
ar
X

iv
:q

ua
nt

-p
h/

95
02

01
1v

1
 1

4
Fe

b
19

95

December 14, 1994 LBL-36346

Is Mental Process Non-Computable? ∗

Henry P. Stapp

Lawrence Berkeley Laboratory

University of California

Berkeley, California 94720

Abstract

It has recently been claimed that certain aspects of mental processing

cannot be simulated by computers, even in principle. The argument is

examined and a lacuna is identified.

∗This work was supported by the Director, Office of Energy Research, Office of High Energy

and Nuclear Physics, Division of High Energy Physics of the U.S. Department of Energy under

Contract DE-AC03-76SF00098.

http://arXiv.org/abs/quant-ph/9502011v1

Disclaimer

This document was prepared as an account of work sponsored by the United States Gov-

ernment. While this document is believed to contain correct information, neither the United

States Government nor any agency thereof, nor The Regents of the University of California,

nor any of their employees, makes any warranty, express or implied, or assumes any legal

liability or responsibility for the accuracy, completeness, or usefulness of any information, ap-

paratus, product, or process disclosed, or represents that its use would not infringe privately

owned rights. Reference herein to any specific commercial products process, or service by its

trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply

its endorsement, recommendation, or favoring by the United States Government or any agency

thereof, or The Regents of the University of California. The views and opinions of authors

expressed herein do not necessarily state or reflect those of the United States Government or

any agency thereof or The Regents of the University of California and shall not be used for

advertising or product endorsement purposes.

Lawrence Berkeley Laboratory is an equal opportunity employer.

ii

1. Introduction

Roger Penrose has recently published an argument1 that seeks to establish that

mathematicians, when they come to know mathematical truths, cannot in all

cases be relying solely on processes that can be adequately simulated by ideal-

ized computers. Within the framework of science this is a startling claim, for

contemporary mainstream scientific thought holds that mental processing inso-

far as it leads to overt behaviour is an aspect of physical processes happening

mainly in the brain, and that these processes are governed by the mathematical

laws of classical and quantum physics, and hence should be able to be simulated

to arbitrary accuracy, at least in principle, by computers, provided no practical

limitations whatsoever are imposed. Penrose’s argument seeks to refute this.

Moreover, the argument is claimed to be close to rigorous. Thus it is claimed,

in effect, that almost rigorous argumentation is able to demolish some tenets

of mainstream scientific thought, and to demonstrate that fundamentally new

ideas are therefore required. This conclusion, if valid, would be a breakthrough

of major importance in science.

2. Penrose’s Argument

1. Let Cq(n), for q ranging over some infinite set Rq, be a listing of all

computational processes that depend on one natural-number argument n. For

each pair (q, n) the computational process Cq(n) either stops, or never stops.

(Example. C7(n) might be: Find the smallest integer N ≥ 0 that is not a sum

of n numbers each of which is a square of a natural number, 0, 1, 2, 3, For

n ≥ 4 no systematic search for N will ever stop, according to a theorem due to

Lagrange)

2. Proceed by reductio ad absurdum: Assume that if, for some pair (q, n),

we can know that Cq(n) can never stop then we can know this only by means of

some reasoning processes that, because it is the reflection of an underlying brain

process, can be assumed to be a computational process that yields an answer,

and thus stops (because it can be programmed to stop when it yields an answer).

Thus the reductio ad absurdum assumption is that if, for some pair (q, n), we

can know that Cq(n) can never stop then there must be some computational

process A(q, n) such that:

‘A(q, n) stops’ implies ‘Cq(n) can never stop’.

1

3. If A(q, n) is defined for every pair (q, n) (see below) then A(n, n) is a

computational process that depends on one argument, n. Then there must be

an index k such that:

A(n, n) = Ck(n).

4. Therefore, according to the assumption of line 2,

‘Ck(k) stops’ implies ‘Ck(k) can never stop’.

5. Therefore,

Ck(k) can never stop.

6. But (by line 3) Ck(k) = A(k, k), and hence (by line 5) ‘A(k, k) can never

stop’.

7. Thus we have found out that ‘Ck(k) can never stop’, yet the knowledge

that ‘Ck(k) can never stop’ is not entailed by line 2.

8. We conclude that the A(k, k) occurring in line 2 for the case (q, n) =

(k, k) is not unique: there must be an A1(k, k) 6= A(k, k) whose stopping entails

that ‘Ck(k) never stops’. (Penrose specifies that the stopping of A(q, n) is merely

a sufficient condition for C(q, n) never to stop, not a necessary and sufficient one.

Hence there might be several different processes Am(k, k) any one of which could

serve as the A(k, k) in line 2.)

9. If there were only a finite number of processes Am(k, k) such that the

stopping of any one of them would allow us to know that Ck(k) can never

stop then one could define the A(k, k) in line 2 to be the process that stops if

and only if any one of these Am(k, k)’s stops. Then one would get the desired

contradiction: We would know (by line 5) that ‘Ck(k) can never stop’, yet (by

line 6) that the unique computational process whose stopping would (according

to line 2) allows us to know this fact can never stop.

Penrose1 has argued that all of the Am(q, n) whose stoppings can allow

us to know that C(q, n) can never stop, as specified in line 2, can indeed be

amalgamated into one single A(q, n). In this case, the assumption in line 2

becomes: for any pair (p, n), if “ ‘Cp(n) can never stop’ is knowable” then

“A(q, n) stops”, and, conversely, for any pair (p, n), if “A(p, n) stops” then “ ‘

C(p, n) can never stop’ is knowable” Thus we have the equivalence: for every

pair (p, n),

2

“A(p, n) stops” iff “ ‘C(p, n) never stops’ is knowable”

Since whatever is knowable is (presumably) true the argument can then

proceed as indicated above, with a contradiction appearing after line 6. However,

there is a question about line 3, to which we now turn.

3. Indices and Arguments

Let us consider a set of processes Sq(n), where q ranges over an infinite

set Rq. It is useful to make a distinction between an index, represented by a

subscript, and an argument, represented by a variable enclosed by parentheses.

The dependence on an argument is supposed to be one in which some finitely-

stated rule covers the infinite set of values that the argument (for example, the

natural number n) is allowed to take on, whereas the dependence on an index

is supposed to be one that is expressed by means of a case-by-case listing of the

infinite set of individual cases. In the former case, the various possible values

of the argument are elements of a coherent mathematical structure (e.g., the

set of natural numbers), which makes it possible for one finitely-stated rule to

cover the infinite number of possible values of the argument. But in the latter

case the full identity of the index is specified, say, by its shape: the symbol is

identified exclusively by an intrinsic identifying characteristic, not by means of

the logical connections of this symbol to the other ones. Thus one could use *,

!, ?, [, ... for these intrinsically characterized symbols, instead of 0, 1, 2, 3, ... ,

to indicate their lack of logical relatedness to one another.

The processes Cq(n) were introduced by Penrose by listing all of the different

computational processes C(n) that are functions of the single (natural-number)

argument n:

C0(n), C1(n), C2(n), C3(n), C4(n), C5(n),

This way of introducing the set of Cq(n) might suggest that q is an index, and

hence that, in my notation, it is properly written as a subscript, which is how

Penrose writes it.

In this case, where the set of all possible Cq(n) is indexed by the set of

subscripts q, where q ranges over a set Rq of pure symbols, the set of processes

A(q, n) should be written rather as Aq(n): the set of symbols q would be merely

3

a set of indices, each of which has an identity, but no logical relationship (apart

from ‘different from’) to the others. Hence no rule apart from direct case-by-case

listing is possible for specifying the dependence on q.

If one were to adhere to this point of view, that the symbols q are merely

indices, then Penrose’s argument would collapse. For, it would make no sense

to say that a pure symbol, say ∗, is equal to some natural number n. If one

were, in spite of this logical point, simply to set up a convention whereby the

pure symbols were represented by natural numbers in some haphazard way then

one could not expect to derive anything useful. One could then, to be sure,

formally consider the set of processes An(n), as n runs over the set of natural

numbers. But this set could not coincide, for some k, with the set of Ck(n)’s,

for all n, because the dependence of An(n) upon the subscript n is not of the

argument type, whereas for each value of q the dependence of Cq(n) upon n is

of the argument type, by definition. Thus a key step in Penrose’s argument,

namely line 3, would fail.

Penrose certainly recognized that he would not obtain a valid argument

if the symbol q were an index-type of variable: he specified that q must be

regarded as an argument-type of variable, but did so without ever writing down

C(q, n). Once one writes C(q, n) instead of Cq(n) a question immediately arises:

How can one confirm that there is, in fact, a computational process C(q, n)

that depends on two arguments, and has the property that, as q runs over the

natural numbers, the process C(q, n) runs over the complete set of processes that

are functions of the other argument n? Specifically, if the set of all computable

processes of one (natural number) argument n is the set of Cp(n), with p running

over its range Rp, then how does one construct a finitely described computational

process C(q, n) that acts on two (natural-number) arguments q and n, such that

for every p in Rp there is a natural number qp such that C(qp, n) = Cp(n).

Penrose1 answers this question satisfactorily. He considers a Gödel-type of

construction whereby one imagines that there is some rule whereby the sequence

of mathematical symbols that expresses the form of each computational process

Cp(n) is transcribed into some corresponding natural number qp, in such a way

that Cp(n) = C(qp, n) for each p in Rp.

Let it be granted, therefore, that Cq(n) can, in my notation, be replaced

4

by C(q, n). Then the computability assumption (that must be shown to lead to

a contradiction) asserts that for every pair (q, n) such that “ ‘C(q, n) can never

stop’ is knowable” there is a computational process Aq,n that stops and is such

that:

“ ‘Aq,n stops’ implies ‘C(q, n) can never stop’ ”.

This condition is the (reductio ad absurdum) assertion that the only way that

one can know that ‘C(q, n) can never stop’ is by means of a mental process that

can be represented by a computational process1.

To complete the proof described in section 2 one must show that set of

processes Aq,n can be represented in the form A(q, n); i.e., that the dependence

of Aq,n on the two indices q and n can be represented by an argument-type

of dependence, not merely by an index-type dependence. An index-type of

dependence is all that one is allowed to assume, ab initio, without begging the

question.

A proof that this Aq,n has the form A(q, n) would allow one to justify line 3

of the proof. However, the assumption that there exists a fixed finitely stated rule

that maps the arguments (q, n) that identify any ‘process C(q, n) that can be

known never to stop’ ” onto “the process A by means of which it can be proved

that C(q, n) never stops” is a far more mind-boggling idea than the result that

is to be derived from this assumption. If it were true, it would mean that the

search for solutions of the various diverse and difficult individual problems in

number theory could in principle be avoided: there would exist a fixed finitely-

stated rule that maps the numbers that identify the problem to be solved (if it

can be solved) onto the very argument by means of which it can be solved. The

existence of such a general fixed finitely-stated rule for solving all of the soluable

problems in number theory goes far beyond what can reasonably be expected.

What this means is that the assumption that Aq,n can be written in the

form A(q, n) (i.e., that the dependence of the process Aq,n on the variables q

and n that identify C(q, n) is a fixed finitely-stated rule) begs the question: it

must be proved, not assumed.

4. Gödelization

One might try to deal with this problem by exploiting the deep results

obtained by K. Gödel2. In this connection it should be noted that the assumption

5

in line 2 goes far beyond what was proved (in this connection) by Gödel, who

claimed (in terms of the computer formulation used by Penrose) merely that

the set K of n such that “ ‘process C(n, n) never stops’ is provable”

is characterized by the statement

“C(k, n) stops”,

where k is some well defined number that is explicitly constructable within that

formalism.

This diagonalized version of the assumption in line 2 is all that is really

needed for the proof. So there is the possibility that a full Gödel-type argument

might provide what is needed to complete the proof. But then Gödel’s argument

pertaining to what is provable on the basis of certain mathematical rules known

to mathematicians must be carried over to what is knowable to human beings by

virtue of hypothesized mechanical rules of brain process. These latter rules act

at the atomic level, and they can never be known to human beings in the same

way that mathematical rules are known to mathematicians: what is knowable

to human beings rests on the coherency of what they are aware of, not on their

understanding of their own brain processess.

What Penrose is trying to refute is the hypothesis that what is knowable

to a human being is determined mechanically, in terms of brain activities that

are governed by mechanical rules. Since what we can know is presumeably a

mere surface activity of a far more extensive brain activity, it becomes impor-

tant to distinguish what we know, or can know, from the more extensive activity

upon which it rests. Within the computer framework that Penrose is using, a

conceivable model of the mind/brain could be this: the brain activity is repre-

sented by a mechanical/computer activity that stops from time to time, and the

output represents the conscious thought. This output is then fed back into the

computer as the next input. The machine is designed to produce outputs at a

fairly regular pace, and to terminate any procedure that does not give an output

reasonably quickly: brains must get answers out expeditiously if the organism

is to survive.

In applying a Gödel-type argument to this mind/brain system the analog

of the mathematical rules in Gödel’s work would be the rules that govern the ac-

tivity of the brain. The conclusion of the Gödel-type argument (transcribed into

6

the computer language) would be that there must be an allowed brain process

P that can never stop in spite of the fact that no system operating according

to the rules by which the brain operates could ever reach the conclusion that P

can never stop.

So the problem is: How can we reach this conclusion if no system operating

according to the rules that govern the actions of our brains could ever reach this

conclusion?

Although the hypothesized mechanical rules that govern brain action use

some elements of simple arithmetic, there is no need for them to use any process

that depends upon the use of the concepts “for all n”, or “there exists no n”, or

any other notion in which is imbedded the notion of infinity. The simple step-

by-step approximate integration of the discretized forms of differential equations

of classical and quantum physics does not encounter any need to answer infinite

numbers of questions: the questions it encounters are of the finite kind, such as

“what is 1+1 ?” In fact, every number that occurs in the constructive process of

solving these finite-difference equations is a finite number, and these numbers,

since they represent values that can occur in living brains, are restricted to

certain finite domains. However, this does not mean that the finite output

statements of these brains cannot include the finite strings of symbols that are

used by mathematicians to express propositions of number theory that refer to

infinite sets.

What happens to Gödel’s proof if one replaces the mathematical rules that

are used in his argument by a strictly finitistic arithmetic that contains no

universal quantifiers such as “for all n . . . ”, and that restricts all numbers to

pre-specified finite sets. The answer is that the proof does not get off the ground,

for it rests heavily on the concept of “for all n” and an unbounded domain for

the natural numbers. Consequently, the assertion that there exists a k such

that:

“C(k, k) stops” iff “ ‘C(k, k) can never stop’ is knowable”

cannot be proved within the finitistic type of model of the mind/brain described

above. So this attempt to supply the missing relation Aq,n = A(q, n) fails.

The finite-type computer B that simulates the mechanical activity of the

human brain (and whose outputs at stopping points represent human thoughts)

7

can be imbedded in a computer C whose rules of operation included implemen-

tation of the concept “ for all n”, and to which the Gödel/Turing argument can

be applied. Then a (super-human) mind M that could comprehend both the

rules of operation of C and also the logic of the Gödel/Turing proof would be

able to compute a value k such that the following proposition Pk is true:

“C(k, k) stops” iff “ ‘C(k, k) can never stop’ is knowableC”

where knowableC means knowable by virtue of the outputs of C. The mind M

that knows that Pk is true can know also that “X is knowableC” entails that

“X is true”, and can therefore conclude that “C(k, k) can never stop”. Thus M

can know more than what is knowableC . This is the analog of Gödel’s theorem,

and is not a contradiction. On the other hand, the human mathematician can

know only the output of B. He will be able to reason, on the basis of what

the hypothetical M is able to know, that there exists some k (unknowable to

human beings) such that “C(k, k) can never stop”. However, it has not been

proved that the only way that he could know this is by virtue of the stopping of

C(k, k). The stopping of C(k, k) may be the unique process in C whose stopping

gives the strong result that “ ‘ C(k, k) can never stop’ is knowableC”, for the

particular value of k that is specified by the Gödel/Turing argument. But no

proof is offered that there can be no process in B whose stopping could establish

the far weaker conclusion that “there exists a k such that Pk is true”, which is all

that is known to the human mathematician. Indeed, the human mathematician

reasons on the basis of the general assumptions and properties known to him,

and these do not include any knowledge of the details of the construction of

C. He obtains from his reasonings conclusions that do not refer to the specific

details of the construction of C, and that are therefore far weaker than the

strong conclusion available to M . Penrose does not show that there could be

no process in B whose stopping would yield this far weaker conclusion. In the

absence of such a demonstration no contradiction is established, and hence the

reductio ad absurdum argument fails to go through.

References

1. Roger Penrose, Shadows of the Mind: A Search for the Missing Science of

Consciousness, Oxford University Press, Oxford, 1994. Sect. 2.5

2. Kurt Gödel, Monatshefte für Mathematic und Physik 38, 173-198 (1931);

and in From Frege to Gödel ed. Jean van Heijennoort, Harvard University

8

Press, Cambridge MA (1976) pp. 596-617

9

