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1. Introduction 

The simplest and oldest capillaric model is one representing the porous medium 

by a bundle of parallel straight capillaries of uniform radius. In deriving this Kozeny

Carman model, the multiple connectivity of the pore space is completely neglected. 

Applying the well-known law of Hagen-Poiseuille for circular tubes of radius r, and 

relating the result to the macroscopic Darcy's law, it follows that the permeability k 

of the bundle of capillaries is given by (Scheidegger, 1974) 

(1) 

where f represents an 'average' pore radius and ¢> the porosity. This model gives 

permeability in one direction only. All capillaries being parallel, there can be no flow 

orthogonal to the capillaries. A simple modification to Eq. (1) consists of putting 

one-third of the capillaries in each of the three spatial dimensions. To account for 

this, the tortuosity factor, r = 3, is introduced, and Eq. (1) takes the form 

N1rr4 ¢>r2 

k------ 8r - 8r · (2) 
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The above expression of permeability can be compared with an equation, which 

determines permeability of sedimentary rocks from microgeometry with reasonable 

accuracy (Schlueter, 1993). This equation is based on the model of a regular cubic 

lattice, consisting of pores of different shapes and varying cross sections, and leads to 

the expression: 

k = NCetf' 
TAtotal 

(3) 

where Ceff is the effective conductance of the cubic network of coordination number 

6, N the number of pore elements in the micrograph, Atotal the area of the photomi

crograph, and T the tortuosity of a cubic lattice, which is 3. IT there are no marked 

spatial variations of the channel dimensions, the rock is microscopically homogeneous 

with individual conductances C1 = C2 = ..... = Ci = Get 1 = C, and the effective con

ductance becomes independent of the average lattice coordination number z. Hence, 

under conditions of microscopic homogeneity we can write 

k = NCeff = NjRJJ.A = t/Jr2 
' 

T Atotal T Atotal 8T 
(4) 

where RH is the ratio of pore area to pore perimeter. Thus, Eq. (3) and Eq. (2) 

become equivalent. Indeed, the hypothesis of microscopic homogeneity of the pore 

space is implicit in the derivation of the Kozeny-Carman equations. This would be 

the case of a rock pore space characterized by a very narrow distribution of channel 

dimensions, e.g., a single-spike pore-size distribution. However, the pore space of 

a 'rock is generally characterized by a wide distribution of channel dimensions, and 

so the pern:teabilities predicted by the Kozeny-Carman equation deviates from the 

measured values. In this case, it will be shown that the Kozeny-Carman for:I?ulas 

based on a parallel arrangement of the pores give at least an upper bound of the rock 

permeability. 

In deriving Eq. (3), a regular cubic lattice, consisting of pores of varying cross 

sections and different shapes, was introduced as a pore structure model. Permeabili

ties of sandstones obtained with this model are in good agreement with experimental 

data (Schlueter, 1993). This outcome confirms previous research by Chatzis and Dul-
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lien (1985), who found that the simple cubic (or tetrahedral) networks of angular 

pores yields very good agreement with the observed data when modeling the mer

cury porosimetry curve for a variety of sandstones. The simple cubic network and 

the tetrahedral network were found to give practically indistinguishable results for 

the mercury porosimetry curve. These results are not surprising when we think that 

the above properties are strong functions of the pore structure of the sample, which 

is multiple connected (Figures 1 and 2). On the other hand, consider Berryman 

and Blair's (1986) estimates of Berea sandstone's permeability using digitized SEM 

images of rock sections. Parameters such as porosity, specific surface area, and forma

tion factor were employed to successfully predict permeability from Kozeny-Carman 

relations, and so there seems to be a discrepancy. Therefore, there is a need to as

sess the region of validity of the Kozeny-Carman formulas to predict permeability 

of consolidated porous media from microgeometry, as it relates to the microscopic 

spatial variation of channel dimensions. It is also important to evaluate the extent to 

which the parallel pore structure model moves away from the regular cubic model as 

the pore space becomes more and more inhomogeneous at the pore scale. We under

took this research with four main objectives in mind: (1) to re-examine the effective 

medium theory to treat conductor networks based on the distribution of individual 

conductances, (2) to study the region of validity of the effective medium theory by 

comparing its results with conductances evaluated numerically using large 3-D simple 

cubic networks in which the values of the conductances are chosen by a Monte Carlo 

procedure from one of several distributions (Kirkpatrick, 1971 ), (3) to compare results 

with the critical-path analysis (Ambegaokar et al., 1971) which focuses on the details 

of the critical paths along which much of the flow must occur (the total conductance 

obtained by this method gives an upper bound for conductivity valid for the case of 

having a very broad distribution of channel dimensions, i.e, a microscopically hetero

geneous porous medium), ( 4) to study the validity of the Kozeny-Carman formulas 

for consolidated porous media as they relate to the microscopic spatial variations of 

channel dimensions using the effective medium theory, network theory, and the criti

cal path analysis, and ultimately (5) to compare the analytical results thus obtained 

with experimental results for a variety of consolidated porous materials. 
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FIG. 1: Stereo SEM photomicrographs of a Berea sandstone pore cast. The rock pore space is 
partially impregnated with Wood 's metal alloy and the quartz grains removed with hydrofluoric 

acid to reveal the pore microstructure. 
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FIG. 2: Stereo SEM photomicrographs of a Saint-Gilles sandstone pore cast. The rock pore space 
is impregnated with epoxy and the quartz grains removed with hydrofluoric acid to reveal the pore 

microstructure. 
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2 Effective medium theory 

The objective of the effective medium theory (Kirkpatrick, 1973) is to infer an 

average conductance parameter for heterogeneous disordered media from the statis

tics of local conducting elements. Consider an inhomogeneous disordered continuous 

system in which one can define locally the conductance. Such a medium can be 

approximated by a 3-D network with a regular topology in which each bond is oc

cuppied by a conductance Ci. According to Kirkpatrick (1973) it is possible to build 

a homogeneous network with the same topology but in which all conductances Ci 

have a single value Cef 1 which is an effective value controlling the physical property 

involved. The effective medium is by definition the homogeneous equivalent network 

for which the macroscopic conductance is the same as for the heterogeneous system. 

The idea then, is to represent the average effects of the random conductors by a homo

geneous effective medium in which the total field inside is equal to the external field. 

As a criterion to fix Cef 1 it is required that the incremental voltages induced, where 

individual conductances Ci are replaced by Cef 1 in this medium, should average to 

zero. 

The distribution of potentials in a random resistor network to which a voltage has 

been applied along one axis may be regarded as due to both (1) an external field 

which increases the voltage by a constant amount per row of nodes, and (2) a local 

fluctuating field whose average over a sufficiently large region is zero. 

2.1 Uniform field solution (external field) 

By introducing a regular cubic mesh of points ri with spacmg b.r (Figure 3), 

and applying the principle of conservation of charge, one obtains a system of linear 

equations for the voltages Vi = V,.;. 

At point i, 

LCii(Vi- Vj) = 0, 
j 

(5) 

where j is summed over all neighboring points. Now replacing the conductance Cii 

with a constant effective conductance Ceff, gives at point A (refer to Figure 3) 
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CetJ([V + 2Veff]4- [V + 3Veff + V + Veff + V + 2Veff + V + 2Veff]) = 0 ,_ (6) 

where all conductances Ceff have associated with them 6V = Veff per row. 

2.2 Fluctuating field solution (local field) 

To find a mathematical expression for the effective conductance, a classical self

consistent method can be employed in which a single conductance Co is embedded 

in the homogeneous medium of similar topology. The inclusion of C 0 in the effective 

medium disturbs locally the uniform solution for the field but the deviation is eas

ily calculated since the effective network is homogeneous. Consider one conductance 

having the value Co surrounded by an otherwise uniform effective medium. The solu

tion of the network Eq. (5) in the presence of Co can be constructed by superposition 

(Figure 4). Far from Co the field is uniform. To the uniform field solution given by 

Eq. (6), we add the effects of a fictitious current io introduced at A and extracted at 

B. Since the uniform solution fails to satisfy current conservation at A and B, the 

magnitude of i 0 is chosen to correct for this. 

At A, 

(7) 

The extra voltage, Vo, induced between A and B, is given by the conductance C~B 

of the network between points A and B when the perturbation is absent, i.e., when 

Co- Ceff = 0: 

(8) 

The current flowing through each of the z equivalent nodes at the point where 

the current enters is io/ z so that a total current of 2i0 / z flows through the path 

AB. We then calculate the voltage developed across AB, the conductance across 

AB, CAB= (z/2)Ceff, and c~B = (z/2)Ceff- Ceff· 
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v 

FIG. 3: Con~truction used in calculating the uniform field solution, in which the voltages increase . 

by a constant amount, VeJJ 1 per row., 
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FIG. 4: Construction used in calculating the voltage induced across one conductance, C0 , surrounded 

by a uniform medium (after Kirkpatrick, 1973). 
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Thus we can write 

valid both in 2-D and 3-D. 

Yc, = 'VeJJ(Cef!- Co) ' 

Co+[i-1]Ceff 

The requirement that the average of Yo vanishes gives 

where the sum is taken over all N individual conductors. 

3. Region of validity of the effective medium theory 

(9) 

(10) 

Evoke the effective medium theory where it was shown that the average effect of 

a random distribution of conductances in the effective medium can be expressed by 

giving all conductances a single value Ceff, and choosing Ceff such that the effects of 

changing any conductance back to its true value will, on the average, cancel. Changing 

the value of a conductance located along the electric field from Cef f to Co causes an 

additional voltage Yo to be induced across Co givenby Eq. (9). IT the conductances 

are distributed according to some distribution function f( C), the self-consistency 

condition for Get f is 

J [ Ceff- C ] 
0 = (Vo) = Ceff f(C) C + (i _ 1)Cetf dC. (11) 

Assume a binary distribution of conductances Cii, in which two values C1 and C2 

occur with probabilities f and 1- J, respectively. Applying Eq. (11), we can write 

(12) 

A quadratic equation for Ceff is thus obtained 
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Hence we get 

Ceff -
-C2 [~U -1) + 1)- Ct [1- ~!] 

z-2 
(14) 

z-2 

Now let C2 -+ 0, in which case Ceil becomes 

. -Ct (1- ~!] ± Ct (1- ~!] 
Ceff = 2 z-

(15) 

with solutions 

Ceffi = 0' (16) 

and 

-2Ct (1- ~!] 
Cefh = 2 · z-

(17) 
I 

For a simple cubic lattice, z = 6, and the non-zero root for Ceff becomes 

(18) 

Thus 

(19) 

This result is plotted in Fig. 5. Therefore, for C2 ~ Ct, Eq. (19) predicts a linear 

decrease in Ceff with decreasing J, with Ceff -+ 0 when f-+ 1/3. 
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FIG. 5: Total conductance of a simple cubic network of conductances Cij with binary disorder. 
Values of the conductances are 1 (with probability/) and C2 < 1 (probability 1- f), assigned at 
random. Calculations for networks with 153 nodes (data points) and predictions of the effective 
medium theory (solid line) are displayed. fc indicates the critical concentration for bond percolation 

on this lattice (after Kirkpatrick, 1971). 
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4. Numerical evaluation of the conductances of regular 3-D networks 

To study the region of validity of the effective medium theory, Kirkpatrick (1971) 

evaluated numerically the conductances of large regular 3-D networks, in which the 

simple cubic values of the conductances (the bonds of the arrays) are chosen by a 

Monte Carlo procedure from a distribution. 

The voltages Vi at the nodes of each network, and from the total current flow for a 

fixed external applied voltage, were calculated by a relaxation procedure based upon 

the Kirchhoff current law. If Cii is the conductance of the link between adjacent nodes 

i and j, the condition that all currents into node i cancel is given by Eq. (5). Resistor 

networks give a discrete model of a continuous medium in which conductance varies 

with position. Kirkpatrick (1971) studied the behavior of a simple cubic network 

of conductances with binary disorder. The values of the conductances are 1 with 

probability j, and C2 ~ 1 with probability (1 ,_f), assigned at random. Calculations 

for networks with 153 nodes (data points) and predictions of the effective medium 

theory are given for three values of C2 in Fig. 5. For C2 ~ C1 the data shows a 

linear dependence except in the critical regions where CeJJfC1 ~ 0.1 for the binary 

distribution. Hence, the effective medium theory is expected to work best when the 

spatial fluctuations in the current (or the channel dimensions) are relatively small. 

This limit leads to CeJJfC1 ~ 1.0. The opposite limit occurs when most of the 

current is channeled along the paths of least resistance or critical paths along which 

much of the current will flow. This limit leads to Ceff /C1 ~ Cc, where Cc is the 

critical conductance (section 5). Indeed, the effective medium theory works as long 

as we are not too close to fc, the percolation limit. 

Kirkpatrick (1971) also calculated conductances of 3-D cubic networks of 153 nodes, 

with values of the conductances chosen at random, distributed uniformily with a 

distribution f(C) = (2ClnA)-1 and the conductances range from A-1 to A, and 

compared this result with the effective medium theory (Figure 6). 

12 
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FIG. 6: Symbols show the total conductance of a simple cubic network of 153 nodes, with values of 
the conductances chosen at random from the distribution f(C) = {2ClogA)-1 with conductances 
Ci;'s that range from A- 1 to A. The critical path Cc and the effective conductance Ceff have also 
been plotted (after Kirkpatrick, 1971). 
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5. Region of validity of the critical path analysis 

Ambegaokar et al. (1971) have suggested that most of the current is channeled 

through the paths of least resistance at low temperatures, in inelastic hopping con

duction among localized states. The localized states may be viewed as the nodes i 

of a random network of conductances Cii with the conductance connecting any two 

states depending exponentially on the distance between them as well as on their ener

gies. Ambegaokar et al. (1971) suggested that at low temperatures the conductance 

of such networks, and its temperature dependence, can be estimated by looking at 

the critical paths, and characterizing them by a critical conductance Cc. The criti

cal conductance can be defined by a simple construction as follows. The resistance 

network can be considered as composed of three parts (Ambegaokar et al., 1971): 

1. A set of isolated 'zones' of high conductance, each region consisting of a group 

of sites linked together by conductances Cij ~ Cc. 

2. A relatively small number of conductors with Cii of order Cc, which connect 

together a subset of the high conductance clusters to form an infinite network 

that spans the sytem. Conductors in categories (1) and (2) are said to form the 

'critical subnetwork'. 

3. The remaining conductors with Cii ~ Cc· 

It is worth noting that in the critical path analysis, the conductances of order Cc 

determine the conductance of the network. The conductances in category (1) could 

all be set equal to infinity without greatly affecting the total conductance because the 

current has to pass through conductances of order Cc to get from one end of the system 

to the other. The conductances with Cii ~ Cc make a negligible contribution to total 

conductance because they are effectively shorted out by the critical subnetwork of 

conductors with Cii ~ Cc. Thus the conductances are all removed from the network 

and then replaced one by one, the largest first. The values ofCij at which extended 

paths open up is Cc. 

Ambegaokar et al. ( 1971) argue that for a very broad distribution of conductances, 

as is the case for low temperatures, the conductance may be expressed as 

14 



(20) 

where L - 1 is less sensitive to the characteristics of the distribution of conductances 

than is Cc itself. Hence the temperature dependence of C is taken to be of that of 

Cc alone, the factor L - 1 adding corrections of order of ln Cc or less. This analysis 

yields a very simple and elegant derivation of the T- 114 Mott law for conduction at 

low temperatures. 

The percolation threshold, fc = 0.25, of the numerical bond problem in the 3-D 

lattice is shown in Fig. 5. This value has also been reported ~elsewhere (Efros, 1986). 

If f denotes the ratio of conducting bonds to the total number of bonds, the conduc

tance vanishing at a certain value of f is the threshold (critical) value or percolation 

threshold. Since fc = 0.25, if the conductances are distributed over the interval (A-1 

to A) with the weight factor f(C) = (2ClnA)-I, then the critical conductance Cc is 

easily obtained: 

!. = Jtc J(C)dC = ~ J~ ~ = 0_25 
c JJ-1 !( C)dC 1 ' 

(21) 

and 

(22) 

The critical conductance for such a distribution is plotted in Fig. 6. For the dis

tribution used in the calculation and for the conductances increasing up to A ~ 1000, 

this plot shows that: (1) The effective medium theory and Ceff for the simple cubic 

case only slightly underestimates the observed conductances, and (2) the conduction 

process is not dominated by the paths of least resistance, and the critical path analysis 

is immaterial. 
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6. Region of validity of the Kozeny-Carman formulas and the 

microscopic spatial variations of channel dimensions 

In order to establish the validity of the Kozeny-Carman formulas for consolidated 

porous media, we will use the effective medium theory and assume that the conduc

tances are distributed according to f(C) = (2ClnA)-1 and that the conductances 

range from A-1 to A. The parallel (z = oo) and the series (z = 2) arrangements 

will be compared to the simple cubic arrangement of the conductors (z = 6). In 

particular, the parallel arrangement (on which Kozeny-Carman formulas are based) 

will be compared to the simple cubic arrangement of conductors, since the latter was 

compared with reasonable accuracy to experimental data to calculate permeability 

of consolidated porous media from microgeometry (Schlueter, 1993). Also, Chatzis 

and Dullien (1985) have found that the simple cubic network yields results in very 

good agreement with the experimental data when modeling the mercury porosimetry 

curve for a variety of sandstones. For comparison purposes, in addition to the effec

tive medium theory results, we plot the observed conductances obtained for a simple 

cubic arrangement of conductors by Kirkpatrick (1971), and the critical path analysis 

results in Fig. 7. 

6.1. Parallel arrangement of the conductors 

For any z we can rewrite Eq. (11) as follows 

1= =0. 1A dC [ Ceff- C · ] 
A-l 2ClnA ~ + (t- ~) Ceff 

For a parallel arrangement of the conductors, z --+ oo, and we can write 

1A dC 1 1A 1= ·--- dC=O. 
A-l C Ceff A-1 

The two integrals can be evaluated to yield 

f A dC 
-=2lnA, 

A-1 C 

16 
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(24) 

(25) 



and 

1 1A 1 A2 -1 - dC=- . 
Ceff A-1 Ceff A 

Thus, for a parallel arrangement of the conductores, Ceff is determined by 

A2 -1 
2Ceff InA= A 

(26) 

(27) 

Results are plotted in Fig. 7. Clearly, when A-1 =A= 1, Ceff becomes indepen

dent of coordination number z. 

6.2. Series arrangement of the conductors 

For a series arrangement of the conductors, z = 2, Eq. (23) gives 

I_ [A dC . [ Ceff - C ]- O 
- JA-1 2ClnA C + (~ -1) Ceff - . 

Thus 

1A dC 1A dC 
I= Ceff C2 -. -C = 0 . 

A-1 A-1 

Solving the two integrals yields 

and 

[A dC A2 -1 
Ceff }A..,;,1 C2 = A ' 

1A dC 
-=2lnA. 

A-1 C 

Thus, for a series arrangement of the conductors, Ceff is determined by 

[
A2- 1] 

Ceff A = 2lnA. 

17 
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(31) 

(32) 
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f(C)dC = dC{2ClogA)-1 

=0, outside 
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FIG. 7: Effective conductances of a parallel, simple cubic, and series networks of conductors, with 
values of the conductances chosen at random from the distribution /(C) indicated. The critical path 
conductance and the total conductance of a simple cubic network from previous figure (data points) 
have also been plotted. Zones I, II, and III correspond to zones within which the Kozeny-Carman 

formulas are valid, approximately valid, and not valid, respectively. 
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Results are plotted in Fig. 7. Clearly, as A-1 =A-+ 1, Ceff approaches indepen

dency of coordination number z. 

6.3. Simple cubic arrangement of the conductors 

For a simple cubic lattice, z = 6, Eq. (23) gives 

I _ [A dC [ Ceff - C ] _ O 
- JA-1 2ClnA C + (~ -1) Ceff - . 

(33) 

Thus 

I _ [A CeffdC _ [A dC _ O 
- JA-1 C(C + 2Ceff) JA-1 C + 2Ceff - . 

(34) 

Solving the partial integrals 

[A CeffdC =-~[In 2Ceff +A _ 2 lnA] ' 
JA-1 C(C+2CeJJ) 2 2CeJJ+A-1 (35)' 

and 

[A dC = In A + 2Cef J . 

JA-1 C + 2Ceff A-1 + 2Ceff 
(36) 

Thus Ceff for a simple cubic lattice is determined by 

31 2C ef J + A = 21 A 
n 2C A-1 n . 

eff + 
(37) 

Results are plotted in Fig. 7. Evidently, as A-1 = A -+ 1, Ceff approaches 

independency of coordination number. 

The solution to Eq. (37) for A-+ oo is readily obtained: 

2Ceff +A 
3ln C = 3lnA- 3ln2Ceff = 2lnA, 

2 eff 
(38) 

and 
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C 1 1/3 
eff ~ 2A · (39) 

For very large A, the data falls approximately on a straight line of slope"' 1/3. 

5.4. Results and discussion 

Figure 7 shows a log-log plot of Ceff for the parallel, series, and the cubic arrange

ments, respectively. For comparison purposes, in addition to the effective medium 

theory results, we have plotted the critical path analysis results and the results ob

tained by Kirkpatrick (1971) for a simple cubic arrangement of conductors. In partic

ular, the parallel arrangement will be compared to the simple cubic arrangement of 

conductors, since the latter was tested with reasonable accuracy against experimen

tal data to calculate permeability of consolidated porous media from microgeometry 

(Schlueter, 1993). This result simply confirmed previous findings by Chatzis and 

Dullien (1985) when modeling the mercury porosimetry curve for sandstones. For 

the distribution used in the calculation and for the range of conductances increasing 

up to A~ 1000, this plot shows that: (1) Ceff for the simple cubic case only slightly 

underestimates the observed conductances, (2) Cef 1 for the series case provides a 

lower bound for the observed conductances, (3) Cc is the upper most bound for the 

observed conductances up to A~ 70, whereas Ceff for the parallel case is the upper 

most bound thereafter, and ( 4) the conduction process is not dominated by the paths 

of least resistance, making the critical path analysis irrelevant. 

To explore the region of validity of the Kozeny-Carman formulas, we have uti

lized the conductance envelope for the given distribution of conductances (Fig. 7), 

and divided it into three zones: zone I (1 < A < 10), a zone within which the 

Kozeny-Carman formulas are valid; zone II (10 ::::; A < 100), a zone within which 

the Kozeny-Carman formulas are approximately valid within limits; and zone III 

(A > 100), a zone within which the Kozeny-Carman formulas are not valid. Zone 

I, in which conductance span A varies between limits 1 (point D) and 10 (point E), 

is characterized by conductances Cef 1 for the parallel case being less than two times 

higher than the cubic case over much of the conductance span. In this zone, the 

Kozeny:-Carman relations are valid within experimental error. Consider, for exam-

20 



ple, that in the analytical expression for permeability given by Eq. {3), the error 

incurred in the hydraulic radius approximation lies within ±30%. Notice that point 

D corresponding to the limit A = 1 = A-1 is associated with the point at which 

Ceff = 1. Therefore, at point D, the porous medium is microscopically homogeneous, 

and the Kozeny-Carman formulas are strictly valid. In zone I, the spatial fluctuations 

in channel dimensions are small and the Kozeny-Carman formulas are very accurate. 

Notice also, that in this zone the critical path conductance Cc provides an upper 

most bound, and Ceff for the series case (z = 2) provides a lower bound. Zone II, 

in which conductance span A varies between limits 10 (point E) and 100 (point F), 

is characterized by conductances Cef f for the parallel case being less than an order 

of magnitude higher than the simple cubic case. Since the permeability of rocks can 

range over many orders of magnitude, from about w-n m2 down to about w-20 m2 , 

an estimation of permeability within less than an order of magnitude of the observed 

value may be sufficient for many practical applications. However, in this zone the 

pore system is, strictly speaking, microscopically inhomogeneous. Zone II is a transi

tion zone regarding the upper bound conductance because when A::::::: 80, Ceff for the 

parallel case becomes the upper bound conductance. Cef 1 for the series case provides 

of a lower bound conductance during the whole span. Zone III, in which conductance 

span A varies between limits 100 (point F) and higher is characterized by conduc

tances Cef 1 for the parallel case being more than order of magnitude higher than the 

simple cubic case. At this stage, the pore system is considered highly inhomogeneous. 

Notice that Ceff for the parallel case is here the upper most bound. The critical path 

conductance, Cc, is accurate only to within an order of magnitude. 

7. Comparison of analytical and experimental results 

The analytical results for permeability calculated in the manner described above 

will now be (1) compared against analytical and experimental results for sandstones 

obtained by Chatzis and Dullien (1985), (2) compared with analytical and experi

mental results for sandstones obtained previously {Schlueter, 1993), and {3) analyzed 

in light of the mercury porosimetry experimental data for a variety of sandstones 

obtained by Batra {1973). 

As shown in earlier work (Schlueter, 1993), our permeability model was able to 
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predict the property for a variety of sandstones while using, in every case, the same 

cubic lattice as the pore-structure. Chatzis and Dullien (1985) also introduced a reg

ular cubic lattice, consisting of capillary tubes of uniform, but angular cross section, 

at the intersections of which are angular bulges. Drainage-type penetration nun:terical 

experiments were performed in a number of regular networks ·representing the pore 

space, using a modified site-percolation approach. All of their networks are composed 

of two topological entities: capillaries and nodes. The correlation between the prob

ability of a capillary being open and that of a node being open is considered in the 

calculation. From these results the porosimetry curve of mercury in sandstones, the 

relative permeability curve of mercury in sandstones, and the relative permeability 

curve of oil in a sandpack were calculated. The physical basis of the calculations is 

a one-to-one correspondence between the probability of a capillary being open, and 

the cumulative distribution function of capillary diameters. Capillaries and bulges 

are characterized by size distribution functions, and the bulges of different sizes are 

distributed randomly over the nodal points (sites) of the network. The choice of the 

size of a. capillary is limited by "the condition that it may not exceed the size of either 

. of the two bulges located at the two ends of the capillary. In the calculations, realistic 

capillary and node diameter distribution functions, pore shapes and relationships be

tween the volume and the diameter of a pore were assumed. In their model, however, 

the aspect of the pore structure called 'geometry', such as the dimensions and the 

orientation of the pores, are not modeled. The simple cubic (or tetrahedral) network 

was found to give results in good agreement with the experimental data (Fig. 8). 

The angular bonds (pore throats) correspond to pores of diameter Db. Consistency 

with the customary definition of pore size used in mercury porosimetry, with the aid of 

the well-known relationship of Laplace, enables Chatzis and Dullien (1985) to define 

the capillary diameters as follows 

(40) 

where Rbtc is the radius of curvature of the meniscus of the nonwetting phase at 

the prevailing capillary pressure, fJ is the contact angle, and Dbtc is the diameter of 

capillary k. 
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FIG. 8: Dimensionless experimental mercury-porosirnetry data and analytical curve of sandstone 
samples. A regular cubic lattice consisting of capillary tubes of angular cross section, at the intersec
tions of which there are angular bulges, is introduced as a pore structure model. The experimental 
data for all of the sandstone samples (except Belt Series) are well fitted by a single curve (solid line). 
The capillary pressure is normalized to the break~hrough capillary pressure P: (after Chatzis and 

Dullien, 1985). 
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TABLE 1: Calculation of the mercury porosimetry curve of the Berea (BE-!) sandstone sample 
(after, Chatzis and Dullien, 1985). 

1.00 29.5 102.3 44.5 848.0 0.113 0.170 
1.02 28.8 104.9 44.0 843.8 0.164 0.252 
1.09 27.0 109.5 42.5 826.3 0.286 0.415 
1.15 25.5 110.6 41.0 802.1 0.365 0.519 
1.23 24.0 109.4 39.5 771.8 0.443 0.599 
1.32 22.4 105.6 38.0 735.9 0.496 0.667 
1.43 20.7 99.1 37.0 709.2 0.552 0.724 
1.54 19.2 91.4 35.5 665.3 0.605 0.776 
1.68 17.6 81.6 34.0 617.0 0.659 0.824 
1.84 16.0 70.6 33.0 582.6 0.708 0.862 
2.06 14.3 58.1 31.5 527.6 0.764 0.902 
2.36 12.5 44.7 30.0 468.3 0.818 0.937 
2.78 10.6 31.1 28.5 403.1 0.869 0.965 
3.47 8.5 17.8 27.0 327.5 0.918 0.987 
5.90 5.0 0 25.0 0 0.972 1.000 

Analogously, for pores (pore bodies) of diameter D s~c: 

Ds~c = 2Rs~c cos 0, {41) 

where Rs~c is the radius of curvature of the meniscus of the nonwetting phase at the 

prevailing capillary pressure, 0 is the contact angle, and Ds~c is the diameter of pore k. 

Table 1 {Chatzis and Dullien, 1985) gives the calculated values of the mercury 

porosimetry curve of the Berea {BE-l) sandstone sample using a cubic lattice of non

circular (and circular) pores. Berea (BE-l) sandstone has almost the same macro

scopic transport properties. as the Berea sandstone used in our experiments (i.e., 

porosity of 22%, permeability to N2 of 400 md, and a formation factor of 15.5). The 

capillary pressure Pc*k is given relative to the breakthrough pressure P:. The diame

ters of the pores Db~c, and D s~c were calculated for the prevailing capillary pressure and 

its corresponding saturation. The density functions /b(Db) and fs(Ds) were assumed 

to be given by the beta function. The saturations S~m1c and S~m1c are the saturations 

of the angular and circular pore networks, respectively. 

To compare our analytical calculations for pet:meability obtained above with the 
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results obtained by Chatzis and Dullien (1985) for Berea (BE-l), we need first to relate 

the diameter Dk of each angular pore to its individual hydraulic conductance Ck. 

Schultze (1925a, b) has shown that the capillary pressures for noncircular capillaries 

under the assumption of zero contact angle are given by 

(42) 

where f is the surface tension, r 1 and r 2 the principal radius of curvature, and RH 

the hydraulic radius as defined previously. For an equilateral triangle of side a, the 

equivalence of the reciprocal of the hydraulic radius .and the reciprocal mean radius 

of curvature is (Carman, 1941) 

1 1 1 2 4 
-=-+-=-=-. 
RH r1 r2 Rk Dk 

(43) 

Thus, at zero contact angle, Dk and RH are related. The area A and the perimeter 

P of the equilateral triangular pore are ~a2 /4 and 3a, respectively. The hydraulic 

radius is RH =A/ P = ~a/12, and the pore diameter is Dk = ~a/3. Therefore, 

the angular pore area in terms of the diameter Dk is A= 3~DV4. 

Recall the equation used earlier for calculating the individual pore conductances 

(Schlueter, 1993) 

(44) 

In terms of pore diameter Dk, and under the assumption of zero contact angle, the 

pore conductance becomes 

(45) 

Table 1 (Chatzis and Dullien, 1985), gives the calculated pore diameters Dk for 

Berea sandstone (BE-l) for the full range of capillary pressures and saturation. At 

this stage, we need to calculate the pore conductances of the 'primary' pore network 

which is the one accountable for hydraulic transport. Our experimental results have 
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consistently shown that the hydraulically active or 'primary' pore network in sand

stones consists of intergranular pores (bodies and throats), situated in between the 

grains (Schlueter et al., 1994). The hydraulically active or 'primary' network of in

tergranular pores in Berea sandstone comprises about 80% of the total rock porosity. 

About 20% of the total rock porosity consists of grain contact pores; both inside 

the cementing material, and a few between grains when the pore has been narrowed 

down by deposits to a very narrow gap. Since the contribution of the grain-contact 

or 'secondary' network to hydraulic transport is small, it can therefore be consid

ered hydraulically inactive (Schlueter et al., 1994). The pore (pore throat) diame

ters of the 'principal' network of Berea sandstone range frotn the critical diameter 

De = 29.5 p,m corresponding to the breakthrough pressure peo (and corresponding 

saturation S~mk = 0.113) to the value D6k = 12.5 p,m (and corresponding saturation 

S~mk = 0.80). The breakthrough diameter De = 29.5 p,m is the largest diameter of 

the first connected cluster that spans the whole sample. On the other hand, the pore 

diameter Dbk = 12.5 p,m is the minimun diameter of the 'principal' network, con

sisting of intergranular pores, i.e., in between grains. From the 'principal' network 

of Berea sandstone (BE-l), the maximum and minimum pore diameters are thus ob

tained, and the ratio of critical to minimum pore conductances calculated with the 

aid of Eq. ( 43) is: 

_s_ = n: = 29.5
4 

..... 31 
C D4 4 "' • 

min min 12.5 
(46) 

Using the Cc/Cmin ratio for Berea sandstone, it is then possible to go to the 

general conductance plot (Figure 7) and obtain the ratio of effective conductance for 

the parallel case (z = oo) to the effective conductance for the cubic case (z = 6) 

Ce//parallel "'3 c "' . 
ef fcubic 

(47) 

The above result is consistent with previous calculations on permeability of Berea 

sandstone presented elsewhere (Schlueter, 1993). For example, conductance calcu

lations for Berea sandstone section B (Table 2), using the effective medium theory 

in conjunction with the 'principal' pore network, gave effective conductances for the 

parallel case ( z = 00) and for the cubic case ( z = 6) such that their ratio is given by 
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TABLE 2: Calculated effective conductance data of various sandstones obtained from SEM 2-D 
sections (Schlueter, 1993). 

Rock Ceff (z* = oo) m4 
Ceff (z* = 6) m4 Uej_l_lZ -00 j 

Cell (z*=6) 

Berea sandstone B 56.0x1o-:.~o 18.2x10 -:.~o 3.1 
Berea sandstone T 59.9xl0-20 24.2x10-20 2.5 
Boise sandstone 80.1 xl0-20 45~0x10-20 1.8 
Massilon sandstone 525x w-19 90.7x10-19 5.8 
Saint-Gilles sandstone 48.3x10-20 21.2x10-20 2.3 

*Coordinatiom number. 

TABLE 3: Calculated permeability data of two sandstones from rock microgeometry assuming a 
parallel pore model (Schlueter, 1993). 

Berea sandstone B 
Massilon sandstone 

a Distilled water used as permeant. 

bData from Koplik et al., 1984. 

Cef /parallel 

Ceffcubic 

56.0 X 10-20 m 4 

- 0 ::::::3. 18.2 x 10-2 m4 
(48) 

Analogously, for Berea sandstone section T (Table 2), the effective medium theory 

in conjunction with the 'principal' network gave effective conductances such that their 

ratio is 

Cef /parallel 

Ceffcubic 

59.9 X 10-20 m 4 

- 2 ::::::3. 24.2 X 10- 0 m 4 
(49) 

Similarly, former research summarized in Table 3 (Schlueter, 1993), showed that a 

model based on the 'principal' pore network, a parallel arrangement, and a pore size 

distribution, gave the permeability for Berea sandstone section B such that its ratio 

to the observed value is 

kparallel 
-

kmeasu.red 

15.0 x 10-13 m2 

13 :::::: 3. 4.8 x 10- m2 
(50) 
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It is then concluded that Berea sandstone hydraulically active conductances fall 

into zone II of Fig. 7, and that the Kozeny-Carman relations are valid within a factor 

of three of the measured permeability values. But, how general is this result for most 

sandstones, especially considering that the range of pore diameters may vary widely 

from one rock to another? This issue becomes quite clear when one examines the 

normalized experimental capillary pressure curves shown in Fig. 8 for a variety of 

sandstones. They almost without exception can be represented by a single function 

(solid line). This is a direct consequence of the 'similarity' in the geometrical sense of 

the pore structure and of the 'principal' pore network of ten of the eleven sandstone 

samples under study. The absolute magnitudes of the pore sizes alone do not deter

mine the results of these calculations. It is the pore diameters and pore conductances 

of the hydraulically active pore network, relative to the breakthrough pore diameter 

and corresponding conductance, rather than the absolute magnitudes of the pore di

ameters and corresponding conductances of the complete network, that determine the 

permeability and capillary pressure results. The successful prediction of permeabil

ity from microgeometry (Schlueter, 1993), and of the mercury porosimetry curve by 

Chatzis and Dullien (1985) of several sandstone samples, using the same cubic lattice 

network model as pore structure, which may appear surprising at first considering 

that the range of pore diameters sizes vary widely from one rock to another, becomes 

app(!.rent. 

Finally, it is established that the permeabilities of most sandstones fall in zone II 

of the conductance envelope (Fig. 7), and that the permeabilities predicted by the 

Kozeny-Carman formula.S are valid within more or less a factor of three of the observed 

values. Consequently, everrthough the complete pore space system of most sandstones 

is strictly speaking inhomogeneous, the hydraulically active or 'principal' network 

approaches homogeneity. As the rock 'principal' pore network becomes more and 

more inhomogeneous, the conductance plot shows that the Kozeny-Carman formulas 

become less and less applicable. For a very inhomogeneous 'principal' network, Fig. 

7 shows that the critical path analysis can be applied within limits. We are in the 

process of obtaining the conductance envelope for different pore distribution functions, 

but we do not anticipate that the type of distribution will have ~ strong effect on the 

described behaviour. 
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