
f 

;. 

LBL-36465 
UC-411 

Lawrence Berkeley Laboratory 
UNIVERSITY OF CALIFORNIA 

CHEMICAL SCIENCES DIVISION 

Presented at the Robert A. Welch Foundation 38th 
Conference on Chemical Research, Chemical Dynamics 
of Transient Species, Houston, TX, October 24-25, 1994, 
and to be published in the Proceedings 

Quantum Theory of Chemical Reaction Rates 

W.H. Miller 

October 1994 

CD 
~ 

---
:::0 
ITI 

('") .., 
-'· 0 1T1 
;O;:o 
oCDm 
s:: 1/) z 
~ ('") 
QIZITI 
c-+0 
CD C"+(") 

0 
"C 
-< 

0.---
IQ . 
1.11 
lSI 

r-...... 
0" ('") , 0 
Ql "'0 , '< 
'< . .... 

Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098 

r-
CD 
r-
I 

w 
m 
~ 
m 
1.11 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 



,., 
I 

Quantum Theory of Chemical Reaction Rates 

William H. Miller 

Department of Chemistry 
University of California, Berkeley 

and 

Chemical Sciences Division 
Lawrence Berkeley Laboratory 

University of California 
Berkeley, California 94720 

October 1994 

LBL-36465 
UC-411 

This work was supported in part by the Director, Office of Energy Research, Office of Basic Energy Sciences, 
Chemical Sciences Division, of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098, and 
by the National Science Foundation under Grant No. CHE-8920690. 



.. 

Introduction 

CHAPTER 

QUANTUM THEORY OF CHEMICAL REACTION RATES* 

WILLIAM H. MILLER 

Deparunent of Chemistry, University of California, and 

Chemical Sciences Division, Lawrence Berkeley Laboratory 

Berkeley, California 94720 

If one wishes to describe a chemical reaction at the most detailed level possible, i.e., its state

to-state differential scattering cross section, then it is necessary to solve the Schrodinger equation 
(with scattering boundary conditions) to obtain the S-matrix { Sn n (E,J)} as a function of total 

P• r 

energy E and total angular momentum J, in terms of which the cross sections can be calculated as 

follows,' 

(1) 

(Here nr(nP) label the reactant (product) quantum states, mP(mr) is the projection of total angular 

momentum onto the relative velocity vector of the reactants (products), and <fmm-(9) is the Wigner 

rotation matrix.) For the simplest chemical reactions, e.g., H or D+H2(para) ~ H+H2(ortho) or 

HD, H+D2 ~ HD+D, F+H2 ~ HF+H, it is actually possible2 nowadays to carry out such 

calculations that are effectively exact (numerically). 

All other physically observable attributes of the reaction can be derived from the above cross 

sections. Often, in fact, one is primarily interested in the least detailed quantity which characterizes 

the reaction, namely its thermal rate constant, which is obtained by integrating Eq. (l) over all 

scattering angles, summing over all product quantum states, and Boltzmann-averaging over all 

initial quantum states of reactants. With -the proper weighting factors, all of these averages are 

conveniently contained in the cumulative reaction probability3 (CRP), which is defined by 

N(E) = L (2J+l) L !Snp,nr(E,J~2 , 
J=O np,nr 

(2) 

and in terms of which the thermal rate constant is 

k(T) = [21tfi Qr(T) r I J: dE e-EiklN (E) . 
(3) 

(Qr is the reactant partition function per unit volume.) Thus, having carried out a full state-to-state 

scattering calculation to obtain the S-matrix, one can obtain the CRP from Eq. (2), and then rate 

constant from Eq. (3), but this seems like "overkill"; i.e., if one only wants the rate constant, it 

would clearly be desirable to have a theory that allows one to calculate it, or the CRP, more directly 

than via Eq. (2), yet also correctly, i.e., without inherent approximations. Such a theory4 is the 

*Based on an address presented by William H. Miller before "The Robert A. Welch Foundation, 
38th Conference on Chemical Research, Chemical Dynamics of Transient Species," which was 
held in Houston, Texas, October 24-25, 1994. 



subject of this paper. 

Brief Review of Transition State Theory 

What one is looking for is something like transition state theory (TST).5·7 It provides a 

direct route to the rate, but unfortunately is not correct. TST is actually a theory based on classical 

mechanics, and its quantization unavoidably entails additional approximations. In its most 

commonly used form TST expresses the rate constant as 

k'TST(T) = kT Q*(T) 
h Q.(T) • 

where Qt(T) is the partition function of the "activated complex", 

n 

(4) 

(5) 

E~ being the energy levels for motion of the molecule on a dividing surface which separates 

reactants from products, i.e., the molecular system with one degree of freedom (the reaction 

coordinate) removed. The con·esponding approximation for the CRP is 

NTSnE) = I. h(E-e~) • (6) 
n 

where h(~) is the Heaviside (or step) function(= 1 or 0 for~>() or <0, respectively). 

The next better ve~sion of TST is to allow for tunneling along the reaction coordinate, 

whereby Eq. (6) becomes 

NTST(E) = L Ptct(E-E~) • Cl) 
n 

and from Eq. (3) it is easy to show that the corresponding result for the rate constant is 

(8a) 

where K is the tunneling correction factor 

(8b) 

P1ct<E1) in Eq. (7) and (8) is a one dimensional transmission probability, effectively a smoothed out 

version of the step function in Eq. (6). 

As soon as motion along the reaction coordinate is allowed, however, one realizes that it is 

not separable from the degrees of freedom of the activated complex, so that more rigorously one 

needs a multidimensional tunneling correction factor. Many models exist for determining 

these,7 ·1 1 most based on semiclassical theory.l2 The only rigorous full dimensional 

tunneling/transmission factor, however, is that obtained by solving the full dimensional 

Schrodinger equation; one then no longer has a "theory" (i.e., approximation), however, but 

simply the exact answer (a "quantum simulation") which is, of course, what one would like if it is 

possible to obtain it. 
2 
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The theory described below 13 is such a fully exact quantum theory and can be thought of as 

the "end of the line" in the quest for increasingly more rigorous quantum versions of transition 

state theory. It does, in fact, have some of the attributes of TST; e.g., though it is necessat)' (in 

effect) to solve the SchrOdinger equation, it is necessary only to solve it locally, in the interaction 

region, and not to obtain the state-to-stateS-matrix. The actual numerical presc1iption that results 

will also be seen to have some st1iking resemblances to TST. 

Rigorous Quantum Expression for the CRP 

A rigorous and "direct" expression for the CRP has actually been known for over ten years, 

but until recently not much progress has been made in utilizing it. The expression is14 

(9) 

which is formally equivalent to Eq. (2) but is "direct" in the sense that it does not involve any 

explicit information about asymptotic reactant and product quantum states; all that appears in Eq. 9 

is the microcanonical density operator, o(E-fl). which involves the Hamiltonian of the system, and 

a flux operator F, 

F = i [H,h(f(q))J = l[i> . af(q) o(f(q)) + o(f(q)) af(q). ~>] , oo) 
ft 2m ~ ~ m 

where h( ) is given again the Heaviside function and f(q) is a function of coordinates which 

defines, through the equation 

f(q) = 0' (II) 

a "dividing surface" which separates reactants (where f(q)<O) and products (where f(q)>O). 

Since Eq. (9) is the basis of all further theoretical developments, it is useful to see more 

intuitively how it arises. In classical mechanics the expression for the CRP is 

NcL(E) =21th (21tArF J dpof dqo o(E-H(po,qo)) F(po,qo)IP (po,qo), (12) 

where here the coordinates and momenta (p0,q0) are the initial conditions for a classical trajectory. 

The delta function in the integrand is the microcanonical distribution for the phase space of initial 

conditions, and F(p0,q0) is a flux factor of the same form as the quantum operator [Eq. (10)]. 

IP (p0,q0) is the characteristic function for reaction, equal to I if the trajectm)' with these initial 

condition is on the product (f(q)>O) side of the dividing surface in the infinite future (t~oo), and 0 

otherwise; IP can thus be expressed algebraically as 

IP(po,Qo)= .iim h[f(q(t;po,Qo))]. 
t-+oo 

The rigorous quantum mechanical version IS of Eq. (12) looks almost the same, 

where the classsical phase space average has become a trace, Hand F have become the 

3 
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con·esponding operators, and the (projection) operator 1P is also the rather obvious quantum 
analog of Eq. (13), 

"' lP =lim eiHt/11 h(f(q)) e-iHt/TI , (15) 
t-+oo 

where the time evolution is now generated quantum mechanically. The long time limit in Eq. ( 15) 

can also be written as the integral of the time derivative. 

P = Joo dt .!l eiHt/1l h(f( q)) e-iHt11l 
0 dt 

= Joo dt eilltt11l. [H,h(f(q))] e-iHt/11 
0 li 

= - dt eiHt/11 F e-iHt/11 I "' "' "' 
0 ' 

(16) 

and with this form for lP substituted into Eq. (14)- and interchanging the order of the trace and 
the time integral, and noting that the (real patt of the) integrand is even- one obtains 

(17) 

But the operator e-iHt!TI can be replaced by the scalar e-iEt/11 since this operator sits next to O(E-fb 
(with a cyclic permutation inside the trace), and with the identity 

J.: dt ei(ll-E)t/1l = 21tliO (E-H) , 
(18) 

one obtains Eq. (9). 

Equation (9) is quite a beguiling expression. E.g., in the classical expression for the CRP, 

Eq. (12), there is a statistical factor o(E-H), the flux factor F, and a dynamical factor lP. A similar 

structure exist in the quantum expression, Eq. (14), where the dynamical factor is the projection 

operator 1P. Eq. (9), however, appears to have no dynamical information; i.e., only the statistical 
operator O(E-fb and flux operator Fare involved. This is an example of the fact that dynamics 

and statistics are inseparably intertwined in quantum mechanics; e.g., a wavefunction desclibes the 

dynamical nwtion of the particles and also their statistics. 

The difficult part of Eq. (9) to evaluate is the microcanonical density operator, o(E-H), which 

is usually 16 expressed in terms of the outgoing wave Green's function (actually an operator), 

O(E-H) =-lim G+(E) , 
1t 

(l9a) 

where 
....... + . ....... -1 
G (E) = lim (E+i£-H) . (19b) 

£~0 

£is a positive constant which imposes outgoing wave boundary conditions on the Green's function 

(hence the "+" designation), or it may be thought of as a convergence factor in the expression for 

6+ in terms of the time evolution operator e-iHtfh 
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the factor exp( -etlli) in the integrand makes the time integral well-behaved in the long time (t ~oo) 

limit. The parameter e in Eq. (19b) usually plays a purely formal role in quantum scattering 

theory. but it has recently 133 been pointed out that one may think of it as the absorbing potential 

that a number of persons17 have used in numerical wavepacket propagation calculations to prevent 

reOections at the edge of the coordinate space grid. Absorbing potentials have also been used in 

other ways for time-independent scattering calculations. 18 In this latter approach one adds a 

negative imaginary potential to the true potential energy function, 

V(q) ~ V(q)- ie(q) , (20a) 

but this is clearly equivalent to adding the positive (operator)E toE in E-H, 

E-H: ~E + ie(q) - H: . (20b) 

Allowing£ to be a (positive) function of coordinates, i.e., a potential energy operator, is better than 

taking it to be a constant, because it can be chosen to be zero in the physically relevant region of 

space and only "turned on" at the edges of this region to impose the outgoing wave boundary 

condition. Absorbing Oux in this manner, and thus not allowing it to return to the interaction 

region, is analogous in a classical calculation to terminating trajectories when they exit the 

interaction region. 

Figure 1 shows a sketch of the potential energy surface for the generic reaction H+H2 ~ 

H
2
+H, with the absorbing potential e(q) indicated by dashed contours. e(q) is zero in the 

transition state region, where the reaction dynamics (i.e., tunneling, re-crossing dynamics, etc.) 

takes place, and is turned on outside this region. In practice one chooses the interaction region 

(that between the absorbing potentials) to be as small as possible, so that as small a basis set as 

possible can be used to represent the operators and evaluate the trace. Choosing it too small, 

though, will cause the absorbing potentials to interfere with reaction dynamics one is attempting to 

describe. 

With the microcanonical density operator given by Eq. (19) (with some choice for£), 

straightforward algebraic manipulations (also using Eq. (10)) lead to the following even simpler 

form for the cumulative reaction probability, l3b 

........ + ............. + ..... 
N(E) = 4 tr [G (E)* £p G (E)er] . (21a) 

where £/£p) is the part of the adsorbing potential in the reactant (product) valley, and£ = £r + £P. 

This expression may be evaluated in any convenient basis set which spans the interaction region 

and also extends some ways into the absorbing region. The explicit matrix expression is then 

(21b) 

5 
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FIGURE I 
Solid lines are contours of the potential energy surface for the H+H2 ~ H2+H reaction. Broken 
lines are contours of the absorbing potential (which is zero in the central part of the interaction 
region and "turned on" at the edge). for two possible choices of it. The points are the grid points 
which constitute the "basis set" for the evaluation of the quantum trace in Eq. (21) below. 

with 

(21c) 

It is interesting to note that in Eq. (21) all reference to a specific dividing surface has vanished; it is 

implicit that a dividing surface lies somewhere between the reactant and product "absorbing strips" 

(cf. Fig. I), but there is no dependence on its specific choice. This is just as it should be, for it has 

been long recognized 15 that these fmmally exact rate expressions are invruiant to the choice of the 

dividing surface (a result of Liouville's theorem). 

Finally, in recent calculations it has hccn shownl3c that the most efficient way to evaluate the 

trace in Eq. (21) is to symmetrize the matrix inside the trace operation as follows, 

~ 

N(E) = tr[P(E)] , (22a) 

where 

(22b) 

~ 

P(E) is seen to be a Hermitian operator (or matrix), so that its eigenvalues { Pk(E)} are all real, and 

from Eq. (22a) the CRP is their sum, 

N(E) = L Pk(E) . (23) 
k 

It is also easy to see that P(E) is a positive operator, so that its eigenvalues are all positive. It is not 

as obvious - but can be readily shown 13c- that P(E) is also bounded by the identity operator 

(24a) 

from which it follows that 

(24b) 

t 

··' \ 
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The eigenvalues { pk} can thus be thought of as probabilities, and then Eq. (23) bears an interesting 

resemblance to the simple transition state expression, Eq. (7), in which N(E) is given 

(approximately) as a sum of one-dimensional tunneling (or transmission) probabilities over all 

states of the activated complex. The exact N(E) is given in Eq. (23) as the sum of the "eigen 

reaction probabilities" { Pk}, the eigenvalues of the operator P defined by Eq. (22b ). 

Eqs. (21)-(23) provide a practical scheme for determining the rate constant for a chemical 

reaction absolutely correctly, but directly, i.e., without having to solve the complete reactive 

scattering problem. This is not a transition state "theory" since calculation of the Green's function, 

the matrix inverse of (E+ie-H), is equivalent to solving the Schrodinger equation, i.e .• it generates 

the complete quantum dynamics. Since this is required only in the transition state region (between 

the reactant and product absorbing'strips), one may think of this quantum mechanical calculation as 

the analog of a classical trajectory calculation which begins trajectories on a dividing surface in the 

transition state region and follows them for a short time to see which ones are reactive. 

Some Recent Applications 

In recent applications13 it has proved useful to employ a set of grid points in coordinate space 

as the basis set in which to evaluate Eq. (2lb) or (22)-(23). These discrete variable,l9 pseudo

spectraJ,20 or collocation methods21 are proving quite useful for a variety of molecular quantum 

mechanical calculations. The primary advantages of such approaches are that (1) no integrals are 

required in order to construct the Hamiltonian matrix (e.g., the potential energy matrix is diagonal, 

the diagonal values being the values of the potential energy function at the grid points), and (2) the 

Hamiltonian matrix is extremely sparse (so that large systems of linear equations can be solved 

efficiently). 

Figure 1 shows the set of grid points and several possible choices for the absorbing 

potentials which yield accurate results for the standard test problem, the collinear H+H2 ~ H2+ H 

reaction. The important feature to see here is how close the absorbing potentials can be brought in 

and how localized the grid can be taken about the transition state region. This is the region in 

which it is necessary to determine the quantum dynamics in order to obtain the correct result for 

N(E) (and thus k(T)). No information about reactant and product quantum states is involved in the 

calculation. 

Figure 2a shows the cumulative reaction probability so obtained 13a for the collinear H+H2 

reaction. Apart from noting that it is correct (by comparison with any number of earlier scattering 

calculations using Eq. (2) ), it is interesting to observe that at the higher energies N(E) is not a 

monotonically increasing function of energy. This is a signature of transition state theory-violating 

dynamics, i.e., re-crossing trajectories in a classical picture, and the result of a short-lived collision 

complex that causes resonances in a quantum description. 

For the H+H2 reaction in three dimensional space one needs to add in the bending degree of 

freedom in the transition state region and also allow the three-atom system to rotate. Fig. 2b 

shows the cumulative reaction probability obtainedl3b for zero total angular momentum (J=O), and 

again it is in complete agreement with results22 obtained from Eq. (2) via full scattering 

calculations. Even though collision complexes also form in the three-dimensional version of the 

H+H2 reaction, N(E) in Fig. 2b appears (to the eye, at least) to increase monotonically with energy 

in transition state-like fashion. This is an example of the fact that dynamics appears to behave 

more transition state-like the higher the physical dimensional of space.23 
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FIGURE2 

Cumulative reaction probability for the H+H2 ~ H2+H reaction, (a) for collinear geometry (ref. 
13a), (b) three dimensional space for total angular momentum J=O (ref. 13b). 

A more challenging application24 is to the reaction 

(25) 

which is one of the most important reactions for modeling the combustion of hydrocarbons. Fig. 3 

shows a schematic of the potential surface, and one sees why this is a more complicated reactfon to 

deal with: the deep well (-2 eV) in the interaction region leads to the formation of a moderately 

long-lived collision complex, strongly violating the transition state assumption of "direct 

dynamics". The rigorous quantum methodology described above, however, is nevertheless 

applicable: absorbing potentials are introduced just outside the interaction region where all the 

reaction dynamics (tunneling, re-crossings, etc.) is determined, and the grid points cover the 

region in between. Figure 4 shows the cumulative reaction probability for this reaction (for J=O 

total angular momentum), and structure resulting from the collision complex is readily observable. 
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Energetics (in eV) of the H-0-0 potential 
energy surface. 
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The cumulative reaction probability for 
the H+02 ~ OH+O reaction as a 
function of total energy, for total angular 
momentum J=O (ref. 24). 
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The cumulative reaction probability, for the H2+0H ~ H20+H reaction as a function of total 
energy, for total angular momentum J=O (ref. 25). (a) logarithmic scale, (b) linear scale. 

Finally, full (six) dimensional calculations for the CRP of the reaction25 

(26) 

have also been carried out and are shown in Fig. 5 (for total angular momentum J=O), the first 

such calculation of the CRP for a four atom reaction. This reaction is very "transition state-like" 

because there is a simple saddle point separating reactants and products. One qualitative feature 

that one notes, compared for example to the CRP for the three-dimensional H+H 2 reaction in Fig. 

2b, is that the "stair case structure" that is a hold-over from the classical sum of step functions [Eq. 

(6)] is absent in Fig. 5. This is readily understood by looking at the individual eigenreaction 

probabilities { pk(E)} in Fig. 6; the higher density of states for the four atom system results in the 

"overlap" of the variOj.JS threshold structures. 

1.0 r---~--~----/-:::----===.., 

0.1 

// 
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E feV] 

FIGURE6 

0.4 

Eigenreaction probabilities { pk(E)} for the H2+0H ~ H20+H reaction, as a function of total 
energy. 
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Concluding Remarks 

Considerable progress has thus been made in the ability to compute a chemical reaction rate 

directly, without having to solve the complete state-to-state reactive scattering problem, but also 

correctly, i.e., without inherent approximation. One does not avoid having to solve the 

Schrodinger equation, but must only solve it locally, in the transition state region between reactants 

and products. In this sense the rigorous theory retains a flavor of transition state theory. More 

specifically, the cumulative reaction probability is most efficiently calculated by determining the 

eigenreaction probabilities {pk} [Eq. (23)], which are the rigorous analog of the TST transmission 

probabilities [Eq. (7)]. 

Even wilh this progress, though, rigorous calculations of the type described above for H+02 

and 0H+H 2 are feasible only for relatively small molecular systems (though "small" is somewhat 

larger than it used to be!). To deal with more complex systems one would like to be able to 

combine rigorous quantum treatments such as these for the few degrees of freedom most strongly 

involved in the chemical reaction with an approximate treatment of the (perhaps many) remaining 

degrees of freedom that are not so intimately involved. One would ideally like this "approximate 

treatment" to be based on classical mechanics, perhaps in a semiclassical framework, so that 

classical trajectory simulation methodology can be brought to bear. Various ideas of this type 

exist,26.27 and one expects to see progress along these lines. 
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