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Abstract: 

We formulate a method for incorporating quantum fluctuations into molecular-dynamics 
simulations of many-body systems, such as those employed for energetic nuclear collision 
processes. Based on Fermi's Golden Rule, we allow spontaneous transitions to occur between 
the wave packets which are not energy eigenstates. The ensuing diffusive evolution in 
the space of the wave packet parameters exhibits appealing physical properties, including 
relaxation towards quantum-statistical equilibrium. 
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Molecular dynamics simulations are useful for understanding both statistical and 
dynamical properties of many-body systems in a variety of physical contexts [1]. 
While quantitative insight can be obtained in many cases, the foundation and inter
pretation of such approaches are problematic when quantum systems are addressed. 
In these approaches the many-body system is usually represented as a (possibly anti
symmetrized) product of parametrized single-particle wave packets, and equations of 
motion for the parameters are then derived from a suitable variational principle. This 
corresponds to a mean-field treatment of the quanta! problem and the ensuing pa
rameter dynamics is then effectively classical. Consequently, the statistical properties 
of the system will be classical rather than quanta!, thus casting doubt on the quan
titative utility of results obtained in complicated scenarious where quanta! statistics 
plays a major role. 

This generic shortcoming of molecular dynamics originates in the neglect of the 
spectral distribution of energy eigenvalues associated with the wave packets which 
are not energy eigenstates [2]. In the present note we suggest a possible method by 
which this inherent problem can be largely alleviated. This novel method consists 
of introducing a stochastic term in the dynamics so that a given wa~e packet may 
make spontaneous transitions to neighboring wave packets in accordance with its 
spectral distribution, and it is found that the ensuing diffusive evolution with this 
term exhibits relaxation towards quantum-statistical equilibrium. The method is 
rather general and so it should be of correspondingly broad interest. 

This issue is especially relevant in nuclear dynamics where the system consists 
of nucleons at such densities and excitations that quantum statistics plays ,a major 
role. Indeed, the interpretation of current heavy-ion collision experiments depends 
on detailed dynamical simulations, and so the problem is an urgent one. In recent 
years, significant effort has been devoted to the development of microscopic simulation 
models for nuclear collisions, of both one-body [3] and A-body nature. We shall 
address the situation in which a product of gaussian wave packets are employed for 
the A-body system, as has been done extensively in nuclear dynamics [4, 5, 6, 7], but 
the proposed method is not restricted to this special case. 

For notational convenience, we shall make our presentation within the framework 
developed for the Antisymmetrized Molecular Dynamics model [7], and so the basic 
single-particle wave packets are gaussians of fixed width, < rlz >,where the real and 
imaginary parts of the parameter z specify the centroid in position and momentum, 
respectively. The normalized A-body product wave function, < r 1 , • · ·, r AIZ >, 
is then characterized by the parameter vector z = (zb ... 'ZA)· The inclusion of 
antisymmetrization modifies the measure, df = det( C)dZ, where the matrix C has 
the elements Cnn' = 8 2 log N' I a Zn f)zn'' with N' being the associated normalization 
constant; the resolution of unity is then fdfiZ >< Zl. 

With this convenient formalism, the equations of motion for the wave ·packet 
parameters can then be written on a compact form, · 

. . 81{ 
zhC · Z = az, (1) 

where 1{ =< ZllfiZ > is the expectation value of the A-body Hamiltonian operator 
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ii with respect to the particular state Z. Though generally not of Hamiltonian form, 
this system of equations produces a fully classical evolution. 

The starting point for our present developments is the quantum-mechanical feature 
that a given wave packet is generally not an eigenstate of the many-body Hamiltonian. 
The probability for the wave packet Z to contain eigenstates of energy E is given by 
the spectral strength function, 

PE(Z) = < Zlb(H- E)IZ > ' (2) 

which is spread around the expectation value 1i with a variance given by 

oJ =< ZI(H -1i?IZ >= J df'l < Z'IH -1iiZ > 1
2 ~ ~;. c-l. ~~. (3) 

The equation of motion (1) determines the evolution of the wave packet parameter 
vector, Z(t), in an entirely deterministic manner and without any physical effect of 
the spectraLstructure of the wave packet. In order to provide the system with an 
opportunity for exploring and exploiting the various eigencomponents contributing to 
its wave packet, we wish to augment the equation of motion by a stochastic term that 
may cause occasional transitions between different wave packets. Guided by Fermi's 
Golden Rule, we then adopt the following form for the differential rate of transitions 
from a given wave packet Z to others near Z', 

w(Z -t Z') = 2
; I< Z'IVIZ > 12 PE(Z') . (4) 

Here the operator V represents a suitable "residual" interaction and E is a specified 
energy which is usually taken as the expectation value of the originally specified initial 
state. 

When the above stochastic transitions are included in the dynamics, the object 
of study is the distribution of the wave packet parameter vector, </>(Z, t). For a 
closed (and sufficiently complex) system this distribution will approach the associated 
equilibrium distribution. Invoking the principle of detailed balance for a stationary 
distribution, we readily see that the equilibrium distribution is proportional to the 
spectral function PE(Z). Consequently, the ensuing stochastic molecular dynamics 
populates the parameter space in a microcanonical manner, as is physically reasonable 
since the ensemble is characterized by the specified energy E. This feature is most 
easily recognized by considering the microcanonical phase-space volume, 

f!(E) = Tr (b(H- E)) = j df < ZI8(H- E)IZ > = j df PE(Z). (5) 

For the discussion of statistical properties, it is convenient to consider the associ
ated canonical partition function which is given by 

Z(/3) = 100 

dE 0.(E) e-f3E = 100 

dE j df PE(Z) e-f3E = j df W(Z; {3) . (6) 
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The the statistical weight of a given state can thus be calculated once the form of the 
spectral density is known, 

W(Z; ,B)= 1= dE PE(Z) e-/3E ~ exp [- :; (1- e-/3u~f1i)l . (7) 

The last relation holds exactly when the spectral strength distribution is of Poisson 
fo.rm, as is the case for a harmonic oscillator [8). 

This latter result is very encouraging, because the expression (7) for the statistical 
weight W( Z; ,B) leads to physically appealing statistical properties, as already shown 
in ref. [2] and further discussed in ref. [8]. In order to illustrate this central point, we 
show in fig. 1 the temperature dependence of the mean excitation energy for a system 
of confined nucleons, when a sampling of the wave packet space is performed with 
the statistical weight (7). At low temperatures the system exhibits a typical quantal 
behavior, with the energy rising as the square of the temperature. As the temper
ature is increased the growth turns linear, as is characteristic of classical systems. 
This behavior should be contrasted with what would happen without the spectral 
transitions, i.e. with the standard molecular dynamics. Since the dynamics is then 
entirely classical, the system will relax in accordance with the standard Boltzmann 
weight, Wclass(Z; ,B)"' exp( -,81-l), and its behavior would be classical throughout the 
entire temperature range [2]. Thus, the addition of the stochastic term ( 4) leads to 
dynamical evolutions that populate the parameter space in better accordance with 
quantum statistics. We therefore expect that the incorporation of such stochastic 
transitions into molecular-dynamics simulations may significantly improve the de
scription of features sensitive to the quantal fluctuations in the many-body system, 
such as the specific heat at low temperatures. 

Figure 1 

In order to perform a practical implementation of the proposed stochastic dynam
ics, it is helpful to employ techniques from transport theory. The introduction of 
the transitions governed by ( 4) leads to a diffusive transport process in the space of 
the wave packet parameter vectors Z. The evolution of the associated distribution, 
<f>(Z, t), can then be described by a Fokker-Planck equation, 

a A a A a2 
-a </>(zb ... 'ZA; t) = -L-a Vn¢> + La a- Dnn•<l> . 

t n=l Zn nn' Zn Zn• 
(8) 

where the transport coefficients Vn and Dnn' can be calculated approximately as 
functions of Z., as we shall sketch below. 

We first note that the residual interaction V in the expression (4) for the stochastic 
transition tate should not have any diagonal matrix elements (since such transitions 
would be spurious). This can be accomplished by subtracting its expectation value 
V =< ZIVIZ > before squaring. It is then possible to show that the transition rate 
( 4) can be written on_the following convenient approximate form, 

w(Z _, Z + bZ) ~ 2
; (;~ · bZ) (.sz · ;~)PE(Z) 
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[ 
- - 81-l 81-l l x exp -8Z · C · {;Z- f3z(8Z · --+- · 8Z) 

8Z 8Z ' 
(9) 

where !3z = -8 ln PEl 81-l may be interpreted as a state-dependent temperature. 
The total rate of transitions from a given state Z into any other state Z' can then 

readily be calculated, 

w0 (Z) = j df' w(Z--+ Z') (10) 

where we have introduced the quantity 

A av _1 8V 
~~ = < ZI(V- V)2iz > ~ az . c . az , (11) 

which can be regarded as a typical value of the square of the transition matrix element 
in (4). The expected number of transitions taking place during a small time interval 
fl.t is then n 0 = w0 fl.t, which may also be interpreted as the probability for any 
transition to occur during D..t. 

The transport coefficients entering in the Fokker-Planck equation (8) characterize 
the first and second moments of the stochastic changes {;zn that have accumulated 
over the short time interval fl.t, when an average is taken over the entire ensemble of 
possible transitions Z --+ Z', 

Vn(Z) D..t, 

2Dnn'(Z) fl.t . 

(12) 
(13) 

Using the above simple expression (9) for the basic transition rate, we obtain the 
following results, 

Vn(Z) j df' lizn w ~ ( D · Q~~t = -Pz (n· :;). (14) 

2Dnn'(Z) j df' 8zn8Zn' W 

[ -1 1 ( -1 av) ( av -1) J ~ Wo Cnn' + ~~ C . oZ n OZ . C n' (15) 

The expression in the square bracket holds to the leading order in (3~. It is easy to 
see that both the center-of-mass position and the total momentum remain unchanged 
on the average, Ln Vn = 0, whereas the individual histories will exhibit diffusive 
Brownian-type excursions from the initial values, due to the composite nature of the 
wave packets. This behavior is to be expected, since the the energy 1-l is no longer a 
constant of motion but will fluctuate around its initial value E. 

The existence of the above approximate expressions (10), {14), and {15) makes 
it a relatively easy task to pick the stochastic changes 8zn at each time step in the 
course of the dynamical evolution, requiring only the diagonalization of the coefficient 
matrix C. Thus, it is fairly easy to implement the proposed stochastic extension and 
it may therefore be of practical utility. 
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Up to this point, the presentation has been kept on a general level, since the 
method is broadly applicable and may be of interest in a variety of physical scenarios. 
However, since we were motivated by heavy-ion physics, we wish to finally discuss 
how the proposed method may be of utility in this particular subfield. Generally, the 
complexity of nuclear collisions necessitate microscopic simulations for an informa
tive interpretation of the data. Currently, considerable interest is focussed on socalled 
multifragmentation events, in which the collision leads to the production of several 
massive nuclear fragments. It has proven difficult to reproduce this phenomenon by 
ordinary molecular dynamics, apparently because any massive fragments formed tend 
to be too excited and, consequently, will quickly break up. However, if the presently 
proposed stochastic transitions are incorporated, an excited massive fragment will ex
plore its spedrum of eigenstates and may thereby become trapped into more bound 
configurations, thus leading to an enhanced survival probability. In order to appreci
ate this mechanism, it is important to recognize that the overall transition rate, and 
the spectral spread of the transitions, are proportional to the variance 1i and so it 
generally increases with the intrinsic excitation energy. The chance for escaping from 
a well-bound configuration is then smaller than the chance for deexciting into it, as 
is consistent with detailed balance, since the well-bound state has a higher statistical 
weight. It thus appears very possible that the proposed model may account better 
for the fragment yields. We are presently exploring this central issue by means of 
dynamical simulations (9]. 

In this note, we· have proposed a novel method for taking account of the inherent 
energy spread associated with the wave packets propagated in molecular-dynamics 
simulations of quantum many-body systems. This simple physical idea is realized 
by augmenting the standard deterministic equations of motion for the wave packet 
parameters by a stochastic term that causes continual transitions between wave pack
ets. The resulting model is thus akin to the transport treatment of Brownian motion, 
but it employs a Langevin force that originates in the quantal fluctuations of the 
system. The emerging dynamics exhibits appealing quantum-statistical features and 
is therefore expected to present a significant advance when complicated processes are 
addressed. In particular, application to nuclear multifragmentation processes may 
yield dynamical evolutions that are in qualitatively better agreement with the obser
vations. 
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for Scientific Research (No. 06740193) from Ministry of Education, Science and Cul
ture, Japan. One of the authors (A.O.) also thanks Nukazawa Science Foundation 
for its partial support for his visit to INT. The calculations in this work were sup
ported by Research Center for Nuclear Physics (RCNP), Osaka University, as RCNP 
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Figure 1: Excitation energy versus temperature. 
A system of 20 protons and 20 neutrons is confined within a sphere o( radius 40113r0 

and a Metropolis sampling is then performed of the corresponding anti-symmetrized 
gaussian wave packets, based on the modified statistical weight W(Z; ,B) given in eq. 
(7). The abscissa is the imposed temperature T = 1/,8 and the ordinate is the calcu-

. lated mean excitation energy -< E >----&log Z(,B)/8,8 (using the partition function 
(6) and with the ground-state energy subtracted), and divided by the corresponding· 
energy of a system of fre~ nucleons, Erree = 40 x ~T (dashed line). The solid line has 
been obtained with the nuclear Fermi-gas formula, E* = aT2 , using the level density 
parameter a= 40/(8 MeV). 
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