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ABSTRACT 

A molecular-thermodynamic model is developed for salt-induced protein precipitation; the 

model considers an aqueous solution of globular protein molecules as a pseudo one­

component system containing macroions which interact through Coulombic repulsion, 

dispersion attraction, hydrophobic interactions, and forces arising from ion-excluded 

volume. Forces from ion-excluded volume take into account formation of ion pairs and 

ionic clusters at high salt concentrations; they are calculated in the context of the Percus­

Yevick integral-equation theory. Hydrophobic interactions between exposed non-polar 

amino-acid residues on the surfaces of the protein molecules are modeled as short-range, 

attractive interactions between "spherical caps" on the surfaces of the protein polyions. An 

equation of state is derived using perturbation theory. From this equation of state we 

calculate liquid-liquid equilibria, i.e., equilibrium between an aqueous phase dilute in protein 

and another aqueous phase rich in protein; the latter represents "precipitated" protein. fu the 

equation of state, center-to-center, spherically symmetric macroion-macroion interactions are 

described by the random-phase approximation, while the orientation-dependent short-range 

hydrophobic interaction is incorporated through the perturbation theory of associating 

fluids. The results obtained here suggest that either ion-excluded-volume or hydrophobic­

bonding effects can precipitate proteins in aqueous solutions with high salt concentrations. 
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INTRODUCTION 

In research laboratories and in the biotechnology industry, precipitation is 

commonly used to separate and isolate proteins from solutions. This technique has been 

applied to the recovery of proteins such as insulin, diagnostic and industrial enzymes, 

human growth hormone, and interferon (McGregor, 1983). Separation is achieved through 

addition of precipitating agents such as inorganic salts at high concentrations, nonionic 

polymers, polyelectrolytes, and organic solvents. (See, for example, Foster et al., 1973; 

Haire et al., 1984; Shih et al., 1992; Niederauer and Glatz, 1992; Rothstein, 1994). 

In most previous studies, protein precipitation in concentrated salt solutions has 

been understood as phase separation resulting in a solid phase (i.e. the protein precipitate) 

and a saturated protein liquid phase. Traditionally, quantitative characterization has been 

expressed through the protein solubility, i.e., the protein concentration in the equilibrium 

liquid phase. Experimental data indicate that, at fixed temperature, the concentration of 

protein in the liquid phase is a function of protein size and concentration, electrolyte 

concentration and type, pH of the solution (i.e., net charge on the protein), and interactions 

between exposed hydrophobic residues on the surface of the protein (Arakawa and 

Timasheff, 1982; 1984). 

However, recent experimental results (Shih et al., 1992) on bovine serum albumin 

and a-chymotrypsin suggest that salt-induced protein precipitation may be more 

appropriately viewed as phase separation resulting in two fluid phases: a light (supernatant) 

fluid phase lean in protein, in equilibrium with a dense (precipitate) fluid phase rich in 

protein but also containing appreciable amounts of water and salt. According to this view, 

the degree of separation is appropriately characterized not by the protein concentration in 
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the light phase but by the distribution coefficient, Ke, which is defined as the ratio of the 

protein concentration in the dense precipitate phase to that in the light supernatant phase. 

To establish a rational basis for designing a protein-precipitation process, it is useful ~ 

to develop a model to provide a theoretical framework for intetpretation and correlation of 

protein-precipitation data. The apparent solubility of a protein has been successfully 

correlated by the Cohn equation, which gives a simple relation between the protein 

concentration in the light phase and electrolyte ionic strength (Melander and Horvath, 1977; 

Arakawa and Timasheff, 1984). Melander and Horvath showed that the functional form of 

the Cohn equation may be intetpreted on the basis of solvophobic effects. Recent 

theoretical studies have been directed at developing more fundamental models that account 

for the diverse interactions between the constituents in the protein solution on a molecular 

level. For example, Mahadevan and Hall (1990, 1992) presented a model, based on Barker­

Henderson perturbation theory, for protein precipitation by a nonionic polymer. Vlachy, 

Blanch and Prausnitz (1993) describe a model for liquid-liquid phase separation for 

solutions of colloids and globular proteins, based on the random-phase approximation. 

However, these recent theoretical studies are concerned with aqueous solutions where the 

electrolyte concentration is less than 0.1 molar. Experimental studies clearly show that 

protein precipitation by salts requires electrolyte concentration in the range 1-10 molar. 

This work presents a molecular-thermodynamic model for protein precipitation by 

inorganic salts. Particular attention is given to highly concentrated salt solutions. The 

procedure employed here represents the ternary solution (protein, electrolyte, and water) as a 

pseudo-one-component system containing only a continuous solvent and globular protein 

molecules. The solvent is an aqueous salt solution. The effect of the solvent on protein­

protein interactions is taken into account through the strong influence that it exerts on the 

following protein-protein interactions: Coulombic (charge-charge) repulsion, dispersion 
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attraction, ion-excluded-volume (or osmotic) attraction, and interactions between exposed 

hydrophobic groups on the surfaces of two or more protein molecules. Despite its 

simplicity, the one-component representation has been successful in explaining some 

experimental properties of colloidal dispersions (Grimson, 1983) and globular-protein 

solutions (Vlachy et al., 1992). A powerful advantage of this representation is that final 

results are given by analytical equations based on statistical-mechanical theories. 

Derivations of effective two-body potentials are discussed in Section 2. Section 3 

presents a derivation of the molecular-thermodynamic equation-of-state model for protein 

solutions based on the random-phase approximation and the perturbation theory of 

association. Section 4 gives some results of model calculations. 

2. PROTEIN-PROTEIN INTERACTION POTENTIALS 

In the one-component model, aqueous solutions of globular proteins are represented 

by an assembly of spherical macroions which interact via effective solvent-dependent 

potentials. The potential of mean force, W(r), between protein molecules (with diameter dp 

and net charge Zp) is given by the sum of five potentials: 

(1) 

where r is the center-to-center distance. Here, W hs(r) is the hard-sphere potential, Wezec(r) 

is the screened Coulombic potential due to electrostatic repulsion, Wdisp(r) is the attractive 

dispersion potential, and Wex(r) is the potential due to excluded-volume effects. These four 

· terms are spherically symmetric center-to-center potentials. Why(r,m) represents the 
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interactions between exposed. hydrophobic groups on the surfaces of the proteins; this 

potential depends not only on r but also on molecular relative orientation, indicated by m. 

Hard-sphere and Coulombic repulsions between proteins are represented by: 

Whs(r) = 00 r~P (2a) 

= 0 r>dp (2b) 

weleJr) = B exp(-7Cr) 
r>dp (2c) 

kT r 

where B = z; LB exp(l\dp) 1(1 + 1\d~yl and Bjerrum length L8 = f3e 2 I 47reoer. In eq. 

(2c) zpe is the charge on the polyion, f3 = 1/kT, k denotes Boltzmann's constant, e0 er 

represents the dielectric permittivity of the solvent, and ~~ is the Debye spreening length, 

where 7C
2 = 8nL8 NAI and ionic strength I= 0 5(z!zPan + z;arPcarJ; NA is Avogadro's 

number, and Zan and Zcar are the anion and cation valences, respectively; and Pan and Peat 

are the ionic number densities. 

The attractive dispersion interaction wdisp ( r) is given by the following expression 

(Verwey and Overbeek, 1948): 

H{ d2 

wd. (r) = -- p 
lSp 12 2 2 

r -d p 

where H represents the Haniaker constant. For large values of r, eq. (3) reduces to 

wdisp(r) = H 

36 
for r>> dP' 
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Eq. (4) is the large-r limit for Wdisp(r). Although this highly-simplified form represents a 

classical approach to quantifying dispersion interactions, it has been used successfully in 

modeling phase separation of colloidal systems (Grimson, 1983). We recognize that, as r 

approaches dp, eq. (4) underestimates the contribution of dispersion forces to the total 

potential of mean force. However, dispersion attraction plays a minor role in protein phase 

separation in concentrated electrolyte solutions in this model (i.e. the underestimation is 

small compared to the contributions of the other potentials). Therefore, eq. (4) is used 

because it provides an analytic equation of state for calculating phase equilibria. 

It should be noted that this form of the dispersion potential has no explicit 

dependence on ionic strength. Any effect of ionic strength on dispersion attraction is 

assumed to be very small (Israelachvili and Adams, 1978) and contained within the effective 

Hamaker constant, which is essentially an adjustable model parameter. Furthermore, since 

H is primarily a function of particle density (lsraelachvili, 1985), it is expected that most 

proteins have similar values of H since most have roughly the same density (Nir, 1976). In 

all calculations of protein-protein phase equilibrium based on this model, the chosen values 

of H correspond to those regressed by Haynes, et. al ( 1991) from membrane osmometry 

experimental data· for a-chymotrypsin in solutions of 0.1 molar ionic strength. Their values 

for H varied between 5 and 20 kT, depending on solution conditions. In more recent work 

by Coen, et. al ( 1994 ), values of the effective Hamaker constant regressed from low-angle­

laser-light-scattering data for a-chymotrypsin in solutions of potassium sulfate with ionic 

strength greater than 1.0 molar appear to be essentially constant at 10 kT. 
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Ion-Excluded-Volume Potential 

The term Weir) in eq. (1) accounts for the attractive interaction between a pair of 

protein macroions due to the excluded volume of simple electrolyte ions in solution. The 

literature has reported experimental and theoretical studies of the effect of volume exclusion 

by solvent or small solutes on macromolecular interactions (lsraelachvili, 1985; Henderson 

and Lozada-Cassou, 1986; Henderson, 1988). Henderson and coworkers computed the 

potentials of mean force for two large rigid hard spheres immersed in a one-component 

hard-sphere fluid (Henderson and Lozada-Cassou, 1986; Henderson, 1988) and the 

adhesive hard-sphere fluid (Jamnik et al, 1991), in the context of the Percus-Yevick (PY) 

integral-equation theory. Their results reveal that the PY theory provides semi-quantitative 

description of experimental results (Henderson, 1992). 

For concentrated salt systems typically used in protein precipitation, ion pairs and 

larger ionic clusters are expected to form in the electrolyte solution (Robinson and Stokes, 

1959). Cluster formation enhances the ion-excluded-volume effect because a cluster is 

appreciably larger than a single ion, increasing the effective range of the osmotic attraction. 

The ion-excluded-volume potential of mean force, Wex(r), can be obtained from the radial 

distribution function g33(r) between two protein particles (denoted by subscript 3), 

separated by a center-to-center distance r, in an electrolyte solution (electrolyte ions denoted 

by subscripts 1 and 2). In a system with a single added salt species, all three solute 

components - cation, anion and protein - are considered to be simple hard spheres of known 

diameters immersed in a continuum solvent (water). The interactions between like-charge 

ions follow the simple hard-sphere potential. Interactions between unlike-charge ions are 

described by the adhesive hard-sphere (AHS) potential (Baxter, 1968b), which is able to 

model the formation of ion pairs and higher clusters in the electrolyte solution. In this 

simple model for ion-excluded-volume effects, it is assumed that the electrostatic 
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interactions between ions are adequately taken into account through the screened Coulombic 

potential Wetelr), given in eq. (2c). The ion-excluded-volume potential of mean force 

wex (r) acting between two protein molecules can be calculated from the protein-protein 

radial distribution function g3ir) from the following equation (McQuarrie, 1975): 

where h3ir) is the total correlation function in the limit P3 = 0, and Pi is the number density 

of component i. 

To obtain WexCr), we consider the three-component system which consists of 

species 1 (ion), 2 (ion) and 3 (protein). The function g3ir) is obtained by solving the set of 

multi-component Omstein-Zernike (OZ) integral equations 

~jCr) = cij(r) + L Pk J cik(s) hkj(r- s) ds 
k 

(6) 

for finite values of p1 and p2 and in the limit p3 = 0. Here ~j(r) and cij(r) are the total 

correlation function and the direct correlation function of the ij pair. To obtain a solution, 

we use the Percus-Yevick (PY) approximation. For the adhesive hard-sphere system 

considered here, the PY theory provides the following boundary conditions: 

A··d·· 
~·(r) = -1 + __!l__.!L d(r- d··) 0 < r < d,IJ·· 

I) 12 v (7) 

r > dij (for all ij pairs) (8) 

where dij = (di+dj)/2, di is the diameter of component i, and Aii = 0 for ij '* 12 or 21. Due 

to symmetry, A-12 = A.z1. Equation (7) implies that the 1-1, 2-2,3-3, 1-3 and 2-3 interactions 
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are determined by hard-sphere potentials. Clustering between ionic species 1 and 2 is 

explicitly accounted for by the Dirac delta function 8( r- d 12 ) which is defined so that 

J; f(r)8(r- d12 )dr = f(d12 ). Parameter A.12 takes into account the average number of 1-2 

direct contacts that are formed in the system; it is related to N12, the average number of 

species-2 ions that have direct bonds with a species-] ion by 

(9) 

where 172 = np2d] I 6. When N12 = 0, there is no ion clustering. When N12 = 1, each 

species-] ion, on the average, has one species-2 bonded neighbor. When N12 = 2, each 

species-] ion, on the average, has two species-2 bonded neighbors. When the electrolyte is 

a symmetric salt, N21 = Nn. However, for asymmetric electrolytes, N 12 = N 21 l(z21zJ)I, 

where ZI and Z2 are the ion valences. 

Because of the short-range nature of c;/r), the OZ equation may be solved through 

the use of the Wiener-Hopffactorization technique (Baxter, 1968a). The resulting equation 

for the protein-protein total correlation function h 33( r) is decoupled from the total 

correlation function c3j(r), and can be shown to follow the equation below (Perram and 

Smith, 1977; Barboy and Tenne, 1979; Chiew, 1991): 

(10) 

where Sij = (dii-di)/2. The functions h13(r) and h2j(r) represent the protein-ion total 

correlation functions; they are obtained from 
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In the above equations, function q;fr) is given by 

and 

_ ai 2 2 AijdJ 
q .. (r)--(r -d .. )+b.(r-d . .)+-

1) 2 '1 1 
IJ 12 

= 0 

d 
- q··(r) = a·r + b· dr I) I I 

=0 

for r> d·· 1) 

for r> d·· I) 

(11) 

(12a) 

(12b) 

(13a) 

(13b) 

where A.ij = 0 for ij -:t:. 12 or 21. The PY solution provides the following expressions for 

parameters a; and b; (fori= 1,2 and 3): 

. 1-H+3d··G }j Y2 
a; = II - d·J - d·2 

( 1- H)2 (1- H) I (1- H) I 

(14a) 

(14b) 

(14c) 

(14d) 

(14e) 

(14f) 

and the inequality 
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1 + 2H 1JJ172An (6- An) 0 ---+ >. 
(1-Hyl (1-Hl 

(14g) 

Here 8ij is the Kronecker delta, i.e., 8ij = 1 for i = j, and zero otherwise. The second and 

third terms on the right hand sides of eqs. (14a) and (14b) vanish if i ::t:.. 1 and 2, 

respectively. Eqs. (12) through (14a-14f) are the PY analytic solution of the OZ integral 

equation, i.e., eq. (6), subject to the boundary conditions given by eqs. (7) and (8). The PY 

solution further requires that the inequality given by eq. (14g) must be satisfied to ensure 

physically admissible solutions (Baxter, 1968; Barboy and Tenne, 1979); this means that 

A12 or N12 depend on the density of the system and must be properly chosen for model 

calculations. The total correlation function h33(r) is obtained by first calculating h13(r) and 

h23(r) from eq.(11), followed by solving h33(r) from eq.(10); these calculations can be 

performed using the simple numerical procedure proposed by Perram (1975). That 

calculation is much simpler than solving the set of multi-component Omstein-Zemike 

integral equations (i.e., eq. (6)) simultaneously through a Fourier-transform technique. The 

potential Weir) is related to h3j(r) by eq. (5); it is independent of protein concentration, 

and depends only on the number densities of ions (species 1 and 2), ion diameters db d2 , 

and parameter N12 that characterizes the degree of ion clustering. Ion number densities p 1 

and p2 are related by the stoichiometric relation z1p1 + z2p2 = 0, where z1 and z2 are the 

valences of the ions. 

Figure 1 shows the computed potential of mean force Weir )lkT plotted as a 

function of protein-protein center-to-center distance r for different values of N12 in a 0.5M 

salt solution containing ions with diameters d1 = 4.6A and d2 = 2.96A, lz11 = 2, lz21 = 1, 

, corresponding to ammonium sulfate. In this figure dp is taken as 40A, roughly equal to the 

unhydrated diameter of a-chymotrypsin. Potential Wejr)lkTis attractive and the range of 
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the potential increases with N12, the degree of ionic clustering. Figure 1 indicates that at 

high salt concentrations, when ionic pairs and clusters are formed, the interaction between 

protein macroions becomes increasingly attractive. The aqueous electrolyte literature 

provides guidance in choosing physically reasonable values of N12 (Robinson and Stokes, 

1959). 

In this approximate method of calculating the effect of ion-excluded volume on 

protein-protein interactions, the electrolyte ions are treated as hard spheres with finite 

diameter. Assigning a size to the ions is necessary to quantify osmotic attraction in the 

manner described above. However, we have also assumed that the Coulombic interactions 

in the system are adequately described by the well-known Debye-Hiickel expression, given 

in eq. (2c), which is derived with the assumption that the electrolyte ions are point charges. 

This assumption is acceptable for calculating Coulombic interactions in low ionic strength 

solutions, where the characteristic length scale of Coulombic interactions is much greater 

than that of excluded-volume effects. In systems of high ionic strength, where the 

magnitude of the Debye length 1C is similar to the diameter of an electrolyte ion, this 

assumption is no longer validt. However, at these high ionic strengths, the long-range 

Coulombic interactions are essentially eliminated due to dielectric screening and therefore 

play a minor role in phase separation. Since it has been observed experimentally that high 

salt concentrations are typically required to bring about phase separation, we expect that the 

contribution of ion clustering to the excluded-volume interaction Weir) plays an important 

role in the phase separation of proteins in solutions containing concentrated electrolyte. 

This role is explicitly taken into account through the adhesive hard-sphere model outlined 

above. 

t In practice, however, as proteins approach contact, the discrete nature of their surface 
charge distribution gives rise to short-range electrostatic interactions that cannot be 
accurately described by the simple Debye-Huckel expression. Other techniques are being 
considered to quantify these effects. 

13 



Hydrophobic Interactions 

The hydrophobic interaction between exposed non-polar amino acid residues on the 

surfaces of the protein molecules is, in general, attractive, short-range, and orientation­

dependent. Hydrophobic bonds are formed when two hydrophobic groups come into 

contact with each other, and cause association or aggregation of protein molecules in the 

system. In this work, hydrophobic interaction is represented by a potential model used for 

associating fluids (Jackson et al, 1988). The shapes of these hydrophobic groups are 

idealized as "circular patches" or "spherical caps" located on the surface of the macroion. 

As indicated in Figure 2, interaction potential Why(r12 ) between hydrophobic "patch" A on 

the.surface of particle 1 and hydrophobic "patch" Bon the surface of particle 2 is defined 

such that 

= 0 otherwise (15) 

where diK represents the vector joining the center of particle ito the center of patch K 

(located on the surface of particle i). The quantity r12 denotes the vector joining the center 

of molecule 1 to the center of molecule 2. The vector dot product d1,A • r12 = cos61 where 

angle 61 denotes the angle between r12 and d;K· Angle 62 is defined in a similar manner. 

Hence, two hydrophobic "patches" on two different particles are considered to form a 

"bond" if the centers of the two particles aie within a distance r 12,c from each other, and the 

two hydrophobic groups satisfy the orientation constraints d1,A • r12 ::; cos61.c and 

-d2,B •rl2::; cos62,c• The quantities rl2,c' el,c• and e2,c characterize the range of the 

hydrophobic interaction and the sizes of the hydrophobic groups. In general, these 

quantities are not known for complex species such as protein.s. Fortunately, the 

thermodynamic properties of systems with this type of interaction can be described in terms 
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of quantities that are known or can be estimated from physicochemical data for proteins, as 

described below. 

3. EQUATION OF STATE 

Having established and defined pertinent potentials of mean force, it is now 

necessary to construct a molecular-thermodynamic model which relates these potentials to 

macroscopic thermodynamic properties. In this work, that model is based on perturbation 

theory. The center-to-center spherically symmetrical electrostatic, dispersion and excluded­

volume interactions are incorporated into the model in the context of the random-phase 

approximation. The orientation-dependent hydrophobic interaction is included through the 

flrst-order perturbation theory of associating fluids formulated by Wertheim (1986, 1987). 

The Random-Phase Approximation (RPA) has been used previously to model the 

phase transition and structure factor of colloids (Grimson, 1983), and to describe liquid­

liquid phase separation of proteins due to addition of polymers (Mahadevan and Hall, 1990, 

1992; Vlachy et al, 1993). In the RPA, an assembly of hard spheres is used as the reference 

system, while the remaining spherically symmetric interactions are treated as perturbations. 

Following Grimson (1983) and Vlachy, et. al (1993), the compressibility factor Zsym and 

residual Helmholtz energy due to spherically symmetric potentials within the RP A are 

expressed as 

z = _!_ = zhs + z = Phs + pU 
sym pkT pert pkT 2kT (16) 

ares ares a;~~t azs pU -- = __]y_+-- = --+--
kT kT kT kT 2kT 

(17) 
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Here Phs and a~s /kT represent the pressure and residual Helmholtz energy of the hard­

sphere reference system, given by the standard Carnahan-Starling expressions; pis the 

number density of protein molecules; and U is the perturbation energy per unit density, 

given by 

pu 4trp fr 1 2 - = -- '¥eiec(r) + wdisp(r) + '¥ex(r) r dr 
.kT kT 

2 { 1 + 3 f(l({fp) + 3 f(l({fpy2 1 41]H pUex 
= 81]z LB ---+--

P d (1 + 1({f I 2 )2 9kT kT p p 

(18) 

where uex = 4tr f '¥ex(r)r2dr is the contribution to u from the ion-excluded-volume 

interaction. Because U is an energy per unit density, it is assumed to be independent of 

protein density; U depends only on potentials of mean force between protein molecules. 

The contribution of the non-spherically-symmetric hydrophobic interaction to the 

residual Helmholtz energy and pressure of the system are evaluated using the first-order 

perturbation theory of associating fluids formulated by Wertheim ( 1986, 1987), extended to 

mixtures by Gubbins and co-workers (Jackson et al, 1988). At a given protein or particle 

number density p and temperature T, this theory gives the Helmholtz energy of the 

associating system relative to that of the non-associating reference system. The reference 

system is an assembly of non-aggregating protein macroions that interact through the 

spherically-symmetric potentials. For a protein molecule consisting of M equivalent 

exposed hydrophobic sites interacting via the potential given by eq. (15), the first-order 

perturbation theory yields the following contribution to the Helmholtz energy due to 

hydrophobic association (Jackson et al, 1988): 

aassoc X 1 
--= M[lnX--+-]. 

kT 2 2 
(19) 
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Here, 

X= -1+~1+4MpA 
2MpA 

v = 3 _[1_-_co_s_( e_l,;_t:_) 1_[1_-_co_s_( 8_2..;_t:_) 1 ( rn t: - dp) 

27r dp 

(20a) 

(20b) 

(20c) 

where M is the number of hydrophobic groups on the protein surface, MX is the fraction of 

hydrophobic sites that are not bonded, gpp(dp) is the radial distribution function of the 

non-aggregating system, and e I kT represents the characteristic energy of the hydrophobic 

interaction. Parameter V corresponds to the volume of interaction between two attractive 

square-well hydrophobic sites. The number of sites, M, and the interaction volume, V, can 

both be estimated by inspection of the protein crystal structure data. It is more difficult to 

estimate e I kT precisely. For hydrophobic interactions between proteins, a reasonable 

upper bound is approximately e I kT- 5 (Tanford, 1980). 

The function gPP(dP) for the non-agglomerating protein macroions (which interact 

through the hard-sphere, electrostatic, dispersion and ion-excluded-volume potentials) is 

estimated using the EXP approximation (Konior and Jedrzejek, 1985): 

(21) 

where ghs( dp) is given by the contact value of the Carnahan-Starling expression for the 

hard-sphere radial distribution function: 
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(d ) = 1-T]/2 
ghs p ( l-T])3. 

(22) 

The first-order perturbation theory of association assumes that the interactions 

between hydrophobic sites on different molecules are-independent of each other and that no 

ring structures (only tree-like structures) are formed in the protein aggregates. Combining 

contributions to the residual Helmholtz energy and compressibility factor from spherically­

symmetric and non-symmetric interactions, it follows that Z and ares / kT are given by 

(23) 

and 

(24) 

Chemical potential J.l I kT can be obtained from eqs. (23) and (24) through the 

thermodynamic relation J.l res lkT = a res /kT + Z- 1, and the ideal-gas chemical potential, 

J.lig lkT = J.l * lkT + lnp, where J.l * is a function only of temperature. We obtain 

* j.l- J.l 

kT 
(25) 

Here, J.l * lkT = ln( A3
); the deBroglie wavelength A = hi~ 2mnkT, where h is Planck's 

constant and m is the molecular mass. Energy per unit density U, given by eq. (18), gives 

the effects of electrostatic, dispersion, and ion-excluded-volume interactions. At 
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equilibrium, protein concentrations in the supernatant and dense-fluid phases are calculated 

from eqs. (24) and (25) based on the classical equilibrium conditions: 

(26a) 

(26b) 

Here, subscripts s and d denote the equilibrium supernatant and dense protein phases, 

respectively. In eq. (26a), f./ cancels out. 

4. RESULTS AND DISCUSSION 

We first examine the effect of salt concentration on the phase behavior of the 

system. Figure 3 shows the reduced pressure PV jkT, computed from eq. (27), plotted as a 

function of the protein volume fraction 17 for the system where dP = 40A, dan = 4.6A, dear= 

2.96A, lzpl = 5, lzanl = 2, lzcarl = 1, HlkT = 9.6, and N12 = 1, with different values of salt 

concentrations Cs, in the absence of hydrophobic interactions. Here V0 represents the 

volume of a single protein molecule. The pressure increases monotonically with protein 

volume fraction 17 at the two lower salt concentrations. However, when Cs = 1.6 moles/liter, 

the pressure curve exhibits a van der Waals loop, indicating that the system undergoes a 

fluid-fluid phase transition. This result suggests that rising electrolyte concentrations 

increase the excluded- volume attraction between proteins, leading to phase separation. As 

in Figure 1, the given salt and protein size parameters correspond to ammonium sulfate and 

a-chymotrypsin. In all calculations the chosen values of the Hamaker constant 

corresponded to those regressed from membrane osmometry data by Haynes, et al (1991). 
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The distribution coefficient Ke of the protein system can be obtained from the 

equilibrium conditions. The distribution coefficient Ke is given by the ratio of the 

equilibrium number density of protein in the dense phase to that in the supernatant phase. 

Neglecting hydrophobic interactions, Figure 4 shows predicted distribution coefficient Ke 

plotted as a function of ionic strength for systems where dP = 40A, dan = 4.6A, dcat = 
2.96A, lzpl = 5, lzanl = 2, lzcatl = 1, and HlkT = 9.6, for two values of N12• Coefficient Ke 

increases monotonically with electrolyte concentration. For all calculated phase equilibria, 

the weight fractions of protein in the supernatant were 1% or less and varied from 10%-

30% in the dense phase. These results are consistent with phase compositions measured by 

Shih, et. al (1992) for salt-induced precipitation of a.-chymotrypsin and hen-egg-white 

lysozme. 

Again neglecting hydrophobic interactions, Figure 5 shows the variation of 

distribution coefficient Ke as a function of Zp, the net charge of protein, where dP = 40A, dan 

= 4.6A, dcat = 2.96A, lzanl = 2, lzcarl = 1, H/kT = 8, corresponding to a.-chymotrypsin in 

(NH4hS04, with Nn = 1, and I= 6.0 and 6.6 moles/liter. Ionic strength has a strong 

im~act on protein precipitation. At a fixed value of Zp, distribution coefficient Ke increases 

by nearly a factor of two as the ionic strength increases from 6.0 to 6.6 moles/liter. This 

increase in Ke is due to the enhanced effect of the ion-excluded-volume contribution. 

Distribution coefficient Ke is insensitive to Zp because long-range Coulombic repulsion 

between protein molecules is screened out in highly concentrated salt solutions. Since the 

protein charge Zp is directly related to the pH of the solution, this prediction further implies 

that, in our model, pH has little influence on phase separation. 

Figure 6 shows experimental values for Ke for a-chymotrypsin in solutions of 

ammonium sulfate at various ionic strengths (Coen, et. al, 1994). An increase in Ke is 
' 

observed as pH moves away from the isoelectric point, the point of zero net charge on the 
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protein (pi= 8.3). Whether this is an electrostatic effect due to short-range asymmetric 

Coulombic interactions not described by eqn. (2c) is currently under investigation. Other 

possible explanations, such as increased counterion binding or protein conformational 

changes at low pH, may also contribute. Furthermore, comparison of Figures 5 and 6 show 

that model calculations overpredict equilibrium phase separation, although semiquantitative 

agreement with experimental data is achieved. 

We now present calculations on the effect of hydrophobic interactions on protein 

phase separation. The contribution of the hydrophobic interaction to the thermodynamic 

properties of the system is primarily characterized by M, the number of hydrophobic sites, 

arid c/kT and V, the characteristic energy and volume of hydrophobic ·attraction, respectively. 

Figure 7 shows distribution coefficient Ke as a function of c/kT, where dP = 40A, dan = dear 

= 3.4A, lzpl = 8, IZanl = 1, lzearl = 1 (now corresponding to a monovalent electrolyte, e.g. 

KCl), H/kT = 6, I= 2.5 moles/liter, V = 0.006, and Nn = 1, for two different values of M. 

It is apparent from this figure that hydrophobic bonding has a significant impact on phase 

separation. Higher Ke's are obtained at lower ionic strengths through incorporation of 

hydrophobic effects. Distribution coefficient Ke increases with c/kT because as the strength 

of hydrophobic attraction rises, protein molecules tend to form aggregates. Aggregation 

increases the protein concentration in the precipitate phase, and lowers the protein 

concentration in the supernatant phase. At a fixed c/kT, distribution coefficient Ke increases 

with M, the average number of exposed hydrophobic sites. 

We now examine the effect of Hamaker constant HlkT on the phase separation of 

proteins. Figure 8 shows distribution coefficient Ke as a function of ionic strength where dP 

= 40A, dan= dear= 3.4A, lzpl = 8, lzanl = 1, lzearl = 1, clkT = 4, M = 4, V = 0.006, and Nn · 

= 1, for three reduced Hamaker constant, H/kT. Distribution coefficient Ke increases with 

rising HlkT at fixed I. Figure 9 shows distribution coefficient Ke as a function of protein 
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diameter dp, where dan= dear= 3.4A, lzpl = 8, lzanl = 1, lzcatl = 1, HlkT = 6, I= 2.5 

moles/liter, ElkT = 4, M = 4, V = 0.006, and N12 = 1. Distribution coefficient increases with 

increasing dP, consistent with experimental observations. 

Finally, we study the variation of Ke with ion diameters. For a given electrolyte, 

accurate values for cation and anion diameters in aqueous solutions may be found in the 

literature (Dean, 1985; Burgess, 1978). Figure 10 shows the distribution coefficient Ke as a 

function of ion diameter for a monovalent electrolyte with dan= dear= dion• where lzanl = 1, 

lzcarl = 1, dp = 40A, lzpl = 8, HlkT = 4, elkT = 4, M = 4, V · = 0.006, and Nn = 1, at two 

values of I. As expected, Ke increases strongly with increasing ion diameter, especially at 

high salt concentration. Figure 10 indicates once again the strong dependence of phase 

separation on ionic strength. 

CONCLUSION 

In summary, we have derived an approximate statistical-mechanical equation-of-state 

model for salt-induced protein precipitation. In this model, proteins are considered to be 

macroions which interact with electrostatic repulsion, dispersion attraction, ion-excluded­

volume attraction, and hydrophobic interactions. Thermodynamic properties of the system 

are derived using perturbation theory. The model indicates that (i) distribution coefficient 

Ke is insensitive to net charge of protein due to strong electrostatic screening at high salt 

concentrations, (ii) electrolyte concentration plays a major role in affecting phase separation 

in protein solutions; distribution coefficient Ke increases monotonically with salt 

• concentration. (iii) distribution coefficient Ke is particularly sensitive and rises with ion 

diameters, protein diameter and ionic clustering, and (iv) aggregation of protein due to 

hydrophobic interactions may play an important role in the precipitation of proteins at high 
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salt concentrations; the extent of aggregation is a strong function of M, the average number 

of exposed associating sites. Model calculations of equilibrium phase separation are in 

semi-quantitative agreement with experimental results. 

Precipitation of proteins by concentrated electrolyte may result from ion-excluded­

volume effects or from hydrophobic-bond aggregation, or both. Using physically 

reasonable parameters, either excluded volume or aggregation can be used to interpret 

protein-precipitation data. In this work we have considered solutions with high salt 

concentrations, where ion-excluded-volume effects are dominant. However, because a 

decrease in temperature can precipitate proteins in solutions with little added electrolyte, it is 

likely that specific or hydrophobic interactions leading to aggregation are also important. 

The relative weights of these effects can be estimated only from experimental studies. 
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Notation 

a = Helmholtz energy, J/mol 

ares =residual Helmholtz energy, J/mol 

c ij( r) = direct correlation function of ij pair 

C s = salt concentration of solution, mol/L 

di = diameter of a molecule, A 
diJ = (di+d1)12, A 
e =elementary charge, 1.602x1Q-19 C 

g ij( r) = radial distribution function of ij pair 

hu( r) = total correlation function of ij pair 

H = Hamaker's constant, J 

h =Planck's constant, 6.6252x1Q-34 J-sec 

I = ionic strength of solution, mol/L 

Ke = distribution coefficient 

k =Boltzmann's constant, 1.3804xl0-23 J/K 

L8 = Bjerrum's length, A, = f3e 2 I 4nE0 Er 

NA =Avogadro's number, 6.023x1Q23 moi-l 

N 12 = ionic clustering parameter 

m = mass of the molecule 

M = number of hydrophobic sites per protein molecule 

P = thermodynamic pressure, Pa 

r = interparticle center-to-center distance, A 
T = absolute temperature, K 

V =association volume, A3 
V0 =volume of a single protein molecule= 7rdiJ6 

W( r) = potential of mean force 

z = valence of ion 

Z =compressibility factor= PlpkT 

Greek Symbols 

{3 = 1/kT 

Er = relative permittivity 

Eo =permittivity in vacuum, C/Vm 
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E = association energy 

1] = volume fraction 

1C =inverse Debye length, A-1, = ~8JrLBNAI 
J1 = chemical potential 

Jl' =reference state chemical potential, = k~[ ( h/~ 2ff»>kT )'] 
p = number concentration 

Subscripts 

1 =ion 

2 =ion 

3 =protein 

p =protein 
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Figure Captions 

Figure 1. 

Figure 2. 

Figure 3. 

Figure 4. 

Figure 5. 

Figure 6. 

Figure 7. 

Figure 8. 

Figure 9. 

Figure 10. 

Ion-excluded-volume potential of mean force Wex(r)lkT as a function of 
protein center-to-center distance for three values of clustering parameter N 12. 

Other parameters are: dp = 40A, dan = 4.6A, dear = 2.96 A, lzanl = 2, IZcarl = 1; 
and salt concentration C5 = 0.5 moles/liter. 

Schematic of the short-range orientation-dependent hydrophobic interaction. 

Reduced pressure as a function of protein packing fraction 1J for three salt 
concentrations. Other parameters are: dp_= 40A, dan= 4.6A, dcat = 2.96A, lzpl 
= 5, lzanl = 2, IZcatl = 1, HlkT = 9.6, and N 12 = 1. 

Distribution coefficient Ke as a function of ionic strength I for two values of 
N12- Other parameters are: dp = 40A, dan = 4.6A, dcat = 2.96A, lzpl = 5, lzanl 
= 2, lzcatl = 1, and HlkT= 9.6. 

Distribution coefficient Ke as a function of net charge of protein Zp for two 
ionic strengths. Other parameters are: dp = 40A, dan = 4.6A, dear = 2.96A, 
lzanl = 2, lzcarl = 1, HlkT = 8, and Nn = 1. 

Experimental values of Ke as a function of pH for a-chymotrypsin in 
solutions of CNH4hS04. Data shown with the permission of Coen, et. al. 

Distribution coefficient Ke as a function of hydrophobic interaction energy 
ElkT for two values of M. Other parameters are: dP. = 40A, dan= dear= 3.4A, 
lzpl = 8, IZanl = 1, lzcatl = 1, HlkT = 6, I= 2.5 moles/liter, V = 0.006, and Nn = 
1. 

Distribution coefficient Ke as a function of ionic strength I for three values of 
HlkT. Other parameters are: dp = 40A, dan= dear= 3.4A, lzpl = 8, IZanl = 1, 
IZcarl = 1, H/kT = 6, ElkT = 4, M = 4, V = 0.006, and Nn = 1. 

Distribution coefficient Ke as a function of protein diameter dp. Other 
parameters are: d2.= 40A, dan= dcat = 3.4A, lzpl = 8, IZanl = 1, lzcatl = 1, HlkT 
= 6, I= 2.5 moles/titer, ElkT = 4, M = 4, V = 0.006, and N12 = 1. 

Distribution coefficient Ke as a function of ionic diameter for two ionic 
strengths. Other parameters are: dp = 40A, dan= dear= dion• lzpl = 8, lzanl = 
1, lzcatl = 1, HlkT = 4, ElkT = 4, M = 4, V = 0.006, and N12 = 1. 
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