
LBL-36442
UC-410

Lawrence Berkeley Laboratory
UNIVERSITY OF CALIFORNIA

Accelerator & Fusion
Research Division

Presented at the 1995 Particle Accelerator Conference,
Dallas, TX, May 1-5, 1995, and to be published in
the Proceedings

Accelerator Operation Management Using Objects

H. Nishimura, C. Timossi, and M. Valdez

Apri11995

I
I

I /; / r

Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098

::0
ITI

() ,
-'· 0 1T1
;O::o
orom
S:::lllz
_.... ()
D.IZITI
r+O
CD r+()

0
CJ

"tJ
_.... <
0..---co

U1
lSI

r
r OJ r
0" () I , 0 w
Q.l "C m , '< +:>.
'< +:>. N

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

LBL-36442
LSGN-210

UC-410

ACCELERATOR OPERATION MANAGEMENT USING OBJECTS*

H. Nishimura, C. Timossi, and M. Valdez

Advanced Light Source
Accelerator and Fusion Research Division

Lawrence Berkeley Laboratory
University of California

Berkeley, CA 94720

April1995

Paper presented at the 1995 Particle Accelerator Conference, Dallas, TX, May 1-5,1995

*This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Materials
Sciences Division, of the U. 5. Department of Energy, under Contract No. DE-AC03-76SF00098.

,f
)

ACCELERATOR OPERATION MANAGEMENT USING OBJECTS.

H. Nishimura, C. Timossi, M. Valdez, Lawrence Berkeley Laboratory, Berkeley, CA 94720 USA

Conflicts over control of shared devices or resources in
an accelerator control system, and problems that can occur
due to applications performing conflicting operations, are
usually resolved by accelerator operators. For these conflicts
to be detected by the control system, a model of accelerator
operation must be available to the system. We present a
design for an operation management system addressing the
issues of operations management using the language of
Object-Oriented Design (OOD). A possible implementation
using commercially available software tools is also
presented.

I. THE PROBLEM OF OPERATION
MANAGEMENT

The Advanced Light Source (ALS) [I] is a facility
operated at Lawrence Berkeley Laboratory to produce light
for researchers. The facility, composed of an accelerator
surrounded by optical beamlines, operates in many states
such as start-up and shut-down, injection, and production
with light being used by experimenters. Many activities or
operations are typically in progress during each of these
states; the danger is, that they may conflict For example,
when the storage ring is filling it is not appropriate for the ·
contrOl system to perform closed orbit correction.
Conversely, during production, orbit correction should be
active but it should have exclusive control of resources on
which it depends, such as corrector magnets. Also,
depending on the state of the accelerator, certain operations
should not be allowed at all. Certainly, calibrating beam
position monitors while orbit correction is active, could
result in the unwanted loss of beam. Ultimately, these types
of conflicts are prevented by the good sense of the operations
crew, but it seems reasonable that a system that had
knowledge about the operation of the accelerator could
prevent these conflicts.

ll. THE DESIGN PROCESS

Before starting the design, we first had to decide on the
requirements but we were also very interested in methods
and tools for supporting object-oriented design. We looked at
two methodologies and tools.

A. Requirements

The Operation Management System is configured with a
set of accelerator operations, and each operation having a list
of necessary resources. The system must not allow
conflicting operations to occur. There are essentially two
types of conflicts: operational and resource. Resource
conflicts occur when two operations attempt to control or
lock the same resource (e.g., a bend magnet) Operational
conflicts do not occur on a resource level, but rather when
one operation is able to affect another. If an attempt is made
to start a conflicting operation, the system will identify the
source of the conflict but will not attempt to preempt any of
the active operations. When any type of conflict occurs the
system will identify the source of the conflict by computer
host name, operation name, and, if necessary, resource name.
Since control operations are performed across a network of
heterogeneous computers, the system must also operate in
this environment

B. Object-Oriented Design

Although there are slight differences in OOD
methodologies, our design process was typical. First we
identified the objects and their relationships (referred to as
the static model). Next we examined typical scenarios for
the system to determine the objects' methods (referred to as
the dynamic model). Finally, we repeated the preceding
steps until a model spanning a useful number of scenarios is
complete. In fact, we are still iterating through this process.

C. Software Tools

We started the design wanting to take advantage of one
of the new OOD tools which would not only aid in the design
phase, but also in the implementation phase with its ability to
generate C++ code. Since much of our existing application
code is in C++, code generation was certainly useful in a
tool. We worked with two methodologies described by:
Rumbaugh ·[2], and Booch [3]. Also, we used two different
software tools: OMTool [4] and Rational Rose/C++ [5]. Our
choice of the Booch methodology for this design, was driven
by our preference for Rational Rose (both the tools and the
methodologies are going to be merged). We chose the
ObjectStore Object Oriented Database [6] for storing
persistent data because of its transparency in C++
programming, its support of data models we wanted to use

• Worlt supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Material Sciences Division, U.S. Department of Energy.
under Contract No. DE-AC03-76SF0098

.,
I }

(e.g., lists and sets), and its locking model that we hoped to B. Starting an Operation
use to support resource locking.

III. THE DESIGN: CONCEPT

During the design phase, we attempt to model the behavior
of the operations management system. The modeling process
consists of first identifying the classes and then examining
operational scenarios. to make sure the model is complete.

A. The Object Model

invokes

_ln.,__
J Operation(.

<.... 1confi ure

;-l~~n;
locks ""- \

/ needed_resources ""- '--..

-.J ~ J J Operation
(Resource

1
<.... Man~ I

L....-- n I (R~~~

L=z~
(OpList (

L....-
Figure 1: Class Diagram

Figure 1 is the class diagram (static model) of the system
in Booch notation. Briefly, the broken clouds represent the
classes (usually the nouns in the statement of the problem).
We used the convention of capitalizing class names and
objects. The lines name the relationships between the
classes. These lines are adorned with circles denoting the
type of relationship (open represents uses and closed
represents has-a) and numbers representing the cardinality.
Figure 1 reads: exactly one Client (class) uses n (many)
Operations along with an Operation Manager. One
Operation uses many Resources, contains many Resource
Specs and uses one Operation Manager which contains an
OpList.

2

• 1: Stan()

Starting a new operation:

1: The client starts the operation.
2: If the operation doesn't conHict with another operation
3: and it can open the resources It needs,
4: then operation Is added to the list of active operations.

Figure 2: Object Diagram

Figure 2 is the object diagram (dynamic model) of the
particular scenario in which a new operation is invoked. The
(closed) clouds represent specific instances of objects, with
the lines representing messages flowing between the objects.
The arrow points to the receiver of the message, and is
labeled with the method that is invoked in the receiver.
Figure 2 reads: A Client (object) does a Start() on a new
Operation. The new Operation asks the Operation
Manager to Active() it. The Operation Manager
determines if an operational conflict exists with the currently
active operations contained in the OpList object and the new
Operation. If none exist then the new Operation is added
to the OpList object. If Activate() returns successfully, the
new Operation then attempts to Open() its resources. If the
Open() succeeds, then the Client can manipulate its
resources and continue.

IV. THE DESIGN: DETAIL

A. Operation

An operation object contains a unique identifier and a
list of Resource Spec objects. Each of which identifies some
resource that is needed for the operation to begin. When an
new operation starts, it uses the Operation Manager to check
for conflicting operations. It then uses its Resource Spec list
to identify the resources it needs and attempts to lock them.

,,
'

,,

... ,

B. Operation Manager

The Operation_Manager object contains the information
needed to check for operational conflicts. This data is
structured as a table of allowed operations stored in an
ObjectStore database. This database is pre-configured with
the allowed operations for a given state. The operation
manager also contains the list of active operations · in
progress.

C. Resource Spec

The Resource Spec objects contain the resource
information needed by the operation. Each Resource Spec
object is maintained in a database and includes a resource
name and the default settings or parameters for that particular
resource. Because the default parameters or settings are
included in the Resource Spec objects and not the Resource
object itself, an operation can easily have variances of itself.

D. Resource

The Resource objects are used by the operation simply to
provide a way in which accelerator resources can be locked.
The Resource objects are maintained in a database pre
configured with the available accelerator resources. In some
cases, exclusive write access to a resource is required, due
either to the nature of the operation or to the nature of the
resource. In either case, the resource is marked with the
identifier of the operation with exclusive access. Also the
host computer of the locking client and client information is
kept in this object as well. This is useful for knowing which
client on which computer is holding what devices. In
general, the identifier of each operation using the resource is
kept in the resource object as well as the host computer that
the client is located.

E. Starting an Operation

To startup successfully, an operation must be able to
mark each resource object in the database to indicate that it is
in use by the operation. If one of the resources cannot ·be
marked, because another operation has an exclusive lock, the
operation must give up and restore the database to its initial
state. Further, race conditions between operations
simultaneously marking resources must be prevented. These
requirements are implemented using ObjectStore transactions
and the locking model; both features are designed to assure
the database has a consistent state. The new operation first
opens a transaction to the resource database. It can then read
to see if any other operation is using the resources it needs.
If the resource is free, the operation can put its signature in
the object, thus enabling other operations to see which client
on what host is using a particular resource. The write to a
resource object will either put a write lock on the database,
preventing any other operations from writing to it, or will

3

block until the lock can be obtained. Next, if all the resources
are available, the transaction is closed, the database is
updated, and the write lock is removed. If all the resources
are not available, the transaction is abandoned, the write lock
is removed, the client is notified of the failure, and no change
is made to the database.

V. STATUS AND DISCUSSION

A. Object-Oriented Design

Both the methodologies and the tools are evolving (the
Rumbaugh and Booch methods are merging for instance).
They are new enough that changes are still coming rapidly,
but they are stable enough that some useful principals and
tools are present. Certainly, the tools are already worth the
investment in time to learn to use them. At worst, they
produce quality documentation for a design, at best they
generate, and regenerate code and documentation as the
design changes. We have also found that the simple principle
of separating the design into static and dynamic models
provides a useful approach to the design, at least for small
systems. Although this system is not yet complete, the
process which allows us to expand and eventually complete it
remains the same.

B. FutureWork

The current model lacks the ability to identify operations
that only partly conflict. This means that operations that do
not necessarily operationally conflict throughout their whole
extent are forced to avoid each other. For example, suppose
Operation A and Operation B both conflict only in the
beginning of their operations. This model would not allow
them to be active together regardless of where they were
within their own operational extent.

VI. REFERENCES

[1] "1-2 GeV Synchrotron Radiation Source, Conceptual
Design Report," LBL PUB-5172 Rev. LBL,1986. A.
Jackson, "Commissioning and Performance of the
Advanced Light Source", IEEE PAC93, 93CH3279-
7(1993)1432.

[2] James Rumbaugh et al. Object-Oriented Modeling and
Design. Prentice Hall. 1991.

[3] Grady Booch. Object-Oriented Analysis and Design.
Benjamin/Cummings. 1994.

[4] OMTool, GE Advanced Concepts Center, King of
Prussia, PA.

[5] Rational Rose/C++, Rational Software Corporation, Santa
Clara, CA.

[6] ObjectS tore, Object Design Inc., Burlington, MA.

LAWRENCE BERKELEY LABORATORY
UNIVERSITY OF CALIFORNIA
TECHNICAL AND ELECTRONIC

INFORMATION DEPARTMENT
BERKELEY, CALIFORNIA 94720

"

