite electrode, the ionic conductivity is assumed to follow the Bruggeman' 

relationship6 

(2-11) 

and the diffusion coefficient in the polymer phase is given by its effective value 

Deff = Dc.05 . (2-12) 

At the positive electrode/current collector boundary, the flux of each species is 

taken to be zero. 

(2-13) 
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The insertion material in the composite electrode is assumed to be made up of 

spherical particles of radius Rs. Diffusion of lithium ions into the spherical particles is 

given by 

(2-14) 

Ds, the diffusion coefficient in the solid phase, is assumed constant. The first 

boundary cond~tion for this expression is that there is no flux of ions across the center 

of the particles, 

de a:= 0 at r = 0 (2-15) 

The other boundary condition gives the relationship between the flux oflithium ions 

into the insertion particles and the rate of lithium ion diffusion to the surface of those 

particles 

. D des R 
]n = - s dr at r = s (2-16) 

This linear problem is solved using the method of superposition independently of the 

solution phase. 

The reaction in the positive electrode is a non-stoichiometric intercalation 

reaction given by 

y Li+ + y e- H Liy TiS2 

where 0 ~ y ~ 1. In the model, this reaction is assumed to follow 

leading to the following kinetic expression: 

.. , 



' " r 

15 

(2-17) 

In this expression, k2 is an effective rate constant for the charge-transfer reaction. For 

the TiS2 system, k2 is not known, so a large value was assumed corresponding to a 

nearly reversible situation. For the TiS2 system, U' is fit from experimental data as a 

linear function of solid concentration 7 

U' = 2.17 + RFT {-0.000558c5 + 8.10) (2-18) 

where U' is in V and c5 is in moiJm3. The overpotential in Equation 2-17 is defined as 

TJ = <l>t - <1>2. (2-19) 

The boundary condition for the potential at the separator is 

V<l>1 = 0 at X= 05 (2-20) 

The current in the matrix is dictated by Ohm's law, 

it = -crV<I>t. (2-21) 

The current in the two phases is conserved through a charge balance, 

v • (i 1 + h) = 0, (2-22) 

which leads to the integrated form 

I =i 1 + i2. (2-23) 
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These equations are linearized and solved simultaneously using the subroutine BAND.3 

There are two independent variables (x and t) and six dependent variables 

( c, <1>2, c5 , i2, jn, and <l>1 ). The Crank-Nicolson implicit method was used to evaluate 

the time derivatives. 

2.4 Energy Balance 

The model of Doyle et al. is modified for thermal calculations by adding an 

energy balance in the form of Bernardi et al. 2 In this energy balance, the temperature 

is assumed to be uniform throughout the cell and is allowed to vary with time. The 

general energy balance takes into account energy changes associated with chemical 

reactions, heat capacity changes, phase changes, mixing, electrical work, and heat 

transfer with the surroundings. The energy balance equation is given below: 

q- IV= [ 
dUI,avg] 

_1 L IIT2 T 
As 1 dT 

enthalpy-of-reaction 

- -
1 

" ~f ~ c kRT2_E_,~)dv·] enthalpy-of-mixing A L..J dt ~ 1
' Of _,avg J 

s k 1 ri,k 
Vk 

- _1 " " [(t~.H• -RTz_E_In fi,k tni,k] A L..J ~ 1k->m ()T f.vg dt 
s k,k~m 1 i,k 

phase-change 

I1dt [ 1t ] 

+ _1 dT " " n9 cavg +" o ~C + " "· (cavg _ cavg) (n· _ n9 ) A dt L..J L..J 1,k P•.k £..J n F PI £..J £..J P•.k P•.m 1,k 1,k 
8 k i I I k,k~m i · 

heat -capacity (2-24) 
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where 

(2-25) 

and 

(2-26) 

In Equation 2-24, q represents heat transfer to the surroundings per unit 

separator area and can be expressed as 

q =- h*(T- Ta). (2-27) 

The per-separator-area heat-transfer coefficient, h*, is based on separator area and T a is 

the ambient temperature. 

When applying the general energy balance to the lithiurnlpolymer electrolyte 

battery, several simplifications can be made. First, we have assumed that the lithium 

electrode reaction is the only important reaction. We have also assumed that the phase

change and enthalpy-of-mixing terms are negligible. Last, we make the assumption that 

the heat capacity of the battery is an average value that is invariant with temperature and 

state of charge. 

We have assumed that only one reaction, the lithium electrode reaction, 

contributes substantially to the cell energy generation. This is true for the lithium! 

polymer system during normal discharge. Side reactions are suspected of causing 

degradation of battery performance at high temperatures, but these reactions and effects 

have not been quantified, and are not included. Recently, there have been some 

attempts to measure the heat generated due to side reactions, and this may be eventually 

included in the calculations. 8 
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The enthalpy-of-mixing term is neglected because activity coefficient data are 

not available for this system, causing the term to fall out of the equation. The enthalpy-

of-mixing term is important when concentration profiles are formed or relaxed in the 

cell. Details of relaxation phenomena in the lithium/polymer system are given by Fuller 

et az.9 

The phase-change term is also negligible when considering the lithium/polymer 

cell. Bernardi et al. 2 show an example of the general energy balance applied to the 

LiAl/FeS cell. For the LiAl!FeS cell, phase-change terms do not exist until KCl 

precipitation takes place in the liquid electrolyte. In the lithium/polymer system that we 

are considering, the salt concentration used is below the saturation concentration so that 

there is no formation of bulk amounts of the lithium salt in the electrolyte. The phase

change term will be important if the battery is heated to the melting temperature of 

lithium, 186·c, but we shall assume that the battery does not reach this temperature 

during normal operation. 

For most practical battery applications, according to Bernardi et al., the heat 

capacity of the battery does not change substantially during operation. Since we 

believe that this is true of the lithium/polymer system, the heat-capacity term has been 

replaced by an average value of the cell heat capacity. 

When only one reaction is considered with the above simplifications, the energy 

balance becomes 

,.... 

h*(T- T) =I (u -v -TdU)- Mcp dT 
a dT As dt • · (2-28) 

Equation 2-28 is the energy balance equation used in our model. The energy balance in 

this form was used by Pollard and NewmanlO in a model of the LiAI/FeS cell. This 

equation is solved at each time step assuming ~T = ~T. 
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The cell heat-generation rate, Q, which is equal to the sum of q, the heat 

transferred out of the system, and the heat stored in the system, is calculated from 

_,.._ 

Q = I ( U - V - T ~¥) = h*(T - T a) + M~p ~r (2-29) 

The term I (U - V) is the heat produced due to cell polarization, and the term 

-IT(dU/dT) is due to the reversible entropy change in the cell. For the simulations of 

the TiS2 cell, the dU/dT term is set to zero because open-circuit potential data as a 

function of temperature are not currently available. 

The computer program and input file for the one-cell model are presented in 

Appendix A. 

2.5 Physical Properties for the LiiPE01s-LiCF3S031TiS2 System 

The transport properties of the system will vary with temperature. Temperature 

variation of the salt diffusion coefficient and of the ionic conductivity is presented 

below. The thermal conductivity of the system is calculated assuming that it is 

temperature-invariant. Other important physical properties of the cell, assumed to be 

temperature-invariant, are given. 

Diffusion Coefficient. The diffusion coefficient of an ionic species in solution 

is related to the temperature and solvent viscosity by the Stokes-Einstein relation, 

i = constant. (2-30) 
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In this system, the solvent is a polymer. Billmeyer11 gives the WLF equation for the 

viscosity of a polymer as a function of temperature as 

1 -3 4 1 7 17.44 (T - T g) + k'. 
og J.L - · og LJw- 51.6 + (T - T g) (2-31) 

Equation 2-31 is generally valid for a temperature range from T g to T g + 100 K. Since 

the glass transition-temperature ofPEO is taken to be -60°c,12 this equation would be 

valid only for temperatures up to 40°C. Although the temperatures of operatation of the 

battery are out of this range, Equation 2-31 is used because we are not concerned with 

the absolute value of the polymer viscosity, we are concerned only with the ratio of · 

polymer viscosities at different temperatures. Combining Equations 2-30 and 2-31, the 

diffusion coefficient is given as a function of temperature by 

_14 (40.16 (T- Tg) ) 
D = 2.2x10 T·exp 51.6 + (T _ Tg)-- 29.93. (2-32) 

The diffusion coefficient is in m2ts, andtemperatures are in kelvin. Notice that we do 

not need to use Zw or k' in this calculation. The reference value of the salt diffusion 

coefficient is taken to be 8x1Q-12 m2ts at 90oc.13 Figure 2-2 shows this function as 

an Arrhenius plot for the diffusion coefficient over the temperature range of interest for 

lithium/polymer battery applications. 

Since the functional form of the diffusion coefficient is almost a straight line on 

Figure 2-2, we can determine an Arrhenius rate expression. The Arrhenius expression 

for the diffusion coefficient as a function of temperature is: 
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Figure 2-2. Approximation to the temperature dependence of the salt diffusion 

coefficient in polyethylene oxide. The experimental value at 90°C of 8x10-12 m2/s 

was used as the reference point. 
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D = lxl0-3 exp(- 67]0) (2-33) 

Ionic Conductivity. Robitaille and Fauteaux 14 give the ionic conductivity of 

LiCF3S03 in polyethylene oxide as a function of temperature and mass fraction of salt. 

The mass fraction was converted to concentration, and the data were fit to an analytic 

function of temperature. The concentration and temperature dependence of the ionic 

conductivity (K, S/cm) is given by the expression 

K = c exp [2.303( f(c) + g(c,T) )], 

where 

(
1 + tanh(at - cO.S)) f(c) = 

2 
{a2 + a3cO.s + ~c + a5cL5 + ~c2) + 

and 

(
1 + tanh(cO.s- a7))( ) 

2 
as+ agc0·5 +awe+ attcl.S + a12c2, 

(2-34) 

(2-34a) 

(2-34b) 

The concentration, c, is in mo1fm3, and the temperatures are in kelvin. The reference 

temperature, To, is 358 K. The values for the constants are given in Table 2-1. Figure 

2-3 shows the fit, where the symbols denote data points from reference 14 and the lines 

are calculated from Equation 2-34. 
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Table 2-1. Constants for conductivity fit. 

a1 32.1374 bl -1052.65 

a2 -6.60932 b2 -182.053 

a3 -0.0251516 b3 3.74936 

a4 0.0259545 b4 0.0242493 

as -0.0019001 

% 3.41711x10-) 

a? 32.1262 

ag -44.5889 

a9 2.59756 
.-

aiQ -0.0631626 

an 6.40897x 1 o-4 
a12 -2.35565x1o-6 

Thermal Conductivity The thermal conductivity of the cell was calculated by 

assuming parallel resistances for each cell layer. The equation giving this thermal 

conductivity for heat transport perpendicular to cell layers is 

(2-35) 

where i denotes cell layers. The thermal conductivity of the composite positive 

electrode is taken to be a ,combination of series and parallel resistances. Meredith and 

Tobias15 give the conductivity of a system of uniform spheres arranged in a cubic 

lattice: 

• 
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Figure 2-3. Fit of the ionic conductivity as a function of salt concentration. 

Symbols denote data points from reference 14. Lines represent the fit given 

by Equation 2-34. 
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K+ = 1- 3£ 
(2+~) 1.315(1-~)£10/3 
-'-;---'= + £ - ___ ___:__....:::.:..._ __ _ 

(1-~} ~ + ~ + 0.409(1-~)£7/3 

(2-36) 

where £ is the porosity of the discrete phase, 

(2-37) 

and 

(2-38) 

c refers to the continuous phase, d to the discrete phase, and + to the composite 

electrode. The continuous phase is assumed to be the polymer, and the discrete phase 

is assumed to consist of both the solid insertion electrode material and inert filler. The 

thermal conductivies of the solid and filler are assumed to be equal when using this 

equation. The thermal conductivity values used for the calculations are given in Table 

2-2. 

The heat capacity and mass of the cell are average values based on the system 
.,..... 

components. For the cell considered here, Cp = 746.7 J/kg·K and M/A 8 = 0.46 

kg/m2. Other physical properties and important simulation parameters are given in 

Table 2-3. 



Tabl~ 2-2. Thermal Conductivity values used in calculations. 

' Component k (W/m·K) Reference 

Lithium 81.8 16 

Copper 384 16 

Aluminum 229 16 

TiS2* 6.53 16 

PEO 0.16 17 

I Composite Electrode I 1.47 Equation 2-36 

Full Cell 0.64 Equation 2-35 

*Assumed to be that ofTi02. 

Table 2-3. Parameters used in the simulations. 

System specific Design adjustable 

Parameter Value 

Ds 10-13 m2fs 

(j 60S/m 

io,- 1.26rnNcm2 

cr 2372 molfm3 

v+,v- 1 

<Xa,<Xc 0.5 

k2 1x1Q-12 m4fmol·s 

* Value reported at initial conditions 
t Assumed values. 

Reference Parameter 

18 Ta 

t Os 

5 * 
' Oc 

:j: E 

- tf 

t co 

t Rs 

:j: Calculated based on the density of the insertion material. 

Value 

89 ·c 
50f..Lm 

lOOf..Lm 

0.4 

0.1 

1500molfm3 

2f..Lm 
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List of Symbols 

a specific interfacial area, m2fm3 

., As separator area, cm2 

c concentration of electrolyte, molfm3 

Cmax maximum concentration of electrolyte, molfm3 

Cj concentration of species i, molfm3 

Cs concentration of lithium in solid phase, molfm3 

CT maximum concentration of lithium in solid phase, molfm3 

Cp heat capacity at constant pressure, J/K 

Cp partial molar constant-pressure heat capacity, J/mol·K 

""' 
Cp mass-averaged constant-pressure heat capacity of cell, J/kg· K 

D,D8 diffusion coefficient of electrolyte and of lithium in the solid matrix, 

cm2fs 

f activity coefficient 

fA activity coefficient of the salt 

F Faraday's constant, 96,487 C/eq 

h convective heat-transfer coefficient, Wfm2·K 

h* per-ceil heat-transfer coefficient, Wfm2·K 

H molar enthalpy, kJ/mol 

current density, mA/cm2 

lo exchange-current density, mA/cm2 
t, 

superficial current density, Afm2 I 

II partial current of electrode reaction 1, A 

jn pore-wall flux across interface, molfm2-s 

k' constant depending on polymer type 

kcell thermal conductivity of cell, W/m·K 



lee II 

M 

n 

q 

Q 

r 

R 

Sj 

t 

T 

Tg 

u 

v 

X 

Zj 

thickness of the cell, m 

mass, kg 

number of electrons transferred in electrode reaction 

moles of species i in phase k, mol 

molar flux in x-direction of species i, moiJm2·s 

heat transfer to surroundings, W fm2 

heat-generation rate per unit separator area, Wfm2 

radial distance within a particle of active material, m 

universal gas constant, 8.314 J/mol-K 

radius of·solid electrode particles, m 

stoichiometric coefficient of species i in electrode reaction 

time, s 

transference number of species i 

temperature, K 

glass-transition temperature of polymer 

open-circuit potential, V 

velocity of species i, rnls 

cell potential, V 

distance from negative electrode 

charge number of species i 

weight-average chain length of polymer, m 

thickness of separator, m 

thickness of positive electrode, m 

porosity of electrode 

surface overpotential, V 

site concentration in polymer 

site concentration in solid matrix 

28 
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K ionic conductivity of the electrolyte, S/cm 

viscosity of polymer, Pa·s 

electrochemical potential, J/mol 

number of cations and anions into which a mole of electrolyte 

dissociates 

cr electrical conductivity of solid matrix, S/cm 

<I> electrical potential, V 

Subscripts 

a ambient 

e electrolyte 

f filler 

1 refers to a species 

J refers to a species 

k refers to a phase 

1 refers to a reaction 

m refers to a phase 

s solid phase or separator 

1 solid matrix 

2 solution phase 

+ positive electrode 

negative electrode ,. 
'l 

Superscripts 

0 solvent or initial condition 
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Chapter 3: One-Cell Model Results 

3.1 Introduction 

This chapter presents results of the one-cell model. First, cell-potential, 

concentration-profile, and heat -generation-rate results are presented for isothermal runs. 

Next, cell-potential, concentration-profile, temperature, and heat-generation-rate results 

are presented for adiabatic operation. Finally, simulations are presented for cell stacks· 

under heat-transfer conditions along with specifications for their applicability. 

3.2 Isothermal Discharge Behavior 

Isothermal modeling is important because it helps us understand operation of the 

battery at different temperatures. In the isothermal calculations it is assumed that all of 

the heat generated in the cell is transferred out of the system without considering the 

details of how it is done. We are interested in the behavior of the battery at different 

temperatures for several reasons. First, it is important to see how the battery 

performance changes with temperature to design a thermal-management system. If a 

battery shows a strong dependence on the temperature of operation, the thermal

management system will have to be designed to have precise temperature control. On 

the other hand, if the temperature does not affect the battery operation strongly, the 

temperature-control system will not need to be so precise. Second, we would like to 

define a temperature range over which the battery should operate. This temperature 

range should be wide enough to allow for the design of a simple temperature-control 

system but at the same time be narrow enough so that the performance of the battery is 

not adversely affected. Somewhere inside this range should be an optimum temperature 

of operation defined from the isothermal data. Last, we are interested in the heat

generation data as a function of temperature for use in the cell-stack model. All of the 
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isothermal simulations presented are for a discharge rate of 1.1 mA/cm2, the nominal 

three-hour discharge rate used for electric-vehicle applications. 

Cell Potential. The cell potential as a function of utilization of positive electrode 

material and time for several isothermal galvanostatic discharges at a current density of 

1.1 rnA!cm2 is shown in Figure 3-1. The dashed line is the open-circuit potential of the 

cell. This figure shows how the cell performance is affected by the temperature of 

operation. At higher temperatures, the cell potential is higher for a given value of active 

material utilization. The cell also utilizes more of the active material at higher 

temperatures. At 8o·c, the cell utilizes approximately 40% of the positive electrode 

material before reaching the cut-off voltage of 1.7 V while at 12o·c the utilization 

reaches 98% before the cut-off. This is because the diffusion coefficient of the salt and 

the ionic conductivity increase with temperature and thereby decrease the cell 

polarization. The time-average cell potential, however, varies only about 5% from its 

value of2.0 Vat 80 ·c to 2.1 Vat 120 ·c. 

Concentration Profiles. As we have found that diffusion limitations reduce the 

utilization of active material, we examine the effects of temperature changes in the cell 

on the concentration profiles in the solution phase. Figure 3-2 gives the solution-phase 

concentration profile across the full cell at the end of several different isothermal 

discharges. All of the discharges were carried out at the nominal three-hour discharge 
' 

rate, I = 1.1 rnA!cm2. The first important point to notice is that the concentration 

reaches zero only for discharges below 90°C. This indicates that, for discharges above 

90°C, the cell is no longer diffusion-limited and is instead ohmically-limited. This 

transition into an ohmically-limited system occurs even though both the conductivity and 

the diffusion coefficient depend exponentially on temperature. The system is diffusion-
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Figure 3-1. Cell potential as a function of utilization and time for isothermal 

discharge of the cell at I = 1.1 mA/cm2 for ~everal temperatures. The dashed 

line is the open-circuit potential of the cell. 

34 

.. 



. 2500 

2000 
,-.., 

C"l 

-€ 
0 1500 
§ 
u 

1000 

500 

separ.ator 

composite positive 
electrode 

0~--~--~~~----~~~--~--~~ 

0 20 40 60 80 100 120 140 

distance (J.Lm) 

... 
Figure 3-2. The solution-phase concentration profiles across the full cell at the 

end of discharge for isothermal galvanostatic discharge at I = 1.1 rnNcm2 and 

various temperatures. Temperatures are indicated on the figure. 
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limited only if a limiting current is reached before the cell has reached 100% utilization 

of active material; this does not happen above a certain temperature. 

Heat-Generation Rates. In Figure 3-3, the heat-generation rate as a function of 

time and utilization is given for the same simulations. This figure demonstrates that the 

heat-generation rate is much larger for lower temperatures than it is for higher 

temperatures. This result may also be seen by examining the cell-potential behavior, 

Figure 3-1. The heat-generation rate is equal to the product of the current density and the 

difference between the open circuit potential, the dashed line in Figure 3-1, and the cell 

potential, one of the solid lines in the figure. At lower temperatures, the conductivity is 

lower, and the larger ohmic drop leads to larger heat-generation rates. The heat

generation rate increases dramatically near the end of discharge forT = 80°C because of 

an increase in concentration overpotential. 

Energy and Power Densities. For design purposes, it is useful to examine the 

temperature dependence of the energy and average power densities that the system can 

provide. The specific energy, E, is given by 

E=Asl' IVdt M ' 
0 

(3-1) 

and the average specific power, P, is given by 

P= Asl' IVdt 
Mt ' 

• 0 

(3-2) 
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where t is the discharge time, I is the discharge current density, and V is the cell 

potential. For galvanostatic discharge, the current can be taken out of the integral. The 

theoretical specific energy of the present system is 182.7 W·hlkg, based on the mass of 

all cell components shown in Figure 2-1. Figure 3-4 gives both the specific energy and 

average specific power as functions of isothermal cell temperature. In all of the 

simulations, the cell is discharged at I= 1.1 mA/cm2, corresponding to a nominal three

hour discharge rate, to the 1. 7 V cutoff potential. The figure shows that the average 

power is only weakly dependent on temperature, increasing by about 5% over the 

temperature range of 80 to 120°C. The specific energy, on the other hand, is strongly 

dependent on the temperature, increasing from 68.8 to 174.2 W·hlkg. At lower 

temperatures, from 80 to 100°C, the specific energy increases steadily as the cell attains 

higher utilization with increasing temperature. Then, at temperatures from 100 to 

120°C, the energy density continues to rise, but at a slower pace, as the cell is reaching 

nearly 100% utilization. Above l20°C, the specific energy begins to level off to its 

theoretical value. This figure shows that the TiS2 system can meet the USABC midterm 

goal for specific energy, 80 W·hlkg, but not its long-term goal of 200 W·hlkg.1 

3.3 Adiabatic Discharge Behavior 

During an adiabatic discharge, all of the thermal energy produced in the battery 

is used to heat the battery. The system is assumed to be of uniform temperature, and 

this temperature is allowed to vary with time; Adiabatic modeling is important because 

we are interested in the consequences of no heat removal, for example, if the 

temperature-control system fails. We can also analyze the thermal consequences of a 

short circuit in the battery. 
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39 



40 

Cell-Potential Behavior. Figure 3-5 gives the cell potential as a function of 

utilization of positive electrode material for an adiabatic galvanostatic discharge with the 

current density as a parameter. The dashed line is the open-circuit potential of the cell. 

Initially the discharge curve is similar to the isothermal case, but as heat is generated and 

the temperature rises, the overpotentials due to ohmic drop, and to a lesser extent, 

concentration and surface overpotentials, decrease. This improves the performance of 

the system so that even at I= 2.0 mA/cm2, 100% utilization can be attained. At higher 

discharge rates (greater than 2.0 mA/cm2), a local minimum in the cell potential can 

occur. In the most dramatic case, with I= 6.4 mA/cm2, the cell potential almost reaches 

the cutoff potential before increasing again and consuming the remainder of the active 

material. The 6.4-mA/cm2 curve corresponds to the highest discharge rate that will not 

reach the cutoff potential and shut down at the local potential minimum, and therefore 

will give the worst-case scenario for temperature rise under normal operation. At this 

discharge rate, heat produced during the discharge raises the conductivity and saves the 

cell from being cut off. This unusual effect is due to the large temperature increase in 

the cell under adiabatic conditions coupled with the strong temperature dependence of 

the ionic conductivity. The markers on the curve for I = 6.4 mA/cm2 represent points 

for which salt concentration profiles are shown on Figures 3-6 and 3-7. 

Concentration Profiles. In order to understand the effect of adiabatic 

temperature rise on the concentration profiles in the solution phase, we examine several 

concentration profiles across the cell taken at various times over the course of a 

discharge at I = 6.4 mA/cm2. Figure 3-6 gives the profiles early in the discharge, 

represented as "x"s on Figure 3-5. Initially, the reaction proceeds primarily at the 

separator/electrode boundary, and the solution is most depleted of salt in this region. 

After one minute, the reaction starts to penetrate into the interior of the porous electrode, 



......... ......... 
Q.) 

u 

2.6~----~----~,-----~------~----~ 

' 

1.6 0 0. 0.2 0.4 0.6 0.8 1.0 

Utilization 

Figure 3-5. Cell potential versus utilization of active material at various 

current densities for adiabatic, galvanostatic discharges. The dashed line is 

the open-circuit potential of the cell. The markers on the I = 6.4 rnA/cm2 

discharge refer to times for which concentration profiles are given in 
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Figure 3-7. The solution-phase concentration profiles across the full cell during an 

adiabatic discharge at I= 6.4 mA/cm2 starting at T = 90 oc. The time since the 

beginning of discharge is given in minutes, and the cell temperature is given in °C. 
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and the region of salt depletion increases in width. At this point, the cell potential has 

its minimum value; presumably this minimum reflects the strong temperature 

dependence of the ionic conductivity. Between one and two minutes into the discharge, 

heat generation is causing the cell's temperature to increase, which brings about an 

increase in the salt diffusion coefficient. This is reflected in the slope of the 

concentration profile in the separator region, which scales inversely with the diffusion 

coefficient. 

In Figure 3-7 the concentration profiles later in the discharge, represented as 

"o"s on Figure 3-5, are given. Here we see that the concentration gradient in the cell 
' 

slowly relaxes over the course of the discharge due to the increasing temperature. Near 

the end of discharge, at t = 28 minutes, there is only a minor concentration gradient in 

the cell. 

Temperature Rise. The temperature in the cell versus utilization of active 

material is given in Figure 3-8 for the conditions shown in Figure 3-5. Higher 

temperatures are reached for higher current densities as would be expected. For a 

current density of 1.1 rnA/cm2, the temperature of the battery rises by 40°C. It is likely 

that there would be a maximum allowed temperature in the cell in order to avoid, for 

example, melting of the solid lithium or thermal decomposition of the polymer. This 

figure is then useful in predicting the maximum discharge rate to stay below this 

maximum temperature under any circumstances. For example, the melting point of 

lithium is 186°C, and from Figure 3-8 we find that this temperature is exceeded at 

current densities of greater than 4.0 mA/cm2. 

Heat Generation. The heat-generation rate of the cell as a function of utilization 

is given in Figures 3-9 and 3-10 for the same conditions shown in Figure 3-5. The heat 
-i-t 
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Figure 3-8. Temperature in the cell as a function of active-material utilization 

during several adiabatic, galvanostatic discharges. The discharge rates are 

given on the figure. The dashed line is the melting point of lithium. 
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Figure 3-9. Heat-generation rate as a function of active-material utilization 

for adiabatic discharges at low rates. Current densities are given on the figure. 

The initial cell temperature was 90 °C. 
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Figure 3-10. Heat-generation rate as a function of active-material utilization 

for adiabatic discharges at high rates. Current densities are given on the figure. 

The initial cell temperature was 90 oc. 
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generated increases early in the discharge and then decreases as overpotentials, 

primarily ohmic drop, are diminished. This causes the temperature in the cell to rise 

more quickly near the beginning of discharge, which was seen in Figure 3-8. Near the 

end of the discharge, the heat-generation rate increases again due to the sudden increase 

in overpotential as the active material is exhausted. As with the is~thermal case, this 

result can also be seen in the cell-potential behavior, which was shown in Figure 3-5. It 

is interesting that the heat-generation rate for the 6.4-mA/cm2 case is ten times greater 

than the heat-generation rate for the 2.0-rnNcm2 case at the initial heat-generation peak. 

3.4 Heat Transfer 

In the one-cell model the temperature of each cell is assumed to be uniform and 

is allowed to vary with time. Thus far, the one-cell model has been used only to 

calculate results for adiabatic and isothermal conditions without regard to heat-transfer 

conditions. The one-cell model can also be used to analyze the behavior of a cell stack 

under heat-transfer conditions by defining an appropriate per-ceil heat-transfer 

coefficient for each cell in the cell stack, or by applying results to a cell stack with a 

negligible temperature gradient. We consider one-dimensional heat transport in the 

direction perpendicular to cell layers. The assumption of one-dimensional heat transport 

is valid when transport in the direction parallel to cell layers can. be neglected, such as 

when the cell stacks are very thin, or when the ends of the stack perpendicular to cell 

layers are insulated. Equation 2-28 is used to calculate the temperature as a function of 

time for a cell stack with appropriate values of h* for each cell. 

In order to examine the results presented for the heat-transfer simulations, we 

need to know the order of magnitude of the convective heat-transfer coefficient, h, for 

heat-transfer conditions that might be applicable to the system. For electric-vehicle 
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applications; the most likely heat-transport medium will be air. Table 3-1 gives values 

of the convective heat-transfer coefficient for free- and forced-air convection. 

Table 3-1. Order of magnitude of convective heat-transfer coefficients. 2 

Fluid 

Air, free convection 

Air, forced convection 

h, Wfm2·K 

6 to 30 

30 to 300 

The Per-Cell Heat-Transfer Coefficient. In order to use the one-cell model for 

cell-stack calculations, the per-cell heat-transfer coefficient must be related to the 

convective heat-transfer coefficient. The per-ceil heat-transfer coefficient will be defined 

for each cell in the cell stack by comparing the one-cell energy balance at steady-state to 

the energy balance for a cell stack at steady-state. If we assume steady-state and 

combine Equations 2-28 and 2-29, we get the energy balance for a single cell: 

Q = h* (T-Ta) (3-3) 

where Q is the heat-generation rate per unit separator area, and h* is based on separator 

area. 

For a cell stack at steady-state, the energy balance is: 

k 11 
d2T _ __Q_ 

ce - · 
dx2 lcell 

(3-4) 

For a stack of thickness L, we define the center of the cell stack to be x = 0 and the outer 

face of the cell stack to be x = ~. The boundary conditions are then: 



using the convective heat-transfer coefficient at the stack edges, and 

dT =0 at x = 0 
dx ' 
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(3-5) 

(3-6) 

because heat is not transported through the center of the stack. The solution of Equation 

3-5 using the boundary conditions given above is: 

T-T - - - x2 + --Q [(L)2 J QL 
a - 2kcelllcell 2 2hlcell. 

(3-7) 

To relate the per-ceil heat-transfer coefficient to the convective heat-transfer 

coefficient, we combine Equations 3-3 and 3-7 and rearrange: 

_1 = 1 [(LY _ x2J + L 
h* 2 kcelllcell 2 2 h lcell 

(3-8) 

where 0 $; x $; ~. At x=O, the center of the cell stack, Equation 3-8 becomes: 

1 _ Ncen2 lcell + Ncell 
h* - 8 keel! 2 h ' 

(3-9) 

using the fact that N cell = 
1 
L . At the outer face of the cell stack, x = L

2
, h * is given by: 

cell · 

h* = __2_h_, 
Ncell 

(3-10) 
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and for a cell half-way between the center and the outer face of the cell stack, x = ~, h * 

is given by: 

1 _ 3 Ncel!
2 

lcell + Ncell 
h* - 32 keel! 2 h . 

(3-11) 

Now that the per-ceil heat-transfer coefficient has been related to the convective 

heat-transfer coefficient in this way, the temperature and discharge behavior for each cell 

in the cell stack can be calculated from known values of the convective heat-transfer 

coefficient and from cell properties. 

Negligible Temperature Gradients. The one-cell model can also be used to 

estimate the temperature and discharge behavior of the battery when the cell-stack 

temperature gradient can be neglected. Two criteria are given for assessing whether the 

temperature gradient is negligible. The first criterion is an estimation of the temperature 

variation in the cell stack based on a steady-state value of the heat-generation rate, and 

the second is the Biot-number analysis. The required accuracy of the calculation 

determines the acceptable limits for which the negligible-temperature-gradient approach 

may be applied. 

The first criterion for determining whether the stack temperature gradient is 

negligible is an estimation of the temperature gradient at steady-state. If we solve 

Equation 3-8 for the temperature at the center and at the outer face of the cell stack, we 

can give an equation for the expected temperature variation in the cell stack at steady-

state: 

Tx=O- Tx=k 
2 

= _:Q::_lc::.::ec::.JJN__::cce=ll:.....
2 

8kcell 
(3-12) 
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Using an approximated value for the heat-generation rate, the temperature 

variation in the cell stack at steady-state can be estimated. Ifthe temperature variation is 

negligible, according to the required accuracy of the calculations, the per-cell heat

transfer coefficient can be calculated from the convective heat-transfer coefficient by 

Equation 3-10. 

The Biot-number analysis is another criterion that can be used to assess whether 

the temperature profile in the cell stack can be neglected. The Biot number, symbolized 

Bi, characterizes the importance of the internal thermal resistance of the solid as 

compared to the external thermal resistance of the fluid. For the slab geometry 

considered above, 

Bi = hL. 
kcell 

(3-13) 

As the Biot number approaches zero, the temperature gradient in the solid can be 

neglected. A rule of thu~b for using the Biot number is that if Bi < 0.1 the assumption 

of uniform temperature will introduce an error in the calculations of less than five 

percent.2 Using the Biot-number analysis, the maximu111 number of cells allowed in a 

cell stack that can be assumed to be of uniform temperature, and therefore can be 

assumed to follow the calculations of the one-cell model, is given by 

N < 0.1 k 
cell -hl · 

cell 
(3-14) 

For the TiS2 cell presented here, the number of cells and the cell-stack thickness allowed 

by the Biot-number analysis for a negligible temperature gradient are given in Equations 

3-15 and 3-16: 



-261 NceiJ<h 
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(3-15) 

(3-16) 

where his in Wfm2·K and Lis in m. The per-ceil heat-transfer coefficient is calculated 

from the convective heat -transfer coefficient using Equation 3-10. 

Results. Figure 3-11 gives the potential of the TiS2 cell as a function of time 

and utilization for galvanostatic discharge at 1.1 mA/cm2 for several values of the per

ceil heat -transfer coefficient, h *, as well as for adiabatic conditions. Figure 3-12 and 3-

13 give the temperature and per-ceil heat-generation rate of the cell stack, respectively, 

for the same conditions. 

Figures 3-11 and 3-12 show that as the per-ceil heat-transfer coefficient 

increases, the cell potential and temperature decrease. This behavior is expected because 

as the heat-transfer coefficient increases, more heat is transferred out of the cell stack to 

the surroundings causing the cell temperature to decrease. This lower temperature 

causes the cell potential to decrease, as was seen in isothermal discharges. The per-ceil 

heat-generation rate increases, as with the isothermal runs, as the temperature of the cell 

decreases. This behavior is due to the increase in overpotentials in the cell. 

For example, a 300-cell stack that is exposed to a convective heat-transfer 

coefficient of 24 W/m2·K on Its two outer faces will have a value of h* ~ 0.095 at its 

center(x=O) and h* = 0.16 at its outer faces (x=L/2). The h* = 0.10 and h* = 0.15 

curves on Figures 3-11 through 3-13 will approximate the behavior of these cells in the 

cell stack. From these figures, it is seen that the center cell of the stack will have a 

higher cell potential and will be much hotter than the cells on the edge of the cell stack. 
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Figure 3-11 .. Cell potential as a function of time and utilization for galvanostatic 

discharges at I= 1.1 mA/cm2
• Values of the per-ceil heat-transfer coefficient, 

h*, are given on the figure. The dashed line is the open-circuit potential of 

the cell. 
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The difference in temperature between the center and the edge of the stack at the end of 

discharge will be approximately 3 °C. 

3.5 Conclusion 

In this chapter, results of the one-cell model have been presented. Results for 

adiabatic and isothermal runs of the LiiPE01s-LiCF3S03ITiS2 system were presented 

and explained. Finally, the per-ceil heat-transfer coefficient was defined for each cell in 

the cell stack, and simulations for cell stacks under heat-transfer conditions were 

presented. 

The simulations showed that the cell potential, along with active-material 

utilization at the cutoff potential increases with increasing temperature. Following from 

the cell-potential behavior, it was seen that the heat-generation rate of the cell decreases 

with increasing temperature. It was also shown that cells operating isothermally above 

90 oc are ohmically limited. In adiabatic discharge, it was shown that a local minimum 

in cell potential is observed for currents above 2.0 mA/cm2, and that above 4.0 rnA/cm2 

the melting temperature of lithium is reached. 

The per-ceil heat-transfer coefficient was defined for each cell in the cell stack. 

Simulations were presented for discharge behavior for·various values of the per-ceil 

heat-transfer coefficient. The simulations presented for the per-ceil heat-transfer 

co~fficient can also be used if the temperature gradient in the cell stack is negligible 

according to the accuracy requirements of the calculations. An estimation for the steady

state temperature variation in the stack along with the Biot-number analysis were given 

to assess whether the temperature variation could be neglected. 
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List of Symbols 

As separator area, cm2 

Aht heat-transfer area, cm2 

E specific energy W·h/kg 

h convective heat-transfer coefficient, Wfm2·K 

h* per-ceil heat-trarisfer coefficient, Wfm2·K 

I current density, rn.A/cm2 

kcell thermal conductivity of cell, W/m·K 

lcell thickness of the cell, m 

L thickness of the cell stack, m 

M mass, kg 

N cell number of cells in cell stack 

P power density, W /kg 

Q heat-generation rate, Wfm2 

t time, s 

T temperature, K 

T a ambient temperature, K 

V cell potential, V 

x distance from center of cell stack 
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Chapter 4. Cell-Stack Model Development 

4.1 Introduction 

Now that we have examined how cell performance varies with operating 

temperature, we are interested in modeling the temperature profile of a cell stack. Due to 

conductive-heat-transfer limitations, the temperature in the center of a cell stack will be 

higher than the temperature at its edges. Calculating temperature profiles in cell stacks is 

important because cell behavior depends on temperature as shown in Chapter 3, and we 

would like to predict how variation in individual cell performance due to temperature 

variation will affect the performance of the battery. 

For example, we have seen that cells operating at a lower temperature have a 

lower cell potential, and reach their cut-off potential sooner, and at a lower value of 

active-material utilization. As shown in Chapter 3, cells on the outside of the stack 

operate at a lower temperature than cells on the inside of the stack; they also operate at a 

lower cell potential, and reach their cut-off potential sooner than the internal cells. 

We are interested also in the design of the temperature-control system. The 

temperature-control system should keep the battery operating within some nominal 

temperature range, as well as try to minimize temperature gra.dients. Newman and 

Tiedemann 1 have given a three-dimensional model of temperature rise in a battery 

module with a constant heat-generation rate, but temperature profiles are not calculated. 

Chen and Evans2,3 calculate temperature profiles using a uniform heat-generation rate 

calculated from experimental discharge curves, but fail to assess the effect of the 

temperature change on the performance of the battery or of the individual cells. 

This chapter presents a one-dimensional model for temperature profiles in a cell 

stack. In the model, heat is assumed to be transferred only in the direction 

perpendicular to cell layers. This assumption is valid only for very thin cell stacks or 
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for cell stacks that are insulated on the edges perpendicular to cell layers. The model 

will estimate the variable energy-generation rate of each cell from data calculated in 

isothermal runs of the one-cell model, and this estimation will be assessed. 

4.2 The Cell Stack 

A cell stack is a configuration of several individual cells. For a bipolar 

configuration, the cells are connected electrically in series. The cell-stack model 

assumes that the temperature behavior of the full cell stack is symmetric, and therefore 

only half of the cell stack is modeled. Figure 4-1 is a schematic showing the 

temperature profile in one-half of a cell stack. The cell stack consists of Ncell cells, 

where Ncell = 2n. In the cell-stack model, as in the one-cell model, it is assumed that 

each cell is at a uniform temperature which is allowed to vary with time. Air at the outer 

face of the cell stack is represented by a heat-transfer coefficient, h, and the temperature 

of this external air is given by Ta. For the TiSz system, each cell is configured as 

shown in Figure 2-1. 

4.3 Energy Balance 

In order to model the heat-transfer behavior of a cell stack, we first write an 

energy balance around each of the cells in the stack. The energy balance is of the form: 

accumulation = input - output + generation. (4-1) 

All of the terms are given on a per-unit-area basis, where the basis area is the separator 

area of a single cell. The accumulation term accounts for temperature rise in the cell; 

"' . MC dT accumulation= __ P - 1 

As dt' 
(4-2) 



L/2 

T n 

Ta 

1 2 3 n 

Figure 4-1. Schematic of one-half of a cell stack used for 

the cell-stack energy balance. Constant temperature is assumed 

for individual cells. 
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where M is the mass of one cell. In the simulations it is assumed that ddTi = Ll Ti . This 
. t Llt 

assumption is valid for sufficiently small time steps. 

The generation term accounts for thermal energy generated in the cell due to 

chemical reactions, heat-capacity changes, phase changes, mixing, and electrical work 

as explained in Section 2.4. The energy generation in cell i, Q, may be calculated from 

Equation 2-29 for each time step. Since using Equation 2-29 to calculate thermal energy 

generation would require running the one-cell program for each cell, requiring a large 

amount of computer time, the heat-generation-rate calculation will be greatly simplified 

~ explained in Section 4A. 

The input term follows Fourier's law; 

· 1r dT1 mput =- ncell dx x· (4-3) 

Since we have assumed that each cell is at a uniform temperature that varies with time, 

ddxTix is set to equal Ti 
1
- Ti-l. The output term for cells 1 through n-1 is also given by 
cell 

Fourier's law, 

output=- keel!~~ lx+Ax• (4-4) 

h 'mil 1 h . dT1 . . b Ti+l - Ti C 11 . d w ere, s1 ar y tot e mput term, d x+Ax 1s given y 
1 

. e n IS assume to 
X cell 

be in thermal contact with a convective-heat-transfer medium characterized by a 

convective-heat-transfer coefficient, h. The output term for cell n is given by 

(4-5) 



63 

Making the previous substitutions into Equation 4-1 for each cell we get n equations and 

n unknowns. The unknowns are the cell temperatures, Ti, and the equations are given 

below. 

For cell 1, the center of the cell stack, we assume symmetry, and therefore, 

dT 1 = 0. This makes the input term for cell 1 fall out of Equation 4-1, giving 
dx 

"' 
MCp (T!ew _ J<lld) =keen (T!ew _ T2ew) + Q1. 
A5~t · lcell 

(4-6) 

The energy balance gives 

"' . 
MCp (T~ew _ T?ld ) = kcell (T~ew1 _ 2T~ew + Tie

1
w) + Q 

I I I I+ I 1- j, 
A5~t cell 

(4-7) 

for cells 2 through n-1, and 

"' 
MCp (~ew _ ~ld) = ~cell (T~:~- ~ew) - h (Tn- Ta) + Qn (4-8) 
A5~t cell 

for cell n. Equations 4-6 through 4-8 are cast into an n x n matrix and solved using the 

subroutine MATINV.4 Cell dimensions and physical properties used for simulations 

based on the TiS2 system are given in Chapter 2. 

4.4 Approximation for the Heat-Generation Rate 

The heat-genera?on rate, Qi, is a function of time and position in the cell stack as 

dictated by electrochemical phenomena. Calculating the heat-generationrate of each cell 

in the stack using the detailed one-cell model given in Chapter 2, along with solving the 

n x n matrix given by Equations 4-6 through 4-8, would require unnecessary 
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computational complexity. We should like to introduce an approximation for the heat-

generation rate that will reduce computational difficulty while introduCing little error. 

Figure 3-3 gives the heat-generation rate of the TiS2 system as a function of 

time, active-material utilization, and temperature for isothermal discharge at the nominal 

three-hour rate. We will make the assumption that the heat-generation rate as a function 

of time and temperature as shown in Figure 3-3 for isothermal discharge at the three

hour rate gives an accurate approximation to the heat -generation rate as a function of 

time and position for nonisothermal discharge, and can be used in Equations 4-6 

through 4-8. The cell-stack model uses the temperature of cell i at each time step to 

estimate its heat-generation rate from one-cell model calculations for. isothermal 

discharge. The cell-position dependence of the heat-generation rate is thus given by the 

cell temperature; Qi (t) = Q (t, Ti). 

Heat-generation rates as functions of time for isothermal discharge were 

calculated at many temperatures using the one-cell model and were written to an input 

file. The cell-stack model reads the time, temperature, and heat-generation rate from the 

input file, and then uses linear interpolation to estimate the heat -generation rate for each 

cell at a given time and temperature from the times and temperatures read from the input 

file. These interpolated heat-generation rates are used in the cell-stack model to calculate 

cell temperatures at the next time step. The accuracy of this assumption will be assessed 

in the next s~ction. The computer program for the cell-stack model, along with input 

file examples, is given in Appendix B. 

4.5 Validity of the Heat-Generation-Rate Approximation 

It is necessary to assess the accuracy of the cell-heat-generation-rate assumption 

made in Section 4.4. Temperature and heat-generation rates as functions of time for 

adiabatic discharges at different discharge rates, as well as temperature and heat-

.. 
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generation rates as functions of time for different h~at-transfer coefficients are 

presented. Results calculated from the one-cell model and the from cell-stack model are 

compared. Calculations from the cell-stack model are for stacks in which the 

temperature gradient can be neglected as allowed by the Biot-number analysis. 

Figure 4-2 shows the heat-generation rate for adiabatic discharge as calculated 

by the cell-stack model and the one-cell model as functions of time and discharge rate. 

The figure shows that the heat-generation rate calculated by the cell-stack model is most 

accurate for low discharge rates. For the higher discharge rates, the interpolated values 

of the heat-generation rate underestimate the values calculated by the one-cell model for 

most of the discharge, arid then slightly overestimate the one-cell values at the end of 

discharge. 

The discrepancy between heat -generation rates as calculated by the one-cell 

model and the cell-stack model can be explained by examining discharge behavior as 

calculated by the one-cell model for adiabatic and isothermal discharge. Figures 4-3 and 

4-4 show the one-cell-model calculations of the cell potential and heat-generation rate, 

respectively, as functions of time and active-material utilization for adiabatic and 

isothermal discharges at the three-hour rate. The initial temperature of the adiabatically-

discharged cell was 90 oc. Initially, the adiabatic discharge follows the 90 °C isothermal 

curve, but then as its temperature rises, its cell potential and heat-generation rate turn 
I 

toward the 100 oc isothermal curves. The adiabatically-discharged cell reaches 100 °C 

at point a. This point lies between the isothermal calculations for 90 oc and 100 oc 

discharge, and therefore, at this p~int, the isothermal data will overestimate the cell 

potential anq underestimate the heat-generation rate of the adiabatic discharge. This 

difference leads to the discrepancy between heat-generation rates calculated from the 

one-cell and cell-stack models. 
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Figure 4-3. Cell potential as a function of utilization and time for 

adiabatic and isothermal discharge of the cell at I= 1.1 rnNcm2
. 



Time (min) 

0 50 100 150 200 

4 ----- Adiabatic 
- Isothermal =90°C 

3 
100 

2 
110/ 

1 
,' _________ ..... 

0~----~------~----~------~----~ 
0.0 0.2 0.4 0.6 0.8 1.0 

Utilization 
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As the adiabatic discharge proceeds, the cell temperature continues to increase. 

The cell reaches 110 oc at point b, which lies between the isothermal discharge curves 

for 100 oc and 110 °C, and, as before, the heat-generation rate is underestimated by the 

isothermal data. When the adiabatic discharge reaches 120 °C, at point c, the 120 °C

isothermal and the adiabatic curves are closer together, and consequently the isothermal 

data more closely estimates the adiabatic data. As shown in Figure 4-2, later in the 

discharge, the isothermal data will overestimate the adiabatic heat-generation rate. 

In order to understand the difference in the cell potential and heat-generation 

rates between adiabatic and isothermal discharges at the same times and temperatures, 

we will compare discharge characteristics of an adiabatic discharge with discharge 

characteristics of isothermal discharges at corresponding times and temperatures. For 

adiabatic discharge at the three-hour rate starting at 90 °C, the cell reaches 103.0 °C at 

31.5 minutes, corresponding to an active-material utilization of 0.15860, and it reaches 

107.5 °C at 61.5 minutes and an active-material utilization of 0.30012. Data at these 

times and temperatures of the adiabatic run will be compared to data calculated from 

isothermal runs at corresponding times, temperatures, and values of active-material 

utilization. 

Figure 4-5 shows the solution-phase concentration profiles across the full cell 

for adiabatic discharge at 1.1 mA/cm2 at the conditions described above. This figure 

shows that the concentration profiles are more uniform for the runs in which the 

temperature was higher initially; the isothermal runs. This uniformity leads to a higher 

cell potential for the isothermal runs at the same times and temperatures. 

Figure 4-6 gives the solid-phase concentration profile across the composite 

positive electrode for the same runs of the one-cell model shown in Figure 4-5. The 

distance is measured from the negative electrode, but the separator region is not shown 
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Figure 4-5. Solution-phase concentration profiles for adiabatic discharge at the 

three-hour rate for two times and temperatures, and for isothermal discharge at 

corresponding times and temperatures. For the 103.0 °C data, the time is 31.5 

minutes, and for the 107.5 oc data the time is 61.5 minutes. 

70 



14x103 

,.--.., 
M 

;§ 10 
0 s 
'-" 
~ 

8 0 ·-...... 1:\$ 

E 
Cl.) 6 <.) 
~ 
0 u 

"0 4 ·-....... 
0 

C/J 

2 

0 

... 

' 

60 

' ' ' ' ' ' 

' 

80 

' ' ' ' 

- - - Adiabatic 
- Isothermal 

',T= 107.5 oc 

' 

',\/ 

' ' ' ' ' 

100 

' 
' ' ' 

Distance (~m) 

' ' ' 

---

120 140 

Figure 4-6. Lithium ion concentration in the solid insertion particles for specified 

times and temperatures of adiabatic and isothermal discharge. The separator 

region is not included in the figure. 

71 



72 

in the figure. This figure shows that uniformity in the solid insertion particles is also 

greater throughout the discharge for isothermal runs. 

Figure 4-7 shows the local pore wall flux of lithium ions across the composite 

positive electrode for the same conditions shown in Figure 4-5. As in Figure 4-6, the 

separator region is not shown in the figure. As defined in Chapter 2, the pore wall flux 

is the flux of lithium ions entering the solution phase from the solid phase, and is thus a 

measure of the electrode reaction rate. This figure shows that for the isothermal runs, 

where the temperature is higher at the beginning of the reaction, the reaction distribution 

is more uniform. The isothermal discharges react more at the back of the electrode 

earlier in the discharge "because the diffusion coefficient and ionic conductivity are 

initially higher than those of the adiabatic discharge because the temperature is initially · 

higher. Due to transport limitations induced by the lower temperature at the beginning 

of the adiabatic discharge, the reaction starts in the front of the electrode and proceeds to 

the back as the ionic conductivity and diffusion coefficient increase. 

Now that the errors caused by the heat-generation assumption have been 

exphlined, the results for the temperature of the cell stack as a function of time will be 

presented. Figure 4-8 shows the temperature of the cell stack as a function of time for 

the same conditions shown in Figure 4-2. As with the heat-generation rates, the 

temperature is most accurate for lower discharge rates. This behavior is expected 

because, as discussed previously, the heat-generation rates are estimated from 

isothermal data, and as a result, the estimation will be more accurate as the temperature 

stays more nearly constant. ·For the 0.5 mA/cm2 discharge, the error at the end of 

discharge is less than 1 o C, and for the 2.0 mA/cm2 rates, the error at the end of 

discharge is approximately 5 oc. For each of the discharge rates shown, the difference 

is approximately ten percent of the overall temperature rise. 
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Figure 4-9 shows the heat-generation rate as a function of time for a single cell 

as calculated by the one-cell and cell-stack models for discharge at 1.1 mA/cm2 under 

various heat-transfer conditions. Figure 4-10 shows the temperature as a function of 

time for the same simulations. The per-cell heat-transfer coefficient, h*, which is 

related to the convective heat-transfer coefficient by Equation 3-10, is given as a 

parameter. The figures show that for one cell, the estimated heat-generation rates and 

corresponding temperatures are most accurate for higher heat-transfer coefficients where 

the temperature remains more nearly constant. The variation between model calculations 

is greatest for the adiabatic case where the difference between the one-cell model and cell 

stack model is 3 ac at the end of discharge. For a single cell, or for a cell stack with a 

negligible temperature gradient as predicted by Equations 3-12 or 3-14, the cell-stack 

. model is more accurate for higher values of the per-ceil heat-transfer coefficient, h*. 

Temperature profiles calculated from the cell-stack model, along with a comparison of 

results calculated by the one-cell and cell-stack models are presented in Chapter 5. 

4.6 Conclusion 

This chapter presents the cell-stack model, a model which calculates temperature 

profiles in cell stacks using an approximation for the time- and position-variant heat

generation rate. This model allows us to calculate temperature profiles in cell stacks in 

order to assess the effect of temperature variations on battery performance. 

For a single cell, differences between calculated heat-generation rates and 

temperatures from the one-cell model and the cell-stack model are due to the heat

generation-rate approximation. Cells discharged for nonisothermal conditions do not 

show the same behavior as cells discharged isothermally at the same temperature and 

time, and therefore the heat-generation-rate approximation, along with the cell-stack 

model calculations, will not be exact. 
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List of Symbols 

As separator area, cm2 
,..... 
Cp mass-averaged constant-pressure heat capacity of cell, J/kg·K 

h convective heat-transfer coefficient, Wfm2·K 

h* per-ceil heat-transfer coefficient, Wfm2·K 

1 index for cell number 

keen thermal conductivity of cell, W/m·K 

lcell thickness of the cell, m 

M mass of a single cell, kg 

N cell number of cells in a cell stack 

q heat transfer to surroundings, Wfm2 

Q heat-generation rate, Wfm2 

t time, s 

T temperature, K 

T a ambient temperature, K 

Subscripts 

1 refers to cell number 

n refers to cell n or N cen/2 
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Chapter 5: Cell-Stack Model Results 

5.1 Introduction 

Now we will examine temperature profiles in cell stacks as calculated by the cell

stack model presented in Chapter 4. Predicting temperature profiles is important 

because we would like to design a thermal-management system for the battery, as well 

as predict how the temperature variation in the battery will affect its performance. 

Several variables in the operation of the battery will be considered. We are interested in 

the temperature behavior of the battery as a function of the cell-stack thickness, heat

transfer coefficient, and discharge rate. All simulations were made using 90 °C for the 

initial cell temperature and 89 oc for the ambient air temperature. 

We will also examine a proposed design for thermal management of an electric

vehicle battery system. Several specifications will be made for its design. As 

mentioned before, the electric-vehicle battery will be discharged at 1.1 mA/cm2, the 

nominal three-hour rate. We will also allow a temperature rise of20 °C in the battery so 

that the temperature range of operation will be from 90 oc to 11 0°C. 

5.2 Temperature Profiles 

Figure 5-1 shows temperature profiles of a 288-cell (7 .1 em) stack at the end of 

discharge for several currents. For these discharges, the stack is subjected to a 

convective-heat-transfer coefficient, h, of 10 Wfm2·K at its outer faces (x=L/2). This 

value of h corresponds to the low range of free convection of air. For the higher 

discharge rates shown, the overall cell temperature increases more, and the temperature 

profile is steeper than for the lower discharge rates. This behavior is expected because, 

as seen in Chapter 3, the heat-generation rate is higher for higher discharge rates. The 

2.0-mA/cm2 discharge reaches a maximum center temperature of 129.3 °C, and .its 
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Figure 5-1. Temperature profiles at the end of discharge for galvanostatic 

discharge at various currents with a constant heat -transfer coefficient. The 

initial temperature was 90 °C, and the ambient air temperature was 89 oc. 
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variation from the center to the outer face of the cell stack is 9 °C. The discharge at 

0.5 mA/cm2 gives a center temperature rise of 6.4 oc with a stack-temperature variation 

of 1.4 °C. For the three discharge rates presented, the temperature variation at the end 

of discharge is approximately twenty percent of the temperature change at the center of 

the stack. 

Since the discharge rate applicable to electric-vehicle applications is the nominal 

three-hour rate, the remaining results will be presented for a discharge rate of 1.1 

mA/cm2. Figure 5-2 shows temperature profiles at the end of discharge for several cell

stack thicknesses for three-hour rate discharges subject to a heat-transfer coefficient of 

10 Wfm2·K. The figure shows that as the cell-stack thickness increases, the overall 

stack temperature increases, and the cell temperature profile gets steeper. The 144-cell 

stack has a 2 °C difference in temperature between the center and the outer face with a 

center temperature change of 15 °C, while the 576-cell stack has a 10 °C temperature 

difference and a center temperature change of 29 °C. This figure shows that as the stack 

thickness increases, the overall temperature rise, as well as the cell-stack temperature 

variation, increases. 

Figure 5-3 shows temperature profiles in a 576-cell (14.1 em) stack as functions 

of time for discharge at the three-hour rate subject to a convective-heat-transfer 

coefficient of 20 W fm2· K. For early times, the temperature has not risen very much, 

and there is little temperature variation in the cell stack. As the discharge proceeds, 

however, the temperature variation increases. At the end of discharge, the temperature 

at the center of the stack reaches 117 °C while the temperature at the outer face reaches 

only 104 °C. For these conditions, the temperature variation of the cell stack will affect 

the battery's discharge behavior. 

. Figure 5-4 gives the heat-generation-rate profile for the same discharge shown in 

Figure 5-3. The figure shows that the heat-generation-rate profile is relatively flat at the 
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beginning of discharge. As the discharge proceeds, the heat-generation rate decreases 

through most of the cell stack, but a gradient develops. At the end of discharge, the 

cells at the outer face of the cell stack are generating heat at over twice the rate of the 

cells at the center of the stack. Because more heat is being produced in the cooler 

regions of the stack, this behavior tends to flatten the stack temperature profiles. 

Temperature profiles that are improperly calculated with a uniform heat-generation rate 

will therefo,re predict a temperature gradient that is too steep. 

Figures 5-5 through 5-7 give temperature profiles at the end of discharge as 

functions of the convective-heat-transfer coefficient for different cell-stack thicknesses. 

Figure 5-5 gives temperature profiles for a 144-cell (3.5 em) stack, Figure 5-6 for a 

288-cell (7.1 em) stack, and Figure 5-7 for a 576-cell (14.1 em) stack. The figures 

show general trends of the effect of stack thickness and heat-transfer coefficient on 

temperatures and temperature profiles of the stack. All of these figures show that as the 

heat-transfer coefficient increases, the overall stack temperature rise decreases, and the 

temperature variation across the cell stack increases. They also show that for a fixed 

value of the convective-heat-transfer coefficient, as the stack thickness increases, both 

overall stack temperature, and stack temperature variation, increase. 

5.3 Electric-Vehicle Battery 

Following the specifications for an electric-vehicle battery outlined earlier, we' 

shall propose an electric-vehicle battery configuration based on facile temperature 

control. Specifications for the proposed electric-vehicle battery are given in Table 5-1. 

Since we have specified the stack voltage to be between 240 and 360 V, and the 

voltage of the TiS2 cell ranges from 2.5 V to 1.7 V, we will set the cell-stack thickness 

to 144 cells; The cell stack will then have a voltage of 360 V at the beginning of 

discharge, and 244 V at cutoff. The time-averaged voltage will be 288 V. 
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Table 5-1. Design specifications for an electric-vehicle battery. 

Parameter Specification 

Voltage 240 to 360V 

Temperature rise 20°C 

Discharge Time 3hr 

Capacity 40kW·h 

Next we specifY the battery capacity to be 40 kW·h. At a discharge rate of 1.1 

mA/cm2, and a time-averaged voltage of 2.0 V, we would need 606 m2 of cells. If we 

set the battery to be 0.51 m by 0.51 m, we then need 2330 cells. With 144 cells per 

stack, we need 16 cell stacks. The cell stacks would be connected electrically in 

parallel. Now if we place a 1-cm cooling channel between every two cell stacks, the 

battery dimensions become 0.51 m by 0.51 m by 0.64 m. The total battery volume for 

this design is,. therefore, 0.166 m3, and its weight is 280 kg. The volume and weight 

include cell elements shown in Figure 2-1: electrodes, separators, and bipolar 

partitions, but not casing and other peripherals. 

For a 288-cell stack (two 144-cell stacks connected thermally in series, but 

electrically in parallel), a heat-transfer coefficient that allows a temperature rise of less 

than 20 °C in the center of the stack is 17 Wfm2·K. This value of the convective heat-

transfer coefficient corresponds to the free-convection-of-air range. Figure 5-8 shows 

temperature profiles as functions of time for discharge of a 288-cell stack at the three

hour rate subjected to a convective-heat-transfer coefficient of 17 Wfm2·K. The 
-

temperature profile is relatively flat throughout discharge. After 25 minutes, the stack· 

temperature has risen to just over 95 °C with a 2 oc temperature variation. At 180 



110 
288 Cells 

2 h= 17W/m K 
7.1 em 

105 
,-.,. 
u 
0 
'-" 

(!) 50 1-< .a 100 
~ 
1-< 
(!) 
0.. 
E 
(!) 

E-- 25 
95 

90~----------------------------~ 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 

Distance from center of cell stack (em) 

Figure 5-8. Temperature profiles as a function of time for the proposed 

electric-vehicle battery design. Discharge time is given on the figure. 

91 



92 

minutes, the average temperature in the stack is 107 °C, and the variation from the outer 

face to the center of the stack is 5 °C. 

Figure 5-9 and 5-10 give the temperature ~nd per-ceil heat-generation rate, 

respectively, as functions of time as calculated by the one-cell and cell-stack models. 

The per-ceil heat-transfer coefficients for the given cells are calculated from Equations 3-

9 through 3-11. For the cells in the middle of the cell stack, x=O and x=L/4, the 

models show good agreement for both heat-generation rate and temperature. The 

models predict a center temperature of 108 °C at the end of discharge, with a variation 

between models of less than 0.5 °C. 

The models disagree more strongly on both temperature and heat-generation rate 

for the outer face of the cell stack (x=L/2). The one-cell model predicts a final 

temperature of 105 °C, while the cell-stack model predicts a final temperature of 102.5 

oc. This temperature variation between models is apparent throughout the discharge. 

At the beginning of discharge the x=L/2 curve calculated by the cell-stack model 

deviates from the other curves, which all have approximately the same slope for the first 

30 minutes, corresponding to an adiabatic temperature rise. By about 60 minutes into 

the discharge, the cell-stack temperature for x=L/2 has reached its maximum difference 

from the calculations of the one-cell model, and after this time the difference remains 

relatively constant at 2.5 °C to the end of discharge. 

The difference between the cell-stack and the one-cell calculations for the 

temperature of the cell at the outer face of the cell stack can be explained by examining 

differences in the development and use of the models. First, the cell-stack model 

considers a system of different cells connected thermally in series and exposed to a heat

transfer coefficient only on its edges. The cells in the cell-stack model vary in both 

temperature and heat-generation rate from their neighboring cells, and therefore a 

temperature gradient is established in the cell stack. The one-cell model, on the other 
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hand, considers one cell with a uniform temperature and heat-generation rate with heat 

transfer from the cell calculated using a per-ceil heat-transfer coefficient based on the 

position of the cell in the cell stack. 

Figure 5-9 shows that the variation between the temperature of the outer-face 

(x=L/2) cell calculated by the two models begins early in the discharge. This happens 

even though the heat-generation rates for all of the cells in the cell stack are equal at this 

time. Thi~ is because in the cell-stack model, the cell at the outer face of the stack is 

· exposed to the full value of the heat-transfer coefficient and is transferring heat to the 

surroundings, but it does not receive appreciable heat from the internal cells until later in 

discharge when temperature profiles develop. This causes the temperature to rise much 

more slowly than for the one-cell model where the heat-transfer coefficient for the end 

cell is much lower .. For the one-cell model, the time constant for heat transfer to the 
.,.... 

surroundings is ~:P, a very large number, while for the cell-stack model, the time 
.,.... 

constant is M~p, a relatively small number. This means that in the cell-stack model, the 

.cell at x=L/2 transports more heat to the surroundings earlier in discharge and will not 

appreciably heat up until the temperature profiles in the cell stack are developed and it 

can receive heat from the internal cells. Thus the edge-cell temperature calculated by the 

cell-stack model rises more slowly and reaches a lower value than its corresponding 

temperature calculated by the one-cell model. Since it takes into account all of the cells, 

and not one cell with similar heat transfer conditions, the calculation for the edge 

temperature by the cell stack-model is more accurate than that by the one-cell model. 

Figure 5-11 gives the cell potential as a function of time for the proposed design 

as calculated by the one-cell model. The figure shows that the potential variation for the 

selected conditions is very small throughout the discharge. At the end of discharge, the 

potential for the cell at the center of the stack is 1. 79 V while that at the edge of the stack 
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is 1.74 V. Although this temperature gradient in the cell stack may affect cell life, it 

will not affect to a great extent the operation of the battery during discharge. 

5.4 Conclusion 

Using the cell-stack model presented in Chapter 4, temperature profiles have 

been calculated and presented for cell stacks of varying thickness subject to varying 

heat-transfer conditions. ·From examination of a heat-generation-rate profile, it was 

concluded that heat was generated at lower rates in higher-temperature areas of the 

stack, and at higher-rates in lower-temperature areas of the stack. This type of non

uniform heat-generation-rate profile tends to flatten the temperature profile of the cell 

stack. 

A design for thermal management of an electric-vehicle battery has been 

proposed utilizing the LiPE01siLiCF3S03ITiS2 cell. For a specified capacity of 40. 

kW·h, the battery would require 606m2 of separator area, and if cells were 0.51 m by 

0.51 m, 2330 cells would be needed. If the cells were arranged in 16 stacks of 144 

cells with 1-cm cooling channels between every two stacks, the battery would then be 

0.64 m long. For this configuration, a heat-transfer coefficient of 17 Wfm2. K, 

corresponding to the lower range of the free-convection-of-air regime, would be 

required to keep the center temperature from exceeding 110 °C. For the above 

conditions, the center temperature would reach 108 °C, and the edges would reach 

103 oc. The temperature gradient in the stack would be only 5 °C. Since the lower

temperature cells produce heat at a higher rate than the higher-temperature cells, the 

temperature profile is not as steep as would be calculated by a model that assumes a 

uniform energy-generation rate. 

Calculations from the cell-stack model were compared to calculations from the 

one-cell model for the proposed electric-vehicle battery configuration. The one-cell- and 
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cell-stack-model calculations agreed well for temperatures in the center of the cell stack, 

but disagreed for cells on the edge of the cell stack. The calculated temperature at the 

edge of the cell stack was lower for the cell-stack model than for the one-cell model 

because of differences in the time-constants for heat transfer. Because of the methods in 

which the model!) were developed, the one-cell model is more accurate for calculating 

temperatures than the cell-stack model for cell stacks with negligible temperature 

gradients, and the cell-stack model is more accurate for calculating temperature profiles 

in stacks with appreciable temperature gradients. For stacks with appreciable 

temperature gradients, the one-cell model can still be used for the calculation of cell 

potentials for different cells in the cell stack, but the error due to the higher calculated 

temperature at the edge of the stack must be taken into account. 



Appendix A: One-Cell Program and Input Files 

A.l Program for One-Cell Model: tfoill.f 

c****************************************************** 
c 
c tfoil1.f 
c 
c version l.Ox August 15, 1994 
c 
c Thermal model of the lithium/polymer battery 
c 
c****************************************************** 

implicit double precision*8(a-h,o-z) 

c 

common In! nx,nt,nl,n2,nj 
common /calc/ ai(1600),u(222,1600),ts(1600),h,hl,h2,h3,rr 
commonlconst/ fc,r,t,frt,cur,ep,epf,eps,pi,tsmax 
common/power/ ed,Vold · 
commonlssblockl xp0(5),xx0(5,221),term(221) 
commonlvar/ xp( 1 0) ,xx( 5,221 ),xi( 5,221 ),xt( 5,221, 1600) 
commonlcprop/ sig,area,ct,dfs,Rad,cmax,rka,rkf 
commonltprop/df(221 ),cd(221 ), tm(221 ), 
1ddf(221),dcd(221),dtm(221),dfu(221),d2df(221), 
1 d2tm(221) ,d2fu(221) 
common!templhtc,dudt,Cp,dens,tam,ncell,gO,tin,lht 
dimension tt(16),cu(16) 
open(unit=lO, file= 'tfoil.in', status='old') 

44 format(/' mass = ',f7.4,' kg/m2') 
45 format(' specific energy = ',f8.2,' W -hlkg') 
46 format('specific power = ',f8.2,' W/kg') 

n=5 
c n is number of equations 

rr=l.OdO 
c ~ntial time step is 1 second 

data fc/96487.0d0/, r/8.314d0/, pil3.141592653589d0/ 
c 
c****************************************************** 
c read in parameters and boundary conditions 
c 

c 

c 

read(10, *)lim,hl,h2,h3,nl,n2,t,tsmax,tsmin 

nl=nl+l 
nj = nl + n2 
rr = tsmin 

read(lO, *)(xi(i, 1 ), xi(i,nj), i=l ,2) 
read(l 0, *)(xi(i,n 1 ), xi(i,nj), i=3,n),cur 
read( 10, *)dfs,Rad,ep,epf,eps,sig 
read( 10, *)ct,cmax,rka,rkf,il4 
read( 10, *)re,rs,rf,rc,rp,ef 

read( 10, *)ill ,il2,il3 
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c 

c 

read( 10, *)htc,dudt,Cp,dens,tam,ncell,lht 
read(l 0, *) tmax 
read( 10, *)( cu(i),tt(i), i= 1 ,tmax) 

tam=tam+273.15 
t=t+273.15 
tin=t 

tt(1)=6.0d01 *tt(1) 
do i=2,tmax 
tt(i)=tt(i-1)+6.0d01 *tt(i) 
end do 

c rr is the size of a time step and should equal dt times 
c the radius squared over dfs, nt the number of steps 

dt=rr*dfs/Rad/Rad 
ts(1)=0.0d0 

c 

c 

c 

area=3 .OdO*( 1.0d0-ep-epf)/Rad 
sig=sig*(( 1.0d0-ep-ept)**(1.5d0)) 
hl=hl+h2 
h1=hll(n1-1) 
h2=h2/n2 
h=h1 
frt=fc/(r*t) 

print*,' FOIL VERSION l.Ox' 
print*,'' 
print*,' uti! ',' cell pot ',' material',' time' 
print*,' y ',' (V) ','balance',' (min)' 

c************************************************** 
c 

call guess(n) 
c 
c%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
c 

c 

c 

cur=cu(l) 
call zts(n,lim,2,dt, 1) 
k=1 

do 1=1,tmax 
123 k=k+l 

nt=k-1 

c adjust time step to match time of change in current 
c 

if (time .gt. tt(l)) then 
dt=tt(l) *dfs/Rad/Rad-ts(k -1) 
rr=dt*Rad *Rad/dfs 
iflag=1 
else 
continue 
end if 
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c 
ts(k)=ts(k-1)+dt 
call calca(k) 
call comp( n,lim,k,dt, 1) 

c sets values for time step k 
c 

c 

c 

do 10 i=1,n 
do 10 j=1,nj 

10 xt(i,j ,k)=xx(i,j) 

call cellpot(k,il4,vv,1) 

c anticipate time at next time step 
time=(ts(k)+dt)*Rad*Rad/dfs 

c 
if (iflag .eq. 0) go to 123 
cur=cu(l+1) 
iflag=O 

c calculate zero time solution for change in current 
if (1 .It. tmax) call zts(n,lim,k,dt,k) 
rr=2.0d0 
dt=rr*dfs/Rad/Rad 
end do 

c 
c%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
c 
c call peak(n,lim,il4) 
c call util 

c 

if(il1 .eq. 1) call nucamb(n,il2,il3) 
call mass(tw ,re,rs,rf,rc,rp,ef) 

ed=ed/tw/3.6d03 
pow=3.6d03*dfs*ed/ts(nt+1)/Rad/Rad 
print44,tw 
print45,ed 
print46,pow 
end 

c******************************************************* 
c******************************************************* 

subroutine comp(n,lim,kk,tau,li) 
implicit double precision*8(a-h,o-z) 
common In/ nx,nt,n 1 ,n2,nj 
common /calc/ ai( 1600),u(222, 1600),ts( 1600),h,h 1 ,h2,h3,rr 
common/const/ fc,r,t,frt,cur,ep,epf,eps,pi,tsmax · 
common/ssblock/ xp0(5),xx0(5,221),term(221) 
common/var/ xp(10),xx(5,22l),xi(5,221),xt(5,221,1600) 
common/cprop/ sig,area,ct,dfs,Rad,crriax,rka,rkf 
common/tprop/df(221),cd(221),tm(221), 
1ddf(221),dcd(221),dtm(221),dfu(221),d2df(221), 
1d2tm(221),d2fu(221) 
common/mat/ b,d 
commonlbnd/ a,c,g,x,y 
common/templhtc,dudt,Cp,dens,tam,ncell,gO,tin,lht 
dimension b(10,10),d(10,21) 

101 



dimension a( 10, 1 O),c( 10,221 ),g( 1 O),x( 10,1 O),y( 10,1 0) 
c 

c 

99 format (lh ,//5x,'this run did not converge'//) 
nx=n 

666 continue 
if ( li .eq. 1) then 
do 1 j=1,nj 
do 1 i=1,n 

c(i,j )=xt(i,j ,kk -1) 
1 xx(i,j)=xt(i,j,kk-1) 
else 
do 81 j=l,nj 
do 81 i=1,n 

c(i,j)=xt(i,j,kk) 
81 xx(i,j)=xt(i,j,kk) 

c 81 c(i,j)=xx(i,j) 
endif 

c sets first guess to last time-step values 
jcount=O 
do 4 i=1,n 

4 xp(i)=O.OdO 
c initialize variables to begin each iteration (jcount is iteration #) 

8j=O 
jcount=jcount+ 1 
call prop(nj,n1) 

c obtains physical properties at this specific point 
do 9 i=1,n 
do 9 k=l,n 

x(i,k)=O.OdO 
9 y(i,k)=O.OdO 

c 
c store previous iteration of (xp in xpO) & (xx in xxO) 

do 6 i=1,n 

c 

xpO(i)=xp(i) 
6 xxO(i,n1+10)=xx(i,n1+ 10) 

xxO(n,n 1 + 1 O)=xx(n,n 1 + 1 0) 

c for a given iteration, set up governing equations and be's 
c start at the left interface and move across polymer 
c 

c 
10 j=j+1 

do 11 i=1,n 
g(i)=O.OdO 
xx(i,j)=c(i,j) 

do 11 k=1,n 
a(i,k)=O.OdO 
b(i,k)=O.OdO 

11 d(i,k)=O.OdO 
c clears all arrays before use 

if(j.ne.1) go to 13 
c 
c 
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c 
c specify boundary conditions at left interface (j=l) 
c boundary conditions at negative electrode 

c 

c 

c 

c 

c 
c 

h=hl 

dcf=(-xx(l,j+2) + 4.0dO*xx(l,j+1)- 3.0dO*xx(1,j))/2.0dO/h 
b(l, 1 )=-dfU)* 1.5d0/h + ddfU)*dcf 
d( 1,1 )=dfU)*2.0d0/h 
x( 1, 1 )=-dfU) *0 .5d0/h 
g(l)=(tm(j)-l.OdO)*cur/fc + ddf(j)*dcf*xx(1,j) 

dcf=(xx(1,j+1)-xx(l,j))lh 
r1=(xx(1,j+1)+xx(1,j))/2.0d0 
p 1 =( tm(j)+tm(j+ 1) )/2.0d0 
p2=( cd(j)+cd(j+ 1) )/2.0d0 
p3=( dtm(j)+dtm(j+ 1) )/2.0d0 
p4=( dfu(j)+dfu(j+ 1 ))/2.0d0 
p6=( d2fu(j)+d2fu(j+ 1) )/2.0d0 
d(2, 1 )=( 1.0d0-p 1)*( 1.0d0/r1 +p4)/h 
b(2, 1 )=-d(2, 1)+(( 1.0d0-p 1 )*(p6-l.Od0/rllr1 )*dcf 

1 -(l.Od0/r1+p4)*dcf*p3)/2.0d0 
d(2, 1 )=d(2, 1)+((1.0d0-p 1)*(p6-1.0d0/rllrl )*dcf 

1 -(l.Od0/rl+p4)*dcf*p3)/2.0d0 
d(2,2)=fc/r/tlh 
b(2,2)=-fc/r/tlh 
g(2)=fc/r/t*cur/p2+( 1.0d0-p 1) *(p6-1.0d0/r 1/r 1) *dcf*r 1 -
1 (l.Od0/r1+p4)*dcf*p3*r1 

b(3,5)=l.Od0 
g(3)=0.0d0 
b(4,3)=1.0d0 
g(4)=0.0d0 
b(5,4)=1.0d0 
g(5)=cur 

call band(j) 
go to 10 · 

c specify governing equations in polymer separator 
13 if (j .ge. n1) go to 110 

c 
dc=(xx(1,j+1)- xx(l,j-1))/2.0d0/h 
d2c=(xx(1,j+ 1)-2.0dO*xx( 1 ,j)+xx( 1 ,j-1))/h/h 
a(1,1)=-df(j)/2.0d0/hlh + dc*ddfU)/h/2.0dO-
1dtm(j)*xx( 4,j)/fc/4.0d0/h 
b( 1,1 )=eps/rr + df(j)lhlh - d2df(j)*dc*dc/2.0d0 
1-d2c*ddf(j)/2.0d0 + xx( 4,j)*d2trn(j)*dc/fc/2.0d0 
d(1,1)=-df(j)/2.0d0/hlh- dc*ddf(j)/h/2.0d0 + 
1dtm(j)*xx(4,j)/fc/4.0d0/h 
b(1,4)=dtm(j)*dc/2.0d0/fc 
g(l)=eps*xt(l,j,kk-1)/rr- dc*dc*d2df(j)*xx(1,j)/2.0d0 

1-dc*dc*ddf(j)/2.0d0- d2c*ddfU)*xx(1,j)/2.0dO + term(j)/2.0d0+ 
1xx( 4,j)*d2tm(j)*dc*xx( 1 ,j)/fc/2.0d0 + dtm(j)*xx( 4,j)*dc/fc/2.0d0 
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c 

c 

c 

dcf=(xx( 1 ,j+ 1 )-xx( 1 ,j) )/h 
r 1=(xx(l ,j+ 1 )+xx(l ,j))/2.0d0 
p 1=(tmG)+tm(j+ 1))/2.0d0 
p2=( cd(j)+cd(j+ 1) )/2.0d0 
p3=(dtm(j)+dtm(j+1))/2.0d0 
p4=( dfu(j)+dfu(j+ 1) )/2.0d0 
p5=( dcd(j)+dcd(j+ 1) )/2.0d0 
p6=( d2fu(j)+d2fu(j+ 1) )/2.0d0 
d(2, 1)=(l.Od0-p1)*(l.Od0/rl +p4)/h 
b(2, 1)=-d(2, 1)+(( 1.0d0-p 1)*(p6-1.0d0/r1/r1)*dcf 

1 -( l.Od0/r1 +p4)*dcf*p3)/2.0d0 
d(2, 1)=d(2, 1)+(( 1.0d0-p 1 )*(p6-l.Od0/r1/rl)*dcf 

1 -(l.Od0/r1+p4)*dcf*p3)/2.0d0 
d(2,2)=fc/r/tlh 
b(2,2)=-fc/r/tlh 
g(2)=fc/r/t*cur/p2+( 1.0d0-p 1 )*(p6-1.0d0/rl/rl)*dcf*rl -
1 (l.Od0/r1+p4)*dcf*p3*r1 

b(3,5)=1.0d0 
. g(3)=0.0d0 

b(4,3)=1.0d0 
g(4)=0.0d0 
b(5,4)=1.0d0 
g(5)=cur 
call band(j) 
go to 10 

c Now for the boundary between cathode and separator(j=n1): 
110 if (j .ne. n1) go to 120 

sum=O.OdO 
c Material balance across box at n 1 gives: 
c 

dc=(xx( 1 ,j)-xx( 1 ,j-1))/h1 
dc2=(xx( 1 ,j+ 1)-xx( 1 ,j))/h2 
r1=(xx(4,j)+xx(4,j-1))/2.0d0 
r2=(xx(4,j+1)+xx(4,j))/2.0d0 
r3=(xx(1,j)+xx(1,j-1))/2.0d0 
r4=(xx(1,j)+xx(1,j+ 1))/2.0d0 
p 1=( df(j-1 )+df(j))/2.0d0 
p2=((ep** 1.5)*df(j)/(eps** 1.5)+df(j+ 1))/2.0d0 
p3=(dtm(j)+dtm(j+1))/2.0d0 
p4=( dtm(j-1 )+dtm(j) )/2.0d0 
p5=(tm(j+1)+tm(j))/2.0d0 
p6=( tm(j )+tm(j -1) )/2.0d0 
p7=((ep** 1.5)*ddf(j)/(eps** 1.5)+ddf(j+ 1))/2.0d0 
p8=( ddf(j)+ddf(j-1 ))/2.0d0 . 
a(1,1)=-p1/h1/h2+dc*p8/2.0d0/h1-p4*cur/2.0d0/fc/h2 
b(1,1)=p1/h1/h2 + p2/h2/h2 + (eps*h1/h2 + ep)/rr 
b( 1, 1 )=b( 1,1 )+dc*p8/2.0d0/h 1-p4 *.cur/2.0d0/fc/h2 

1-p7*dc2/2.0d0/h2+p3*r2/2.0d0/fclh2 
d( 1, 1 )=-p2/h2/h2-p7*dc2/2.0d0/h2+p3 *r2/2.0d0/fc/h2 
b( 1, 4 )=p 5/fc/h2/2. OdO 
d(l ,4)=p5/fc/h2/2.0d0 
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c 

c 

c 

c 

c 

b( 1 ,5)=-3.0d0*area/8.0d0 
d( 1 ,5)=-area/8.0d0 
g(l)=(h1 *eps/h2 + ep)*xt(l,j,kk-1)/rr + termU) 
1 +p6*cur/fc/h2 

dcf=(xx( 1 ,j+ 1)-xx(1,j))lh 
r 1=(xx( 1 ,j+ 1 )+xx( 1 ,j))/2.0d0 
r4=(xx(4,j+1)+xx(4,j))/2.0d0 
p1=(tm(j)+tm(j+1))/2.0d0 
p2=((ep** 1.50dO)*cd(j)/(eps** 1.5d0)+cd(j+ 1))/2.0d0 
p3=(dtm(j)+dtm(j+ 1))/2.0d0 
p4=(dfu(j)+dfu(j+ 1))/2.0d0 
p5=(( ep** 1.50dO)*dcd(j)/( eps** 1.5d0)+dcd(j+ 1))/2.0d0 
p6=( d2fu(j)+d2fu(j+ 1) )/2.0d0 
d(2, 1 )=(1.0d0-p 1 )*(l.OdO/rl +p4)/h 
b(2, 1 )=-d(2, l)+((l.OdO-p 1)*(p6-l.Od0/r1/rl )*dcf 

1 -( 1.0d0/r1 +p4)*dcf*p3+fc/r/t*r4*p5/p2/p2)/2.0d0 
d(2, 1 )=d(2, 1)+((1.0d0-p 1)*(p6-1.0d0/rl/r1 )*dcf 

1 -( 1.0d0/r 1 +p4) *dcf*p3+fc/r/t*r4 *p5/p2/p2 )/2.0d0 
d(2,2)=fc/r/tlh 
b(2,2)=-fc/r/tlh 
b(2,4 )=-fc/r/t*( 1.0d0/p2+ 1.0d0/sig)/2.0d0 
d(2,4 )=b(2,4) 
g(2)=-fc/r/t*cur/sig + ( l.OdO-p 1 )*(p6-l.Od0/r 1/rl )*dcf*rl 
1 -(1.0d0/rl+p4)*dcf*p3*rl+fc/r/t*r4*p5*r1/p2/p2 

call ekin(j) 

if (kk .gt. 2) then 
sum=O.OdO 
do i=1, kk-2 
sum=sum + (xt(3,j,i+ 1)-xt(3,j,i))*ai(kk-i)/(ts(i+ 1)-ts(i)) 
end do 
else sum=O.OdO 
end if 
b(4,3)=ai(l)/rr 
b( 4,5)= 1.0d0/Rad 
g( 4 )=ai( 1 )*xt(3 ,j ,kk -1 )/rr -sum *dfs/Rad/Rad 
b(5,4)=1.0d0 
g(5)=cur 

call band(j) 
go to 10 

120 if (j .eq. nj) go to 16 
c 
c specify governing equations [ n1 + 1 < j < nj ] 
c composite cathode 

c 

sum=O.OdO 
h=h2 

dc=(xx(l,j+l)- xx(l,j-1))/2.0d0/h 
d2c=(xx(1 ,j+ 1 )-2.0dO*xx( 1 ,j)+xx( 1 ,j-1 ))/h/h 
a( 1, 1 )=-df(j)/2.0d0/h/h + dc*ddf(j)/h/2.0d0 -
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·c 

c 

c 

c 

c . 

1 dtm(j)*xx( 4,j)/fc/4.0d0/h 
b(l,1)=ep/rr + dfU)Ih!h- d2dfU)*dc*dc/2.0dO 
1-d2c*ddf(j)/2.0d0 + xx( 4,j)*d2tm(j)*dc/fc/2.0d0 
1 +area*dtm(j)*xx(5,j)/2.0d0 
d(l, 1)=-df(j)/2.0d0/hlh- dc*ddf(j)/h/2.0d0 + 
ldtm(j)*xx( 4,j)/fc/4.0d0/h 
b(1,4)=dtm(j)*dc/2.0d0/fc 
b(1,5)=-area/2.0d0 + area*tm(j)/2.0d0 
g(l)=ep*xt(l,j,kk-1)/rr- dc*dc*d2df(j)*xx(l,j)/2.0d0 
1- dc*dc*ddf(j)/2.0d0- d2c*ddf(j)*xx(1,j)/2.0d0 + term(j)/2.0d0+ 
1 xx( 4,j)*d2tm(j)*dc*xx( 1 ,j)/fc/2.0d0 + dtm(j)*xx( 4,j)*dc/fc/2.0d0 
1 +dtm(j)*area*xx(5,j)*xx( 1 ,j)/2.0d0 

dcf=(xx(1,j+ I)-xx(l,j))lh 
r1=(xx(1,j+I)+xx(l,j))/2.0d0 
r4=(xx( 4,j+ I )+xx( 4,j))/2.0d0 
pi=(tm(j)+tm(j+1))/2.0dO 
p2=( cd(j)+ed(j+ I) )/2.0d0 
p3=( dtm(j)+dtm(j+ 1 ))/2.0d0 
p4=( dfu(j)+dfu(j+ 1) )/2.0d0 
p5=( dcd(j)+dcd(j+ 1 ))/2.0d0 
p6=( d2fu(j)+d2fu(j+ 1) )/2.0d0 
d(2, 1)=(l.Od0-p1)*( 1.0d0/rl +p4)/h 
b(2, I)=-d(2, I)+(( 1.0d0-p 1 )*(p6-1.0d0/rl/r1 )*dcf 

1 -( 1.0d0/r 1 +p4 )*dcf*p3+fc/r/t*r4*p5/p2/p2)/2.0d0 
d(2, I )=d(2, I)+(( I.OdO-p 1 )*(p6-1.0d0/rllrl)*dcf 

1 -( 1.0d0/r 1 +p4 )*dcf*p3+fc/r/t*r4*p5/p2/p2)/2.0d0 
d(2,2)=fc/r/tlh 
b(2,2 )=-fc/r/tlh 
b(2,4 )=-fc/r/t*( I.Od0/p2+ 1.0d0/sig)/2.0d0 
d(2,4 )=-fc/r/t*( 1.0d0/p2+ 1.0d0/sig)/2.0d0 
g(2)=-fc/r/t*cur/sig + (l.Od0-pi)*(p6-l.OdO/rllr1)*dcf*rl
I ( 1. OdO/r 1 +p4 )*dcf*p3 *r 1 +fc/r/t*r4 *p5 *r llp2/p2 

call ekin(j) 

if (kk . gt. 2) then 
sum=O.OdO 
do i=1, kk-2 
sum=sum + (xt(3,j,i+ 1)-xt(3,j,i))*ai(kk-i)/(ts(i+ 1)-ts(i)) 
end do 
else sum=O.OdO 
end if 
b( 4,3)=ai(l )/rr 
b( 4,5)= 1.0d0/Rad 
g(4)=ai(l)*xt(3,j,kk-1)/rr -sum*dfs/Rad/Rad. 

b(5,4)=-l.Od0/h 
a(5,4 )= l.OdO!h 
b(5,5)=area*fc/2.0d0 
a( 5,5)=area *fc/2.0d0 

call band(j) 
go to 10 
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c 
c 
c 

16 continue 
c specify boundary conditions at right interfaceG=nj) 
c 

c 

. c 

c 

c 

c 

c 

c 
c 

sum=O.OdO 
the "irrefutable" boundary conditions: 
b( 1' 1 )= 1.5d0/h 
a(1,1)=-2.0d0/h 
y(1,1)=0.5d0/h 
g(1)=0.0d0 

b(2,2)= 1.5d0/h 
a(2,2)=-2.0d0/h 
y(2,2)=0.5d0/h 
g(2)=-cur/sig 

call ekinG) 

if (kk .gt. 2) then 
sum=O.OdO 
do i=1, kk-2 
sum=sum + (xt(3,j,i+ 1)-xt(3,j,i))*ai(kk-i)/(ts(i+ 1)-ts(i)) 
end do 
else sum=O.OdO 
end if 
b(4,3)=ai(l)/rr 
b( 4,5)= 1.0d0/Rad 
g(4)=ai(l)*xt(3,j,kk-1)/rr -sum*dfs/Rad/Rad 

b(5,4)=1.5d0/h 
a(5,4)=-2.0d0/h 
y(5,4)=0.5d0/h 
b(5,5)=-area*fc 

call bandG) 

c begin check for convergence 
c 

do i=1,n 
xp(i)=( 4.0d0*c(i,2)-3.0d0*c(i, 1 )-c(i,3) )/2.0d0/h 
end do 
do 25 j=1,nj 
if( c( 1 ,j).lt.xx( 1 ,j)ll.Od01) c(l ,j)=xx(l ,j)ll.Od01 

c if( cmax-c(l ,j).le.O.OdO) c(l ,j)=0.989d0*cmax+xx(1 ,j)/l.Od02 
if( c(2,j).lt.xx(2,j)-0.3d0) c(2,j)=xx(2,j)-0.3d00 
if( c(2,j).gt.xx(2,j)+0.3d0) c(2,j)=xx(2,j)+0.3d00 

c if(c(l,j).lt.l.Od-10) c(l,j)=l.Od-10 
c if( c( 1 ,j).lt.l.Od-04 ) c(5,j)=O.Od0 

if( c(3,j).lt.xx(3,j)/l.Od01) c(3,j)=xx(3,j)ll.Od0 1 
if( ct-c(3,j).le.O.Od0) c(3,j)=0.989dO*ct+xx(3,j)ll.Od02 
if(c(3,j).lt.l.Od-12 .and. j .ge. nl) c(3,j)=l.Od-12 
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do 25 i=l,n 
25 xx(i,j)=c(i,j) 

c 

* 
c 

c 

c 

c 

if (jcount .gt. lim ) then 
tau=tau/2. OdO 
rr=rr/2.0d0 _ 
ts(kk)=ts(kk -1 )+tau 

print*,' time step reduced to ', rr, ts(kk)*Rad*Rad/dfs 
if (tau .It. l.Od-02) then 
print* ,kk -1, ' this time step did not converge' 

print99 
call nucamb (n,2,30) 
stop 
else 
call calca(kk) 
go to 666 
end if 

else 
do 55 ii=1,n 

dxp=dabs( xp(ii)-xpO(ii)) 
dxx=dabs( xx(ii,n1 + 10)-xxO(ii,nl + 10) ) 

if ( dxx .gt. l.Od-09*dabs( xx(ii,n1 + 10) ) ) go to 8 
if ( dxp .gt. l.Od-07*dabs( xp(ii)) ) go to 8 

55 continue 

c print* ,jcount,' iterations required' 
c Increasing time steps: 

if (jcount .It. 6 .and. kk .gt. 5) then · 
if (rr.lt.tsmax) then 
tau=tau *2.0d0 
rr=rr*2.0d0 

c ts(kk)=ts(kk-1)+tau 
c print* ,'time step increased to ',rr, ts(kk)*Rad*Rad/dfs 
c call calca(kk) 
c go to 666 

c 

end if 
end if 

c- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

c 
do j=2,nj-1 

if (j .eq. n1) then 
dc=(xx( 1 ,j)-xx( 1,j-1))/h1 
dc2=(xx(l,j+ 1)-xx(l,j))lh2 
rl=(xx(4,j)+xx(4,j-1))/2.0d0 
r2=(xx(4,j+1)+xx(4,j))/2.0d0 
r3=(xx( 1 ,j)+xx(l ,j-1))/2.0d0 
r4=(xx( 1 ,j)+xx( 1 ,j+ 1) )/2.0d0 
p 1 =( df(j -1 )+dfU) )/2.0d0 
p2=((ep** 1.5)*dfU)/(eps** 1.5) + df(j+ 1))/2.0d0 
p3=(dtm(j)+dtm(j+l))/2.0d0 
p4=(dtm(j-l)+dtm(j))/2.0d0 
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c 

c 

c 

c 
c 

p5=(tmG+ 1)+tmU))/2.0dO 
p6=(tmU)+tmG-1) )/2.0d0 
p7=((ep** 1.5)*ddfU)/(eps** 1.5)+ddfG+ 1))/2.0d0 
p8=( ddfG)+ddfG-1) )/2.odo 
termU)=area*(3.0dO*xx(5,j)/8.0d0 + xx(5,j+ 1)/8.0d0) + 

1 cur*p6/fclh2-p5*r2/h2/fc-p 1 *dclh2+p2 *dc2/h2+p8 *dc*r3/h 1 
1 +p3*r2*r4/fc/h2-cur*r3*p4/fc/h2-p7*dc2*r4/h2 

else 

ifG .gt. n1) h=h2 
ifG .It. n1) h=h1 
dc=(xx(1,j+ 1)-xx(l,j-1))/2.0d0/h 
d2c=(xx( 1 ,j+ 1)-2.0dO*xx(l ,j)+xx( 1 ,j-1))/h/h 
termG)=dfU)*d2c+ dc*dc*ddfG)- dc*dtmG)*xx(4,j)/fc-
1 area*xx(5,j)*(tmU)-1.0dO) 

end if 

end do 
c- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
c 

c 

c 

end if 

return 
end 

c **************************************************************** 
subroutine calca(kk) 

c . 

c 

c 

c 

implicit double precision*8(a-h,o-z) 
common In! nx,nt,n1,n2,nj 
common /calc/ ai(1600),u(222,1600),ts(1600),h,h1,h2,h3,rr 
commonlconst/ fc,r,t,frt,cur,ep,epf,eps,pi,tsmax 
common!temp/htc,dudt,Cp,dens,tam,ncell,gO,tin,lht 
dimension ar(2, 1600) 

s= 1.644934066848d0 

do i=l,kk-1 
ar( 1 ,i)=ts(kk)-ts(i) 
ar(2,i)=ts(kk)-ts(i+ 1) 
do m=1,2 
t1=ar(m,i) 
a1=0.0d0 

if(tl .gt. 0.06d0) then 

do j=1,5 
y1=j*j*pi*pi*tl 
if (y1 .gt. 1.5d02) then 
da=O.OdO 
else 
da=(dexp( -y1))/j/j 
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c 

c 

c 

c 

c 

c 

c 

c 

c 

da=( dexp( -j * j *pi *pi *t 1) )/j/j 
end if 
a1=a1+da 
end do 
a 1 =2. OdO*( s-a 1 )/pi/pi 

else 

if(t1 .eq. O.OdO) then 
a1=0.0d0 
else 
do j=1,3 
z=j/dsqrt(t1) 
call erfc(z,e) 
y2=j*j/t1 
if(y2 .gt. 1.5d02) then · 
da=-j * ( dsqrt(pilt 1)) *e 
else 
da=dexp( ~y2)-j *dsqrt(piltl-j *e 
end if 
a1=a1+da 
end do 
a1=-t1 + 2.0dO*dsqrt(tl/pi)*(l.Od0+2.0dO*a1) 
end if 

end if 
ar(m,i)=a1 
end~o 

ai(kk-i)=ar(1,i)-ar(2,i) 
end do 

return 
end 
******************************************** 

subroutine erfc(z,e) 
implicit double precision*8(a-h,o-z) 
commonlconst/ fc,r,t,frt,cur,ep,epf,eps,pi,tsmax 

.commonltemp/htc,dudt,Cp,dens,tam,ncell,gO,tin,lht 

a1=0.254829592d0 
a2=-0.284496736d0 
a3=1.421413741d0 
a4=-1.453152027d0 
a5= 1.061405429d0 
if(z .It. 2.747192d0) then 
t2=1.0d0/(l.Od0+0.3275911d0*z) 
e=(a1 *t2+a2*t2*t2+a3*t2**3.0d0+a4*t2**4.0d0 
1 +a5*t2**5.0dO)*dexp( -z*z) 
else 

if (z .gt. 25.0d0) then 
e=O.OdO 
else 
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c 

c 

sum=O.OdO 
max=z*z + 0.5 
fac=-0.5d0/z/z 
sum=fac 
tl=fac 
n=1 

10 n=n+1 
if(n .gt. max) go to 15 
tn=tl *(2.0dO*n-l.OdO)*fac 
sum=sum + tn 
if(tn .It. l.Od-06) go to 15 
tl=tn 
go to 10 

15 e=( dexp(-z*z) )*( 1.0d0+sum)/dsqrt(pi)/z 
end if 
end if 

return 
end 

c****************************************************** 
subroutine bandG) 

. implicit double precision*8(a-h,o-z) 
common In/ nx,nt,n 1 ,n2,nj 
common/mat/ b,d 
commonlbnd/ a,c,g,x,y 
dimension b(10,10),d(10,21) 
d,imension a( 10, 10),c( 10,221 ),g( 10),x( 10,1 O),y( 10,1 0) 

dimension e( 10, 11,221) 
101 format (15h determ=O atj=,i4) 

n=nx 
if(j-2) 1,6,8 

1 np1=n+ 1 
do 2 i=1,n 
d(i,2*n+1)= g(i) 
do 21=1,n 
lpn= I+ n 

2 d(i,lpn)= x(i,l) 
call matinv(n,2*n+1,determ) 
if (determ) 4,3,4 

3 print 101,-j 
4 do 5 k=1,n 

e(k,np 1, 1 )= d(k,2 *n+ 1) 
do 51=1,n 
e(k,l,1)=- d(k,l) 
lpn= I+ n 

5 x(k,l)= - d(k,lpn) 
return 

6 do 7 i=1,n 
do 7 k=1,n 
do 7 l=l,n 

7 d(i,k)= d(i,k) + a(i,l)*x(l,k) 
8 if (j-nj) 11,9,9 
9 do 10 i=l,n 
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do 10 l=l,n 
g(i)= g(i)- y(i,l)*e(l,npl,j-2) 
do 10 m=1,n 

10 a(i,l)= a(i,l) + y(i,m)*e(m,l,j-2) 
11 do 12 i=l,n 

d(i,np1)=- g(i) 
do 121=1,n 
d(i,np 1 )= d(i,np 1) + a(i,l) *e(l,np 1 ,j-1) 
do 12 k=l,n 

12 b(i,k)= b(i,k) + a(i,l)*e(l,k,j-1) 
call matinv(n,np 1 ,de term) 
if (determ) 14, 13,14 

13 print 101, j 
14 do 15 k=l,n 

do 15 m=l,np1 
15 e(k,m,j)=- d(k,m) 

if G-nj) 20,16,16 
16 do 17 k=1,n 
17 c(k,j)= e(k,np 1 ,j) 

do 18 jj=2,nj 
m= nj- jj + 1 
do 18 k=1,n 
c(k,m)= e(k,np 1 ,m) 

·do 18 1=1,n 
18 c(k,m)= c(k,m) + e(k,l,m)*c(l,m+l) 

do 191=1,n 
do 19 k=1,n 

19 c(k,1)= c(k,1) + x(k,l)*c(l,3) 
20retum 

end 
c************************************************** 

subroutine matinv(n,m,determ) 
implicit double precision*8(a-h,o-z) 
common/mat/ b,d 
dimension b(10,10),d(10,21) 
dimension id( 1 0) 
determ=l.O 
do 1 i=l,n 

1 id(i)=O 
do 18 nn=l,n 
bmax=l.l 
do 6 i=1,n 
if(id(i).ne.O) go to 6 
bnext=O.O 
btry=O.O 
do 5 j=1,n 
if(idG).ne.O) go to 5 
if(dabs(b(i,j)).le.bnext) go to 5 
bnext=dabs(b(i,j)) 
if(bnext.le. btry) go to 5 
bnext=btry 
btry=dabs(b(i,j)) 
jc=j 

5 continue 
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if(bnext.ge.bmax*btry) go to 6 
bmax=bnextfbtry 
lrOW=i 
jcol=jc 

6 continue 
if(idGc).eq.O) go to 8 
determ=O.O 
return· 

8 id(jcol)= 1 
ifGcol.eq.irow) go to 12 
do 10 j=1,n 
save=b(irow ,j) 
b(irow ,j)=bGcol,j) 

10 bGcol,j)=save 
do 11 k=1,m 
save=d(irow ,k) 
d(irow ,k)=dGcol,k) 

11 dGcol,k)=save 
12 f=l.O!bGcol,jcol) 

do 13 j=1,n 
13 bGcol,j)=bGcol,j)*f 

do 14 k=1,m 
14 dGcol,k)=dGcol,k)*f 

do 18 i=1,n 
if(i.eq.jcol) go to 18 
f=b(i,jcol) 
do 16 j=1,n 

16 b(i,j)=b(i,j)-f*bGcol,j) 
do 17 k=1,m 

17 d(i,k)=d(i,k)-f*dGcol,k) 
18 continue 

return 
end 

c********************************************************** 
subroutine nucamb(n,il2,il3) 

c 

c 

implicit double precision*8(a-h,o-z) 
common In! nx,nt,n 1 ,n2,nj 
common /calc/ ai( 1600),u(222, 1600),ts( 1600),h,h1 ,h2,h3,rr 
common/const/ fc,r,t,frt,cur,ep,epf,eps,pi,tsmax 
common/var/ xp(10),xx(5,221),xi(5,221),xt(5,221,1600) 
commonlcprop/ sig,area,ct,dfs,Rad,cmax,rka,rkf 
common/tprop/df(221 ),cd(221 ),tm(221 ), 
1ddf(221),dcd(221),dtm(221),dfu(221),d2df(221), 
1 d2tm(221) ,d2fu(221) 
commonltemp/htc,dudt,Cp,dens,tam,ncell,gO,tin,lht 
dimension zz(221) 

109 format(f7.1,', ',f7.1,', ',f7.4,', 'g12.4,', ',g12.4,', ',g12.4) 
309 format(f8.5,', ',f8.5) 
44 format('t = ',f7.2,' min') 

do 5 i=l,nl 
w=i-1 

5 zz(i) = w*h 1 * l.Od06 
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c 

do 7 i=n1+1,nj 
w=i-n1 

7 zz(i) = zz(nl)+w*h2*l.Od06 

do 10 1=2,nt+1,il3 
print*,' ' 

print44,ts(l)*Rad*Rad/dfs/60.0d0 
. print*,'distance concen potential c solid', 
1' current j' 
print*,'microns (mol/m3) (V) (mol/m3)', 
1' (Nm2) (mol/m2-s)' 
do 10 j=1,nj,il2 

· c 10 print309,zz(j),u(j,l) 

c 
10 print1 09 ,zz(j),xt( 1 ,j,l),xt(2,j,l),xt(3,j,l),xt( 4,j,l),xt(5,j,l) 

return 
end 

c ***************************************************** 

c 

c 

c 

subroutine guess(n) 
implicit double precision*8(a-h,o-z) 
common In/ nx,nt,n 1 ,n2,nj 
common /calc/ ai(1600),u(222,1600),ts(1600),h,h1,h2,h3,rr 
common/const/ fc,r,t,frt,cur,ep,epf,eps,pi,tsmax 
common/var/ xp(IO),xx(5,221),xi(5,221),xt(5,221,1600) 
common/cprop/ sig,area,ct,dfs,Rad,cmax,rka,rkf 
common/tprop/df(221) ,cd(221) ,tm(221), 
1ddf(221),dcd(221),dtm(221),dfu(221),d2df(221), 
1 d2tm(221) ,d2fu(221) 
common/templhtc,dudt,Cp,dens,tam,ncell,gO,tin,lht 
dimension del(5) 

del( 1 )=(xi (I ,nj)-xi( 1,1 ))/(nj-1) 
del(2)=cur*h2/2.0d-02 
del(4)=cur/(n1) 
del(5)=(xi(5,nj))/(nj-1) . 
xi( 4,1 )=cur 

do i=1,n1-1 
xi(3,i)=O.Od0 
xi(4,i)=cur 
xi(5,i)=O.Od0 
end do 
do i=n1,nj 
xi(3,i)=xi(3,n1) 
xi( 4,i)=xi( 4,1 )-del( 4 )*(i-n 1) 
xi(5,i)=xi(5,nj) 
end do 

do 15 i=1,nj 
xt{5,i, 1)=xi(5,i) 
xt( 4,i, 1 )=xi( 4,i) 
xt(3,i, 1)=xi(3,i) 

c xi(2,i)=xi(2, 1 )+del(2)*(i-l) 
xt(2,i, 1 )=xi(2, 1) 

114 



c 

xi(l ,i)=xi(l, 1 )+del( 1 )*(i-1) 
15 xt(l ,i, 1 )=xi( 1 ,i) 

return 
end 

c********************************************************* 
subroutine util 

c 

c 

implicit double precision*8(a-h,o-z) 
common In! nx,nt,n1,n2,nj 
common /calc/ ai(1600),u(222,1600),ts(1600),h,h1,h2,h3,rr 
commonlconst/ fc,r,t,frt,cur,ep,epf,eps,pi,tsmax 
commonlvar/ xp(10),xx(5,221),xi(5,221),xt(5,221,1600) 
commonlcprop/ sig,area,ct,dfs,Rad,cmax,rka,rkf 
commonltemp/htc,dudt,Cp,dens,tam,ncell,gO,tin,lht 

do 10 j=n1,nj 
u(j,1)=0.0d0 

do k=2,nt+1 
u(j,k)=u(j,k-1)-1.5d0*(-xt(5,j,k)+xt(5,j,k-1))*rr/Rad 

end do 
do k=2,nt+1 
u(j,k)=(u(j,k)+xt(3,j,1))/ct 
end do 
u(j, 1 )=xt(3 ,j, 1 )/ct 

10 continue 
do k=1,nt+1 
u(nj+1,k)=O.Od0 
do j=n1+1,nj-1 
u(nj+ 1 ,k)=u(nj+ 1 ,k)+u(j,k) 

end do 
u(nj+ 1 ,k)=u(nj+ 1 ,k)+0.5dO*(u(n1 ,k)+u(nj ,k)) 

u(nj+ 1 ,k)=u(nj+ 1,k)/(nj-n1) 
end do 

return 
end 

c************************************************************** 

c 

subroutine peak(n,lim,il4) 
implicit double precision*8(a-h,o-z) 
common In! nx,nt,n1,n2,nj 
common /calc/ ai(1600),u(222,1600),ts(1600),h,h1,h2,h3,rr 
commonlconst/ fc,r,t,frt,cur,ep,epf,eps,pi,tsmax 
commonlvar/ xp( 1 0) ,xx( 5,221) ,xi( 5,221 ),xt( 5,221, 1600) 
common/cprop/ sig,area,ct,dfs,Rad,cmax,rka,rkf 
commonltemp/htc,dudt,Cp,dens,tam,ncell,gO,tin,lht 

c Peak power current ramp section: 
print*,' ' 

c 

print*,' PEAK POWER ' 
print*,' ' 
print*,'cell pot ','material',' current',' power' 
print*,' (V) ',' balance ',' (A/m2)',' (W/m2)' 

c Duration of current pulse is 30 seconds. 
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c 
li=O 
k=nt+2 
rr=30.0d0 
dt=dfs*rr/Rad/Rad 
ts(k)=ts(k -1 )+rr*dfs/Rad/Rad 
call calca(k) 

c Ramp current: 
c 

do ii=1,115 
cur=ii * 1.0d0+40.0d0 
call zts(n,lim,k -1 ,dt,k -1) 
rr=30.0d0 
dt=dfs*rr/Rad/Rad 
ts(k)=ts(k-1 )+rr*dfs/Rad/Rad 
call calca(k) 
if(ii .eq. 1) then 
call comp(n,lim,k,dt, 1) 
else 
call comp(n,lim,k,dt,O) 
end if 

c 
do 40 i=1,n 
do 40 j=1,nj 

40 xt(i,j,k)=xx(i,j) 
c 

call cellpot(k,il4,vv,O) 
c 

end do 
c do ik=1,nj,2 
c print* ,xt( 1 ,ik,k),xt(3,ik,k) 
c end do 
c 

return 
end 

c********************************************************** 
subroutine cellpot(kk,il4,v,li) 

c 

c 

implicit double precision*8(a-h,o-z) 
common /nl nx,nt,n 1 ,n2,nj 
common /calc/ ai(1600),u(222,1600),ts(l600),h,h1,h2,h3,rr 
commonlconst/ fc,r,t,frt,cur,ep,epf,eps,pi,tsmax 
common/power/ ed, Void 
commonlvar/ xp(10),xx(5,221),xi(5,221),xt(5,221,1600) 
commonlcprop/ sig,area,ct,dfs,Rad,cmax,rka,rkf 
commonltemplhtc,dudt,Cp,dens,tam,ncell,gO,tin,lht 

309 format(f8.5,', ',f8.5,', ',f7.3,', ',f12.3,', ',i3,',',f12.4 
+ >I,' ,fl 0.5,' ,' ,fl2.5,' ,' ,fl 0.5) 

319 format(f8.5,', ',f7.3,', ',f7.2,', ',f7.2,', ',f7.2) 
320 format(f12.3,f9.4) · 

lim=20 

if (il4 .eq. 1 ) then 
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c For polymer PEO elyte: 
vr=cmax-xt( 1,1 ,kk) 
if (vr .lt. l.OdO) vr=l.OdO 
xO=rkf*( dsqrt((vr)*xt( 1,1 ,kk) )) 

c x0=7 .375d-03*(dsqrt((cmax-xt(l, 1,kk))*xt(l, l,kk))) 
c 

else 
c 
c For liquid PC elyte: 

xO=rkf*( dsqrt(xt(l, 1,kk))) 
c x0=3.0d-01 *(dsqrt(xt(l,l,kk))) 

c 

c 

c 

c 

c 

c 

end if 

p20=-0.01d0 
p2=p20 
jcount=O 

8 jcount = jcount + 1 
p20=p2 
a1=0.33d0*fc/r/t 
c1=0.67dO*fc/r/t 

p2=-cur/x0+( 1.0d0+p20*a1 )*dexp( -p20*a1) 
1-(l.Od0-p20*c1)*dexp(p20*c1) 
p2=p2/(a1 *dexp(-a1 *p20)+c1 *dexp(cl *p20)) 

ifGcount .gt. lim) then 
print* ,jcount 
stop 
else 
dx=dabs(p2-p20) 
if(dx .gt. dabs(l.Od-09*p2)) go to 8 
end if 

sum=O.OdO 
do j=n1+1,nj-1 
sum=sum+xt( 4,j,kk)*h 
end do 
sum=sum-cur*h*(nj-n1)+0.5d0*h*(xt(4,1,kk)+xt(4,nj,kk)) 
v=p2+xt(2, 1 ,kk)+sum/sig · · 

c Material balance criteria: 
sum=O.OdO 

c 

do j=2,n1-1 
sum=sum+ xt( 1 ,j ,kk) *h 1 *eps 
end do 
sum=sum+(xt(1,1,kk)+xt(1,n1,kk))*h1 *eps/2.0d0 
do j=n1 + 1,nj-1 
suni=sum+xt(1,j,kk)*ep*h2 
end do 
sum=sum+(xt(1,n1,kk)+xt(1,nj,kk))*h2*ep/2.0d0 
w=xt(l, 1, 1)*((n1-1)*h1 *eps+n2*ep*h2) 
ca=sum/w 
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c ut=cur*(kk-1)*rr/fc/( 1.0d0-ep)/(nj-n 1)/h/ct+xt(3,n1, 1)/ct 
th=ts(kk)*Rad *Rad/dfs/6.0d0 1 

c Volume fraction filler is epf: 
if(kk .eq. 2) ut=xt(3,n1,1)/ct 
r4=(ts(kk)-ts(kk-1))*Rad*Rad/dfs 
ut=ut + cur*r4/fc/(l.Od0-ep-epf)/(nj-n1)/h/ct 

call temperature(kk,v,q,ut,Uoc) 
tprint=t-273.15 

c print309,ut,v,ca,th,t-273.15,uo,htc,kk-1 
if(li .eq. 1) print309,ut,v,ca,th,kk-1,tprint,Uoc,htc,q 

c if(li.eq.1) print320, th, q 
if(li .eq. 0) print319,v,ca,cur,cur*v,th 

c x1=(kk-1)*rr/3.6d03 
if(kk .eq. 2) ed=O.OdO 
ed=ed+(Vold+v)*(ts(kk)-ts(kk-l))*cur*Rad*Rad/dfs/2.0d0 
Vold=v 
return 
end 

c************************************************************* 
subroutine sol(nmax,jj) 

c 

implicit double precision*8(a-h,o-z) 
common /calc/ ai(1600),u(222,1600),ts(1600),h,h1,h2,h3,rr 
common/var/ xp(10),xx(5,221),xi(5,221),xt(5,221,1600) 
common/const/ fc,r,t,frt,cur,ep,epf,eps,pi,tsmax 
common/.cprop/ sig,area,ct,dfs,Rad,cmax,rka,rkf 
common/templhtc,dudt,Cp,deils,tam,ncell,gO,tin,lht 

dimension cs(50) 

c set initial value of solid concentration 
do i=1, 50 

c cs(i)=O.OdO 
cs(i)=xt(3,jj,1) 
end do 

c 
c complete calculations for 50 points along radius of particle 

do 10 i=1,50 
y2=2.0d-02*i 

c 
c 

sum1=0.0d0 
do 20 kk= 1 ,nmax 
k=nrnax+1-kk 

c 
tl=(ts(nmax+ 1)-ts(k)) 

c print*,t1 
sum2=sum1 

c 
c calculate c bar (r,tl) 
c 

sum1=0.0d0 
rl=l.OdO 

c 
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c 

do j=1,15 
rl=-rl 
y1=j*j*pi*pi*t1 
y3=j*pi*y2 
if (yl .gt. 1.50d02) then 
da=O.OdO 
else 
da=dexp(-y1) 
end if 
suml=suml-2.0dO*rl *da*dsin(y3)/j/pily2 
end do 
sum1=1.0d0-suml · 

c perform superposition 
c 

c 

c 

cs(i)=cs(i)+(xt(3,jj ,k+ 1 )+xt(3,jj,k)-2.0dO*xt(3,jj, 1) 
1)*(sum1-sum2)/2.0d0 

20 continue 

10 continue 

print*,' ' 
print* ,ts(nmax) 
print*,'' 
do i=1, 50, 1 
print* ,.02*i,' ',cs(i) 

c print*,' ' 
end do 
return 
end 

c*********************************************************** 

c 

subroutine mass(tw ,re,rs,rf,rc,rp,ef) 
implicit double precision*8(a-h,o-z) 
common In! nx,nt,nJ,n2,nj . 
common /calc/ ai(1600),u(222, 1600),ts(1600),h,hl ,h2,h3,rr 
commonlconst/ fc,r,t,frt,cur,ep,epf,eps,pi,tsmax 
commonlvar/ xp(lO),xx(5,22l),xi(5,221),xt(5,221,1600) 
commonlcprop/ sig,area,ct,dfs,Rad,cmax,rka,rkf 
common/temp/htc,dudt,Cp,dens,tam,ncell,gO,tin,lht 

309 format(f8.5,', ',f8.5,', ',f8.5,', ',f8.5) 

c mass of positive electrode 
cl=h2*n2*(re*ep+rs*(l.Od0-ep-epf)+rf*epf) 

c 
c mass of separator 

s=(re*eps+rc*(l.OdO-eps))*hl *(nl-1) 
c 
c mass of negative electrode 

a1=ef*( l.OdO-ep-epf)*( ct)*h2*(n2)*6.941/l.Od03 

c mass of bipolar partition is rp*h3 

tw=c1 +s+al +rp*h3 
print309,al,s,cl,rp*h3,tw 
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c 
return 
end 

c******************************************************* 
subroutine zts(n,lim,kk,tau,li) 
implicit double precision*8(a-h,o-z) 
common In! nx,nt,nl,n2;nj 
common /calc/ ai(1600),u(222, 1600),ts(1600),h,hl ,h2,h3,rr 
common/const/ fc,r ,t,frt,cur,ep,epf,eps,pi, tsmax 
common/ssblock/ xpO( 5),xx0( 5,221 ),term(221) 
common/var/ xp(10),xx(5,22l),xi(5,221),xt(5,221,1600) 
common/cprop/ sig,area,ct,dfs,Rad,cmax,rka,rkf 
common/tprop/df(221),cd(221),tm(221), 
1ddf(221),dcd(221),dtm(221),dfu(221),d2df(221), 
1d2tm(221),d2fu(221) 
common/temp/htc,dudt,Cp,dens,tam,ncell,gO,tin,lht 
common/mat/ b,d 
commonlbnd/ a,c,g,x,y 
dimension b(10,10),d(10,21) 
dimension a(10,10),c(10,221),g(l0),x(10,10),y(l0,10) 

c 

c 

99 format (lh ,1/Sx,'this run did not converge'//) 
nx=n 

do 1 j=1,nj 
do 1 i=1,n 

c(i,j)=xt(i,j,k.k-1) 
1 xx(i,j)=xt(i,j,k.k-1) 

c sets first guess to last time step values 
jcount=O 
do 4 i=1,n 

4 xp(i)=O.OdO 
c initialize variables to begin each iteration Gcount is iteration #) 

8j=O 
jcount=jcount+ 1 
call prop(nj,n1) 

c obtains physical properties at this specific point 
do 9 i=1,n 
do 9 k=1,n 

x(i,k)=O.OdO 
9 y(i,k)=O.OdO 

c 
c store previous iteration of (xp in xpO) & (xx in xxO) 

do 6 i=1,n 

c 

xpO(i)=xp(i) 
6 xxO(i,n 1 + 10)=xx(i,n 1 + 10) 

xxO(n,n 1 + 1 O)=xx(n,n 1 + 1 0) 

c for a given iteration, set up governing equations and be's 
c . start at the left interface and move across polymer 
c 

10 j=j;; 1 
c 

do 11 i=1,n 
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g(i)=O.OdO 
xx(i,j)=c(i,j) 

do 11 k=1,n 
a(i,k)=O.OdO 
b(i,k)=O.OdO 

11 d(i,k)=O.OdO 
c clears all arrays before use 

if(j .ne.1) go to 13 
c 
c 
c 
c specify boundary conditions at left interface (j= 1) 

· c boundary conditions at negative electrode 
h=h1 

c 

c 

c 

c 

c 
c 

b(1,1)=1.0d0 
g(1)=xt(1,j,kk-1) 

dcf=(xx(l,j+ 1)-xx(1,j))lh 
r1=(xx(1 ,j+ 1)+xx(l,j))/2.0d0 
p 1=(tm(j)+tm(j+ 1))/2.0d0 
p2=(cd(j)+cd(j+ 1))/2.0d0 
p3=(dtm(j)+dtm(j+1))/2.0d0 
p4=(dfu(j)+dfu(j+1))/2.0d0 
p6=(d2fu(j)+d2fu(j+1))/2.0d0 
d(2, 1 )=( 1.0d0-p 1)*(l.Od0/r1 +p4 )lh 
b(2, 1 )=-d(2, 1 )+( ( 1.0d0-p 1 )*(p6-1.0d0/rl/rl )*dcf 

1 -(l.OdO/rl +p4)*dcf*p3)/2.0d0 
d(2, 1 )=d(2, 1 )+(( 1.0d0-p 1 )*(p6-1.0d0/r1/r1)*dcf 

1 -( l.OdO/r 1 +p4 )*dcf*p3)/2.0d0 
d(2,2)=fc/r/tlh 
b(2,2)=-fc/r/tlh 
g(2)=fc/r/t*cur/p2+(1.0d0-p 1 )*(p6-1.0d0/rl/rl)*dcf*r1 -
1 (l.Od0/rl+p4)*dcf*p3*r1 

b(3,5)=1.0d0 
g(3)=0.0d0 
b(4,3)=1.0d0 
g(4)=0.0d0 
b(5,4)=1.0d0 
g(5)=cur 

call band(j) 
go to 10 

c specify governing equations in polymer separator 
13 if (j .ge. n1) go to 110 

c 

c 

b(1,1)=1.0d0 
g( 1)=xt(1 ,j,kk-1) 

dcf=(xx( 1 ,j+ 1 )-xx( 1 ,j))lh 
r1=(xx( 1,j+ 1)+xx(l ,j))/2.0d0 
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c 

c 

p 1 =(tm(j)+tm(j+ 1) )/2.0d0 
p2=(cd(j)+cd(j+ 1 ))/2.0d0 
p3=( dtm(j)+dtm(j+ 1) )/2.0d0 
p4=( dfuU)+dfu(j+ 1) )/2.0d0 
p5=( dcd(j)+dcd(j+ 1) )/2.0d0 
p6=( d2fu(j)+d2fu(j+ 1) )/2.0d0 
d(2, 1)=( 1.0d0-p 1)*( 1.0d0/r1 +p4)/h 
b(2, 1)=-d(2, 1)+((1.0d0-p1)*(p6-1.0d0/rllrl)*dcf 

· 1 -(l.Od0/rl+p4)*dcf*p3)/2.0d0 
d(2, 1 )=d(2, 1 )+( (l.OdO-p 1 )*(p6-1.0d0/r 1/rl )*dcf 

1 -( 1.0d0/r1 +p4 )*dcf*p3)/2.0d0 
d(2,2)=fc/r/t/h 
b(2,2)=-fc/r/t/h 
g(2)=fc/r/t*cur/p2+(l.Od0-p 1 )*(p6-1.0d0/rllrl)*dcf*r1 -
1 (l.Od0/r1 +p4)*dcf*p3*r1 

b(3,5)=1.0d0 
g(3)=0.0d0 
b(4,3)=1.0d0 
g(4)=0.0d0 
b(5,4 )= l.OdO 
g(5)=cur 
call band(j) 
go to 10 

c Now for the boundary between cathode and separator(j=n1): 
110 if (j .ne. n1) go to 120 

c 

c 

c 

c 

b(1,1)=1.0d0 
g(l )=xt(l ,j ,kk -1) 

dcf=(xx(l,j+ 1)-xx(l,j))/h 
rl=(xx( 1 ,j+ 1 )+xx( 1 ,j))/2.0d0 
r4=(xx(4,j+1)+xx(4,j))/2.0d0 
p1=(tm(j)+tm(j+ 1))/2.0d0 
p2=(( ep** 1.50dO)*cd(j)/( eps** 1.5dO)+cd(j+ 1 ))/2.0d0 
p3=( dtm(j)+dtm(j+ 1) )/2.0d0 
p4=(dfu(j)+dfu(j+ 1))/2.0d0 
p5=((ep** 1.50dO)*dcd(j)/(eps** 1.5d0)+dcd(j+ 1))/2.0d0 
p6=( d2fu(j )+d2fu(j+ 1) )/2.0d0 
d(2, 1 )=( 1.0d0-p 1 )*( 1.0d0/r1 +p4)/h 
b(2, 1)=-d(2, 1)+(( 1.0d0-p 1)*(p6-1.0d0/r1/r1 )*dcf 

1 -( l.OdO/rl +p4 )*dcf*p3+fc/r/t*r4*p5/p2/p2)/2.0d0 
d(2, 1 )=d(2, 1 )+( ( 1.0d0-p 1 )* (p6-1. OdO/r 1/r 1) *dcf 

1 -( 1.0d0/r 1 +p4 )*dcf*p3+fc/r/t*r4*p5/p2/p2)/2.0d0 
d(2,2)=fc/r/t/h 
b(2,2)=-fc/r/t/h 
b(2,4 )=-fc/r/t*( 1.0d0/p2+ 1.0d0/sig)/2.0d0 
d(2,4 )=b(2,4) 
g(2)=-fc/r/t*cur/sig + (l.Od0-p1)*(p6-l.Od0/rl/rl)*dcf*rl 
1 -(l.OdO/rl +p4 )*dcf*p3*r1 +fc/r/t*r4*p5*rllp2/p2 

call ekin(j) 
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c 

c 

c 

c 

b(4,3)=1.0d0 
g(4)=xt(3,j,kk-l) 

b(5,4)=1.0d0 
g(5)=cur 

call band(j) 
go to 10 

120 if (j .eq. nj) go to 16 

c specify governing equations [ n 1 + 1 < j < nj ] 
· c composite cathode 

sum=O.OdO 

c 

c 

c 

c 

c 

c 

c 
c 

h=h2 

b(1,1)=1.0d0 
g( 1 )=xt( 1 ,j ,kk -1) 

dcf=(xx(1,j+1)-xx(1,j))/h 
rl=(xx(1,j+ 1)+xx(l,j))/2.0d0 
r4=(xx(4,j+ 1)+xx(4,j))/2.0d0 
p 1=(tm(j)+tm(j+ 1))/2.0d0 
p2=( cd(j )+cd(j+ 1) )/2.0d0 
p3=( dtm(j)+dtm(j+ 1) )/2.0d0 
p4=(dfu(j)+dfu(j+1))/2.0d0 
p5=( dcd(j)+dcd(j+ 1) )/2.0d0 
p6=(d2fu(j)+d2fu(j+1))/2.0d0 
d(2, 1)=( 1.0d0-p 1)*( 1.0d0/r1 +p4)/h 
b(2, 1 )=-d(2, 1 )+( ( l.OdO-p 1 )*(p6-1.0d0/r 1/r 1 )*dcf 

1 -( l.OdO/r 1 +p4)*dcf*p3+fc/r/t*r4*p5/p2/p2)/2.0d0 
d(2, l)=d(2, 1)+((l.Od0-pl)*(p6-1.0d0/r1/rl)*dcf 

1 -( l.OdO/r 1 +p4) *dcf*p3+ fc/r/t*r4 *p5/p2/p2 )/2. OdO 
d(2,2)=fc/r/tlh 
b(2,2)=-fc/r/t/h 
b(2,4)=-fc/r/t*(1.0d0/p2+l.Od0/sig)/2.0d0 
d(2,4)=-fc/r/t*( l.Od0/p2+ l.Od0/sig)/2.0d0 
g(2)=-fc/r/t*cur/sig + (l.Od0-p1)*(p6-l.Od0/rl/rl)*dcf*r1-
1 (l.OdO/rl +p4)*dcf*p3*r1 +fc/r/t*r4*p5*rl/p2/p2 

call ekin(j) 

b(4,3)=1.0d0 
g( 4 )=xt(3,j,kk-1) 

b( 5,4 )=-l.OdO/h 
a(5,4)=1.0d0/h 
b(5,5)=area*fc/2.0d0 
a(5,5)=area*fc/2.0d0 

call band(j) 
go to 10 
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c 
16 continue 

c specify boundary conditions at right interface(j=nj) 
c 

c 

c 

c 

c 

c 

c 

c 
c 
c 
c 

sum=O.OdO 
the "irrefutable" boundary conditions: 
b(l, 1 )= l.OdO 
g( 1 )=xt( 1 ,j ,kk -1) 

b(2,2)=1.5d0/h 
a(2,2)=-2.0d0/h 
y(2,2)=0.5dO!h 
g(2)=-cur/sig 

call ekin(j) 

b(4,3)=1.0d0 
g( 4 )=xt(3,j,kk-1) 

b( 5,4 )= 1.5d0/h 
a(5,4)=-2.0d0/h 
y(5,4)=0.5d0/h 
b( 5 ,5)=-area *fc 

call band(j) 

begin check for convergence 

do i=1,n 
xp(i)=( 4.0dO*c(i,2)-3.0dO*c(i, 1 )-c(i,3))/2.0d0/h 
end do 
do 25 j=1,nj 
if( c(2,j) .lt.xx(2,j)-O .3d0) c(2,j )=·xx(2,j )-0. 3d00 
if(c(2,j).gt.xx(2,j)+0.3d0) c(2,j)=xx(2,j)+0.3d00 
do 25 i=1,n 

25 xx(i,j)=c(i,j) 
c 

c 

c 

c 

if (jcount .gt. lim ) then 
print99 
stop 

else 
do 55 ii=1,n 

dxp=dahs( Xp(ii)-xpO(ii) ) 
dxx=dabs( xx(ii,n1+10)-xxO(ii,n1+10)) 

if ( dxx .gt. l.Od-09*dabs( xx(ii,n1+10))) go to 8 
if ( dxp .gt. l.Od-07*dabs( xp(ii))) go to 8 

55 continue 

c print* ,jcount,' iterations required' 
c 

do 11=1, nj, 1 
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c 

c 

do lk=1,n 
xt(lk,ll,li)=xx(lk,ll) 
end do 
end do 
end if 

return 
end 

c******************************************************** 
c******************************************************** 

subroutine ekinG) 
implicit double precision*8(a-h,o-z) 
common In! nx,nt,n 1 ,n2,nj 
common/const/ fc,r,t,frt,cur,ep,epf,eps,pi,tsmax 
common/var/ xp(10),xx(5,221),xi(5,221),xt(5,221,1600) 
common/cprop/ sig,area,ct,dfs,Rad,cmax,rka,rkf 
common/mat/ b,d 
common/temp/htc,dudt,Cp,dens,tam,ncell,gO,tin,lht 
commonlbnd/ a,c,g,x,y 
dimension b( 10, 10),d( 10,21) 
dimension a( 10,1 O),c( 10,221 ),g( 1 O),x( 10,1 O),y( 10, 1 0) 

c 
c%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
c 
c OPEN-CIRCUIT POTENTIAL FUNCTIONS: 
c 
c gO is the open-circuit potential in terms of the solid 
c concentration, xx(3,j), 
c g1 is the derivative of the open-circuit potential wrt 
c the solid concentration 
c 
c&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& 
c 
c TiS2: 
c 

delt=-5.58d-04 
zeta=8.1d0 
cT=2.9d04 
g0=2.17+(dlog((cT -xx(3,j))/xx(3,j))+delt*xx(3,j)+zeta)*r*353.15/fc 
g1=(delt-cT/xx(3,j)/(cT-xx(3,j)))*r*353.15/fc 

c&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& 
c 
c Spinel Mn204 (lower plateau) 
c 
c c1=2.06307d0 
c c2=-0.869705d0 
c c3=8.65375d0 
c c4=0.981258d0 
c a1=c3*(xx(3,j)/ct-c4) 
c a11=0.1d0 
c a12=100.0d0 
c a13=1.0d-02 
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c g0=c1+c2*(dtanh(a1)) 
c g0=g0+a11 *dexp(-a12*(xx(3,j)/ct-a13)) 
c g 1 =c2 *c3/ct/( dcosh(a1) )/( dcosh( a1)) 
c g1=g1-a11 *a12/ct*(dexp(-a12*(xx(3,j)/ct-a13))) 
c 
c&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& 
c 
c Spinel Mn204 (upper plateau) 
c 
c a1=4.06279d0 
c a2=0.0677504d0 
c a3=21.8502d0 
c a4=12.8268d0 
c a5=0.105734d0 
c a6=1.00167d0 
c a7=-0.379571d0 
c a8=1.575994d0 
c a9=0.045d0 
c a10=71.69d0 
c all=O.OldO 
c a12=200.0d0 
c a13=0.19d0 
c gO=al +a2*dtanh(-a3*xx(3,j)/cT +a4)-a5*((a6-xx(3,j)/cT)**a7-
c la8)-a9*dexp( -alO*((xx(3,j)/cT)**8.0dO))+a11 
c 1 *dexp( -a12*(xx(3,j)/cT -a13)) 
c gl=(l.OdO/cT)*( -a2*a3/dcosh( -a3*xx(3,j)/cT +a4)/dcosh( -a3 
c 1 *xx(3,j)/cT +a4)+a5*a7*(a6-xx(3,j)/cT)**(-l.OdO+a7)+ 
c 1a9*a10*8.0dO*((xx(3,j)/cT)**7.0dO)*dexp(-a10* 
c l(xx(3,j)/cT)**8.0dO))-a11 *a12/cT*dexp(-a12*(xx(3,j)/cT-a13)) 
c 
c%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
c 
c KINETIC EXPRESSIONS 
c 
c hO is the exchange current density (Nm2) 
c hl is the derivative of io wrt solid concentration, xx(3,j) 
c h2 is the derivative of io wrt electrolyte concen., xx(1,j) 
c 
c &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& 
c 
c 
c NONAQUEOUS LIQUIDS 
c 
c alpha=0.5d0 
c alphc=0.5d0 
c hO=rka*dsqrt(xx(1,j))*dsqrt(cT-xx(3,j))*dsqrt(xx(3,j)) 
c h 1=-rka*dsqrt(xx( 1 ,j))*dsqrt(cT -xx(3,j))*dsqrt(xx(3,j))*( 1.0d0/ 
c 1 ( cT -xx(3,j))-l.Od0/xx(3,j))/2.0d0 
c h2=rka *dsqrt(cT -xx(3,j))*dsqrt(xx(3,j))/dsqrt(xx( 1 ,j))/2.0d0 
c 
c&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& 
c 
c POLYMER 
c 
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alpha=0.5d0 
alphc=0.5d0 

c if(cmax-xx(l,j) .le. 0) print*,'cmax',j 
c if(ct-xx(3,j) .le. 0) print*,'ct',j 
c if(xx(1,j) .lt. .01d0) print*,'c',j 

c 

hO=rka*dsqrt(xx( 1 ,j))*dsqrt( cmax-xx( 1 ,j))*dsqrt( ct-xx(3,j)) 
. 1 *dsqrt(xx(3,j)) 

h 1 =-rka*dsqrt(xx( 1 ,j) )*dsqrt( cmax-xx( 1 ,j) )*dsqrt( ct-xx(3,j)) 
1 *dsqrt(xx(3,j))*(l.Od0/( ct-xx(3,j))-1.0d0/xx(3,j))/2.0d0 
h2=-rka*dsqrt(xx(3,j))*dsqrt(ct-xx(3,j))*dsqrt(cmax-xx(1,j)) 
1 *dsqrt(xx(l ,j))*( 1.0d0/(cmax-xx(l ,j))-1.0d0/xx( 1 ,j))/2.0d0 

. c&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& 
c 

c 

c 

r 1 =alpha *fdr/t 
r2=rl *(xx(2,j)-g0) 

b(3, 1 )=h2*( dexp( -r2)-dexp(r2)) 
b(3,2)=-h0*r1 *(dexp(r2)+dexp(-r2)) 
b(3,3)=-h1 *(dexp(r2)-dexp( -r2))+h0*r1 *g1 *(dexp(r2)+dexp( -r2)) 
b(3,5)=1.0d0 
g(3 )=hO*( dexp(r2 )-dexp( -r2) )+b(3, 1) *xx( 1 ,j)+b(3 ,2) *xx(2,j )+ 
1 b(3 ,3) *xx(3 ,j) 

return 
end 
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c********************************************************************* 
subroutine prop(nj,n1) 

c 

implicit double precision*8(a-h,o-z) 
common/const/ fc,r ,t,frt,cur ,ep,epf,eps,pi,tsmax 
common/var/ xp(10),xx(5,22l),xi(5,221),xt(5,221,1600) 
common/tprop/df(221),cd(221),tm(221), 
1ddf(221 ),dcd(221),dtm(221),dfu(221 ),d2df(221), 
ld2tm(221),d2fu(221) 
common/templhtc,dudt,Cp,dens,tam,ncell,gO,tin,lht 

do j=1,nj 
if(j .gt. n 1) ee=ep 
if(j .le. n 1) ee=eps 

c 
c&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& 
c 
c AsF6 in methyl acetate 
c 
c diffusion coefficient of the salt (m2/s) 
c df(j)=( ee** 1.5d0)* 1.54d-09 
c ddf(j)=O.OdO 
c d2df(j)=O.Od0 
c conductivity of the salt (S/m) 
c cd(j)=2.5d0*(ee**(l.5d0)) 
c dcd(j)=O.OdO 
c transference number of lithium 
c tm(j)=0.20d0 
c dtm(j)=O.OdO 



c d2tm(j)=O.Od0 
c activity factor for the salt 
c dfu(j)=O.OdO 
c d2fu(j)=O.Od0 
c 
c&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& 
c 
c Perchlorate in PEO 
c 
c diffusion coefficient of the salt (m2/s) 
c df(j)=(ee** 1.5d0)* 1.78d-12 
c ddf(j)=O.OdO 
c d2df(j)=O.Od0 
c conductivity of the salt (S/m) 
c cd(j)=1.6d-02*ee**(1.5d0) 
c dcd(j)=O.OdO 
c transference number of lithium 
c tm(j)=O.lOdO 
c dtm(j)=O.OdO 
c d2tm(j)=O.Od0 
c activity factor for the salt 
c dfu(j)=O.OdO 
c d2fu(j)=O.Od0 
c 
c&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& 
c 
c Perchlorate in PC (West's simulation) 
c 
c diffusion coefficient of the salt (m2/s) 
c df(j)=( ee** 1.5d0)*2.58d-10 
c ddf(j)=O.OdO 
c d2df(j)=O.Od0 
c conductivity of the salt (S/m) 
c pmax=5.42d0 
c pu=0.6616d0 
c aa=0.855d0 
c bb=-0.08d0 
c rho=l.2041d03 
c fun=pmax*(( 1.0d0/rho/pu)**aa)*dexp(bb*((xx( 1 ,j)/rho-pu)**2.0) 
c 1-(aa/pu)*(xx(l,j)/rho-pu)) 
c fun2=2.0d0*(bb/rho )*(xx( 1 ,j)/rho-pu )-aalpu/rho 
c cd(j)=0.0001 +(ee** 1.5dO)*((xx(1,j))**aa)*fun 
c dcd(j)=(ee** 1.5dO)*fun*(aa*(xx(l ,j)**(aa-1.0d0))+(xx(l ,j)**aa) 
c 1 *fun2) · 
c transference number of lithium 
c tm(j)=0.20d0 
c dtm(j)=O.OdO 
c d2tm(j)=O.Od0 
c activity factor for the salt 
c dfu(j)=O.OdO 
c d2fu(j)=O.Od0 
c 
c&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& 
c 
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c Triflate in PEO 
c 

r0=3 .18466d-05 
rl=l.9915633d-06 
r2=-1.9504432d-09 
r3=6.307483d-13 
r4=-6.752235d-17 

c diffusion coefficient of the salt (m2/s) 
c I have added a temperature function to the diffusion coefficient 
c From equation in Newman relating diffusion coefficient to viscosity 
c and equation in Billmeyer (polymer science) for viscosity of a 

· c polymer as a function of temperature. The reference diffusion coefficient 
c is S*e-12 at 90 C. 

tb = 363.15 
vist=(17 .44*(t -213)/( 51.6+t-213 )-17 .44 *(tb-213)/( 51.6+tb-213)) 
dfG)=( ee** 1.5d0)*8.0d-12*t/tb* lO**vist 
ddfG)=O.OdO 
d2df(j)=O.Od0 

c print*, 'the diffusion coeff is ',df(j),j 

c conductivity of the salt (S/m) 
c cdG)=(ee**(l.5dO))*IOO.OdO*(rO + r1 *xx{l,j)+r2*xx(l,j)*xx(l,j) 
c l+r3*xx(l,j)*xx(l,j)*xx(1,j)+r4*xx(1,j)**4.0d0) 
c dcd(j)=(ee**l.5d0)*100.0dO*(r1 + 2.0d0*r2*xx(1,j) + 
c 13.0dO*r3*xx(1,j)**2.0d0+4.0dO*r4*xx(1,j)**3.0d0) 

*Conductivity as a Function (S/m) temperature and concentration******** 
rr0= 32.1374d0 
rr1= -6.60932d0 
rr2= -0.0251516d0 
rr3= 0.0259545d0 
rr4= -0.0019001d0 
rr5= 3.4171ld-5 
rr6= 32.1262d0 
rr7=-44.5889d0 
rr8= 2.59756d0 
rr9= -0.0631626d0 
rr10= 0.000640897d0 
rr11=-2.35565d-6 

cx=xx(l,j) 

ffl=((l.OdO+dtanh(rrO-cx** .5))/2.0d0)* 
+ (rrl + rr2*cx**.5 + rr3*cx + rr4*cx**l.5 + rr5*cx**2) 

ff2=( (l.OdO+dtanh( -rr6+cx ** .5) )/2.0d0)* 
+ (rr7 + rr8*cx** .5 + rr9*cx + rrlO*cx** 1.5 + rr11 *cx**2) 

bb1=-1052.65d0 
bb2=-182.053d0 
bb3=3.74936d0 
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c 
c 
c 

c 

c 

bb4=0.0242493d0 

gg=(bbl +bb2*cx** .5+bb3*cx+bb4*cx** 1.5)*( 1.0/t-1.0/358.0d0) 

cd(j)=( ee**( 1.5d0))* lOO.OdO*cx *dexp(dlog( 1 O.)*(ffl +ff2+gg)) 

dffl=(( l.OdO+dtanh(rrO-cx** .5))/2.0d0)* 
+ (.5*rr2/cx**.5 + rr3 + 1.5*rr4*cx**.5 + 2.0*rr5*cx) 

dff2=(((1.0/(dcosh(rr0-cx**.5))**2))/(-4.0d0*cx**0.5))* 
+ (rrl + rr2*cx**.5 + rr3*cx + rr4*cx**l.5 + rr5*cx**2) 

dff3=(( l.Od0+dtanh(-rr6+cx** .5))/2.0d0)* 
+ (.5*rr8/cx** .5 + rr9 + 1.5*rr10*cx** .5 + 2.0*rrll *ex) 

dff4=(((1.0/( dcosh( -rr6+cx** .5))**2))/( 4.0d0*cx**0.5))* 
+ (rr7 + rr8*cx**.5 + rr9*cx + rr10*cx**l.5 + rrll *cx**2) 

dgg=(0.5*bb2/cx**0.5 + bb3 + 1.5*bb4*cx**0.5)* 
+ (l.OdO/t - l.Od0/358.0d0) 

b=dlog(l0.)*(ffl+ff2+gg) 
dbdc=dlog(IO.)*(dffl+dff2+dff3+dff4+dgg) 

dcd(j)=(ee**(1.5d0))* 1 OO.OdO*dexp(b )*( l.OdO+cx*db~c) 

transference number of lithium 
trn(j)=0.0107907d0 + 1.48837d-04*xx(l,j) 
dtm(j)= 1.48837 d-04 
tm(j)=0.2d0 
dtm(j)=O.OdO 
d2tm(j)=O.Od0 
activity factor for the salt 
dfu(j)=O.OdO 
d2fu(j)=O.Od0 

end do 

return 
end 

... 

************************************************************** 
subroutine temperature(kk, v ,q,ut, Uoc) 
implicit double precision*8(a-h,o-z) 
common/const/ fc,r,t,frt,cur,ep,epf,eps,pi,tsmax 
common/templhtc,dudt, Cp,dens, tam,ncell,gO, tin,lht 
common/cprop/ sig,area,ct,dfs,Rad,cmax,rka,rkf 
common /calc/ ai(1600),u(222,1600),ts(1600),h,hl,h2,h3,rr 

delt=-5.58d-04 
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zeta=8.1d0 
cT=2.9d04 
Uoc=2.17+(dlog( 1.0d0/ut-1.0d0)+delt*cT*ut+zeta)*r*353.15/fc 

thk = 2.45d-4 
if (kk.eq.2) print* ,htc,dudt,ncell,cur,tam-273.15 

c per cell heat generation 

q = cur*(Uoc-v-t*dudt) 

c The heat transfer coefficient, htc, is defined based on the separator area 
c of a single cell for Ncell = 1. 

if (lht.eq.O) then 
t11 = Ncell*dens*Cp*thk/rr 
t12 = t11 *t + (Uoc-v)*cur*Ncell + htc*tam 
tl3 = t11 + dudt*cur*Ncell + htc 

if (kk.ne.2) then 
t = t12/t13 

end if 

else 

**********Calculate htc instead of Temp********************** 
c Fore this case the temperature is assumed constant, and the 
c heat transfer coefficient required to keep it constant is 
c calculated as a function of time. The heat transfer coefficient, 
c htc, is defined based on the separator area of a single cell for 
c Ncell = 1. 

if (t.ne.tam) then 
htc = cur*Ncell*(Uoc-v-t*dudt)/(t-tam) 

else 
htc =0 

endif 

********************************************************* 
endif 

return 
end 
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A.2 Input File for One-Cell Program: tfoil.in 

21 S.Od-05 l.Od-04 2.0d-5 40 80 90 90 1 
1.5d03 1.5d03 2.9d0 2.95d0 
2.9d02 2.9d02 7.5d00 O.OdOO -l.Od-06 -l.Od-06 7.5d00 
l.Od-13 2.0d-06 0.4 0.1 l.OdO 6.0d01 
2.372d04 3.92d03 l.Od-12 3.750d-02 1 
1.2041d03 3.22d03 2.0d03 2.0d03 5.796d03 5.0d0 
1 2 10 
.118 0 746.7d0 1868.0d0 89.0d0 1 0 
1 
ll.OdO 200 

line 1: lim,hl,h2,nl,n2,t 
lim limit on number of iterations 
hl thickness of separator (!TI) 
h2 thickness of positive electrode (m) 
h3 thickness of bipolar partition (m) 
n 1 number of nodes in separator 
n2 number of nodes in positive electrode 
t initial temperature (C) 
tmax maximum time step size, (s) 
rr initial time step size 

line 2: xi(l,l),xi(l,nj),xi(2,1),xi(2,nj) 
xi(l,j) initial concentration (mol/m3) 
xi(2,j) . initial guess for potential, PHil - PHI2 (V) 

line 3: xi(3, 1 ),xi(3,nj),xi( 4,1 ),xi( 4,nj),xi(5, 1 ),xi(5,nj) 
xi(3,j) initial solid concentration (mol/m3) 
xi(4,j) initial guess for current density (A/m2) 
xi(5,j) initial guess for pore wall flux (mol/m2-s) 

line 4: dfs,Rad,ep,epf,eps,sig 
dfs diffusion coefficient in solid (m2/s) 
Rad radius of particles (m) 
ep volume fraction of electrolyte in composite electrode 
epf volume fraction of inert f:Lller in composite electrode 
eps volume fraction of electrolyte in separator 
sig conductivity of solid matrix (S/m) 

line 5: ct,cmax,rka,rkf,il4 
ct maximum concentration in insertion material (mol/m3) 
cmax maximum concentration in electrolyte (mol/m3) 
rka reaction rate constant for insertion reaction 
rkf exchange current density for lithium foil 
il4 1 for polymer, 0 for liquid electrolyte 

line 6: re,rs,rf,ef 
re density of electrolyte (kg/m3) 
rs density of insertion material (kg/m3) 
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rf density of inert filler (kg/m3) 
rc density of separator material (kg/m3) 
rp density of bipolar partition (kg/m3) 
ef excess capacity of lithium foil 

line 7: ill ,il2,il3 
ill 1 for long print-out 0 for short print-out 
il2 llil2 = fraction of nodes in long print-out 
il3 1/i13 =fraction of time steps in long print-out 

line 8: htc, dudt, Cp, dens, tam, ncell,lht 
htc per-ceil heat-transfer coefficient 
dudt temperature coefficient of open circuit potential 
Cp average ,heat capacity of system 
dens average density of system 
tam ambient air temperature 
ncell number of cells in a cell stack with negligible temperature gradient 
lhc 0 for varying temperature, 1 for varying heat transfer coefficient 

line 9: trnax 
tmax number of current changes 

line 10: cu(i) tt(i) 
cu(i) operating current density (Nm2) 
tt(i) time (min) 
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Appendix .B: Cell-Stack Program and Input Files 

B.l Cell-Stack Program: Templl.f 

c****************************•*************************** 
c 
c Temp ll.f Program for heat transfer 
c in a cell stack with variable rates of energy 
c generation. The energy generation is read 
c from an input file of compiled data from 
c several isothermal runs of tfoil1.f 
c******************************************************** 

implicit .double precision*8(a-h,o-z) 
dimension B1(100,100), D(lOO), D1(100,2001),B(100,100) 
dimension To(100,2001),Tq(25) 
dimension tiq(600),qi(600,25) 
dimension qsp( 100,2001 ),tm( 100,2001) 
commonlintffq,qsp,tm 
commonlinta/tiq 
commonlintb/qi 
commonlintcffo 
commonlintd/ntem,nmq 

c Defmition of terms: 

c cur cell current 
c tin initial temperature 
c tam ambient temperature 
c dudt entropic term . 
c h heat transfer coefficient based on x-sectional 
c area of cell stack 
c delt time step 
c sthk thickness of cell stack (m) 
c cthk thickness of cell (m) 
c delx step length in x-direction (fm*cthk) 
c fm number of cells per mesh point (delx/cthk) 
c dens composite density 
c Cp heat capacaty 
c tk thermal conductivity 
c nts number of time steps in simulation 
c Ncell number of cells in stack 
c n = Ncell/2 
c qint interpolated value of q from input file 
c kc 1 print out every kc 1 cell for temp vs time 
c kc2. print out every kc2 cell for t or Q vs cell 
c ktl print out every ktl time step for temp vs time 
c kt2 print out every kt2 time step for t or Q vs cell 

open (unit=lO, file='temp1l.in', status='old') 
open (unit=l5, file='heatll.in', status='old') 
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read(lO,*) tin, tam 
print* ,tin, tam 
read( 10, *) h, tk, Cp, dens 
print* ,h,tk,Cp,dens 
read( 10, *) sthk, time,delx,cthk,delt 
print* ,sthk,time,delx,cthk,delt 
read(lO, *) cur,.dudt 
print* ,cur ,dudt 
read( 10, *) kc 1 ,kt1 ,kc2,kt2 
print* ,kc 1 ,kt 1 ,kc2,kt2 

tin=tin+273.15 
tarn=tarn+273.15 

Ncell = sthk/delx + 1 
n =Ncell/2 

nts = int(time*60/d~lt) + 2 
fm = delx/cthk 

c Reading temperatures from input file. Ntem is number of temps. 
it= 1 
do while (Tcount.ge.O) 

read(l5, *),Tq(it) 
Tcount=Tq(it) 
Tq(it) = Tq(it)+273.15 

c print* ,Tq(it),it 
it=it+ 1 

end do 

ntem=it-2 

c Reading heat generation rates and times from input file. 
do 5 iw = 1,ntem 
iq=1 

c print*,Tq(iw),iw,ntem 
do while( dm6.ge.O) 

read(15,*),dm1,dm2,dm3,tiq(iq),icount,dm6,dm7,dm8,qi(iq,iw) 
c print* ,tiq(iq),qi(iq,iw ),icount,dm 1 

iq=iq+1 
end do 
dm6=100 

c print*,'' 
5 continue 

c Fill first column of temperature array with initial temperatures. 

do 10jk= 1,n 
To(jk,1) =tin 
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10 continue 

c Fill equation matrix with zeroes. 

do 20 ii =· 1,n 
do 20 ij = l,n 

Bl(ii,ij) = 0.0 
20 continue 

c Fill equation matrix with values 
c Firstrow: 

Bl(1,1) = 1.0 + delx/tk*(delx*dens*Cp/delt) 
B1(1,2) = -1.0 

c Rows 2 through n-1. 
m=O 
do 30 jj=2,n-1 
m=m+1 
Bl(jj,m) = -1.0 
B1(jj,m+1) = 2.0 + delx/tk*(delx*dens*Cp/delt) 
Bl(jj,m+2) = -1.0 

30 continue 

c LastRow 

B1(n,n-1) = -tk/de1x 
B1(n,n) = h + tk/delx + delx*dens*Cp/delt 

c print* ,((B 1(i,j),j=1,n),i=1,n) 

c Solve 

do 40 kk = 1,nts 

do 45 in= 1,n 
do45il=l,n 
B(in,il) = B 1 (in,il) 

45 continue 

t = (kk-l)*delt 
call interp(t,1,kk,qint) 
D(l) = delx/tk*(fm*qint + delx*dens*Cp*To(l,kk)/delt) 
Dl(l,kk) = D(l) 

do 50 nn = 2,n-1 
call interp(t,nn,kk,qint) 
D(nn) = delx/tk*(fm*qint + delx*dens*Cp*To(nn,kk)/delt) 
D1(nn,kk) = D(nn) 
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50 continue 

call interp(t,n,kk,qint) 
D(n) = h*Tam + fm*qint + delx*dens*Cp*To(n,kk)/delt 
D 1 (n,kk) = D(n) 

call matinv(n,1,determ,B,D) 

c Rewrite solution array into To matrix. 

do 60 ki = l,n 
c print* ,D 1 (ki,kk),D(ki) 

To(ki,kk+l) = D(ki) 
c print*,To(ki,kk+l) 

60 continue 

40 continue 

c-----------------------------------------------------------------------

c Printing Routine 

c Printing temperatures as function of distance and cell number. 

print* ,'Temperatures in cell stack as functions of distance' 
print* ,'and cell.' 

print* 
print77, 'time ----->' 
print78,'cell','x in m',((i-l)*delt/60.0,i=1 ,nts,kt2), 

+(nts-1 )*delt/60.0 

k1=0 
j 1=1 
zero=O 

print79,j 1,zero,(To(l,i)-273.15, i=1 ,nts,kt2),To(l,nts)-273.15 

do 70 j = 1 ,n,kc2 
print79,j,j*delx,(To(j,i)-273.15,i= 1 ,nts,kt2),To(j ,nts)-273.15 

kl=j 
70 continue 

if (kl.ne.n) then 
print79,n,n*delx,(To(n,i)-273.15,i= 1 ,nts,kt2),To(n,nts)-273.15 

endif 

print* 
print* 
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c---------------------------------.--------------------------------------
c Printing heat generation rates as functions of distance and cell number. 

print* ,'Heat Generation Rates in cell stack as functions of 
print* ,'distance and cell.' 
print* 
prin t77 ,'time ----->' 
print78,'cell','x in m,',((i-1)*delt/60.0,i=1 ,nts,kt2), 

+(nts-1)*delt/60.0 

k1=0 
j1=1 
zero=O 

print79,j 1 ,zero,( qsp( 1 ,i), i= 1,nts,kt2),qsp( 1 ,nts) 

do 71 j = 1,n,kc2 
print79,j,j*delx,(qspG,i),i=1,nts,kt2),qspG,nts) 

k1=j 
71 continue 

if (kl.ne.n) then 
print79 ,n,n *delx,( qsp(n,i),i= 1 ,nts,kt2),qsp(n,nts) 

endif 

print* 
print* 

c----------------------------------------------------------------
c Printing temperatures as functions of time. 

k1=0 
jl = 1 

print*, 'Temperature of cells as functions of time' 
print* 
print 81, 'time,', (i, i=1,n,kc1), n 

do 72 j = 1 ,nts,kt 1 
time=G-1 )*delt/60.0 
print80,time,(To(i,j)-273.15,i= 1 ,n,kc1 ),To(n,j)-273.15 

k1=j 
72 continue 

if(kl.ne.nts) then 
time=(nts-1 )*delt/60.0 

print80,tirne,(To(i,nts)-273.15,i= 1 ,n,kc 1),To(n,nts)-273.15 
endif 
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print* 
print* 

c---------------------------------------------------~---------------
c Printing heat generation rates as functions of time. 

k1=0 
time=O 

print* ,'Heat Generation Rate in Cells' 
print* 
print 81, 'time,', (i, i=1,n,kc1), n 

do 73 j = 1 ,nts,ktl 
time=(j-1 )*delt/60.0 
print80,time,(qsp(ij),i=1,n,kc1),qsp(n,j) 

k1=j . 
73 continue 

if(k1.ne.nts) then 
time=(nts-1 )*delt/60.0 
print80,time,(qsp(i,nts),i=1,n,kc1),qsp(n,nts) 

endif 

77 format(22X,A 11) 
78 format(2(A10,','), 18('t'f9.4,' ,',X)) 
79 format(IlO,',' ,f9.6,',',X, 18(fl 0.4,',',X)) 

80 format(20(F10.4,',',X)) 
81 format( A 11, 19(3X'cell'X,i3 ',')) 

end 
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c******************************************************************** 
subroutine interp(t,nnq,kkq,qint) 
implicit double precision*8(a-h,o-z) 
dimension To(100,2001),Tq(25) 
dimension tiq(600),qi(600,25) 
dimension qsp( 100,2001 ),tm( 100,2001) 
common/int/Tq,qsp,tm 
common/inta/tiq 
common/intb/qi 
common/intc!To 
common/intd/ntem,nmq 

c do ic=1,226,20 
c print*,( qi(ic,jc ),jc= 1 ,5) 
c end do 

c The temperature of interest is To(nnq, kkq) 



time=t/60.0d0 
tol = 0.1 
If (time.lt.tol) then 

qint = 0 
c print*,' 1 ',time,nnq,kkq,qint 
c qsp(nnq,kkq) = qint 

return 
end if 

c Locating data points between jj and jj-1 temperatures. 

jj=1 
10 if (TqGj).lt.To(nnq,kkq)) then 

c print* ,TqGj),To(nnq,kkq) 
jj = jj+1 
go to 10 

endif 

c Locating data points between ii and ii-1 time steps. 
ii=1 

20 If (tiq(ii).lt.time) then 
c print* ,time, tiq(ii) 

. ii = ii+1 
go to 20 

endif 

c Interpolating Data 
c print* ,tiq(ii), tiq(ii-1),time,ii,qi(ii-1 ,jj-1 ),qi(ii,jj-1) 

* 

* 

* 

c 

s 1 =:= (time-tiq(ii-1))/(tiq(ii)-tiq(ii-1)) 
q1 = qi(ii-1,jj-1) + s1 *(qi(ii,jj-1)-qi(ii-1,jj-1)) 

·print* ,q 1 ,'before s2' 
s2 = (time-tiq(ii-1))/(tiq(ii)-tiq(ii-1)) 
q2 = qi(ii-l,jj) + s2*(qi(ii,jj)-qi(ii-1,jj)) 

print* ,q2,'before s3' 
s3 = (To(nnq,kkq)-TqGj-1))/(TqGj)-TqGj-1)) 
qint = ql + s3*(q2-ql) 

print* ,'2',time, nnq, kkq, qint 

qsp(nnq,kkq)=qint 
tm(nnq,kkq)=time 

if(nnq.eq.1) print*,time,' ',qint,' ',To(nnq,kkq) 

return 
end 
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.,. 

.. 
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c******************************************************************** 
subroutine matinv( n,m,determ,B ,D) 
implicit double precision*8(a-h,o-z) 
dimension b(100,100),d(100,1) 
dimension id(100) 
determ=1.0 
do 1 i=1,n 

1 id(i)=O 
do 18 nn=1,n 
bmax=1.1 
do 6 i=1,n 

. if(id(i).ne.O) go to 6 
bnext=O.O 
btry=O.O 
do 5 j=1,n 
if(id(j).ne.O) go to 5 . 
if(dabs(b(i,j)).le.bnext) go to 5 
bnext=dabs(b(i,j)) 
if(bnext.le.btry) go to 5 
bnext=btry 
btry=dabs(b(i,j)) 
jc=j 

5 continue 
if(bnext.ge.bmax*btry) go to 6 
bmax=bnext/btry 
irow=i 
jcol=jc 

6 continue 
if(id(jc).eq.O) go to 8 
determ=O.O 
return 

8 id(jcol)=1 
if(jcol.eq.irow) go to 12 
do 10 j=1,n 
save=b(irow ,j) 
b(irow ,j)=b(jcol,j) 

10 b(jcol,j)=save 
do 11 k=1,m 
save=d(irow ,k) . 
d(irow ,k)=d(jcol,k) 

11 d(jcol,k)=save 
12 f= 1.0/b(jcoJ,jcol) 

do 13 j=1,n 
13 b(jcol,j)=b(jcol,j)*f 

do 14 k=1,m 
14 d(jcol,k)=d(jcol,k)*f 

do 18 i=1,n 
if(i.eq.jcol) go to 18 
f=b(i,jcol) 
do 16 j=1,n 



16 b(i,j)=b(i,j)-f*b(jcol,j) 
do.17 k=1,m 

17 d(i,k)=d(i,k)-f*d(jcol,k) 
18 continue 

return 
end 
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B.2 Input File for Templl.f: templl.in 

90.0 89.0 
12 0.64 746.7 1868.0 
.0441 180 4.9d-4 2.45d-4 50 
11 0 
5 5 2 30 

Line 1: tin, tam 
tin initial temperature of cell St,fick (C) 
tam ambient air temperature (C) 

Line 2: h, tk, Cp, dens 
h heat transfer coefficient (W /m2K) based on 

area of one cell 
tk thermal conductivity (W/mK) parallel to layers 
Cp heat capacity (J/kg-K) 
dens density of cell 

Line 3: n, nts, delx, delt 
sthk cell stack thickness (m) 
time simulation time (min) 
delx step length in x-direction (m) 
cthk thickness of cell (m) · 
delt size of time step (s) 

Line 4: cur, dudt 
cur current (A/m2) 
dudt entropic term 

Line 5: printing 
(good values for Ncell = 180 and time= 180 min, tstep = 10.9 sec.) 

kc1 print out every kcl cell forT or Q vs time (across, 10) 
kt1 print out every ktl time step forT or Q vs time (down, 10) 
kc2 print out every kc2 cell forT vs cell (down, 1) 
kt2 print out every kt2 time step forT vs cell (across, 100) 
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144 
B.3 Input File for Templl.f: heatll.in 

The first block gives the temperatures that data are present for in the· input file. The 
second block gives output from the one-cell model. The only columns that are read by the 
program are the fourth column, the time (in minutes), and the eighth column, the heat
generation rate (in W 1m2 · K). Only the first page of the input file is included in this 
Appendix. 

88 
90 

. 92 
94 
96 
98 
100 
103.3 
106.6 
110 
115 
120 
130 
140 
150 
-100 

.01472, 2.46105, 1.000, 1.000, 1, 88.0000, 2.53716, -16.74380, 
.83719 

.01943, 2.43511, 1.000, 2.000, 2, 88.0000, 2.52623, -20.04595, 
1.00230 

.02415, 2.41669, 1.000, 3.000, 3, 88.0000, 2.51715, -22.10137, 
1.10507 

.02887, 2.40089, 1.000, 4.000, 4, 88.0000, 2.50925, -23.83877, 
1.19194 

.03359, 2.38700, 1.000, 5.000, 5, 88.0000, 2.50217, -25.33820, 
1.26691 

.03830, 2.37404, 1.000, 6.000, 6, 88.0000, 2.49570, -26.76559, 
1.33828 

.04302, 2.36213, 1.000, 7.000, 7, 88.0000, . 2.48969, -28.06288, 
1.40314 

.04774, 2.35089, 1.000, 8.000, 8, 88.0000, 2.48405, -29.29500, 
1.46475 

.05246, 2.34033, 1.000, 9.000, 9, 88.0000, 2.47871, -30.44503, 
1.52225 

.05717, 2.33013, 1.000, 10.00Q, 10, 88.0000, 2.47362, -31.56777, 
1.57839 

.06189, 2.32029, 1.000, 11.000, 11, 88.0000, 2.46873, -32.65675, 
1.63284 

/ 

.06661, 2.31069, 1.000, 12.000, 12, 88.0000, 2.46402, -33.73210, 
1.68661 

.07133, 2.30137, 1.000, 13.000, 13, 88.0000, 2.45946, -34.77937, 
1.73897 

j 
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