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THETA CONDITIONS IN BINARY AND MULTICOMPONENT 
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ABSTRACT 

Theta conditions in binary and multicomponent polymer solutions are 

calculated using a perturbed hard-sphere-chain (PHSC) equation of state. Theta 

conditions are identified by roots of the spinodal criterion in the limit of infinite 

polymer molecular weight and zero polymer-segment fraction. Because the 

thermodynamic properties of mixtures are described by an equation of state, both 

upper and lower theta temperatures can be calculated. For binary systems (one 

polymer and one solvent), experimentally determined theta conditions and the 

critical solution temperature for a single polymer molecular weight are used to 

obtain equation-of-state parameters. Parameters obtained in this manner yield 

nearly quantitative representation of upper and lower theta temperatures as a 

function of pressure and upper and lower critical solution temperatures as a function 

of polymer molecular weight. For ternary systems (two solvents and one 

polymer), the dependence of the theta temperature on solvent composition can be 

described using parameters obtained from binary data. 

*To whom correspondence should be addressed. Submitted to Macromolecules, December 1994 



1 . Introduction 

Solvent quality, an important quantity characterizing the behavior of a polymer in solution, 

is often defined with respect to theta conditions. A polymer dissolved in a "better than theta", i.e. a 

"good" solvent, is stable and will not phase separate at all concentrations and polymer molecular 

weights. On the other hand, a polymer dissolved in "worse than theta", i.e. a "poor" solvent, may 

phase separate at some concentration or polymer molecular weight 1. In addition to miscibility, the 

conformational structure of a polymer molecule in dilute solution can also be related to theta 

conditions. In a good solvent, an isolated polymer coil is expanded, whereas in a poor solvent, the 

polymer collapses into a globular structure. At the theta condition, repulsive excluded-volume 

interactions exactly counter attractive dispersion forces between polymer segments and the polymer 

behaves as an ideal chain2•3. Also, the behavior of complex systems can sometimes be linked to 

theta conditions; for example, the flocculation conditions of sterically stabilized colloidal 

dispersions correlate strongly with the theta conditions of the stabilizing polymer moiety4. 

Because theta conditions characterize both the phase behavior and conformational behavior of 

polymers in solution, an array of experimental techniques is available for their determination; a few 

techniques are summarized below. 

For a binary mixture of a polymer in a single solvent, the "Shultz-Flory" method is based 

on a relation between the critical solution temperature and polymer molecular weight; this relation is 

derived from the Flory-Huggins incompressible-lattice model1•5: 

(1) 

In Eq. (1), TesT is the critical solution temperature, 8 is the theta temperature, lf/1 is the Flory 

residual-entropy parameter, and r is the ratio of the molecular volume of the polymer to that of the 

solvent; r is proportional to the polymer molecular weight. For a reliable estimation of the theta 

temperature, the Shultz-Flory method requires three or more monodisperse polymer samples of 
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different molecular weight. For each molecular weight, cloud-point temperatures are measured for 

several solutions spanning a range of polymer segment fractions of approximately 10-3-10-1
• If 

cloud points appear upon decreasing temperature, the maximum temperature as a function of 

polymer concentration is the upper critical solution temperature (UCST). If cloud points appear 

upon increasing temperature, the minimum temperature as a function of polymer concentration is 

the lower critical solution temperature (LCST). The reciprocals of the critical solution temperatures 

are plotted vs. r" 112+(2r)"1
• Extrapolation to infinite polymer molecular weight (i.e., r" 112+(2r)"1 = 

0) gives the reciprocal of the theta temperature. 

Since there are two types of critical solution temperatures, two types of theta temperatures 

can exist, one associated with the UCST and the other associated with the LCST. Although the 

Flory-Huggins model can predict only a UCST because it assumes the mixture is incompressible, 

Eq. (1) has also been used to correlate the molecular-weight dependence ofLCSTs. In the original 

form of Eq. (1), the exponent n is unity; however, Shultz-Flory plots for some systems can exhibit 

distinct curvatures. In that event, the ad hoc exponent n is adjusted empirically to linearize 

experimental data to perform a reliable extrapolation to infinite polymer molecular weight6-8. 
I 

The Flory-Huggins model also shows that the polymer segment fraction at the critical 

consolute point, lf>~~~r, asymptotically approaches zero in the limit of infinite polymer molecular 

weight: 

;~,CST = 
'I' polymer 

1 
(2) 

This behavior is observed experimentally, even though the segment fraction at the critical consolute 

point is difficult to determine accurately from measured cloud-point curves. The behavior of 

l/>~~~er in the limit of infinite polymer molecular weight plays an important role in devising 

appropriate criteria which allow the calculation of theta conditions from an equation of state for 

chain-like fluid mixtures. 
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Another method for experimental determination of theta conditions is the cloud-point 

titration method9-14 and also has theoretical justification from the Flory-Huggins model4•15. The 

cloud-point titration method uses the same type of measurements as the Shultz-Flory method (i.e. 

turbidimetry), but there are several key differences. First, the cloud-point titration method requires 

only one molecular-weight polymer sample. Second, smaller polymer concentrations are required, 

typically in the range of 10-5-10-2
• The behavior of cloud-point temperatures in this concentration 

range is summarized by 

1 1 
= 

I'cp E> 
Br: In if> polymer (3) 

where TcP is the cloud-point temperature and Br is the slope of the cloud-point curve when T~i is 

plotted against In l/>poiymer. According to Eq. (3 ), extrapolation of a plot of the inverse cloud point 

temperature vs. the logarithm of the polymer concentration to pure polymer ( l/>poiymer = 1) gives the 

reciprocal of the theta temperature. The cloud-point method and the Shultz-Flory method have 

been shown to produce consistent theta temperatures for several systems to within experimental 

uncertainty11 . 

A third difference between these two methods is that the cloud-point titration method can be 

extended to describe a polymer in a mixed solvent. In this case, a non-solvent (component 2) is 

added to a mixture of good-solvent (component 1) and polymer (component 3) at constant 

temperature until a cloud-point is observed. The mixed-solvent composition at the cloud-point 

( 4>iP) is measured for several dilute-polymer concentrations, again in the range of w-s < 4>J < 10-2. 

The behavior is summarized in a manner similar to Eq. (3): 

(4) 

where B¢ is the slope of the cloud-point concentration curve when 4>iP is plotted against lnl/>3 • 

Extrapolation of 4>~ to pure polymer (l/>3 = 1) gives the "theta-composition" 4>~. Performing 
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titrations at different temperatures gives the dependence of(/)~ on temperature, or identically, the 

dependence of E> on solvent composition. 

A third method probes the behavior of another thermodynamic property of dilute polymer 

solutions: the osmotic second virial coefficient, ~. Two common experimental techniques for 

measuring the second osmotic virial coefficient are osmometry1 and low-angle laser-light 

scattering16. Like the cloud-point titration method, measurement of~ requires only a single 

polymer molecular weight. Theta conditions are determined by scanning temperatures or solvent 

compositions to fmd the conditions where the measured value of ~ is zero. 

Additional methods for determining theta conditions examine the molecular-weight 

dependence of various hydrodynamic properties of polymer solutions. These methods can be 

generalized by1•17: 

(5) 

where P is a measured property such as the intrinsic viscosity, sedimentation coefficient or 

diffusion coefficient, M is the polymer molecular weight and K is a proportionality constant. The 

temperature or solvent composition where the exponent a = 1/2 identifies a theta condition. Like 

the Shultz-Flory method, this method requires experimental measurements using several molecular 

weights of a given polymer. 

The techniques discussed above probe distinctly different properties (thermodynamic or 

hydrodynamic) over a wide range of concentration (concentrated vs. dilute). Different 

experimental methods raises questions concerning consistency. Surveying a compiled list of 

measured theta conditions for a wide range of polymers, solvents and experimental techniques 17 is 

inconclusive. In many cases, consistent results are obtained across techniques but for some 

systems, results from different methods can differ significantly. 
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Theoretically, this concern is less ambiguous. Models that describe dilute polymer 

solutions are fundamentally different from those that describe concentrated polymer solutions (such 

as the Flory-Huggins model or hard-sphere-chain models). In dilute solutions, the non-uniform 

distribution of polymer segments is important; however, in concentrated solutions, the spatial 

distribution of segments is properly assumed to be uniform. As discussed by Flory (ref. 1, pg. 

532), this distinction between models becomes unimportant at the theta condition. Recently, 

computer simulations have been performed that probed both phase equilibria and conformational 

properties of polymers whose segments interact through the Lennard-Jones potential18. Simu­

lations which determined phase equilibria were used ~o construct a "Shultz-Flory" plot for 

Lennard-Jones chains. Additional simulations which sampled conformational properties were 

performed to calculate the second virial coefficient. Although simulated polymer chain-lengths 

were somewhat small, the theta temperature obtained from the Shultz-Flory plot was found to be 

near the "Boyle" temperature of large chain-length polymers. 

This paper has three objectives. First, we present a method for calculating theta conditions 

using and equation of state for chain-like fluid mixtures. Second, we use experimentally 

determined theta conditions (and a minimum amount of additional experimental information) for 

binary systems to extract equation-of-state parameters that yield quantitative representation of upper 

and lower critical solution temperatures as a function of pressure and polymer molecular weight. 

Finally, we attempt to represent quantitatively the theta temperature of polymers in a mixed solvent 
' 

using parameters obtained from binary data. 

Although the method presented here for the calculation of theta conditions can be used with 

any equation of state for chain-like fluids, we perform calculations using the perturbed hard­

sphere-chain (PHSC) equation of state19-21 . Other equations of state which could be used include 

those derived from lattice-fluid models22-25 and the statistical associated-fluid theory (SAFT)26•27. 

We begin by summarizing the pertinent thermodynamic functions associated with the PHSC 

equation of state. 
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2 . Equation of State and Thermodynamic Functions 

The perturbed hard-sphere-chain (PHSC) equation of state21 for an m-component mixture 

is: 

m 

= 1 + p, :L<~'i <Pj bij gij(dJ) 
ij 

(6) 

- ~ .. "',-(1- r.
1,· )g,.,.(d,:,.) - A~"'·"'· a .. £...'I' kB T ~ '!', 'I' J l} 

lJ 

where p is the pressure, p, = N, fV is the segment density ( N, = "£':':1N;r; is the total number of 

segments in volume V), lP; = N;r; f N, is the segment fraction of component i, k8 is the Boltzmann 

constant, and Tis absolute temperature. In Eq. (6), g;/dJ) is the ij pair radial distribution 

function of hard-sphere mixtures at contact, bij is the second virial coefficient of effective hard­

sphere mixtures, and aij reflects the strength of attractive forces between unbonded segments of 

component i and component j. 

According to perturbed hard-sphere-chain theory20•21 , parameters a;; and h;; are functions 

of temperature: 

= 2n d~(T) 
3 ll 

(7) 

(8) 

where d;; is the effective hard-sphere diameter of a segment of component i at temperature T and 

constants E;; and G;; characterize the intermolecular potential between unbonded segments of 

component i; E;; is the depth of the minimum in the pair potential and G;; is the separation distance 

between segment ~enters at this minimum. For brevity, E;; is referred to as an effective 

"interaction energy" between non-bonded segments of component i and G;; is referred to as an 
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effective "hard-core" segment diameter of component i. Functions ~ and ~ in Eqs. (7) and (8) 

are determined from the thermodynamic properties of simple fluids (r = 1) and represented by 

(9) 

(10) 

Constants a; and /3; are listed in Table 1 and are the same for all fluidst. 

For each pair of components in the mixture, cross terms a,, and bij are needed. A simple 

extension of Eq. (7) is used for aii: 

(11) 

Eq. ( 11) requires combining rules to determine eii and a ij : 

(12) 

(13) 

Eq. (12) introduces binary interaction parameter 7C;r Unlike aii' bij is not arbitrary, but is 

uniquely determined from additivity of effective hard-sphere diameters: 

b .. (T) = 2rc d.3(T) = _!_(b.1.13 + b1 
.. 
13

)
3 d (T) 

1 
[d (T) d (T)] I) 

3 
I) 

8 
II ll ; ij : 

2 
ii + jj (14) 

Finally, the PHSC EOS for mixtures uses for gij(d;) the Boublik-Mansoori extension of 

the Carnahan-Starling equation to mixtures of hard-spheres28·29: 

(15) 

t A simplified version of the PHSC equation is used here: In previous publications, the temperature dependence of 
the universal functions v.::ere scaled by a parameter s which was a function of chain length, r. In the present model, 
this scale factor is removed and the universal functions were determined from the thermodynamic properties of argon 
and methane over a wider temperature range. Removal of s(r) from the universal functions allows use of simpler 
combining rules. The simpler rules do not sacrifice accuracy in fitting thermodynamic properties of pure (non­
associating) fluids to obtain equation-of-state parameters. 
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where TJ and ~ij are packing fractions defined as 

(16) 

(17) 

From the equation of state, Eq. (6), other relevant thermodynamic functions such as the 

·Helmholtz energy and chemical potential are derived using appropriate thermodynamic identities30. 

The Helmholtz energy of the mixture is 

(18) 

where ~o is the Helmholtz energy of pure component i as an ideal gas at temperature T. W;j and 

Q;; are given by: 

W;j ( TJ, ~ij) = K
1 

+ ~J:. .. K
2 

+ ..!_J:.~K3 2 ~I} 2 ~I} (19) 

J:. 3 g.. 1 ~~ 
Q;;(TJ,~;;) = -ln(l-TJ)+--" +- " 

2 1- TJ 4 (1- T/) 2 
(20) 

K = ..!_[-K + _1 ___ 1_...,..] 
n TJ n-1 n - 1 (1- TJ)n-1 ' 

K 
__ ln(l- TJ) ,-

TJ 
(21) 

The chemical potential of component k is 

(22) 
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where JlZ is the chemical potential of pure component i as an ideal gas at temperature T and 

( aw) (~ )(N, ;:.) (aw)( ~) N--1} = + _,1 N-'1 (23) 
raN d~ij raNk k 

(N d/2,) = (~'X N, ;:.) 
+ ( d/2')( N a;,, ) (24) 

raN d~;; raNk k 

(N,;;J = Pr r, b 
4 k k 

(25) 

( N a;,) ( r = bi bj Pr r. b213 (26) 
raN b.. 4 k k k '1 

/ 

3 . Critical Consolute Points 

Critical consolute points in liquid mixtures satisfy the following equations which define a 

critical point for a m-component mixture31 : 

-pp PtfJ1 ptPm-1 
-pt/J1 A A 

X = t/J11/J1 t/J11/Jm-1 = 0 (27) 

-p 
tPm-1 

A 
tPm-11/J1 

A 
tPm-11/Jm-1 

-Xp xt/J1 X 
tPm-1 

-p A A 
y = t/J1 t/J11/J1 t/J11/Jm-1 = 0 (28) 

-p 
tPm-1 

A 
tPm-11/J1 

A 
tPm-1tPm-1 

where the elements of determinants X and Yare defined as 

(29) 
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Pq>t = p,~A:J (30) 

A 
4>t4>k = ~~~~ ( N,~,T) (31) 

Xp 
ax 

= Pr dPr. 
(32) 

X4>t 
ax 

= 
dl/Jl 

(33) 

The elements of detemrinants X and Yare expressed as dimensionless quantities. 

For consistency, the polymer is always identified as the largest numbered component in the 

mixture and the solvent having the smallest value of r has the lowest number. For example, in a 

binary solvent/polymer mixture, the solvent is component 1 and the polymer is component 2. In a 

ternary mixture of two solvents and a polymer, the polymer is component 3 and the solvents are 

designated such that 1j < r2 • 

An attempt is made here to calculate critical solution temperatures that are consistent with 

those obtained from experimental cloud-point methods. In most cases, the vessel containing a 

solvent/polymer mixture also contains vapor space32•33, unless measurements are performed at an 

elevated pressure above the saturation pressure of the solution34-36. When phase-separation 

occurs at temperatures approaching the critical temperature of the solvent (i.e., LCSTs), the vapor­

pressure above the solution can be significantly greater than one atmosphere. 

For consistency with experiment, calculations of critical consolute temperatures of binary 

mixtures are not at atmospheric pressure, but at the vapor pressure of the solution. For mixtures 

considered here, the polymer is assumed non-volatile and the vapor pressure of the mixture is 

detemrined by equating the chemicai potentials of solvent in the liquid (L) to that in the vapor (V): 

v 
= f.lpure I (34) 
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Therefore, calculation of the critical consolute point of a binary mixture involves four unknowns: 

the critical consolute temperature TesT (upper or lower), the critical polymer segment fraction l/J2c, 

the segment density at the critical .consolute point, and the vapor pressure of the mixture psat. 

These quantities are determined from four equations: the critical-point conditions Eqs. (27) and 

(28), the equation of state Eq. (6) and the equality of solvent chemical potential in the liquid to that 

in the vapor, Eq. (34). 

Critical consolute points calculated assuming a fixed low pressure (zero or atmospheric) 

and those calculated as described above are necessarily different, but the difference is only 

significant for LCSTs. UCSTs in polymer solutions usually occur at temperatures near the triple­

point temperature of the solvent where its vapor pressure is almost always much less than 

atmospheric. 

4 . Determination of Theta Conditions 

To calculate theta conditions using an equation of state for chain-like fluids, we consider 

the stability criterion of a binary mixture.· Thermodynamic stability at some composition, 

temperature and pressure can be determined by the sign of the second derivative of the Gibbs 

energy, G, with respect to the segmen~ fraction of component 1, l/J1• If ( <fGI dl/11 
2)r,p > 0, the 

mixture is stable or metastable; otherwise, if (iJG!dl/J1
2)r,p < 0, the mixture is unstable. Therefore, 

the relation (<fGidl/J/)r.p = 0 provides a convenient criterion for defining the limit of mixture 

stability. 

To apply this criterion to determine the theta temperature of a binary mixture, we make use 

of some important features of the theta condition that evolve from the Shultz-Flory relation, Eq. 

(1). First, the theta temperature is identical to the critical consolute temperature of a solution 

containing a polymer of infinite molecular weight. Second, the critical polymer segment fraction 

vanishes in this limit. Hence, a theta temperature should correspond to a root of (iJG!dl/J1
2)r,p in 
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the limit of infinite polymer molecular weight (r2 --7 oo) and zero polymer segment fraction 

(¢2 --7 0). If in contact with its vapor, the pressure of the system is the vapor pressure of the pure 

solvent. 

For a polymer (component m) mixed with m - 1 solvents, the appropriate criterion is: 

G"(1,1) G"(1,m -1) 

= 0 (35) 

G"(m -1,1) G"(m -1,m -1) 

where 

G"(i,i) = (a:~~. J 
I J T,p 

(36) 

The theta temperature of a polymer in a fixed composition of m-1 solvents is determined by the 

roots of Eq. (35) in the "theta limit" (i.e., rm --7 oo and lf>m --7 0). 

However, evaluation of Eq. (35) is inconvenient because when thermodynamic properties 

of a mixture are derived from a pressure-explicit equation of state, the derivatives of the Gibbs . 

energy with respect to composition cannot be computed analytically. This problem is circumvented 

by variable transformations31 which replaces the determinant in Eq. (35) with determinant X given 

by Eq. (27). Eq. (27) expresses the stability criterion as derivatives of the Helmholtz energy and 

pressure with respect to segment-density and composition that can be computed analytically. The 

two determinants are equivalent except for a difference in sign. In this work, theta conditions are 

determined by finding the roots of determinant X in the "theta limit," denoted by Xoo. When Xoo > 

0, the mixture may phase separate at some concentration and polymer molecular weight. When 

Xoo < 0, the polymer is miscible in all proportions with the solvent or solvent mixture, regardless 

of polymer molecular weight. 

Determination of theta temperatures for a binary mixture is illustrated in Figure 1 for a 

hypothetical solvent/polymer mixture where the solvent is composed of four spherical segments. 

13 



The ratio of pure-component interaction-energies and that for hard-core segment-diameters are set 

equal to unity. For three binary interaction parameters K'12 , Figure 1 shows Xoo as a function of 

temperature scaled by the critical temperature. of the solvent. The pressure of the system is the 

vapor pressure of the pure solvent. 

When K'12 = 0, the solvent is essentially a low-molecular-weight analog of the polymer. 

Because of compressibility differences which arise from size differences between solvent and 

polymer as temperature increases, a root of Xoo, corresponding to a "lower" theta temperature E>L, 

occurs at a reduced temperature of approximately 0.76. A lower theta temperature signifies that the 

mixture becomes unstable upon increasing temperature, as illustrated by the change in sign of Xoo 

from negative below E>L to positive above ~L. 

A non-zero value of the binary interaction parameter introduces asymmetry in the pair 

interactions. When 7C12 = 0.0075, a low-temperature root and a high-temperature root are 

observed. The high-temperature root corresponds again to E>L, whereas the low-temperature root 

corresponds to an upper theta temperature, E>u, and the change of sign of Xoo indicates that the 

mixture becomes unstable upon decreasing temperature below E>u-

If the binary interaction parameter is increased further to K'12 = 0.012, Xoo has a positive 

sign at all temperatures. Consequently, for some molecular weights and concentrations, the 

polymer is not completely miscible with the solvent at all temperatures. However, the low 

molecular weights of the polymer may be miscible at some conditions, as illustrated in Figure 2 

which shows the Shultz-Flory plots (reciprocal critical solution temperatures vs. r· 112+(2r)"1 where 

r = r2 /1j) corresponding to each value of K"12 used in Figure 1. In Figure 2(c), the UCST and 

LCST merge as the molecular weight of the polymer increases, indicating hourglass-type phase 

diagrams in the temperature-composition plane. For the smaller values of K'12 , the intercepts on the 

vertical axes of Figure 2(a) and (b) correspond to the reciprocal reduced theta temperatures 

identified from roots of Xoo in Figure 1. Finally, the non-linear behavior of the Shultz-Flory plots 
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commonly observed experimentally is predicted by using an equation-of-state description of the 

fluid mixture. 

Shultz-Flory plots for estimating theta temperatures also provide a convenient means for 

"mapping" regions of miscibility as a function of temperature and polymer molecular weight. 

Having established a method for the determination of theta temperatures in binary systems, the next 

section discusses how Shultz-Flory plots for several binary systems can be quantitatively 

correlated by using experimental theta temperatures to determine equation-of-state parameters. 

Parameters determined in this manner are then used to predict critical solutions temperatures as a 

function of pressure, polymer molecular weight and solvent composition. 

5. Determination of Equation-of-State Parameters 

Three parameters characterize each pure component in the mixture: the number of effective 
' ' 

hard spheres per molecule r;, the effective segment-segment interaction energy Eii, and the 

effective "hard-core" segment diameter, CT;;. In addition, the PHSC equation of state also requires 

a binary interaction parameter lC;j for each pair of components in the mixture. The number of 

effective hard-spheres per molecule 'i for a polymer is linearly related to the polymer molecular 

weight; therefore, a polymer is more conveniently characterized by r;/M;', where M; is the 

polymer molecular weight. However, when calculating theta conditions, 'i (or 'if M;) is not 

required because the polymer molecular weight is infinite. 

For a binary solvent/polymer mixture in the theta limit, some thermodynamic properties of 

the mixture, for example, the vapor pressure and liquid density, reduce to the thermodynamic 

properties of the pure solvent, indicating the importance of characterizing the pure solvent. 

Therefore, equation-of-state parameters r;, E;;, and CT;; for solvents are determined by regression 

of vapor-pressure and saturated liquid-density data at temperatures between 0.5 < TITc < 0.9, 
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where Tc is the gas-liquid critical temperature of the solvent. Thermodynamic properties for all 

solvents considered here are obtained from the DIPPR pure-chemical-data compilation37. Table 2 

gives the PHSC equation-of-state parameters for solvents considered here. The root-mean-square 

relative deviation between calculated and experimental vapor pressures and saturated liquid 

densities is 1-6%. 

For quantitative correlation of experimental liquid-liquid equilibria, determination of pure­

component parameters for polymers is less obvious. A common source of pure-polymer 

parameters is regression of liquid polymer PVT data; however, when used in conjunction with 

solvent parameters, quantitative correlation of experimental liquid-liquid equilibrium data has been 

largely unsuccessful regardless of which equation of state is used23•38•39 . Adjusting binary 

interaction parameter 'Kii or adding a second binary parameter [e.g., relaxing the additivity of hard­

sphere diameters constraint, Eq. (12)] does not give the equation of state enough flexibility to 

correlate LLE. The conventional procedure for using equations of state to correlate LLE is not 

satisfactory because when pure polymer PVT data are used, parameters characterizing the polymer 

repeat unit differ significantly from the parameters for solvent analog (e.g., the energy parameter 

for polyethylene is significantly different from that for large molecular weight normal alkanes)20• 

Because polymer parameters obtained from PVT data cannot correlate LLE, we determine 

polymer parameters using judiciously chosen experimental data. First, the polymer segment 

diameter is set equal to that of the solvent, G 22 = G 11 • Second, for systems which only exhibit 

LCST behavior, the polymer-polymer segment interaction energy, e22 , is adjusted to match the 

experimentally determined lower theta temperature, E>L, and the binary interaction parameter, K'12 , 

is set to zero. For systems which exhibit both UCST and LCST behavior, both e22 and K'12 are 

adjusted to match E>u and E>L. Using the parameters determined from theta conditions, r2 /M2 is 

determined by matching the critical solution temperature for a specific polymer molecular weight. 

If the critical solution temperature for more than one polymer molecular weight is available, the 

lowest molecular weight is used artd the critical solution temperatures at all other polymer 
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molecular weights are predicted. If a system exhibits both UCST and LCST behavior, the UCST 

is chosen to determine 72/M2 , and the LCSTs for systems with finite polymer molecular weights 

are predicted. 

6 . Results and Discussion 

The binary systems considered first are those showing only LCST behavior. Figure 3 

shows the Shultz-Flory plots for polyethylene in normal alkanes (pentane through octane)40• For 

each solvent, Table 3 gives the polyethylene interaction energy determined from the reported E>L. 

Also listed in Table 3 is the value of 72 f M2 determined from the LCST of the lowest polyethylene 

molecular weight. For mixtures with pentane, the polyethylene molecular weight range studied 

was Mw = 4.9 x 103 -14.3 x 103
; for mixtures with hexane Mw = 34.9 X 103 -4.421 x 105

; for 

mixtures with heptane and octane Mw = 76.8 x 103
- 2.02 x 105

• The parameter estimation method 

used here fixes the two points at each end of the Shultz-Flory plot and predicts points in between. 

For systems with hexane, heptane, and octane, excellent agreement between calculated and 

experimental lower critical solution temperatures is observed. For systems with pentane, however, 

the LCSTs of the two higher polyethylene molecular weights are overestimated by approximately 5 

°C. This discrepancy is due to uncertainty in the reported E>L since the polyethylene molecular 

weights used with pentane were much smaller than those used with the other solvents. 

Similar results are shown in Figure 4 for polystyrene in benzene 7 which shows only LCST 

behavior. The equation-of-state parameters for polystyrene in benzene is listed in Table 4. 

Shultz-Flory plots for polystyrene in various solvents which exhibit upper and lower 

critical solution temperatures have been widely studied; Table 4 gives pertinent parameters. The 

Shultz-Flory plot for polystyrene (Mw = 43 x 103-1.6 x 106
) in cyclopentane~ 1 .42 is shown in 

Figure 5. The polymer-polymer segment interaction energy e22 and the binary interaction 
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parameter K'12 were determined from the upper and lower theta temperatures; r2 / M2 was 

determined from the UCST reported for the lowest polystyrene molecular weight. Like the LCST 

Shultz-Flory plot for benzene, parameters are chosen to fix each end of the UCST Shultz-Flory 

plot. UCSTs in between are well correlated; the maximum error between calculated and 

experimental UCST is less than 1:7 °C. However, the lower critical solution temperatures for all 

finite polystyrene molecular weights are always under-predicted. The error between predicted and 

calculated LCSTs is 1.3 °C for the largest molecular weight and increases to 4.7 °C for the smallest 

molecular weight. 

Similar results are obtained for polystyrene (Mw = 20.4 x 103 -2.7 x 106
) in 

cyclohexane 6•32 shown in Figure 6 and polystyrene (Mw = 10.2 x 103 -2.7 x 106
) in 

methylcyclohexane6.43•44 shown in Figure 7. For both solvents the UCSTs are slightly over­

predicted by at most 2 °C, and the LCSTs are under-predicted. For cyclohexane the maximum 

error between predicted and experimental LCSTs is 8.4 °C, whereas for methylcyclohexane the 

maximum difference is 5.6 °C. 

The same behavior is also shown in Figures 8-11 for polystyrene (Mw = 37 x 103 
-

2.7 x 106
) inn-propyl acetate, iso-propyl acetate, ethyl acetate, and methyl acetate45 and in Figure 

12 for polystyrene (Mw = 1 x 105 -3.45 x 106
) in t-butyl acetate32•35. Except fort-butyl acetate, 

UCSTs are correlated to within 1.5 °C. LCSTs are under-predicted more severely; the maximum 

errors between calculated and experimental LCSTs are· 14.6, 11.2, 10.6, 8.1 and 8 °C, 

respectively, for n-propyl acetate, iso-propyl acetate, ethyl acetate, methyl acetate and t-butyl 

acetate. 

Fort-butyl acetate, data for the lowest polystyrene molecular weight from Saeki, et al.35 

were used to determine r2 f M2 , since there appears to be some inconsistency between th~ir results 

and the results of Bae, et al.32 for the molecular-weight dependence of the UCST. The UCSTs 

from Bae, et al. 32 are under-predicted by 9-12 °C. The PHSC equation of state predicts non-linear 

curves for both the UCST and LCST in good agreement with experiment. 
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Fort-butyl acetate/polystyrene mixtures, data for Shultz-Flory plots at elevated pressures 

have also been measured. These data allow calculation of the effect of pressure on the upper and 

lower theta temperature35• Using equation-of-state parameters determined from the Shultz-Flory 

plot at low pressure (Figure 12), Figure 13 shows excellent agreement between predicted and 

experimental upper and lower theta temperatures for pressures up to 50 atm. 

Finally, we consider the upper theta temperature of polystyrene in a mixed solvent 

containing cyclohexane and methylcyclohexane46• Because only the upper theta temperature for 

the solvent mixture at low pressure is considered, calculations are performed assuming zero 

pressure. Also, polystyrene parameters must be determined. Noting that polymer parameters for 

each of the corresponding binary mixtures are similar, the polystyrene segment-segment interaction 

energy and hard-core segment diameter, e33 and a33 , are set to the average of the parameters for 

two solvents. The two solvent-polymer binary interaction parameters, 7C13 and 7C23 , are readjusted 

to match each binary upper theta temperature, since e33 and CJ33 have been changed slightly. These 

parameters are listed in Table 5. An approximate value for the solvent-solvent binary interaction 

parameter, 7C12 , can be obtained from analyzing vapor-liquid equilibrium data47• It was found that 

7C12 values ranging from 0 to 0.0035 give a nearly identical and quantitative representation of 

binary VLE data. 

Figure 14 examines the effect of the solvent-solvent binary interaction parameter, 7C12 , on 

the upper 'theta temperature. Experimentally determined upper theta temperatures lie between the 

calculated curves which span the range of 7C12 values estimated from solvent-solvent VLE data. 

Also shown is the curve for the value of 7C12 which provides a quantitative correlation of the 

dependence of E>u on solvent composition. The curve for 7C12 = 0.01 is included in Figure 14 to 

illustrate that the equation of state can predict a situation where E>u for the mixture is lower than that 

for either single-solvent system. In that event the polymer has an increased range of miscibility 

with the mixed solvent relative to that with either single solvent. 
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7 . Conclusion 

By considering the thermodynamic stability criterion of mixtures, a method has been 

proposed for calculating theta conditions using a perturbed hard-spher~-chain equation of state. 

This method uses two important results concerning the theta condition which emerge from the 

Flory-Huggins model of incompressible mixture: 1) that the theta temperature is identical to the 

critical consolute temperature of a solution containing a polymer of infinite molecular weight and 2) 

the critical polymer segment fraction asymptotically approaches zero in the limit of infinite polymer 

molecular weight. 

Theta temperatures, in conjunction with thermodynamic data for pure solvents and the 

critical consolute temperature of one polymer molecular weight, are used to determine equation-of­

state parameters for binary mixtures. Parameters obtained in this manner provide a quantitative 

correlation of upper and lower critical solution temperatures as a function of polymer molecular 

weight and the upper and lower theta temperatures at elevated pressures. Also, the theta 

temperature of a polymer in a mixed solvent can be estimated from binary data. Although only one 

solvent mixture is considered here, we speculate that VLE data could be used to help screen solvent 

mixtures for desired polymer miscibility characteristics. 

Although the method discussed here for determining equation-of-state parameters has the 

unfortunate consequence of making polymer parameters solvent dependent, it is important to note 

that the binary data chosen to determine equation-of-state parameters could be obtained even when 

only one polymer sample is available (albeit, monodisperse and of sufficiently large molecular 

weight). Theta temperatures (upper and lower), measured using a variety of methods, can be used 

to estimate two of three equation-of-state parameters for the polymer. A single critical solution 

temperature, measured from cloud-point measurements, can be used to estimate the remaining 

polymer parameter. 
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Finally, we point out some limitations of the current model. First, the version of the PHSC 

equation of state used here cannot describe systems possessing specific or oriented interactions 

such as hydrogen bonding. For mixed solvent systems, self-associating solvents (such as 

alcohols) are often used as precipitating agents for fractionation, where knowledge of theta 

conditions is very useful. For this reason, the majority of experimental data for theta conditions of 

polymers in mixed solvents usually contain one self-associating solvent. However, the PHSC 

equation of state can be extended to include hydrogen-bonding components using the method of 

Veytsman48•49 . Second, the PHSC equation of state used here is applicable only to solvent-

homopolymer mixtures, but extension to copolymer and solvent-copolymer mixtures is 
. ... 

straightforward19•50•51 . For solvent-copolymer systems, the dependence of theta conditions on 

copolymer composition can be obtained by extending the framework presented here. 
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Table 1. Constants used in Eqs. (9) and (10) 

Eg. (9) Eg. (10) 

a! 1.8681 {31 0.7303 

a2 0.0619 {32 0.1649 

a3 0.6715 {33 2.3973 

a4 1.7317 

Table 2. PHSC equation-of-state parameters for various solvents 

Solvent r ejkB (K) cr(A) 

n-pentane 3.149 226.0 3.995 

n-hexane 3.446 235.6 4.084 

n-heptane 4.255 225.9 3.947 

n-octane 5.055 219.6 3.850 

benzene 2.727 291.6 3.958 

cyclopentane 2.509 277.3 4.090 

cyclohexane 2.723 286.7 4.425 

methylcyclohexane 2.968 283.7 4.336 

methyl acetate 3.804 224.8 3.338 

ethyl acetate 4.509 213.5 3.369 

n-propyl acetate 4.989 213.9 3.440 

iso-propyl acetate 4.779 210.6 3.484 
I. 

t-butyl acetate 4.485 220.2 3.743 
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Table 3. PHSC equation-of-state parameters for polyethylene (2) in several alkanes 

Solvent (1) £ 22 /kB (K) r2 /M2 (moljg) 

n-pentane 225.5 0.03490 

n-hexane 232.6 0.02026 

n-heptane 222.9 0.02925 

n-octane 216.2 0.02090 

Table 4. PHSC equation-of-state parameters for polystyrene (2) in several solvents 

Solvent (1) e22/kB (K) 7(12 '2/M2 (moljg) 

benzene 237.3 0 0.01808 

cyclopentane 245.0 0.01450 0.02112 

cyclohexane 246.8 0.01458 0.03390 

methylcyclohexane 253.7 0.01582 0.01877 

methyl acetate 220.1 0.01192 0.01760 

ethyl acetate 213.0 0.00678 0.03685 

n-propyl acetate 212.5 0.00513 0.07100 

iso-propyl acetate 217.1 0.00567 0.02975 

t-butyl acetate 226.8 0.00678 0.01458 

Table 5. PHSC equation-of-state parameters for polystyrene (3) used to calculate upper theta 

temperatures in a mixed solvent of cyclohexane (1) and methylcyclohexane (2). 

26 

250.3 

4.396 

0.01658 

0.01424 



Figure Captions 

Figure 1. C~culation of theta temperatures in a hypothetical solvent(l)/polymer(2) mixture. 

Theta temperatures are identified by roots of the spinodal criterion, Eq. (27), in the 

limit of infinite polymer molecular weight and zero polymer segment fraction. 

Figure 2. Shultz-Flory plots corresponding to the hypothetical solvent(l)/polymer(2) 

mixtures considered in Figure 1. (a) Only lower critical solution temperatures are 

observed; the vertical-axis intercept is Tc/E>L. (b) Both upper and lower critical 

solution temperatures are observed; the intercepts on the vertical axis are Tc/~ and 

Tc118u. (c) The upper and lower critical solution temperatures merge as polymer 

molecular weight increases, indicating hourglass-type phase diagrams; theta 

temperatures do not exist for this system. 

Figure 3. Shultz-Flory plots of lower critical solution temperatures of polyethylene in normal 

alkanes. The symbols on the vertical axis are the reciprocals of the reported theta 

temperatures. Lines are calculated using the PHSC equation of state. 

Figure 4. Shultz-Flory plots of lower critical solution temperatures of polystyrene in benzene. 

Line is calculated using the PHSC equation of state. 

Figure 5. Shultz-Flory plot of lower (left axis) and upper (right axis) critical solution 

temperatures of cyclopentane/polystyrene solutions. Lines are calculated using the 

PHSC equation of state. 

Figure 6. Shultz-Flory plot of lower (left axis) and upper (right axis) critical solution 

temperatures of cyclohexane/polystyrene solutions. Lines are calculated using the 

PHSC equation of state. 

Figure 7. Shultz-Flory plot of lower (left axis) and upper (right axis) critical solution 

temperatures of methylcyclohexane/polystyrene solutions. Lines are calculated 

using the PHSC equation of state. 

Figure 8. Shultz-Flory plot of lower (left axis) and upper (right axis) critical solution 

temperatures of n-propyl acetate/polystyrene solutions. Lines are calculated using 

the PHSC equation of state. 
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Figure 9. Shultz-Flory plot of lower (left axis) and upper (right axis) critical solution 

temperatures of iso-propyl acetate/polystyrene solutions. Lines are calculated using 

the PHSC equation of state: 

Figure 10. Shultz-Flory plot of lower (left axis) and upper (right axis) critical solution 

temperatures of ethyl acetate/polystyrene solutions. Lines are calculated using the 

PHSC equation of state. 

Figure 11. Shultz-Flory plot of lower and upper critical solution temperatures of methyl 
• 

acetate/polystyrene solutions. Lines are calculated using the PHSC equation of 

state. 

Figure 12. Shultz-Flory plot of lower and upper critical solution temperatures of t-butyl 

acetate/polystyrene solutions. Lines are calculated using the PHSC equation of 

state. 

Figure 13. Pressure dependence of the upper (left axis) and lower (right axis) theta 

temperatures fort-butyl acetate/polystyrene solutions. The lines are predictions 

using the PHSC equation of state. 

Figure 14. Dependence of upper theta temperature on solvent composition for a ternary mixture 

of cyclohexane(l), methylcyclohexane(2) and polystyrene(3). Solvent-polymer 

binary interaction parameters ( K."13 and K."23) were chosen to match E>u for each 

binary. The solid curve and dotted curve represent the range of K."12 values which 

give good representation of VLE for the solvent mixture (without polymer)': The 

dashed curve represents the value of K."12 which best represents the solvent 

composition dependence of E>u. The dot-dashed curve represents a hypothetical 

system where E>u of the polymer in a mixed solvent is lower than that for either of 

the single-solvent/polymer systems. 
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Figure 11 
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Figure 12 
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