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Abstract 
We analyze some conseq~ences of grand unification of the third-generation 

Yukawa couplings, in the context of the minimal supersymmetric standard 
model. We address two issues: the prediction of the top quark mass, and 
the generation of the top-bottom mass hierarchy through a hierarchy of Higgs 
vacuum expectation values. The top mass is strongly dependent on a certain 
ratio of superpartner masses. And the VEV hierarchy always entails some 
tuning of the GUT-scale parameters. We study the RG equations and their 
semi-analytic solutions, which exhibit ~everal interesting features, such as a fo­
cusing effect for a large Yukawa coupling in the limit of certain symmetries and 
a correlation between the A terms (which contribute to b -t s{) and the gaug­
ino masses. This study shows that non-universal soft-SUSY-breaking masses 
are favored (in particular for splitting the Higgs·doublets via D-terms and for 
allowing more natural scenarios of symmetry breaking), and hints at features 
desired in Yukawa-unified mo~els. Several phenomenological implications are 
also revealed. 
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1 Introduction 

There is strong evidence to suggest that the three gauge couplings of the strong, elec­
tromagnetic and weak interactions are unified at a high energy scale if the standard 
model is extended to give the minimal supersymmetric standard model (MSSM). A 
grand unified theory (GUT) with a single gauge interaction based on a simple gauge 
group, such as SU(5) or SO(lO), can then be constructed to explain this unification. 
Furthermore, the combination of supersymmetry (SUSY) and grand unification yields 
models with numerous attractive features: the embedding of the standard-model mat­
ter multiplets into a few irreducible representations of the GUT group, the technically 
natural preservation of a hierarchy between the weak and GUT scales, a longer proton 
lifetime to allow agreement with current experimental lower bounds, the correct pre­
diction of the ratio of b quark to 7 lepton masses, simple ansatzen for the remaining 
fermion masses, and a picturesque scenario for radiative electroweak symmetry break­
ing. We have chosen, therefore, to look beyond the gauge unification prediction of 
the weak mixing angle and examine the unification of third-family Yukawa couplings 
[1], for the most part within its natural context of SO(lO) unification. By Yukawa 
couplings we mean the couplings of the top, bottom and tau to the Higgs doublets 
which generate their masses when electroweak symmetry is broken. The third fam­
ily is singled out in the MSSM because of its relatively large Yukawa couplings; it 
seems reasonable to suppose that they arise at tree-level from the simplest interac­
tions, while the masses and mixings of the other generations require more complex, 
perhaps also higher-order and certainly very model-dependent structures. Our study 
also applies more generally to scenarios in which these Yukawa couplings are unified 
but not in the context of an SO(lO) GUT, or even models in which the Yukawas are 
only comparable near the GUT or Planck scales. We begin our study by considering 
the most immediate prediction of this Yukawa unification, namely the top quark mass 
[2]. However, we are quickly led to consider in some depth the more general question 
of how the top-bottom mass hierarchy could be generated in the MSSM, and how 
this hierarchy depends on the initial conditions of the renormalization group (RG) 
evolution at the GUT scale [3]. We will conclude with a discussion of how natural (or 
unnatural!) such a hierarchy seems in this context, what its other phenomenological 
predictions might be, and how one could hope to improve the theoretical picture or 
obtain experimental corrob<!ration. 

One consequence of Yukawa unification is immediate, and independent of other 
assumptions except for the qualitative nature of the RG evolution equations of the 
MSSM. Since the Yukawa couplings of the top and bottom quarks (and the 7 lepton) 
are always comparable, the large ratio ofthe top mass versus the bottom (or tau) mass 
must be due to a large ratio of the Higgs vacuum expectation values (VEVs) which 
give rise to their masses. Namely, since the up-type and down-type matter fermion 
masses arise from couplings to the up-type and down-type Higgs multiplets (Hu,n), 
respectively, the large ratio mt/mb,r = ('Atvu)/(A.b,rvn) is not a consequence of a 
large ratio ofYukawas A.t/A.b,r but rather of vufvn =tan{). Thus Yukawa unification 
generically implies tan{) rv 0(50). Further assumptions are necessary to make any 
precise predictions, however. We will assume the following three throughout most of 
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this work, although we will point out those conclusions which are more general. 

(I) The masses of the third generation, mt, mb and mn originate from renor­
malizable Yukawa couplings of the form 163 () lfu in a supersymmetric GUT 
with a gauge group containing (the conventional) SO(lO); 163 denotes the 16-
dimensional spinor representation of S0(10) containing the third-generation 
standard-model fermions (plus the right-handed neutrino which we assume to 
be superheavy) and their superpartners. 

(II) The evolution of the gauge and Yukawa couplings in the effective theory beneath 
the SO(lO) breaking scale is described by the RG equations of the MSSM. 

(III) The two Higgs doublets lie predominantly in a single irreducible multiplet of 
S0(10). 

The first and third assumptions serve to define what we mean by Yukawa unifica­
tion, while the second allows us to relate this GUT-scale unification to weak-scale 
observables. From (I) and (III) it follows that the third-generation Yukawas must 
arise from either a 163 108 lfu or a 163 126y 163 interaction with an SO(lO) Higgs 
multiplet. The latter leads to the boundary conditions 3Af = 3Af = A~ = AG at 
the GUT scale, but the resulting ratio of mb/m-r at low energies is far too low to 
be consistent with experiment (at least within the perturbative regime, and unless 
very large threshold corrections to the b mass arise at low energies [2]). Thus we are 
restricted to using the lOy, and hence the boundary condition 

(1) 

With this boundary condition, and using the unification of gauge couplings to fix 
the unification scale and the gauge coupling at that scale, we can now evolve the 
Yukawa couplings down to the weak scale for any given value of AG. The idea is that 
the three observable masses mt, mb and m-r are functions of the four parameters At, 
Ab, A-r and tan ,8, but At,b,T are determined by· the unification in terms of AG and the 
GUT scale MG. Since the latter is already known from gauge unification, we are 
left with three observable masses as functions of only two paremeters, AG and tan ,8. 
Thus we use two observables, mb and mT to fix AG and tan ,8, and thereby predict 
the third observable mt. A detailed analysis of the RG evolution, and the consequent 
predictions, has already been presented [2]. The results, namely the values of At,b,T and 
the ratio R = mb/m-r = Ab/ AT all at the weak scale, are plotted in Fig. 1 as functions 
of AG. (These curves actually use 2-loop RG evolution, but at this point the difference 
between 1- and 2-loop equations is not important. For the final predictions of mt we 
use the full 2-loop evolution and 1-loop matching conditions.) Evidently, larger AG 
values correspond to a heavy top and to a smaller R ratio. The experimental value 
Rexpt is found [2] from the QCD sum rules value and is evolved to the weak scale using 
2-loop QCD running. We find, allowing for a5 to vary between roughly 0.11 and 0.12, 
the shaded range shown in Fig. 1. Thus, in the absence of any large corrections in 
the matching between the Revolved down from the GUT scale and the Rexpt in the 
standard model, we find AG > 0. 75, which implies a heavy top. 
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2 The top and bottom masses 

For a precise prediction, 2-loop RG equations must be used along with 1-loop match­
ing functions. These matching functions include logarithmic corrections from infinite 
counterterms as well as nonlogarithmic contributions from finite graphs. The former 
are given elsewhere [2]; they are generally quite small, and invariably increase the top 
mass as the superpartner masses increase. The latter are more interesting, since they 
can be very large [2, 4]. The dominant c~rrections arise from the graphs of Fig. 2, 
which match the value of the b mass as evolved down from the GUT scale to the value 
in the low-energy theory. Typically the gluino graph dominates, yielding a corrected 
value mb = AbVD + Jmb where vv = 174 GeV, 

Jmb 8 2 tan ,B m 9Jl 
---g ----
mb - 3 3 l61r2 m2 ' elf 

(2) 

and m9 is the gluino mass while meft. is the mass of the heaviest superpartner in the 
loop (more exact expressions may be found in our previous work). The important 
observation here is that the bottom mass gets a large contribution from the up­
type Higgs at 1-loop order, whereas its tree-level mass was small due to the small 
VEV of the down-type Higgs. In the usual scenario with small tan ,B, the bottom 
was light because its Yukawa coupling was small, or in other words because it was 
protected by an approximate chiral symmetry. Thus any higher-order corrections 
would also be suppressed by this approximate symmetry. In the large tan ,B scenario 
these corrections are not suppressed: there is an enhancement of vu Jvv = tan ,B, 
which overcomes the usual gV167r2 loop faetor to give a correction 'of order 1 to the 
b mass-at least if m 9Jl "" m;ff. Phenomenologically, the result is that mb cannot 
be predicted with any certainty unless we know something about the superspectrum, 
and if mb is uncertain then so is the top mass prediction. 

In Fig. 3 we show the top pole mass prediction, now to full 2-loop order, as a 
function of the MS running parameter mb(mb) in two cases. The top curves and the 
higher horizontal axis correspond to a hierarchical spectrum, in which the squarks are 
heavy whereas the Jl parameter and gaugino masses are light. Then the corrections 
Jmb are small and the top mass is predicted to be above 180 Ge V or so. The bottom 
curves and the lower horizontal axis correspond to a roughly degenerate spectrum in 
which the corrections to the ,b mass are 0(25%) and negative (i.e. R should be lowered 
by 25% in Fig. 1 before matching to the experimental value). Now the top can be 
significantly lighter. In fact, this last argument can be turned around: if the threshold 
corrections are too large in magnitude and negative then the top ma,ss prediction will 
be below the experimental lower bound, while if they are large and positive then no 
value of >..a will allow agreement with Rexpt· We thus find the following bounds on 
the superspectrum: if >..a is allowed to vary, then 

ffigJl 
-0.37 < -2 < 0.08, 

meff 
(3) 

whereas for fixed >..a the appropriate limits can be read from Fig. 1. 
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3 Radiative bottom decay (I) 

Do we have any experimental information about these corrections? Of course we have 
no direct evidence of any of the superpartners, but we can appeal to th~ir indirect 
appearance in loop diagrams. Consider again the diagrams of Fig. 2, but with one 
of the b quarks replaced by a strange quark using a flavor-changing vertex, and with 
a photon attached in all possible ways. We see that the same processes will lead 
to a contribution to the rare decay b --t S/, and with a similar enhancement of 
O(tan ,8) over the usual MSSM scenario [2, 5]. The dependence of these diagrams 

·on the superpartner masses is somewhat similar to that of omb, except that (a) 
now the operator is of higher dimension and so is suppressed by the mass of the 
heaviest superpartner, and (b) typically the higgsino-mediated diagram dominates. 
If the parameters appearing in this Higgsino diagram, namely f-l, A (the trilinear soft 
SUSY-breaking parameter) and the squark masses, are all comparable and of order 
the Z mass, then this diagram gives a contribution to the amplitude forb --t S/ many 
times bigger than the standard model or the usual MSSM amplitudes, and is clearly 
ruled out by the CLEO limit [6]. To restore agreement with experiment, either the 
overall superpartner mass scale must be raised far above the electroweak scale, or else 
f-l or A or both must be suppressed relative to the squark mass in the loop. More 
quantitatively, we find that either the masses must all be raised to at least O(TeV), or 
else if both f-l and A are near the Z mass then the squarks must be above either "' 400 
Ge V or ..v 700 Ge V, depending on whether these diagrams interfere destructively or 
constructively with the 2-Higgs standard model amplitudes. In any case, however, 
these restrictions do not yet tell us anything about the combination m9f-l/ m;ff which 
appears in omb; the link between these two will be forged below, when we study the 
evolution of the entire set of MSSM parameters. 

4 Electroweak symmetry breaking 

We have assumed in the above that the top-bottom mass hierarchy would arise from 
a hierarchy ofVEVs in the Higgs spectrum, namely vu fvv =tan ,8"' 0(50). We now 
consider how such a hierarchy could be generated in the MSSM. Clearly this question 
is of interest for any model i~ which the Yukawas themselves do not supply a sufficient 
hierarchy to explain the large ratio of quark masses, not just for the equal-Yukawas 
case to which we have specialized. In studying this question, however, we will pay 
attention to which spectra are favored by large tan ,8 scenarios, and whether with such 
spectra and our unification assumptions we can pin down the top mass prediction. 

The scalar potential of the neutral Higgs bosons which leads to electroweak sym­
metry breaking is 'given by 

Vo = m~IHul2 + m~IHvl2 + J.LB(HuHv + h.c.) +(quartic terms) (4) 

where m~,D = f-l~,D + f-l2 contain the soft-breaking masses and the f-l paramete~ in the 
superpotential, B is a soft-breaking mass parameter, and the quartic terms arise from 
D-terms and so are given by gauge couplings. We will evolve these parameters from 
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the GUT fo the weak scale using the 1-loop RG equations of the MSSM, stopping 
the evolution at some typical scale (of order the squark masses) which minimizes 
the effects of higher-order corrections. The subscript 0 indicates that we will restrict 
our attention to this (RG-improved) tree-level potential rather than calculate the full 
1-loop effective potential or, better yet, explicitly integrate out massive particles and 
consider full1-loop matching conditions. We expect [3] that our qualitative discussion 
of the radiative symmetry breaking will not be jeopardized by this simplification. 
That is, a more complete calculation will change the numerical values of the GUT 
parameters needed for correctly breaking the symmetry, but willnot significantly 
alter the size of the domains in parameter space where such breaking is achieved. 
The conditions for this breaking are well~known: 

ensures that the potential is bounded from below, and 

m~m1 < f-l2 B2 

(5) 

(6) 

guarantees the existence of a minimum away from the origin and so breaks the sym­
metry. In practice, since If-lEI will always be much less than or at most comparable 
to lm~l and lm11, we can reduce these requirements to m~ = m~ + m1 > 0 (using 
the expression for the pseudoscalar Higgs mass) and m~ < 0 (noting that large tan j3 
means that the up-type Higgs gets the large VEV). 

In the usual-and very attractive--scenario of radiative breaking, the two mass 
parameters start out at the GUT scale with equal and positive values: m~ = m1 = 
M'fi + f-l2 , where MH is the soft-breaking mass of the 10H of Higgs in S0(10), or the 
universal soft-breaking mass of the IiH and ~H in SU(5). Thus the symmetry is not 
broken at that scale. However, in the RG evolution to the electroweak scale, the large 
Yukawa coupling of the top quark to Hu, which gives the top its mass, also drives 
the mass-squared parameter f-l~ of Hu negative (with the help of the QCD coupling), 
while the absence of a large Yukawa in the down sector. keeps the mass-squared of HD 
positive. In fact, conditions (5) and (6) are easily satisfied for a large range of initial 
conditions if Ao ,..., 0(1), resulting in a very natural picture of radiative symmetry 
breaking. This picture is essentially lost in the large tan j3 scenario, for the following 
two reasons: 

1. Since both Yukawas are comparable [and in fact initially equal in the S0(10) 
case], the two Higgs doublets tend to run in the same way, so either both stay 
positive at the electroweak scale and the symmetry does not break, or both 
become negative and the potential becomes unbounded from below (a situation 
which breaks the symmetry but in a Coleman-Weinberg fashion, yielding an 
"electroweak scale" orders of magnitude higher than the SUSY-breaking scale). 
The effects which differentiate the evolution of the two Higgs doublets, namely 
hypercharge and the absence of a right-handed neutrino, are small and a poor 
replacement for the usual At >> Ab splitting. Interestingly, an 0(1) splitting 
between At and Ab,r is still of little use since it is quickly diminished by the 
fixed-point behavior of these couplings. 
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2. Even-when electroweak symmetry is broken, a large hierarchy of VEVs must be 
generated between the two similarly-evolving Higgs doublets. Minimizing the 
potential V0 when tan f3 » 1 yields 

-2m~= m~ (7) 

and 
1 J.LB J.LB (8) 

tan f3 = - m2 + m 2 m2 · 
u D A 

The first equation sets the scale, but from the second equation we see that a 
large hierarchy in VEVs requires. the large hierarchy J.LB « m[; + m1. This, as 
we show below, implies a degree of fine-tuning between some parameters in the 
Lagrangian. 

5 Solutions of the RG equations (I) 

Before analyzing the implications of these two criticisms, we present the 1-loop so­
lutions [3] of the RG equations for the MSSM mass parameters, integrated between 
Me= 3 x 1016 GeV and a typical squark mass of 300 GeV. {None of our results is sen­
sitive to the exact values of these starting and stopping scales.) The solutions depend 
on the dimensionless initial values of the gauge and Yukawa couplings etc and >.c and 
on the dimensionful GUT-scale parameters M59 , MH, J.LG, M112, Ac, Be and Mx. 
Msq and MH are the soft-breaking masses of the lOH and the 163 respectively, and 
Mx will be explained below; whenever possible, capital letters denote values at the 
GUT scale. The RG equations themselves are well-known and will not be presented 
here. These equations, and dimensional arguments, dictate that the low-energy values 
of the various mass parameters depend very simply on the dimensionful initial values, 
with coefficients that depend only on the dimensionless ones. Since etc is known from 
gauge unification, these coefficients depend only on >.c. For the representative value 
>.c = 1, the solutions are: 

2m~ 

m~ 

m~ 
m2 

t 

m~ 

m'i 
m2 

T 

c 2 c2 c2 2 c2 - -5.1 M1; 2 + 1.2 MH - 1.6M59 + 2J.L -3.8 Mx 
G 2 c2 c2. 2 c2 

-4.9 -!Wl/2 + l.l.MH - 1.7 Msq + 2J.L + .01 Mx 
G 2 c2 c2 c2 +4.6M112 - .25MH +.51 M59 + l.OMx 
G 2 c2 c2 c2 - +4.1 M 1; 2 -.27 MH + .46M59 + .85Mx 
c 2 c2 c2 

+4.2 Ml/2 - .23M H + .55 Msq 
G 2 c2 c2 

+.53Ml/2 -.12 MH + .77 Msq 
G 2 c2 c2 

+.15 Ml/2 - .23 A1 H +.55 Msq 

+.09Ac + 1.8M~2 
+.07 Ac + 1.9 M~2 
+.20Ac- .17 M~2 

6 

c2 + 1.2Mx 

(9) 

(10) 

(11) 

(12). 

(13) 

·(14) 

(15) 

(16) 

(17) 

(18) 



B -.86 Ac- 1.1 M52 + 1.0 Be 

A4 1.P 
(19) 

(20) 

Here Q and L are the squark and slepton doublets, respectively, and t, b and ,. are 
the SU (2)-singlet squarks and sleptons. For clarity of presentation, we have dropped 
from the first 7 expressions above the terms proportional to Ab and to AcM112 , 

since their coefficients are small enough (0(0.01- 0.1)]and exhibit sufficiently small 
custodial-SU (2) breaking to be negligible for purposes of symmetry-breaking, at least 
if Ac is not very much larger than the other mass parameters. We have also used 
the low-energy value of J-L in Eqs. (9-10). These solutions are useful references for the 
discussions below. These solutions can also be combined [3] with the more analytic 
approach briefly described in Eqs. (25) to give a complete, semi-analytic solution to 
the RG equations when custodial SU(2) is an approximate symm~try. 

6 Obtaining a hierarchy of VEVs 

To understand the second criticism above, let us examine in more detail how Eq. (8) 
may be satisfied. We concentrate for the moment on six relevant electroweak-scale 
parameters: the up- and down-type Higgs m~es m~ and m'b, a typical squark mass 
m5, the B parameter in the scalar potential, a gaugino mass {specifically the wino 
mass) m 112 , and the J-L parameter. This last one may be set to zero by imposing a 
Peccei-Quinn symmetry on the Lagrangian, so the size of J-L measures the breaking of 
this PQ symmetry; consequently, J-L is multiplicatively renormalized. The previous 
two, Band m 1;2, along with the A parameter, are related by ann symmetry, so they 
enter into each other's RG equations, and may be made arbitrarily small by imposing 
this n symmetry. With these two symmetries in mind [2], we consider three possible 
spe ctra having splittings w)lich lead to a large tan (3 according to Eq. (8): 

mass: ~cenario;A: scenario B: scenario C: 
7mz \ mnmo 

mz 
\ ' 

mu mn'{no mumnmo m112 J-L \mu B m112 J-L 
1 
:;mz 

1\ 
/ \ B m112J-L ~ 

1 
so mz I \ B 1/ 

course thele are man~ther ways to split the par~meters and obtain the Of correct 
hierarchy, but these will suffice to demonstrate the fine-tuning involved in the split­
tings. The value of tan(J is determined directly only by mu, mn, J-L and B- m0 

and m112 are included to illustrate the symmetries. Scenario A involves no tuning at 
all (at this stage of the analysis): the Z mass, which is set by mu, is comparable to 
the other scalar masses; B and m112 (and A) are smaller due to an approximate R 
symmetry; and J-L is small due to an approximate PQ symmetry. However, as also 
pointed out by Nelson and Randall [7], such a scenario is ruled out for large tan ,B 
since it would imply a light chargino, in disagreement with bounds from LEP [8]. In 
fact, both J-L and m 1; 2 must be comparable to or above the Z mass to satisfy this 
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bo.und. Therefore we must widely split some parameters without a symmetry justifi­
cation, and this will entail fine-tuning. For example, in scenario B all parameters are 
kept at the Z mass but the B has been tuned to be light (namely, its initial value at 
the GUT scale is chosen to almost completely cancel the contributions induced by A 
and m 1;2 through the RG evolution). Alternatively, in scenario C, mu is adjusted to 
end up much below the other scalar masses (yielding m~ ~ 50mi) while the other 
parameters are kept at the Z mass using the approximate symmetries. In these two 
scenarios, and in fact generically whenever J-L > mz and m1;2 > mz, the initial con­
ditions at the GUT scale must be adjusted to at least a relative accuracy of 1/ tan f3 
to obtain the necessary hierarchy of VEVs. We should point out, however, that such 
a tuning is no worse than the one which would be needed in the small tan f3 case if 
the squarks were experimentally determined to be above 700 Ge V or so. 

7 Splitting the Higgs doublets 

\Ve return now to the first criticism above, and address the splitting between the two 
Higgs doublets. Recall that after running we need 2m~ < 0 while m~ + mi> > 0. 
However, the two masses evolve almost in parallel, since custodial symmetry breaking 
effects, namely hypercharge and the absence of VR, are small. Thus, if the Higgs 
masses are degenerate at the GUT scale, their splitting at the weak scale is small 
relative to a typical SUSY mass Ms at the GUT scale: mi> - m~ = EcM§ ( "c" 
for custodial). Putting these together, we learn that only; within a window of size 
'"'""' Ec in the GUT-scale parameter space can we simultaneously satisfy m~ < 0 and 
m~ > 0; if they are satisfied, then m~ = -2m'{; < EcM§ and m~ = m'{; + mi> < Ecl.1§. 
In practice, this is usually accomplished [1] using the gaugino mass as the largest 
mass parameter, so Ms = M 1;2 > Msq,H: this is because, according to Eqs. (9,10), 
custodial breaking effects proportional to Ml12 lower m'{; with respect to mi>, while 
those from the scalar masses M;q,H act in the opposite way. Furthermore J-L must also 
typically be O(M1t2 ) in order to keep m~ positive. Then, in addition to the 0( Ec) 

fine-tuning of the Z mass, the B parameter must be adjusted beyond the 0 ( 1 J tan /3) 
accuracy of the previous paragraph. To see this, we rewrite Eq. (8) in the form 

B 1 m'{; + m1 
--=--
ml/2 tan /3 J-L m1;2 

(21) 

which quantifies the needed suppression of the electroweak-scale value of B (achieved 
by fine-tuning its GUT-scale value) relative to the minimum value it would naturally 
have, namely the value '"'""' M 112 induced through the RG evolution. In the present 
case, using J.L"" M112 "" Ms we obtain Bjm112 "' (1/tan/3) Ec. 

8 D-terms 

One reason for this highly unnatural state of affairs is due to the degeneracy of the 
Higgs doublets and their subsequent parallel evolution·. A possible remedy is actually 
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generic in S0(10) unification, due to the rank of this group which exceeds by one 
the rank of SU(5) or the standard model. Thus we write 80(10) ::> SU(5) ® U(l)x, 
where U(1)x is proportional to 3(B - L) + 4T3R [the generator of baryon- minus 
lepton-number symmetry and a generator of SU(2)R] and couples to the scalar fields 
according to the following table: 

field: Hu HD Q t b L T (16H) (16H) 
U(l)x charge: -2 2 1 1 -3 -3 1 5 -5 

Tb"e 16H and 16H are examples of extra superheavy Higgs representations which are 
typically added in order to break this U(l)x (in this case by acquiring VEVs in 
the "vR" direction) and reduce the rank of the group. As usual:, the spontaneous 
breakdown of a U(1) leads to a VEV for its D-term, which can induce masses for 
the various fields which appear in this D-term. In particular, if we do not assume 
universal soft-breaking masses for all scalars, then the soft-breaking masses of the 16H 
and 16H need not be equal, and therefore their VEVs are also split, in proportion to 
their mass splitting. This splitting in turn generates a mass splitting in the low-energy 
MSSM Lagrangian through the cross-term: 

• 
1 2 1 ( 2 - 2 2 2 ) 2 

£ ::> 2Dx = 2 (I16HI ) - (j16HI ) + 2lHul - 2lHDl +... . (22) 

In fact, this mechanism splits any fields which have different charges under U{1)x. 
Thus the boundary conditions for the scalar masses at the GUT scale become 

M(; M'k + J.L
2 - 2M'fc 

M2 
D M~ + J.L

2 + 2M'fc {23) 
M2 

Q,t,r M'fq + Ml 
M~L 

' 
M'fq -3M'Jc 

where t~e capital letters on the left-hand side serve as reminders that these are the 
values at the GUT scale, and 

(24) 

is a new soft-breaking mas's parameter in the low-energy theory. With this mass 
we no longer need rely on large gaugino masses to split the Higgs doublets: they can 
start out being different, and thus even with parallel evolution the symmetry-breaking 
conditions {5-6) can apparently be satisfied. 

One problem with this mechanism is evident from the initial conditions in Eq. {23): 
not just the Higgs doublets but also the sqtiarks and sleptons are split, so an ex­
cessively large M]c could lower M? or Mi sufficiently to make m~· or ml, negative 
at the electroweak scale, thereby spontaneously breaking the strong or electromag­
netic gauge symmetries. If RG effects are irrelevant, namely for small .\a, then Msq 
could always be r~sed enough to prevent this without affecting mL,D· However, for 
.\a "' 0(1) the squark masses strongly affect the evolution of the Higgs doublets 
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[see Eqs. (9--10)], and only for very constrained ranges of the initial parameters can 
the electroweak symmetry, and only that symmetry, be spontaneously broken at a 
reasonable scale. In fact, as we show in brief below, there is a focusing effect that is 
inherent in the MSSM RG equations when Ab"' At, and which inevitably requires an 
adjustment of the GUT-scale parameters beyond the 1/ tan (J level derived above. We 
first show this behavior of the RG equations for completely general initial conditions, 
and then return to discuss the specific case of Eqs. (23). 

9 Solutions of the RG equations (II) 

Consider the RG equations of the MSSM in the limit of exact PQ and n symmetries, 
in which p, = M 112 = A ~ B = 0 at all scales. For future reference, we call this 
scenario the maximally symmetric case. This limit is intereSting for two reasons: First, 
no large corrections arise to the b quark mass, and the R = mb/mT prediction for all 
values of AG,..., 0(1) falls nicely within the range allowed by experiment (see Fig. 1); 
in other words, a heavy top quark near its fixed-point mass favors small 8mb. Second, 
as we saw above, having a large p, and m 112 calls for fine-tuning B (or some equivalent 
adjustment), so we'd like to explore the opposite limit to see whether a more natural 
scenario can be achieved. Of course, eventually we must relax this limit to agree with 
LEP bounds, but the qualitative behavior we shall discover will persist. If we further 
approximate Ab ~ At = A and neglect the sleptonic contributions (thereby restoring 
custodial symmetry), the RG solutions simplify .considerably. There are now five 
relevant parameters. In terms of their initial conditions at the GUT scale, Mb, Mjy, 
M~, Ml and Mf, the solutions at the electroweak scale are: 

where 

and 

-2m~ 

X 

X' 
I 

m2 
A 

m~ 
m2 

t 

m~ 

3 X 3 'X' I I' -7E.X - sE.x - ~ 

¥c.xX + I- I' 
!E,X -li +!r 7 A 4 4 

!E,X + lf.',X'- li- li'- lr 7A 5A 4 2 4 

lE,X- lE~X'- li + li'- lr 7A 5A 4 2 4 

( 
7 In Me A2 ) 

exp - 8 j 7r2 din p, 
lnmz 

"' 0.085 (for AG ~ 1), 

M'fj + M~ +2M~ + Mt2 + M; 

M'fj - M~ + A1t2 
- M; 

~(M'fj +.M~)- ¥(2M~+ Mt2 + Mf) 
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. (26) 

(27) 

(28) 
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• 

.. 

I' ~(Mb- Mb)- ~(Mt2 - M~) 
I" 2M~ - l\1( - l\1~ . 

(Note again the use of capital letters to denote GUT-scale initial parameters, and 
recall that U, D, Q, t and b refer to the up-type Higgs, the down-type Higgs, the 
SU(2)-doublet third-generation squarks, the SU(2)-singlet stop and the SU(2)-singlet 
sbottom, respectively.) 

Evidently, two linear combinations of masses, labeled by X and X' at the GUT 
scale, renormalize multiplicatively and exponentially contract at low energies for ..\G "'V 

0(1). The three other linear combinations, I, I' and I", are invariant. The important 
observation here is that in the first contraction-the sum rule m~ +2m~+ m; + .. 
m~ = E>.X-the coefficient of every term is positive, while we already know that 
each mass-squared itself must be positive for a proper electroweak-breaking scenario. 
Therefore each term by itself must be small, less than E>.X. This can only happen 
if the various combinations of invariants (and possibly also E'>.X') in the expressions 
(25) for these terms are adjusted to be small relative to X. The exact constraints 
that follow from this requirement are given explicitly elsewhere [3). They are of 
the form I, I', I" ;S max(E>.X, E'>.X'). We learn that, for AG "'V 0(1) where this 
focusing effect is important, any given model for the GUT-scale soft-breaking masses 
must either provide an explanation of why each invariant should be small relative to 
the sum X = M3 + M{; + 2M~ + M[ + Ml, or else that invariant must be tuned 
by hand to be small. We also learn that the conditions for successful symmetry­
breaking are sensitive to any other small effects. One such effect is custodial symmetry 
violation, which is parametrized above by· Ec and results from hypercharge and ..\.,. 
(or the absence of vR)· In the running of the Yukawas, both of these cause At to 
slightly exceed ..\b, and thus drive rnb below rnb, as in the conventional scenario of 
electroweak symmetry breaking. In the running of the masses, the contributions of 
the ·r Yukawa has an opposite and numerically more relevant effect. Therefore the 
custodial-breaking effects make it even harder to break the symmetry correctly-that 
is, I, I' and I" need a tuning beyond the level dictated just by E>.. In any realistic 
scenario there are also contributions from the gauginos and J.L, so in the end the sum 
rule, and therefore the limit which must be set on I, I' and I", takes the form 

{I ,I', I", m~ +2m~+ mi + mn :;; 0 [max (•,, <" ~f ~12)] Ml (29) 

where Ms is the largest mass parameter in the initial conditions at the GUT scale . 
If we now return to the more specialized boundary conditions of Eq. (23), we find 

(after setting J.L = 0): 

X 2M'fi+4M;q 
X' 0 

I ~(2M'fi- 3M~) (30) 

I' -4M]. 

I' - +4M].. 
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For this choice of boundary conditions, keeping the invariants small imposes only two 
requirements: 

M 2 3M2 
H "' 2 sq (31) 

and small Mx. The first requirement (without which color breaks when M'fi > ~M;q 
or a Coleman-Weinberg mechanism operates when M'fi < ~M_?q) entails a definite 
tuning of parameters, which does not obviously follow from any symmetry. The 
second may actually be natural, since [see Eq. (24)] the value of Mi is smaller by 
an order of magnitude than the soft-breaking masses whose splitting generates the 
D-terms, and those masses may be expected to be comparable to Msq and MH. In 
any case, we see that because of the focusing effect of the RG equations, the D-terms 
cannot be allowed to induce splittings bigger than those we already had through 
custodial SU(2)-breaking effects. Hence they do not eliminate the criticism that the 
electroweak symmetry is hard to break when the Yukawas are comparable. But there 
is still a significant advantage in using these D-terms, since they can now substitute 
for large values of m 112 and J-L, and with light gauginos and J-L it is much easier to 
obtain a large tan {3, according to Eqs. (8) and (21). 

10 Radiative bottom decay (II) 

Before putting the various observations to use in examining specific scenarios and 
their merits, we point out another feature of the solutions to the RG equations which 
will further constrain the scenarios. As is evident from Eqs. {16-18) (or directly 
from the RG equations), the initial value Ac hardly affects the low-energy values of 
At,b,T; they are instead largely determined in magnitude and sign by the gaugino mass 
MB2 , which also fixes the low-energy gluino mass. (It is difficult, though perhaps not 
impossible for sufficiently small >.c, to construct models in which Ac >> l\1112 and 
yet the electroweak symmetry but neither color nor charge breaks spontaneously and 
correctly, so we shall disregard this possibility in these proceedings. The implications 
of tuning Ac to cancel the gaugino mass at low energies in the expression for At will 
be considered elsewhere [3].) This observation, which was also emphasized by Carena 
et al. [9], directly relates the 6mb corrections of Eq. (2) to the large b --t S"f graphs 
discussed above. (More precisely, the .gluino- and higgsino-exchange diagrams for 
each process are directly related.) The sign of this correlation [9] is such that when 
6mb < 0 (i.e. the predicted R is lowered, and therefore so is the top mass) then the 
large b --t S"f graphs interfere constructively with the usual 2-Higgs standard model 
amplitude, and vice-versa. On one hand, we see from Eq. (3) or from Fig. 1, that the 
bounds on 6mb are more severe when 6mb> 0. On the other hand, as noted above, 
when 6mb < 0 the interference is constructive and the bounds on the large b -+ S"f 

graphs are stricter. Thus these two bounds are much stronger when taken together, 
and translate into the following statement: either (a) the gauginos or J-L or both ate 
significantly lighter than the squarks, or (b) the superpartners are much heavier than 
the Z. 
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11 Case studies 

With these remarks in mind, we first examine the popular [1] case of universal soft­
breaking masses. This scenario has also been recently studied in some detail by Carena 
et al. [9]. If all soft-breaking scalar masses are equal then the D-term contributions 
vanish (Mx = 0), and we are left with the three parame~ers Jl, M112 and M0 = Msq = 
MH, in addition to Ba which is adjusted at the end to obtain the correct tan/3 [see 
Eq. (8)]. We have already mentioned that in this case we need Jl comparable to M 112, 
and both at least as big as M0 , to break electroweak symmetry correctly. We have 
also seen that these three parameters must be tuned in order to obtain a positive m1 
and m~: 

m~ "' m~ "' EcMl12 . (32) 

Next, to achieve a hierarchy of Higgs VEVs, Ba must be adjusted very precisely such 
that, at low energies, 

B 1 m~ f.c 
_ _:...:;,._rv--

ml/2 tan /3 J1 m112 tan f3 · 
(33) 

Finally, since Jl and the gauginos are not lighter than the squarks, omb is rather 
large, and so must be negative, as can be seen from Eq. (3) or from Fig. 1. Hence 
the b ~ S[ constraint is strong, necessitating large superpartner masses of at least 
CJ(TeV) and therefore a further tuning (by roughly another order of magnitude) of 
the three parameters to achieve correct electroweak breaking. Of course, such a 
highly-tuned scenario is also highly predictive: for example, the spectrum is highly 
constrained, and the top mass is predicted by the large omb corrections to be light. 

In search of a more natural scenario, we next relax the assumption of universal 
soft-breaking masses, which was perhaps arbitrary to begin with. We begin with 
the maximally symmetric scenario studied previously (see also scenario C above), in 
which Jl rv Ml/2"' Aa rv Ba(rv mz) << mA, ... ,mb(« Msq"' MH) so that the PQ 
and n symmetries are approximately obeyed. Since this hierarchy directly implies 
a small omb and therefore (from Fig. 1) a relatively large >..a, the- focusing effect of 
Eq. (26) takes its toll, and once again the initial parameters-this time M 8 q, MH, and 
Mx-must be adjusted to at least 0 [max(EA,Ec)]. Then, to truly get a maximally 
symmetric scenario, we choose to obtain a large tan f3 not by tuning to get a small B 
but rather by (equivalently) tuning to get a small mi"' m~/ tan/3, which then allows 
small Jl and m 112 relative to the typical low-energy soft-breaking masses and therefore 
establishes approximate PQ and n symmetries even at the electroweak scale: 

2 2 2 max (EA, Ec) M 2 - mu = mz rv s 
tan{J 

where Ms = MH rv Msq· After this adjustment, large tan f3 is automatic: 

B - 1- m~ rv 0(1). 
tan f3 J1 m112 

(34) 

(35) 

And no further adjustment is necessary to suppress b ~ S[ since J1 and M 112 are 
small. So this scenario requires much less adjusting than the universal case, although 
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more than just the inevitable 1/ tan j3 tuning. (The actual tuning needed is in reality 
slightly more than indicated, due to the squark- and slepton-splittings induced by 
the D-terms and due to the effects of custodial symmetry violation, as mentioned 
above; qualitatively, though, the picture we described remains.) It is also predictive: 
the superspectrum is hierarchical with light charginos and neutralinos but heavy 
squarks, and since >..a is large so is the top mass. 

We can continuously retreat from this maximally symmetric case by increasing J.L 
or M1;2 (or the related parameters}, thereby losing PQ or n, first at low energies 

when J.L or m 1; 2 become comparable to €~12 Ms, and then at all energies when J.L or 
m 1; 2 become comparable to Ms itself. Both .may be interesting for model-building 
(for example, if J.L is radiatively generated by A terms at the GUT scale, then PQ 
rather than n symmetry should be evident) and for comparison with experiments 
once the superspectrum is measured. In either case, the tuning is comparable to 
the maximally symmetric case, though less tuning is needed in Eq. (34} and more 
in Eq. (35}. We will however defer their discussion to our more complete study [3], 
and instead consider the case where both PQ and n symmetries are abandoned in 
favor of a smaller >..a. We will call this scenario, unimaginatively, the asymmetric 
case. It alleviates the focusing effect of Eq. (26) since now €~ "'0(1}, which in turn 
allows the initial conditions (specifically the D-terms) to split the Higgs doublets and 
the other multiplets by a large amount, so now Mx "' Ms. Small >..a also entails 
larger (negative) 8mb corrections to correctly predict mb/m-r, and to this end we 
take J.L "' M 1; 2 "' Msq "' MH = Ms. We then see, however, that what we gain by 
eliminating the focusing effect we lose by restoring the b -7 S/ problem: since J.L and 
m 1; 2 are no longer small, we are forced to raise the SUSY scale to "' O(TeV), and 
therefore again to tune the initial parameters to make the Z light: 

(36} 

Since the D-term splitting of the Higgs is now large, m~ "' M§, we find that Ba 
requires only the typical tuning 

B 1 m~ 
I'V--

tan j3 J.L m 1; 2 tan j3 • 
1 

(37) 

This scenario is comparable in its naturalness (or lack thereof} to the symmetric case. 
The superspectrum is uniformly heavy rather than hierarchical, and the top is light 
since >..a is small. 

12 Conclusions 

These last two scenarios are qualitatively the best one can hope for from an SO(lO) 
model wit~ Yukawa unification, for two reasons. First, obtaining a large tan {3 and 
thereby the top-bottom hierarchy is never natural in the MSSM, due to the LEP 
bounds on J.L and m 1; 2 which force either m~ to be much heavier than the Z or B 
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to be much -lighter than the gauginos. Second, the last two scenarios illustrate how, 
for large >.c, the inherent focusing property of the RG equations in the symmetric 
limit necessitates a further tuning of the initial parameters, while for small >.c a 
similar tuning is mandated by bounds on the rate of b -+ S/. There are also in­
termediate scenarios, with only one of the symmetries, but they are apparently no 
more natural. These various possibilities are considered in more detail elsewhere (3]. 
The universal case is generically much more tuned than most of these scenarios, as 
we have shown. Hence departures from universality, although possibly dangerous for 
the flavor-changing neutral current interactions they can induce in some models, are 
strongly favored in achieving a large tan f3. 

What is the status of the predictions? Perhaps surprisingly, the top mass is not 
an independent prediction of Yukawa unification, but rather depends strongly (i.e. 
non-logarithmically) on a certain ratio of superpartner masses appearing in 6mb. 

Since the large- and small->.c cases are equally fine-tuned, naturalness arguments 
do not single out any particular top mass within this S0(10) framework. Instead, 
information about the top mass can be combined with Fig. 1 and Eq. (2) to restrict the 
mass parameters which can be consistent with Yukawa unification, and to determine 
a favored superspectrum. It must be admitted that, with Yukawa unification, the 
attractive conventional picture of radiative electroweak symmetry breaking due to 
a large At but small >.b is largely lost: the symmetry is either broken radiatively 
using small custodial isospin-violating effects and extraordinarily fine-tuned initial 
conditions, or else the Higgs doublets are already split at the GUT scale. Furthermore, 
we have seen that all the large tan f3 scenarios are technically unnatural. On the other 
hand (and to some extent because of the necessary· fine-tuning), they are certainly 
predictive and so will be tested in future accelerators: for example, if the charginos 
are light but the squarks are heavy, the top should also be heavy; if the SU(2)L­
singlet bottom squark or the doublet sleptons were lighter than the other squarks 
and sleptons, this would be a sign that the D-tern'l splittings were large (10]; and 
finally, tan f3 can itself eventually be measured, and the large tan f3 hypothesis would 
be decisively confirmed or dismissed. 

Even before any further experimental input, there are a few theoretical avenues 
worth pursuing which would make Yukawa unification much more attractive. First, 
as discussed also by J. Lykken in these proceedings [11], string models which lead to 
true grand-unified models as.their low-energy effective Lagrangians can exhibit higher 
symmetries in certain sectors of the GUT than in other sectors. In particular, a string 
theory with an S0(10) gauge symmetry might break to an effective low-energy SU(5) 
GUT in a stringy way, leaving all three Yukawa couplings unified at the Planck scale 
ala S0(10) but splitting the flH from the lin soft masses, namely M{; from M'b. Note 
that unlike the D-term splittings we have considered before, M{; and M'b could now 
be split without necessarily decreasing some squark or slepton masses. This approach 
can thus provide more freedom in the choice of boundary conditions-although as we 
have shown, some features of the RG equations, in particular the focusing effect, are 
inherent in the equations themselves and apply to any boundary conditions, and that 
freedom could either be the key to a more natural scenario (see the 'following remark) 
or could necessitate still more arbitrary fine-tunings at the GUT scale. Second, we 

15 



have shown that in the symmetric case, the ratio of the soft-breaking masses for the 
10H and the .!.ih needs to have a certain value if the electroweak symmetry is to 
break correctly. While such a value is arbitrary in the context of an S0(10) model 
and therefore apparently requires a fine-tuning, perhaps this value could be explained 
as a ratio of integral conformal weights in the context of a string theory into which 
the GUT is embedded. (Notice that this value is favored simply by the unification 
of Yukawas at some large scale, and does not depend on an SO(lO) symmetry.) If 
such an explanation could be found, then the symmetric case would now be strongly 
favored: it would only require the minimal 1/ tan/3 tuning (and would predict a 
heavy top!). In fact, if the squarks were to be experimentally determined to be heavy 
while the gauginos were light, then this case would be no more fine-tuned than the 
conventional small tan f3 scenario, but would have the advantage of explaining the 
top-bottom mass hierarchy (through the PQ and R symmetries)-which, after all, 
was historically the motivation for studying Yukawa unification. 
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Figure Captions 

Fig. 1: The dependence of the low-energy values At,b,T and of the ratio R = >..b/ >.T 
on the initial condition >.fb T = >..a, without any threshold corrections. The 

'' allowed range of Rexpt is shown shaded, and the minimal value of >..a allowed by 
this range in the absence of any corrections is indicated by the solid dot; lower 
values of >..a require finite, negative 8mb (see the text). The corresponding value 
of At is marked by the shaded dot. The vertical scale on the right indicates 
the approximate tree-level top mass"' 174>..t GeV which would result from the 
values of At on the left vertical scale; for example, the shaded dot predicts a 
heavy top, above 170 Ge V or so. 

Fig. 2: The leading (finite) 1-loop MSSM corrections to the bottom quark mass, 
namely 8mb. 

Fig. 3: Our predictions [2] for the pole mass of the top quark, without superheavy 
corrections and using two qualitatively-different superpartner spectra, specifi­
cally mhiggsino"" p = 100 GeV, mgluino = 300 GeV, mwino = 100 GeV, msquark = 
mslepton = 1000 GeV and mA = 1000 GeV for which the 8mb corrections are 
small, and mhiggsino "" 11- = 250 Ge V, mgluino = 300 Ge V, mwino = 100 Ge V, 

' 
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ffisquark = ffislepton = 400 GeV and 1nA = 400 GeV for which jbmb/mb\ "' 0.25. 
The upper or lower horizontal axes should be used for these two spectra, re­
spectively. The "cloud" indicates the region where the theory becomes nonper­
turbative at the GUT scale. Also shown are the estimated allowed mass ranges 
for the running parameter 1nb as extracted in our previous work [2]. 
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