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Abstract 

In order to formulate a statistical model of nuclear properties we combine the Thomas­

Fermi assumption of two fermions per h3 of phase space with an effective interaction between 

nucleons that contains seven adjustable parameters. After allowing for shell effects, an even-odd 

correction and a congruence energy ("Wigner Term"), six of the seven parameters were fitted to 

1654 ground state masses of nuclei with N,Z ~ 8, together with a constraint that ensures 

agreement with measured values of the nuclear surface diffuseness. The RMS deviation in the fit 

to masses was 0.655 MeV, and the calculated values exhibit no drastic discrepancies even for 

A=3. 

Calculated sizes of nuclear. charge distributions agree closely with measurements. 

Calculated fission barriers were compared with 40 measured values down to 75Br. For Z ~ 88 

the agreement is almost perfect. For Z < 88 the trend of the measurements seems to confirm the 

expectation that the congruence energy should double its magnitude for strongly necked-in 

saddle-point shapes. 

A seventh (density-dependence) parameter in the effective interaction can be adjusted to 

ensure fair agreement with the measured energy-dependence of the optical model potential in the 

range from -70 MeV to 180 MeV. 

The model is used to predict properties of nuclear and neutron matter (including their 

compressibilities). A table of some 9000 calculated ground state masses of nuclei up to Z = 135 

has been prepared. 
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1. Introduction 

A degenerate gas of fermions in an external potential is characterized by a density of 2 

particles per volume h3 of phase space. In 1927 L.H. Thomas [1] and, independently, E. Fermi 

[2] made this simple observation the basis of a beautiful semi-classical, statistical theory of 

atomic properties [3]. The same method has been applied to the nuclear many-body problem, 

treated in the mean-field approximation. 

In the atomic case the mean field is produced by well-defined electrostatic forces, and 

there are no adjustable parameters in the theory. In the nuclear case one needs to introduce 

effective nucleon-nucleon interactions that are not uniquely defined and which contain adjustable 

parameters. As a result there exist today dozens of nuclear Th9mas-Fermi models characterized 

by different effective interactions (as well as by different refinements of the original Thomas­

Fermi theory) [4-24,43]. 

In trying to reduce this lack of uniqueness, which mars the beauty of a Thomas-Fermi 

treatment of average nuclear properties, we decided to use the simplest version of the theory (2 

fermions per h3 of phase space), to restrict to the absolute minimum the number of adjustable 

parameters in a well-chosen effective interaction, and to pin down these parameters by 

comparisons with comprehensive sets of data. 

The present paper describes the resulting model, together with a number of applications. 

2. The Nuclear Thomas-Fermi Model 

The model results from a straightforward application of the original theory of Thomas 

and Fermi (no gradient or exchange corrections!) to a system consisting of two kinds of 

fermions: neutrons and protons. In addition to the electrostatic in!eraction between protons, the 

effective nucleon-nucleon potential is taken to be a Yukawa function of range a. Its strength 

depends both <?n the magnitude of the particles' relative momentum PI2 and on an average of the 

densities at the locations of the particles. The model is exactly as described in [22]. The 
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effective interaction v12 is thus the Seyler-Blanchard potential of [13], generalized by the 

addition of one momentum-:dependent and one density-dependent term: 

Vt2 = (2To I PO)· Y(rt2) ·[-a+ ~(Pl2 I Po)
2

- y(Po I PI2) + cr(2p I Po )
213

] (1) 

Seyler-Blanchard attraction with 
momentum-dependent repulsion 

Additional attraction increases when Pl2 
is small (and the two particles would like 
to become .correlated), and tends to zero 
for large Pl2, when the particles would 
zip past each other. 

Additional repulsion increases with 
increasing average density p. } 

In the above, the quantities To, Po, and Po are the Fermi energy, the Fermi momentum and the 

particle density of standard nuclear matter, incorporated in Eq. (l) as convenient units, and 

Y(qz) is a normalized Yukawa interaction 

1 e-rt2/a 
Y(rtz)=-- ---

4n:a3 qz/ a 

The average density p is defined by 

(2) 

(3) 

where p 1 and P2 are the relevant densities of the interacting particles (neutrons or protons) at 

points 1 and 2. The dimensionless interaction strength parameters a, J3, y, cr, may be different for 

interactions between like and unlike particles. The difference is described by a parameter ~ for 

the leading (non-saturating) part of the interaction 

ae,u = !(1 +~)a (4) 

and by ~ for the saturating parts 
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Pe,u =!{l+l;)P 

. 'Yl,u =t{l+l;)'Y 

ae,u =!(1+l;)a , 

(5) 

where .e ,u refer to 'like' and 'unlike,' and are associated with the minus and plus signs, 

respectively. 

For given neutron and proton densities Pn (r) and Pp(r} , the total energy E is~ sum of 

the kinetic energies of the particles EK, of their nuclear interaction energies EN, and of the 

Coulomb energy Ec. The relevant equations are derived in [22], where the reader is referred to 

for details. They are repeated here for the sake of completeness: 

(6) 

where 

(7) 

+t'~'r'~'H-ae +!Be'Pr -ir£'¥;1(1- 'P~/5'1';)] 
I 

+ci>r'PH-au + ~Bu( <I>r + 'Pf) -~YuX;1 (1- x~j5x;)]} , (8) 

(9) 

where e is the charge unit and 

Be,u =Pe.u +(516)ae,u , (10) 

and, correspondingly, 

B=P+C5/6)a . (11) 
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The following notations were used in Eqs. (7-9): 

( I 1 )1'3 ( I 1 )113 <I>= Pn 2Po ' 'P= Pp 2Po (12) 

and <1>1, <1>2, '¥1, '¥2 refer to values of <I> and'¥ at points r1 and r2. The symbols <1>>, <I>< stand 

for "the greater" or "the lesser" of <1>1 and <1>2, and siinilarly for'¥> and'¥<· The symbols X>, 

X< stand for "the greater" or "the lesser" of <I> and'¥ at r1 and r2. (See Ref. [22].) 

By making the energy E stationary with respect to particle-preserving variations Op0 , Opp, 

one obtains Euler-Langrange equations for the ground-state neutron and proton density 

distributions of finite nuclei, of semi-infinite nuclear matter and of uniform infinite nuclear 

matter. With considerably more effort one can determine the unstable saddle-point 

configurations for nuclear fission and the associated h~ights of the fission barriers. The potential 

felt by a neutron or proton traveling through a nucleus or through nuclear matter, including its 

energy and isospin dependence, can also be calculated. By comparing the theoretical results with 

a variety of nuclear data, as described below, we deduced the following values for the seven 

adjustable parameters of the effective interaction: 

a= 1.94684, ~ = 0.15311, 

(:. B = 1.02811), ~ = 0.27976, 

3. Fitting· of Parameters 

y = 1.13672' 

l; = 0.55665' 

(J = 1.05 
(13) 

a= 0.59294 fm. 

The calculated Thomas-Fermi binding energies and density distributions depend on six 

parameters: a, B, y, ~' l; and a (see Eqs. (7-9)). After a number of exploratory studies, the final 

values of these parameters were determined by an RMS fit to measured binding energies of 1654 

nuclei (with neutron and proton numbers N, Z ~ 8) together with two geometrical constraints: 

the radius constant of standard nuclear matter was kept at ro = 1.14 fm (a value very close to the 

optimum in the absence of this constraint) and the Stissmann width [25] (diffuseness) of the 

surface of standard semi-infinite nuclear matter was kept at bo = 1.0 fm. These two constraints 
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ensure a close correspondence between calculated and measured charge distributions of finite 

nuclei, and they leave four effective adjustable freedoms to fit the 1654 binding energies. 

The measured binding energies were first corrected as well as possible for three 

obviously non-smooth contributions, which are outside the framework of a Thomas-Fermi 

theory. They are the shell effect, the even-odd term and the congruence energy ("Wigner term") 

[26]. The result was an almost smooth empirical function ofN and Z, to which the Thomas­

Fermi model was fitted, yielding (together with the geometrical constraints) the values of a., B, y, 

~. l; and a listed in Eq. (13). 

Adding to the calculated Thomas-Fermi binding energies, TF, the mass excesses of the 

neutron and of the Hydrogen atom (Mn = 8.071431 MeV, MH = 7.289034 MeV) and the binding 

energy of the atomic electrons, the predicted atomic mass excess is given by 

Mass excess= TF+MnN +MHZ-0.00001433z2.39 

+ SHELLS + EVEN- ODD + G . 

The shell correction and the even-odd term were taken from [22] for N,Z ~ 30. For 

N,Z::; 29 we thought it preferable to use the semi-empirical shell corrections from [28] (see 

Appendix A). The congruence energy G is also patterned after [28] (see Section 9): 

G = -10 MeV exp( -42IIV10) , 

where I = (N - Z)/ A. 

(14) 

(15) 

Figure 1 shows the remaining deviations between measurement and theory, with an RMS 

value of0.655 MeV. 

The seventh adjustable parameter, cr, conveniently decoupled from the first six, was 

determined by comparing the energy-dependent depths U(E) of optical-model potentials, 

deduced from neutron and proton scattering experiments, with the Thomas-Fermi formula 

(Ref. [22]): 

6 

.. 



for 't ~ 1 
(16) 

for 't:::;; 1 

Here U(E) is the potential felt by a nucleon with kinetic energy -rTo traveling through standard 

nuclear matter. The total energy of the nucleon is E = U + -rTo, which, together with Eq. (16), 

provides an elementary parametric relation between U and E. This is plotted in Fig. 2 for 

(j = 1.05. 

4. Properties of Nuclear Matter 

The set of parameters in Eq. ( 13) leads to the following properties of nuclear matter: 

• Four Liquid Drop Properties 

Radius constant of nuclear matter 

Volume binding coefficient 

Symmetry energy coefficient 

Surface energy coefficient 

• Five Droplet Model Properties [26] 

Compressibility coefficient 

Curvature energy coefficient 

Effective surface stiffness coefficient 

Density symmetry coefficient 

Symmetry anharmonicity coefficient 

ro = 1.14 fm 

a1 = 16.24 MeV 

1=32.65 MeV 

a2 = 18.63 MeV 

K= 234MeV 

a3 = 12.1 MeV 

Q = 35.4 MeV 

L=49.9MeV 

M=7.2MeV. 

For standard nuclear matter with Pn = pp. the energy per particle as a function of density is given 

by [22]: 

E/A 3 1 3 
ll(P) = -- = -(1- y)Q2 _ -aQ3 + _ BQ3 

To 5 2 5 
(17) 

where Q = (p/po) 1/3 and Po = 3/4nr~ = 0.16114 fm-3. 
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Thus 

E I A= -3.037Q2- 36.037Q3 + 22.837Q5 MeV 

For neutron matter the energy per neutron, in units of To, is given by 

where <I>= (Pn/!Po )
113

. 

Thus 

En I A= 16.615<1>2 -12. 978<1>3 + 5.062<1>5 MeV . 

This prediction is compared in Fig. 3 with the theoretical estimates of [30], based on very 

different physical input. 

For nuclear matter with a fixed ratio PniPp· the energy per particle (in units of To) is 

given by (see [22]. Eq. (25)): 

where, as before, n = [ (Pn + Pp )/Po f'3
, but where the coefficients y, a, B are now the 

following functions of the relative neutron excess I= (Pn - Pp )/P: 

for Pn ~ Pp 

for Pn ~ Pp 

where p3 = 1 + I and q3 = 1 - I. 
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Equating to zero the derivative ofEq. (21) with respect to .Q leads to a cubic, which can 

be readily solved to find algebraic expressions for the equilibrium density, energy and 

compressibility of nuclear matter with a given neutron excess. 

5. Finite Nuclei 

Figure 4 shows the calculated charge distributions for 56Fe, 124Sn and 209Bi, compared 

with Fermi function or "three-parameter gaussian" fits to electron scattering data [31]. Figure 5 

shows the neutron and proton density distributions for 120Sn, as well as for 167Sn, the last 

Thomas-Fermi isotope stable against neutron drip, and 83Sn, the last isotope stable against (non­

quanta!) proton drip over the Coulomb barrier. Figure 6 shows the behaviour of the neutron and 

proton chemical potentials for isotopes between these extremes. 

Figure 7 shows the last unruptured nucleus and the first bubble nucleus [32] in a sequence 

of solutions (constrained to spherical symmetry) for which (N- Z)/A was fixed at 0.2 and A was 

increased in steps of 10 (up to A= 1000). The rupture or cavitation into a bubble occurs at about 

z2tA = 100, as expected on the basis of a liquid drop model [33, 34]. 

Altogether we calculated the binding energies of some 9,000 nuclei, both neutron- and 

proton-rich, as well as super-heavy. Out of curiosity we also calculated the binding energies 

(with shell, even-odd and congruence energies added) for nuclei with N,Z < 8, expecting a 

macroscopic-microscopic treatment to break down completely for such small mass numbers. To 

our surprise we found that the deviations between theory and measurement were not much 

greater in this region than for somewhat heavier nuclei included in the RMS fit. The binding 

energy of the alpha particle came out to be -29.80 MeV instead of -28.30 MeV, an error of 1.5 

MeV. ForA= 3(!), 3He was bound by 7.27 MeV instead of7.72 MeV, and tritium by 8.25 MeV 

instead of 8.48 MeV. For A= 2(!!), the deutron was found to be unbound by 2.6 MeV instead of 

being bound by 2.2 MeV. 

In the heavy and super-heavy region, the extrapolated mass defect of 264Hs (Z = 108), not 

included in our RMS fit, comes out as 120.28 MeV, compared with the experimental value 
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119.82 ± 0.30 MeV. Figure 8 gives a sample of the mass defects in this region ofthe periodic 

table. 

6. Fission Barriers 

Using the techniques described in [23] we calculated 45 Thomas-Fermi fission barriers 

ranging from 252Cf down to 8Be. In order to compare theory with measured values, listed in 

Fig. 9, one must decide how the non-smooth contributions to the energy (shell, even-odd, 

congruence) change in going from the ground state shape to the saddle-point shape. Figures 10-

12 are based on the following illustrative assumptions: (i) the ground-state shell effect 

disappears at the saddle, (ii) the odd-even term does not change appreciably, (iii) the congruence 

energy does not change in the case of heavy elements, when the saddle shape is not necked in, 

but (iv) doubles its original value for light elements, when the saddle shape is highly necked in. 

For the heaviest elements in Fig. 10 (with Z = 88, 90, 92, 94, 96, 98) the agreement 

between measurement and theory (upper curve) is almost perfect, even though no parameters 

were re-adjusted after the fit to ground-state masses. For the lighter elements in Fig. 10 

a systematic deviation from the upper curve based on assumption (iii) comes in, and the 

measurements seem to approach the lower curve, based on assumption (iv). This trend begins at 

about the point where the saddle shapes have developed a pronounced neck, suggesting that the 

congruence energy is beginning to increase as the neck constriction develops. The four barrier 

measurements for the lightest nuclei, 90,94,98Mo and 75Br [42], would seem to reinforce this 

hypothesis (Fig. 11 ). Assuming that for these strongly necked-in saddles the congruence energy 

has doubled, the predicted barriers are fairly close to the measurements, whereas without this 

assumption the barriers for the above nuclei would be overestimated by about 7-10 MeV. Note 

also that for 8Be the doubling of the congruence energy reduces the calculated barrier from about 

13 MeV to about 3 MeV, a value more nearly consistent with the observed instability of 8Be 

against fission into two alpha particles. This is indicated by an experimental point at 2.3 MeV, 

the formal "empirical" ground state shell effect of 8Be (see below). 
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Figure 11 shows a blow-up of the calculated and measured barriers for Z = 90 to 98. A 

systematic overestimate of about 0.5 MeV can be seen. At this level of precision a number of 

effects might be responsible for the differences. (Shell effects, experimental uncertainties, 

further fine tuning of adjustable parameters ... ?) 

Concerning the experimental points plotted in Figs. 10-12, they were obtained by adding 

to the measured ground-state mass of a given nucleus its measured fission barrier (thus obtaining 

a measured saddle-point mass) and plotting the results with respect to smc>Oth calculated 

Thomas-Fermi ground state masses (with the appropriate even-odd term included, but without 

the theoretical ground state shell correction). Because the resulting measured saddle point 

masses (solid diamonds in Fig. 10) deviate from a smooth trend by no more than about 1 MeV, it 

can be concluded that, as expected, saddle-point masses exhibit relatively small shell corrections. 

Similarly, the absence of pronounced staggering between points for even-even and odd-A nuclei 

sets an upper limit on the change in the even-odd correction in going from the ground state to the 

saddle. 

7. Surface Energy and Compressibility 

As noted in [22], if the compressibility coefficient K is plotted vs. the surface energy 

coefficient a2 for a fixed value of the surface diffuseness, an amazingly linear relation is found. 

Figure 13 shows this relation for the present set of parameters. It can be represented very 

accurately by 

a2 = 1.5 +[0.063011 +0.06682(bo -1)](K + 38) , (25) 

where bo is in fm and a2 and K are in MeV. 

According to this equation a relative change 3bo/bo in the assumed width away from bo = 

1 fm produces a relative change 3K/K equal to -1.23 3bofbo. Thus bo = 1.05 fm would give K = 
220 MeV and bo = 0.95 fm would give K = 249 MeV. 
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Equation (25) may also be useful for estimating K for other ve~sions of the model. Thus, 

for the set of parameters used in [22] (a2 = 20.268 MeV, bo = 0.8713 fm-not an optimal 

choice),Eq. (25) implies K = 306.93 MeV, which is within 2% of the 301.25 MeV of [22]. 

8. The Curvature Energy Puzzle 

References [35, 36] discussed an apparent difficulty in reconciling theoretical 

calculations, which invariably lead to a curvature energy coefficient a3 of about 10 MeV, with 

empirical fits to nuclear binding energies, which were believed to require a3 = 0. Our Thomas­

Fermi model is characterized by a3 = 12.1 MeV, but has no difficulty in fitting binding energies. 

As discussed in [37] the reason for the original puzzle is, we believe, that terms of still higher 

order in A-113 tend to counteract the curvature correction and, if not allowed for explicitly, mask 

its presence. As an illustration of this effect suppose that the true binding energy, in MeV, for 

N = Z nuclei (without Coulomb and microscopic corrections) could be approximated by 

E = -16.24 A+ 18.63 A213 + 9.15 A113 -11.54 , 

where the first three coefficients ·correspond to our Thomas-Fermi model and the last one, 

representing higher-order terms, is chosen, as in [37] to make the binding vanish at A = 1. (The 

number 9.15 is equal to the quantity (a3- 2a~/K), which is the Thomas-Fermi prediction for the 

coefficient of All3). An RMS fit to Eq. (26), in the range A= 15 to A= 240, of an expression 

without the last term, viz., 

gives 

lit= 16.3294, 

a2 = 20.0280, 

c3 = 2.067. 
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The RMS deviation between Eq. (26) and Eq. (27) is only 0.16 MeV! Thus, by increasing a1 

slightly, a2 significantly (by 1.4 MeV) and by decreasing the coefficient of A 113 to a value close 

to zero, one can mock up the missing higher-order term with excellent accuracy, and mask in this 

way the presence of a curvature correction. 

In any case, since our Thomas-Fermi model has a curvature correction of 12.1 MeV and 

gives a good fit to masses, the curvature correction puzzle seems to have been disposed of. 

9. Suggested Interpretation of the Congruence Energy 

In the Thomas-Fermi treatment one evaluates the interaction energy between the fermions 

as if they constituted a structureless, homogenized fluid. In fact, the density of a quantized 

nucleon in a mean-field potential well consists of cushion-like bumps, boxed in by a three­

dimensional lattice of nodal surfaces. The interaction energy between two fermions with such 

modulated, granular density distributions will obviously be somewhat greater-in the case of 

short-range forces-when the two interacting 4ensities have identical (congruent) nodal 

structures, compared to the case _of two uncorrelated densities. As .a qualitative illustration of the 

possible implications of this extra interaction, imagine A originally independent nucleons in a 

mean-field potential, filling the lowest energy states in the usual four independent sub-groups: N 

neutrons and Z protons with spins up and down. (Spin-orbit and Coulomb forces are 
I . 

disregarded.) An elementary calculation, sketched in Fig. 14, shows that the formula for the 

number of nucleon pairs with identical spatial wave functions consists of a leading term 

proportional to A, modified by an even-odd term independent of A, and reduced further by a 

term of the form 

-Alii , 

where I = (N - Z)/ A. (The even-odd term includes a contribution o, where o = 1 for 

N = Z =odd, and zero otherwise.) 
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The interaction energy between a pair of nucleons interacting by short-range forces is 

inversely proportional to the volume-itself approximately proportional to A-in which the 

nucleons are· confined. It follows that the extra binding associated with the presence of 

congruent pairs will consist of a negative contribution independent of A, an even-odd correction 

(including the term o/A) proportional to A-1, and a further positive correction proportional to III. 

In [28] we used the expression 

G = -7Me V exp( -6III) 

=~7+42III+··· MeV, for small I, 
(29) 

to represent the congruence energy (apart from the even-odd correction). The exponential forrri 

of Eq. (29) prevents G from becoming positive, which would violate the physical requirement 

that the congruence energy should represent an extra binding. (This is in contrast to an 

expression simply proportional to IIj.) 

The value of the derivative dG/diii, approximately equal to 42 MeV for small I, is 

suggested directly by the half.:angle of the empirically observed V-shaped binding energy trough 

around N =·Z. The pre-exponential coefficient -7 MeV is much more uncertain. In the final 

stages of our current fits to masses we allowed both the amplitude and the range in Eq. (29) to 

vary, along with the other four effective freedoms in the adjustable parameters (resulting in a 
~ 

search in a six-parameter space). It turned out that the optimum half-angle of the trough was 

indeed close to 42 MeV. The optimum value of the pre-exponential term was close to -10 MeV. 

We consequently adopted for the congruence energy the expression given by Eq. (15). 

The nature of the shape dependence of the congruence energy is an outstanding unsolved 

problem. The extra binding in question reflects in the first place the number of congruent pairs, 

and this depends only on the partition-independent of shape--of the nucleons into the four 

classes: neutrons and protons with spin up and down. The congruence energy might then be 

independent of shape in some average sense. (In the case of the box potential in [26], this 

independence from the box's shape is, in fact, exact in the limit of zero-range forces.) But the 
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shape independence needs one curious topological qualification. When a system divides into 

two pieces, each fragment will have-according to our analysis-a congruence energy 

independent of its mass number, and equal to the original congruen'ce energy. Hence the total 

congruence energy will have doubled. This doubling may actually be traced to the circumstance 

that two originally congruent nucleons in a dividing potential well will (almost always) both end 

up either in one fragment or the other. (Exceptional cases in which a wave function ends up with 

comparable amplitudes in two well separated fragments have negligible probability.) The two 

nucleons will then be exploring a smaller volume and interacting more strongly than before. But 

how, precisely, the doubling of the congruence energy proceeds as the communication between 

the two nascent fragments is suppressed, appears to be an open question. 

The above qualitative considerations, embodied in the semi-empirical Eq. (15), have led 

us to believe that the binding energy trough around N = Z is, to an appreciable extent, a 

reflection of the granularity of the nucleonic densities, and that a refined analysis of fission 

barrier trends provides evidence for the topological doubling of this congruence energy. 

10. Concluding Remarks 

The overall conclusion of this work is simply stated: Applying the 1927 statistical 

method of Thomas and Fermi to nuclei, it is possible to construct a model which reproduces 

closely a wide range of nuclear properties. 

The effective nucleon-nucleon interaction necessary to achieve this is found to depend on 

the particles' relative momentum Pl2 as well as on the density surrounding the particles. The 

momentum dependence is found to be mostly of the Pli kind, with a smaller admixture of a term 

proportional to p[2 . 

After adding shell and even-odd corrections, as well as a semi-empirical congruence 

energy, it is possible to reproduce 1,654 nuclear ground state masses to within an RMS deviation 

of0.655 MeV for N,Z;;::: 8. 
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Having fitted six adjustable parameters of the effective interaction to ground state masses 

and the surface diffuseness, the nuclear RMS radii and the fission barriers of heavy nuclei come 

' 
out very close to measurements without further parameter adjustments. The trend of the fission 

barriers for elements below about Z = 88 may be interpreted as evidence for the expected 

tendency of the congruence energy to double its value as the neck in the saddle-point shapes 

tends to zero. If this interpretation is confirmed, it will lend weight to the hypothesis that the 

term in nuclear binding energies proportional to IN - ZVA arises to a significant extent from the 

stronger interaction between 'congruent' nucleons, characterized by similar nodal structures of 

their wave functions. 

With the nuclear Thomas-Fermi model firmly anchored in a large body of experimental 

data, we expect it to be relatively reliable for extrapolating to various extreme situations, such as 

nuclear and neutron matter, nuclei near the drip lines, as well as superheavy nuclei, including 

bubble and other exotic geometries. Soon we hope to subject our Thomas-Fermi nuclei to large 

centrifugal forces and, eventually, to high temperatures. 
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Appendix A 

Shell and Even-Odd Terms 

For N,Z ~ 30 we took the shell effect from [27], column headed Ernie· These estimates, 

based on the Strutinsky shell-correction method, become unreliable for light nuclei, and are not 

available for the lightest, with N,Z < 8. Accordingly, for N,Z 5 29 we used semi-empirical shell 

corrections S(N,Z) based on [28]: 

S(N,Z) = ~ ( N213 S(N) + z213 S(Z) ]/CA /2)213 , 

where S(X) is listed in Table I. 

For the even-odd term we used for all values of N and Z the expressions from [27] 

(incorporating in this term the correction 30 MeV I A, which is listed as part of the "Wigner 

energy" in that reference). Thus: 

4.8 4.8 6.6 30 N z dd 
· NI/3 + zt13 - A 2/3 +A · = • 0 

4.8 4.8 6.6 
Nand Z odd Nl/3 + zt13- A213 ' 

Even-Odd 4.8 
N even, Zodd 

(in MeV) z113' 

4.8 
N odd, Zeven 

Nll3' 

0, Nand Z even 
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Table I. Shell function derived from the masses of nuclei with equal numbers of 
neutrons and protons [28]. 

Particle Particle Particle 
number X S(X) (MeV) number X S(X)(MeV) number X S(X)(MeV) 

1 -1.779 11 2.835 21 3.240 
2 -1.506 12 1.640 22 3.230 
3 0.238 13 1.895 23 2.583 
4 0.709 14 -{).261 24 1.698 
5 2.364 15 -{).231 25 0.770 
6 -{).693 16 0.656 26 -{).160 
7 -1.329 17 1.053 27 -1.305 
8 -{).449 18 1.568 28 -2.846 
9 2.714 19 1.872 29 -2.214 
10 2.807 20 1.707 
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Appendix B 

Fission Barriers 

The fission barriers in Fig. 9 were calculated as in [23], by solving the Thomas-Fermi 

·Euler-Lagrange equilibrium equations for a density distribution constrained to have a prescribed 

separation between· the centers of mass of its two reflection symmetric halves. By increasing the 

prescribed separation in small &teps away from the sphere one can trace out a deformation energy 

curve along a "fission valley," whose maximum, if it exists, defines the fission barrier for the 

nucleus in question. In practice, this works for nuclei down to about Z = 70-75, but for lighter 

systems the constrained Thomas-Fermi solutions cease to exist at a point where the deformation 

energy is still on the increase, and the fission barrier cannot be deduced from such a plot. 

There do exist solutions to the Thomas-Fermi equations for larger deformations, but they 

correspond to two separated fragments, whose centers of mass are held at the prescribed 

separation. Decreasing the constraining distance along this family of shapes traces out the 

energy along the "fusion valley"·but, except for the lightest systems, the solutions again 

terminate before a maximum has been reached. This phenomenon, an example of a 

"catastrophe" [38], is associated with the fact that saddle point shapes, when arranged according 

to a deformation constraint of the type of a distance between centers of mass, or a quadrupole 

moment, trace out in deformation space an S-shaped curve, The top of the S corresponds, let us 

say, to the fission valley, the bottom to the fusion valley, and the middle, between the two bends, 

to a potential energy ridge between the two "misaligned" valleys [39]. For a range of 

intermediate mass nuclei, the saddle point is on this ridge, and in those cases the energy is a 

minimum with respect to the constraining parameter, the saddle point's instability being 

manifested in one of the other degrees of freedom. The result is that the constrained Thomas­

Fermi Euler-Lagrange equations are now asked to find a solution that is no longer a minimum in 

all the degrees of freedom that are being varied. Arid this, apparently, they refuse to do. 
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We have found a way around this difficulty by the following stratagem. Consider the 

deformation energy V(a,S) to be a function of a constraining parameter e and of the other 

deformation degrees of freedom, represented collectively by a. Write down an expression for 

V(a,S) which interpolates the deformation energy on the inaccessible ridge, between the two 

bends in the S-curve. The simplest such expression is linear in e and quartic in a. (A quartic is 

called for by the requirement that the vanishing of the partial derivative of V with respect to a 

should give an S-shaped cubic for the dependence of eon a.) This interpolating function may be 

reduced to the form 

(B.l) 

where Vo, B, a and b are four parameters to be determined by matching to known properties of 

the deformation energy at the last accessible points along the fission and fusion valleys. The 

algebraic manipulations are explained below, but having determined Vo, B, a, bone may now 

locate by differentiations the saddle point in the deformation energy, Eq. (B.l), with the 

following result for the fission barrier energy V sp: 

where 

Proof: 

(B.2) 

~=~V/4(V- Vx). 

V = (VA + VB) /2 = average of VA and VB, the energies at the last 
accessible (limiting) points in the fusion and 
fission valleys, respectively, 

V x = energy of the intersection point of the tangents drawn at the 
two limiting points A and B, as illustrated in Fig. 15. 

The locus of constrained (conditional) equilibrium shapes is given by 
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(B.3) 

I.e., (B.4) 

· The turning (limiting) points in this S-curve are given by d8/da = 0, i.e., by 

(B.5) 

The energies at these points are 

. 2 a312 1 a2 
VAB=Vo±-B-+--

' 3 .Jb 4 b 
(B.6) 

The derivatives at A and B, defined by 

_dv.......;(,_a(-'-8"'-),8~) = _av _da + _av = _av 
d8 aa d8 a8 a8 

and denoted by VA. B•. are found to be given by 
. ' 

VA.,B = -B + <lA,B . (B.7) 

Relations (B.6) and (B.?) represent four equations for Vo, B, a, b, whose solution gives 

Vo = V -(3/32)!:!VI:!V'/V' (B.8) 

B=-V' (B.9) 

a= (3/2 )I:! V /!:! V'V' (B.lO) 

(B.11) 

where 

(B.12) 
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Finally, a straight line with value VA and slope VA. at A, and a line with value Vs and slope Vs 

at B (the distance from A to B being 28s = 4a312 /3-./b = 1:!. V jVi by Eqs. (B.lO, B.ll)) are 

readily shown to intersect at a point whose energy is 

(B.l3) 

(The location of this point is at 8 = 0.) 

By differentiating Eq. (B.l) the location of the saddle point is found to be 

asp= B , Ssp= aB -fbB3 . (B.l4) 

Inserting in Eq. (B.l) and making use ofEqs. (B.8-B.ll, B.l3) yields Eq. (B.2). 

The location of the saddle point itself may be written in the form 

(B.l5) 

More generally, if the deformation energy is plotted, as in our calculations, against a constraining 

parameter 1:!. related to 8 by a change of origin, the equation for f:!.sp is 

(B.l6) 

Figure 13 illustrates these constructions in the case of the nucleus with Z = 42, N =56. 
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FIGURE CAPTIONS 

Fig. 1. The difference: (measured mass) minus (theoretical mass) for 1654 nuclei. Lines 

connect isotopes. Upper panel based on [27], lower panel on the present model. 

Fig. 2. The compilation of measured optical model potential depths (corrected for Coulomb 

effects and neutron excess [29]) is compared with the Thomas-Fermi formula, Eq. (16). 

Fig. 3. The energy per particle of neutron matter as a function of the cube root of the neutron 

density relative to its value in standard nuclear matter, as given by 4> = (Pn I! po)113. 

The curve is the Thomas-Fermi result, Eq. (20), the squares are theoretical predictions 

from [30]. 

Fig. 4. The Thomas-Fermi charge distributions for 56Fe, 124Sn and 209Bi (solid lines) are 

compared with electron scattering measurements, as represented by fits to the data using 

a Woods-Saxon function (dot-dashed) or a "three-parameter gaussian" (dashed) [31]. 

Fig. 5. The neutron (solid lines) and proton (dashed lines) density distributions for 83Sn, I20Sn 

and I67sn, according to the Thomas-Fermi model. Here and in Fig. 4 a nucleon 

Yukawa form factor with an RMS size of0.85 fm has been folded in. 

Fig. 6. Neutron (open squares) and proton (solid squares) Thomas-Fermi chemical potentials 

for isotopes from 83Sn to 167Sn. 

Fig. 7. The last unruptured nucleus (N = 372, Z ~ 248) and the first bubble nucleus (N = 378, 

Z = 252) in a sequence where A was increased in steps of 10 while (N-Z)/A was held 

fixed at the value 0.2. Here the parameters of the effective interaction were taken from 

[22]. 

Fig. 8. The Thomas-Fermi mass excess without the shell correction (upper entry) and the shell 

correction from [27] (lower entry), for heavy and super-heavy nuclei, tabulated against 

Z and N-Z. The entries in parentheses refer to extremely deformed shapes with 

minuscule barriers against fission. 
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.. 

Fig. 9. A compilation of fission barriers. The fourth column is "Fissility," defined as z2tA(l-

2.2I2). The fifth column gives experimental fission barriers from [40-42]. "Shell" is 

(experimental mass) less (theoretical mass with all corrections except the theoretical 

shell correction). "Congr" is the congruence energy. TF Lower and TF Upper are the 

Thomas-Fermi fission barriers calculated assuming that the congruence energy has 

doubled at the saddle point or that it remained unchanged. "Saddle," equal to "Exp. 

Barr" plus "Shell," is the quantity to be compared with the adjoining theoretical 

predictions. 

Fig. 10. Calculated fission barriers (open symbols) and measurements corrected for ground-state 

shell effects (solid diamonds). The open diamonds are based on the assumption that the 

congruence energy at the saddle point is the same as in the ground state, the open 

squares assume that it has doubled. "Fissility" is defined as z2t A( 1 - 2.2:£2), where the 

factor 2.2 was adjusted so as to make the calculated points follow approximately a 

single curve in the region of the heavy elements. 

Fig. 11. Same as Fig. 10 but extended down to 8Be. The four points around fissility 16-19. refer 

to 90,94,98Mo and 75Br [42]. The other experimental points are from [40-41]. 

Fig. 12; Same as Figs. 10, 11 but for the heaviest nuclei: Th, U, Pu, Cm and Cf. 

Fig. 13. Each set of symbols represents the result of calculating the compressibility of nuclear 

matter with parameters that result in the indicated surface width bo and surface energy 

coefficient a2. (The energy per particle and the radius constant of nuclear matter are 

kept fixed at a1 = 16.24 MeV, ro = 1.14 fm.) The circle indicates the optimum fit 

parameters. 

Fig. 14. Partitions of N,Z nucleons with spin up/down into four groups, and the counting of 

identical pairs in four different situations: even-even, odd-A, odd-odd and odd-odd with 

N=Z. 

Fig. 15. The equilibrium deformation energy for a reflection and axially symmetric 98Mo 

nucleus, constrained to have the centers of mass of its two halves at a separation 
I 
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exceeding by !l the separation for the spherical ground-state configuration. The circles 

follow the fission valley up to the limiting point B. The, triangles follow the fusion 

valley down to the limiting point A. The tangents at A and B cross at X, and Eq. (B.2) 

in the text gives the saddle-point energy V SP in terms of the energies at A, B, and X. 
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·7.82 ·7.87 ·7.89 •7.90 ·8.27 ·7.83 ·7.84 ·7.24 ·7.05 ·8.36 
197.66 11111.49 200.02 202.06 202.79 205.04 205.118 208.43 209.58 212.22 

·8.02 ·8.30 ·8.21 ·8.44 ·8.55 ·8.96 ·8.57 ·8.59 ·8.02 ·7.85 
190.16 190.48 192.63 193.17 195.53 196.29 199.85 199.81 202.57 203.73 

•7.83 ·7.81 •8.07 ·8.30 ·8.62 ·8.70 ·8.98 ·8.58 ·8.63 ·8.08 
183.04 185.00 185.65 187.82 188.68 191.05 192.12 194.70 195.98 198.76 

·1.76 ·8.16 ·8.17 ·8.52 ·8.66 ·8.98 ·9.10 ·9.44 ·9.09 ·9.16 
175.82 178.27 178.55 179.22 181.71 182.59 185.28 186.37 189.26 190.55 

•7.41 ·7.36 •7.74 •7.80 ·8.37 ·9.61 ·9.89 ·9.99 ·9.12 ·8.76 
168.99 171.08 171.86 174.16 175.15 177.66 178.85 181.57 182.97 185.88 

·6.61 ·7.00 ·7.04 ·7.43 ·7.43 ·7.76 ·7.94 ·8.19 ·8.37 ·8.61 
162.06 162.63 165.05 165.84 168.47 169.47 172.30 173.52 176.55 177.97 

·5.62 ·5.75 ·6.19 ·6.23 ·6.63 ·6.64 ·6.99 ·6.93 ·7.29 ·7.44 
155.52 157.75 158.65 161.09 162.20 164.85 166.18 169.02 170.56 173.61 

·5.12 ·5.45 ·5.43 ·5.88 ·5.94 ·6.34 ·6.35 ·6.71 ·6.49 ·6.56 
148.88 149.58 152.13 153.06 155.82 156.95 159.92 161.27 164.44 165.99 

·5.21 ·4.74 ·4.91 ·4.76 ·5.20 ·6.22 ·5.65 ·5.65 -6.01 -5.73 
142.64 145.00 146.03 148.81 149.96 162.64 164.10 157.06 158.75 161.94 
~6.78 ·6.46 ·4.81 ·4.62 ·4.31 ·4.77 ·4.76 ·5.16 ·5.20 ·5.55 

136.29 137.12 139.61 140.87 143.77 145.04 148.15 1411.63 152.04 154.62 
·5.113 ·5.31 ·4.90 ·4.24 ·4.32 ·3.68 ·4.11 ·4.20 ·4.64 ·4.59 

130.36 132.86 134.02 138.72 138.11 141.03 142.63 145.76 147.56 150.69 
·6.17 ·5.64 ·5.26 ·4.113 ·4.11 •4.23 ·4.01 ·3.69 ·3.72 ·4.13 

124.30 125.26 128.09 129.29 132.33 133.73 136.98 138.60 142.05 143.68 
_·5.97 .. _:5~ ·5.18 ·4.59 ·4.23 L_._~.52 ·3.66 ·3.35 ·3.11 ·3.13 



z N A Fissility Exp Barr 

4 4 8 2.00 0.0 

10 10 20 5.00 

20 20 40 10.00 

35 40 75 16.49 36.7 

42 48 90 19.79 41.8 

42 52 94 19.25 45.1 

42 56 98 18.85 45.7 

56 76 132 25.02 

66 94 160 29.19 

71 102 173 31.35 28.0 

73 106 179 32.18 26.1 

75 110 185 ·. 33.00 24.0 

76 110 186 33.52 23.4 

76 111 187 33.47 22.7 

76 112 188 33.42 24.2 

77 112 189 33.93 22.6 

77 114 191 33.84 23.7 

80 118 198 35.17 20.4 

81 120 201 35.59 22.3 

83 124 207 36.42 21.9 

83 126 209 36.35 23.3 

84 126 210 36.84 20.95 

84 128 212 36.77 19.5 

85 128 213 37,26 17.0 

88 140 228 38.35 8.1 

90 138 228 39.36 6.5 

90 140 230 39.30 7.0 

90 142 232 39.25 6.3 

90 144 234 39.21 6.65 

92 140 232 40.28 5.4 

92 142 234 40.21 5.8 

92 144 236 40.15 5.75 

92 146 238 40.11 5.9 

92 148 240 40.07 5.8 

94 144 238 41.12 5.3 

94 146 240 41.06 5.5 

94 148 242 41.00 5.5 

94 150 244 40.96 5.3 

94 152 246 40.92 5.3 
96 146 242 42.03 5.0 

96 148 244 41.96 5.0 

96 150 246 41.91 4.7 

96 152 248 41.86 5.0 

96 154 250 41.82 4.4 

98 154 252 42.76 4.8 

·sheW Congr 

2.28 -10.00 

3.54 -10.00 

1.99 -10.00 

4.82 -7.56 

0.40 -7.56 

-0.07 -6.40 

2.34 -5.49 

0.33 -5.29 

1.24 -4.80 

-0.28 -4.71 

-0.69 -4.61 

-1.70 -4.52 

-1.38 -4.64 

-1.70 -4.56 

-1.89 -4.47 

-1.98 -4.59 

-2.75 -4.43 

-6.32 -4.47 

-8.26 -4.43 

-10.78 -4.35 

-12.28 -4.21 

-10.62 -4.32 

-8.45 -4.18 

-7.51 -4.28 

-0.34 -3.84 

-1.00 -4.13 

-0.94 -4.01 

-0.92 -3.90 

-0.79 -3.79 

-1.53 -4.19 

-1.72 -4.08 

-1.65 -3.96 

-1.50 -3.86 

-1.30 -3.75 

-2.39 -4.14 

-2.36 -4.03 

-2.18 -3.92 

-1.97 -3.81 

-1.72 -3.71 

-3.07 -4.20 

-3.05 -4.09 

-2.99 -3.98 

-2.79 -3.87 

-2.23 ·3.77 

-3.20 -3.93 

Figure 9 
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TF Lower Saddle TFUpper 

3.11 2.28 13.11 

17.77 27.77 

31.42 41.42 

44.22 41.52 51.78 

43.14 42.20 50.70 

46.74 45.03 53.14 

49.54 48.04 55.03 

42.05 47.34 

32.77 37.57 

26.37 27.72 31.08 

23.88 25.41 28.49 

21.24 22.30 25.76 

19.20 22.02 23.84 

19.54 21.00 24.10 

19.89 22.31 24.36 

17.83 20.62 22.42 

18.50 20.95 22.93 

13.66 14.08 18.13 

12.23 14.04 16.66 

9.45 11.12 13.80 

9.97 11.02 14.18 

8.12 10.33 12.44 

8.60 11.05 12.78 

6.84 9.49 11.12 

7.76 8.32 

5.50 5.99 

6.06 6.16 

5.38 6.31 

5.86 6.45 

3.87 4".45 

4.08 4.60 

4.10 4.73 

4.40 4.84 

4.50 4.94 

2.91 3.31 

3.14 3.43 

3.32 3.53 

3.33 3.62 

3.58 3.71 

1.93 2.36 

1.95 2.46 

1. 71 2.55 

2.21 2.62 

2.17 2.69 

1.60 1.84 
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