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Abstract 

Semiclassical Methods in Chemical Reaction Dynamics 

by 

Srihari Keshavamurthy 

Doctor of Philosophy in Chemistry 

University of California at Berkeley 

Professor William H. Miller, Chair 

1 

Semiclassical approximations, simple as well as rigorous, are formulated in 

order to be able to describe gas phase chemical reactions in large systems. 

vVe formulate a simple but accurate semiclassical model for incorporating 

multidimensional tunneling in classical trajectory simulations. This model is based 

on the existence of locally conserved actions around the saddle point region on a 

multidimensional potential energy surface. Using classical perturbation theory and 

monitoring the imaginary action as a function of time along a classical trajectory we 

calculate state-svecific unimolecular decay rates for a model two dimensional potential 

with coupling. The results are in good comparison with exact quantum results for 

the potential over a wide range of coupling constants. 

vVe propose a new semicl~sical hybrid method to calculate state-to-state S­

matrix elements for bimolecular reactive scattering. The accuracy of the Van Vleck­

Gutzwiller propagator and the short time dynamics of the system make this method 

self-consistent and accurate. We also go beyond the stationary phase approximation 

.by doing the resulting integrals exactly (numerically). As a result, classically for­

bidden probabilties are calculated with purely real time classical trajectories within 

this approach. Application to the one dimensional Eckart barrier demonstrates the 

accuracy of this approach. 

Successful application of the semiclassical hybrid approach to collinear reac­

tive scattering is prevented by. the phenomenon of chaotic scattering. The modified 
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Filinov approach to evaluating the integrals is discussed, but application to collinear 

·systems requires a more careful analysis. In three and higher dimensional scattering 

systems, chaotic scattering is supressed and hence the accuracy and usefulness of the 

semiclassical method should be tested for such systems. 
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Chapter 1 

General Introduction 

Chemical reaction dynamics is a fascinating field, full of complexities and 

surprises. As chemists we are interested in understanding chemical reactivity from 

first principles. There are various different levels of detail to understanding chemical 

reactivity, ranging from broad empirical guidelines to the description based on funda­

mental interactions at the atomic level. On the experimental side, we now have the 

capability to probe and study chemical reactions in a very detailed fashion. Recent 

progress in experimental techniques like molecular beam methods[38] and high reso­

lution spectroscopies[39] have led reseachers to measure lifetimes, reaction rates and 

.other interesting quantum state-specific properties of fairly complicated molecules. 

With the advent of ultrashort laser pulses[84] it is also possible to study the real­

time evolution of specific initial states. These experimental advances have provided 

a challenge and motivation for the theoreticians to understand chemical reactions at 

the microscopic level. The task for a theoretical chemist, in my opinion, is to formu­

late models for chemical reactions which lead to valuable insights into the nature of 

chemical reactivity and provide a clear explanation for the experimental results. 

In contrast to the experimental advances, theoretical description of chemical 

reaction dynamics at similar levels of detail is not yet well developed. In principle, at 

the fundamental level, we can certainly write down the Hamiltonian for a complicated 

system and thus the Schrodinger or Hamilton's equation describing the dynamics. 

However, it is an entirely different issue to solve these equations in a rigorous fashion 
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.due to the fact that in any chemical system we have a large number of strongly 

coupled degrees of freedom. Solving the Sch~odinger equation rigorously for several 

strongly coupled degrees of freedom is still out of reach of our current computational 

capabilities. In fact the best we can do is a four atom (six degrees of freedom) 

reaction[44]. In addition, we need accurate ab initio potential surfaces in order to 

perform dynamics in a reliable way. Present levels of sophistication in electronic 

structure theory cannot provide accurate potential surfaces for more than a few atom 

systems. Thus, it becomes very important to consider approximate approaches to 

develop potential surfaces and solving for the dynamics of a complicated chemical 

system. 

There has been a flurry of activities in the recent years in developing effi.­

_cient approximate methods to solve the Schrodinger equation for both gas phase and 

condensed phase reactions. Considerable progress has been made in the theory of 

reactive scattering[41] in order to compute state-specific transition probabilities. The 

S-matrix Kohn variational principle[42] formulation of reactive scattering represents 

a significant advance in our capabilities to calculate state-specific observables for gas 

phase reactions. For the calculation of averaged observables like the thermal rate 

constants and cummulative reaction probabilities, there are many direct approaches 

including the path integral method[5, 74] and methods based on time dependent[47] 

and time independent[44, 46], scattering theory. Path integral methods, based on the 

influence functional idea[62, 85, 12], also have been useful in describing reactions in 

condensed phases. Despite these numerically attractive and ingenious approaches to 

solving the Schrodinger equation, we still cannot go heyond a few atom systems. One 

of the main bottlenecks has to do with the speed and memory limitations of our cur­

rent computing capabilities. It is clear that computers will continue to grow in speed 

and memory size making it possible to provide a realistic description of larger molecu­

lar systems, but we are always interested in carrying out reliable calculations that are 

beyond the capabilities of a fully rigorous quantum treatment. The question is then, 

·are there ways to gain insights into the dynamics of a chemical reaction which are 

computationally straightforward, qualitative and quantitative. From a numerical and 

intutive standpoint, classical mechanics offers such a framework to study reactions of 
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complicated chemical systems. 

1.1 Classical dynamics 

It is well known that classical trajectory calculations are feasible for truly 

complex molecular systems. For example, in the description of reactions in condensed 

phases molecular dynamics simulations play a very important role(86] due to the fact 

that the numerical effort in solving the coupled first order Hamilton's equations of mo­

tion scales linearly with the number of degrees of freedom. Moreover, recent advances 

in our understanding of the foundations of classical mechanics[l9, 87, 88, 89, 8] has 

provided a variety of methods to analyze and gain insights into the classical dynamics 

of complicated systems. Considerable amount of work has been done in understand­

ing the structure of phase space of complicated dynamical systems leading to insights 

on bimolecular and unimolecular reactions[79, 80]. Researchers are realizing that 

clarifying the rich phase space structure of a complicated system can yield valuable 

information about the corresponding underlying dynamics(90, 94]. This is still a 

very active area of research. Nevertheless, a naive use of classical mechanics cannot 

describe processes which are of importance in chemical reactions. An important ex­

ample is tunneling, which dominates the rates at low temperatures when the reaction 

involves light atoms such as hydrogen[!, 4]. 

Let me expand a little on the use of the words naive classical mechanics. 

Ordinarily, we deal with classical trajectories in real time defined via the Hamilton's 

variational principle[19] 

8S[q(t)] = 8 lot dt' .C[q(t'), q(t'), t'] = 0, (1.1) 

where S and .C represent the action functional and the Lagrangian of the system 

respectively. In real time t classical trajectories cannot evolve from one phase space 

region to another equivalent but disconnected phase space region. For example, con­

sider the simple symmetric double well potential. It is easy to see in this case that 

for energies below the barrier height, the phase space is made up of energy manifolds 

which are topologically disconnected. Thus, a real time classical trajecto_ry evolving 
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on one of the energy manifolds cannot continously evolve into the other equivalent 

energy manifold. Hence, tunneling cannot be accounted for in this version of classical 

mechanics. However, notice that in Eq. (1.1) there is no requirement that t be real. In 

fact, interestingly, the consequences of relaxing the constraint of real t leads to tunnel­

ing in this analytically continued version of classical mechanics[91]. Incidentally, the 

analysis of classical trajectories in complex time is linked to certain interesting con-

. jectures about the integrability ofthe corresponding classical Hamiltonian[92, 88]. In 

this thesis, we will be concerned not with analytically continued classical mechanics, 

but with semiclassical extensions of the naive classical mechanics in order to properly 

account for classically forbidden processes in chemical reactions. 

There are other effects like quantum interference, zero point energies which 

are again not explicitly present in the naive classical mechanics. An elegant ap­

proach to build in these effects, keeping intact all of the usual adavntages of classical 

mechanics, is to consider families of classical trajectories as opposed to a single clas­

sical trajectory[9, 93]. Each one of the classical trajectories has assosciated with it 

an amplitude and a phase which are classical quantities and the idea of quantum 

superposition is introduced. Thus, observables are calculated by summing up the 

contributions from each individual trajectory at the amplitude level. By explicitly 

including superposition, we are guaranteed to treat essentially all quantum effects like 

tunneling, interference, quantization and selection rules[9]. We are thus naturally lead 

to semiclassical dynamics in order to construct the precise form of these amplitudes 

and phases. 

·1.2 Semiclassical dynamics 

Semiclass~cal methods are very general and powerful techniques to study 

the asymptotic properties of the solutions to differential or integral equations[93, 60, 

24, 89, 94]. In fact, for any system which can support solutions in the form of a 

rapidly varying phase with a slowly modulated amplitude we can use semiclassical 

·approximations in order to gain insights about the system. For example, semiclassical 

methods are used in such diverse fields like wave propagation in atmosphere and 
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interacting seismic waves. 

As far as this thesis is concerned we will be interested in semiclassical approx­

imations to the non-relativisitc Schrodinger equation. For this case, the semiclassical 

methods yield asymptotic solutions to the wavefunction in the limit that the relevant 

classical actions are much larger than compared to the fundamental unit of action 

n. Semiclassical application to bound state problems has a very long and illustri­

ous history. For example, semiclassical anaysis of the energy eigenfunctions leads to 

the celebrated Bohr-Sommerfeld or Einstein-Brillouin-Keller[23] quantization of the 

energy levels for an integrable system via 

(1.2) 

where C1 is a closed contour on an invariant torus, n1 is the quantum number and /-lj 

is the Maslov index[60]. Quantization of integrable systems is a very well established 

field. The quantization of non-integrable systems is a very different story. Here 

there are no invariant tori in phase space and the relevant objects are periodic orbits 

in phase space as shown in the seminal work by Gutzwiller[89, 95]. However, the 

problem of quantization of non-integrable systems is not a solved problem due to the 

fact that the Gutzwiller approach is not well behaved. Recent progress in this area 

has been pioneered by many people including Artuso[96], Littlejohn[97], Wintgen[98] 

and Berry[99]. The problem also has to do with understanding the consequences of 

non-integrability in the corresponding quantum system. This is still a very interesting 

and active field of research. 

On the other hand, an important contribution to semiclassical analysis to 

molecular collisions was made by Ford and Wheeler[lOO] who showed how elastic 

scattering of atoms could be described semiclassically. Later Miller[9] generalized the 

ideas and provided a very elegant and practical approach to applying semiclassical 

methods to more complicated systems which could undergo inelastic and reactive 

collisions. This classical S-matrix theory shows how to calculate the state-to-state 

S-matrix elements for reactive collisions. The only difficult feature of this theory 

is that taking into account classically forbidden processes like tunneling involved 

complex valued classical trajectories. Nevetheless, in a series of seminal papers, Miller 



CHAPTER 1. GENERAL INTRODUCTION 6 

and George[ll] demonstrated the accuracy of the theory by analytically continuing 

classical mechanics. Despite the success, it was realized that application to truly large 

systems was prohibitively difficult. 

Thus far we have concentrated on semiclassical approximations in the energy 

representation. It is also equally possible to perform the analysis in the time domain. 

The main contribution in this area was by Van Vleck who derived the semiclassical 

approximation to the propagator and Gutzwiller who later derived a more accurate 

version of Van Vleck's results which was valid for longer times[64]. The resulting 

expression is the VanVleck-Gutzwiller approximation[64] 

where Sk is the classical action for the ph classical trajectory, F is the number of 

degrees of freedom and J.lk is the Maslov index (different from the one in Eq. (1.2) ). 

However, the work of Berry et al.[68] raised doubts about the accuracies of semiclas­

sical approximations for long times when the classical dynamics was irregular. They 

linked the failure of semiclassical approximations to the development of complicated 

·phase space structures and demonstrated it by applying to the quartic oscillator prob­

lem. They also provided some estimates of the time scales for which the semiclassical 

propagation could be usefully accurate. This feature of the semiclassical propagator 

seemed to limit its applicability until recently when Heller and Tomsovic[58] demon­

strated accuracy of the approximation to much longer times then that implied by 

Berry et al. It was shown that the semiclassical propagator provided very accurate 

results for strongly chaotic systems even when the corresponding phase space had 

developed incredibily complicated structures. Later, application[58, 59] to mixed sys­

tems sho';Ved similar accuracies and once again the VanVleck-Gutzwiller approxima­

tion was rejuvenated. In a series of papers, Heller and coworkers have demonstrated 

the accuracy and usefulness of the semiclassical propagator. In retrospect, the anal­

ysis of Berry et al. was not quite general as the quartic oscillator example is not the 
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typical case due to some of the special properties of this system. 

To summarize, the semiclassical analysis for bound or unbound systems 

allows us to construct the amplitude and phase assosciated with each classical trajec­

tory. From Eq (1.3), the phase is simply· given by the classical action which satisfies 

the Hamilton-Jacobi equation[19, 88) and the amplitude is related to the stability of 

nearby classical trajectories and satisfies the amplitude transport equation. The am­

plitude also plays the role of a classical probability. In addition to providing physical 

insights into the system, the semiclassical approximations can be usefully accurate 

over a wide variety of situations ranging from completely integrable to strongly chaotic 

systems. The next few chapters in this thesis will demonstrate the usefulness of the 

semiclassical approximations for molecular systems. 

1.3 Outline of the thesis 

The main . theme of this thesis is concerned with semiclassical analysis of 

general multidimensional systems. It is precisely these systems which are of interest 

to us in reaction dynamics due both to their richness and complexity. The problem 

of :finding good conserved actions is intimately linked to the problem of integrability 

or non-integrability of these strongly coupled multidimensional systems. Even for a 

non-integrable system it is possible to :find locally conserved actions around stationary 

points on the corresponding potential surface. It is shown in chapter 2 that these 

locally conserved actions can provide us with a simple but accurate semiclassical 

model for multidimensional tunneling. 

In chapter 3 we make use of the recent ideas put forward by Heller et al. 

to formulate a semiclassical hybrid model for reactive scattering. Again, a better 

understanding of the underlying phase space allows us to go beyond stationary phase 

approximation and obtain the state-to-state S-matrix elements. It is shown that 

within this approach classically forbidden processes are accounted for via purely real 

·time classical trajectories. 

Finally, in chapter 4 we apply the hybrid approach to collinear reactive 

scattering and disc9ver a significant bottleneck due to chaotic scattering. Some sug-
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gestions are offered to alleviate the problem. 
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Chapter 2 

A Semiclassical Model for 

Tunneling 

2.1 Introduction 

Tunneling plays a very dominant role in chemical reactions at low tem­

peratures, especially reactions which involve significant motion of light atoms[!] . 

Isomerization and unimolecular decay are two of the important types of phenomena 

which are quite common in chemistry. In the case of isomerization reactions tunnel­

ing leads to energy splittings of the degenerate states. As far as unimolecula;r decay 

reactions are concerned, tunneling gives rise to finite lifetimes for the metastable 

states through coupling to the continuum[2]. Both the energy splittings and the life­

times are experimentally measurable quantities and indeed experiments have been 

performed on molecules like malonaldehyde and formaldehyde in order to obtain de­

tailed information about the tunneling dynamics of these molecules[3]. Tunneling also 

contributes significantly near and below the threshold region of bimolecular reactions 

involving light atoms, for example 

H2 + X --+ H + H X . (2.1) 

There are many such examples, spanning diverse fields, where tunneling plays an im­

portant role in determining the low temperature behaviour of the system of interest[4]. 
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It is thus important for theoreticians to accurately predict the effect of tunneling on 

rates of chemical reactions. 

Most of the reactions of interest in chemistry involve large molecules. This 

leads to the fact that the tunneling degree of freedom is coupled to the rest of the 

degrees of freedom of the molecule. For example, intramolecular hydrogen atom 

transfer reaction in malonaldehyde, which is a nine atom system, would involve all 

of the 3N - 6 ( = 21) degrees of freedom of the molecule. An exact quantum cal­

culation on such a large system is out of reach of the current theoretical methods. 

At this stage one makes an approximation, albeit a good one, by considering only 

a few modes strongly coupled to the large amplitude tunneling degree of freedom. 

However, all of the recent progress in exact quantum methods still cannot account 

for more than six degrees of freedom. Feynman path integral approaches certainly 

seem promising in extending the capabilities of exact quantum methods due to the 

recent advances in the Monte Carlo methods for evaluation of the path integrals[S]. 

There are a host of approximate quantum approaches like the Multiconfiguration­

Time Dependent-Selfconsistent Field (MC-TDSCF) method[6] which can be applied 

to larger systems than fully quantum approaches but they are still limited. There 

have been considerable efforts to incorporate tunneling corrections to transition state 

theory expressions for thermal rate constants[7]. However, they are not applicable 

to more general dynamical phenomena. On the other hand, classical trajectories are 

easily computed for systems with a very large number of degrees of freedom[8]; but 

naive classical mechanics does not allow tunneling from one classically allowed re­

gion of phase space to another. In order to exploit the attractive features of classical 

mechanics in situations involving classically forbidden dynamics one has to consider 

semiclassical extensions to classical mechanics. 

There already exist semiclassically rigorous theories for multidimensional 

tunneling, for example, the classical S-matrix theory[9] and the instanton (periodic 

orbit in imaginary time) model[10]. However, in both cases one needs to calculate 

classical trajectories in complex time. Miller and George[ll] have analytically con­

tinued classical mechanics and demonstrated its accuracy in the case of the collinear 

H + H 2 reactions. Analytic continuation of classical mechanics to complex times is 
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a very rigorous way of approaching classically forbidden dynamics, but it is numer­

ically very challenging. In particular, application to higher dimensional systems is 

not at all straightforward. The instanton model has gained considerable popularity 

for describing tunneling in both gas phase and condensed phase systems[12]. But 

the instanton corresponds, dynamically, to a zero kinetic energy trajectory on the 

upsidedown potential - which makes it effective to describe only the ground state 

tunneling dynamics. For higher energy states, the instanton model does not perform 

as well. Again, one needs to calculate periodic orbits in imaginary time which be­

comes difficult in situations where the number of degrees of freedom is very large. In 

addition, if the potential has a non-quadratic minimum then the instanton method is 

inapplicable[37]. One should also note that in case of one degree of freedom, the stan­

dard Wentzel-Kramers-Brillouin (WKB) approximation [13] works quite well, however 

a satisfactory generalization of WKB theory for multidimensional tunneling is still 

lacking[37]. Hence, it is of paramount importance to consider simple semiclassical 

models to incorporate tunneling in classical trajectory simulations. It is important 

to realize that, in coming up with simple models at the price of sacrificing a certain 

amount of rigour inherently leads to ad hoc models. 

2.1.1 Earlier models 

There has been a lot of work in the literature dealing with simple models for 

multidimensional tunneling[14]. Most of these simple models involve running classical 

trajectories in the allowed region of phase space and at certain times (tunneling times, 

tn) computing the probability of tunneling, instantaneously in real time, to another 

allowed region of phase space. They are similar in spirit to the Tully-Preston surface 

hopping model[15] for electronically non-adiabatic processes. 

Central to all these models is the determination of 

• Tunneling times, tn 

• Tunneling path, r n 

• Action, On, along f n to determine the tunneling amplitude, e-0n. 

It has to be emphasized that the path, r n, is a nondynamical path. In other words, r n 



CHAPTER 2. A SEMICLASSICAL MODEL FOR TUNNELING 12 

is not a classical trajectory obtained by solving for the Hamilton's equations of motion 

in the classically forbidden region, but some a priori path picked in the coordinate 

space. For example, it could be a straight line path connecting one point in the 

classically allowed region to another classically allowed region. Assosciated with r n 

is also a tunneling direction en. The trajectory is then allowed to tunnel along r n 

in the direction en every time the component of the trajectory momentum p along 

en, p.en, experiences a classical turning point (i.e., goes through zero). Thus, as the 

classical trajectory evolves, at times tn an amplitude for tunneling is calculated and 

a certain amount of probability "leaks out" of the classically allowed region. The net 

tunneling amplitude 

Anet(t) (2.2) 
n 

where 

fJn = ~ Jm in p(q).dq ,·, (2.3) 

is calculated as a function of time. h( TJ) is the usual step function ( = 1 if TJ > 0 

and = 0 if TJ < 0). Anet(t) is then averaged over appr~priate initial conditions to 

obtain the average net tunneling amplitude ( An(t) ). The unimolecular decay rate 

Dr energy splittings are related to the time derivative of ( An,(t) ). These models have 

been used to calculate tunneling splittings and decay rates with a simple straight line 

approximation for r n[16). The results are quite impressive even when the coupling 

between the large amplitude tunneling mode and the rest is so large as to change the 

results by 2 orders of magnitude. 

The choice of r n is very critical to the model. A straight line approximation 

is the simplest possible and motivated by the fact that rigorous theories show that 

the optimum tunneling path is relatively straight in the tunneling region. However, 

one is left wondering if there are ways to allow for more general paths that would lead 

to better results at higher coupling constants. Unfortunately, attempts to generalize 

the straight line path to more general paths do not lead to better results. Worse 

yet, the results seem to deviate significantly from the exact results at even lower 

couplings than the straight line approximation[17). The results are very sensitive to 

the particular path being chosen[18]. The expalnation for this is as follows: Suppose 
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r n were a dynamical path (i.e. J projection of the exact classical trajectory in phase 

space on to the cofiguration space). Then, from well known results from classical 

mechanics[19], one can prove that 

f p(q).dq Jrn (2.4) 

is only a function of the end points and does not depend on the path.· If r n is a 

nondynamical path in configuration space, as is indeed the case with the path in 

the model, then the action will, in general, depend on the path. In addition, the 

straight line path is a one dimensional path which is relatively easy to specify in two 

dimensional cases. InN > 2 dimensions the specification of the direction might not 

be easy let alone unique. Thus, one asks the question- Is it possible to come up with a 

semiclassical model, in the same spirit as the above model, where the tunneling times 

and actions are computed in a dynamically consistent fashion i.e. 1 with no necessity 

of explicitly postulating a nondynamical path in order to calculate the action. 

The next section describes such a model[20] which is simple and satisfies 

all the requirements. Application to a model two dimensional unimolecular decay 

potential and conclusions are described in subsequent .sections. In particular, it is 

seen that the model has the capability of accurately predicting tunneling decay rates 

from specific initial reactant states over a wide range of system parameters. 

' 

2.2 The Semiclassical model 

The starting point for this model is the same as that of the model described 

above in that we adopt a Tully-Preston like approach. The significant difference from 

the previous model[16] is that we adopt a different strategy to determine ()nand tn· In 

.particular, our choice for ()n and tn is dynami.cally consistent i.e. 1 there is no need to 

specify, a priori, a tunneling direction, path or time. The motivation for this choice 

comes from earlier work[21) which showed that good i.e. 1 locally conserved actions 

exist not only around potential minima but also around transition states. This allows 

us to write down a perturbative expression for the tunneling action as a function 
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of the total energy and F - 1 real actions determined in a dynamically consistent 

manner. 

2.2.1 Determination of the tunneling action 

Consider a cartesian, non-separable classical Hamiltonian in F degrees of 

freedom 

H(p, q) = p.p + V(q). 
2m 

(2.5) 

The Hamiltonian is said to be completely integrable[19] if F time independent con­

stants of motion, {fk(p, q), k = 1, ... , F}, exist which are mutually commuting in a 

Poisson bracket sense i.e., 

{ + + } = a !k a fz _ a fk aft = 0 
J k' J 

1 - ap aq aq 8p ' (2.6) 

where k, l = 1, ... ,F. In this case one can perform a canonical transformation to ob­

tain the Hamiltonian purely as function:s of fk, K(f1, ... ,!F)· The classical Hamilton's 

equations of motion take a very simple form 

dgk aK 
dt -

afk 
(2.7) 

dfk aK 
dt -

agk 
= 0, 

where {gk(P, q), k = 1, ... , F} are the variables conjugate to fk· As an example, 

consider the one dimensional harmonic oscillator Hamiltonian 

p2 mw2 
H(p, q) = 2m + -2- q

2 
' (2.8) 

where m and w are the mass and frequency respectively. Performing the canonical 

transformation (p, q) -+ ( J, 'ljJ ), where 

q - . ·'· Sln<p (2.9) 
w 

p - V2mwJ cos'lj; , 

.one obtains the new Hamiltonian 

K(J,'lj;) = wJ. (2.10) 



CHAPTER 2. A SEMICLASSICAL .MODEL FOR TUNNELING 15 

The variables ( J, 'lj;) are referred to as action-angle variables. The equations of motion 

in the ( J, 'lj;) variables are very simple and immediately integrated to give 

¢( t) 

J(t) 

'l/;(0) + wt, 

J(O). 

(2.11) 

However, a generic multidimensional Hamiltonian is nonintegrable and there are no 

global constants of motion. Even if the Hamiltonian is integrable, analytically :find­

ing all the constants of motion is a non-trivial task. In addition, disentangling the 

canonical transformation to obtain the conserved quantities as functions of (p, q) is 

not an easy problem either. Thus, in order to keep the model practical we take a 

perturbative approach to calculate the conserved quantities. If we are dealing with 

an integrable system then the perturbation expansions have a :finite radius of conver­

gence. In the case of nonintegrable systems there are no global constants of motion 

and a perturbation calculation only gives locally conserved quantities1
. Nevertheless, 

progress can be made by considering stationary points on the potential energy sur­

face. Around these points it is possible, in a perturbative sense, to :find action-angle 

variables in terms of which the Hamiltonian involves only the actions. For example, 

around a potential minimum one obtains the following well known result[22] 

H(p,q) --+ H(J,.,P) (2.12) 
F F 

Vo + :L nk Jk + :L Xkl Jk Jl + ... ' 
k=l k<l=l 

where {f!k} are the normal mode vibrational frequencies, and {xk1} are the anhar­

monic constants. In this case one quantizes the actions semiclassically 

Jk = (nk + ~) 1i, (2.13) 

where { nk}, the vibrational frequencies, are non-negative integers. This leads to the 

.semiclassical Einstein-Brillouin-Keller (EBK) [23] vibrational energy levels[24]. The 

important point here is that a similar analysis holds around a saddle point on the 

potential surface as shown in an early work by Miller[21]. 

1 Using the Kolmogoroff-Arnold-Moser (KAM) theorem we can make these statements more 
precise[l9). 
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Around a saddle point it is still possible to :find local action-angle variables 

in terms of which the Hamiltonian is purely a function of the action variables. The 

difference from the analyis around a minimum is that one of the frequencies, nF say, 

is pure imaginary. This corresponds to the reaction coordinate mode. It is easy to see 

that the corresponding action, JF, is also pure imaginary and so are the anharmonic 

constants XkF , k =/:. F. Substituting 

(2.14) 

where, ftF, JF and XkF are real, we obtain the equation corresponding to Eq. (2.12) 

for points around the saddle point as 

. (2.15) 

where 
F-l F-l 

a:(J') Vo + L nk Jk + L Xkl Jk ]z' (2.16) 
k=l k~l=l 

F-l 

f3(J') Op- L XkFJk. 

k=l 

Using the expansion (2.15) we can determine JF as a function of the conserved total 

energy E and F - 1 real actions J'. At this juncture we assosciate J F with the 

tunneling action as follows 

7r -
O(J'; E) = h JF(J'; E). (2.17) 

The tunneling or transmission probability through the transition state region is given 

by 

P(J'; E) = 1 + e20(J';E) · 

1 
(2.18) 

Here we are interpreting B( J'; E) as a multidimensional generalization of the one 

dimensional WKB barrier penetration integral[24] 

j p(q) dq = j dq ..j2m [V(q) - E]. (2.19) 
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-With this interpretation, the tunneling probability in Eq. (2.18) is a uniformly 

valid[24] semiclassical result i.e, it is valid for energies above and below the bar­

rier height. The inversion of the expansion (2.15) is simplified by keeping terms upto 

second order in ]p. A quadratic equation is obtained which can be solved for ]p as 

a function of J' and E 

where 

]p(J'; E) 
2 (a(J') - E) 

,B(J') i(J') 

-y(J') = (1 + 1 + 4xFF~\~?)- E)) . 

(2.20) 

(2.21) 

Hence, we have determined the tunneling action where the path is a dynamical path, 

in a perturbative sense, in the full phase space of the system. Note that the actions 

are not globally conserved anymore but conserved only in a local sense. 

It is worthwhile pointing out that in this model we can exploit the recent 

advances in ab initio quantum chemistry to determine normal mode frequencies and 

anharmonic constants. Handy and coworkers have shown how the analytic second 

derivative methods of ab initio quantum chemistry (including the effects of electron 

correlation) can be used to accurately determine the nk's and xk1's[25]. Given a set 

of frequencies and anharmonicities for a molecule about the transition state, it is 

possible to calculate the tunneling probabilites through the transition state in order 

to determine microcanonical and canonical transition state theory rate constants. 

This particular model is then a transition state based theory. Application to several 

systems of interests like unimolecular decay reaction of deuterated formaldehyde and 

collinear H + H 2 reaction has yielded accurate results[26]. In our present model we are 

running classical trajectories combined with perturbation theory in order to calculate 

tunneling probabilities. Thus in additon to the frequencies and anharmonicities we 

also need a potential surface to run the classical trajectories2
. In this fashion we are 

explicitly including the underlying complicated dynamics of the system. 

20btaining a global potential energy surface for a multidimensional system is very difficult if not 
impossible. It can be argued that for this model based on locally conserved actions, only part of 
the potential, regions around transition states, would be necessary. There is a lot of interest in the 
chemical community to build up potentials based solely on force constant data. Perhaps for a large 
molecule this model can be applied without the need for a global potential surface. 
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The results in this section have been derived by performing classical Lie 

transform[27] perturbation theory on our original Hamiltonian. We can quantize 

the actions J' semiclassically as in Eq. (2.13) and interpret them as the quantum 

numbers for the states of the activated complex. Similar results can be obtained by 

taking the corresponding quantum Hamiltonian and performing canonical Van-Vleck 

perturbation theory[28] on the Hamiltonian. The details of the perturbation method 

are presented in the appendix to this chapter. However, in this model we want to be 

consistent by calculating everything as a function of the trajectory evolving in the 

classically allowed region of phase space. 

2.2.2 Determination of the tunneling time 

We make use of our locally conserved actions to determine the tunneling 

time. We run a classical trajectory in the allowed region of phase space under the 

exact multidimensional potential. The barrier action J F is a function of the classical 

trajectory (p(t),q(t)) through the canonical transformation (p,q)--:+ (J,'f/J). The 

time dependence of J F is monitored along the exact classical trajectory. If J F were 

globally conserved then we would see a trivial dependence on time i.e. 1 ]p(t) = ]p(O). 

However ]pis only locally conserved which results in the fact that it is approximately 

conserved in the vicinity of the saddle point and far from being conserved away from 

the saddle point. Figure 1.1 shows such a plot of Jp being conserved at certain times 

along the trajectory. The tunneling times are chosen to be that when ]p is locally 

conserved (stationary) in time. 

This completes the description of the model. To summarize, one first per­

turbatively works out the locally conserved transition state action, ]p, as a function 

of cartesian variables (p, q). Along the classical trajectory we monitor the values 

of ]p(t) = ]p(p(t),q(t)), and a tunneling time is signaled by the stationarity with 

respect to time of ]p(t). At these times the trajectory is allowed to hop or tunnel 

with a probability given by Eq. (2.18) and the net tunneling probability Pnet(J'; E, t), 
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Figure 2.1: Shown here is a typical behaviour of ]p as a function· of time and a 
tunneling time is indicated corresponding to the conserved value of ]p. The inset 
shows a typical plot of the averaged net tunneling probability, ( Pnet(J'; E, t) ), as a 
function of time. 
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neglecting back reaction, 

Pnet(J'; E, t) = L h(t- in) P(J'; E), (2.22) 
n 

is calculated along the trajectory. Averaging Pnet( J'; E, t) over appropriate inital 

conditions yiel~s the average net tunneling probability, (Pnet(J';E,t)). The rate 

constant for a unimolecular decay reaction is given by 

kuni = ! ( Pnet(J'; E, t)). (2.23) 

In the next section we apply this model to a two dimensional coupled uni­

molecular decay potential to demonstrate the accuracy of t~e model for predicting 

state-specific decay rates. 

2.3 kuni for a model potential 

Our model potential is of the form 

( ) 1 2 1 3 1 2 ( cq1 ) 
2 

V ql' q2 = 2 aq1 - 3 bq1 + 2 mw q2 - mw2 ' (2.24) 

where the parameters a and b were chosen to correspond to a barrier height of 

7.4 kcal mol-1
, the mass m taken to be that of a hydrogen atom, the harmonic fre­

quency, w, was chosen to be 300 cm-1 , and cis the coupling constant. These values are 

typical of hydrogen atom transfer reactions. The perturbation calculation determin­

ing the locally conserved transition state actions as a function of cartesian variables 

was carried to second order using Lie transform perturbation theory3 . 

2.3.1 Choice of initial conditions 

We want to calculate unimolecular decay rates from metastable (quasi­

bound) initial states. We thus need to choose initial conditions for the classical 

trajectories that lie on a quantizing torus (I11 I 2), corresponding to our Hamiltonian, 

3See appendix. 
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and average over all initial angles ( ~1 , <P 2 ). In other words, a given specific metastable 

state corresponds semiclassically to a KAM torus4 [19). 

A rigorous way of doing this is to use the method of adiabatic switching [29). 

In this method, initial conditions are chosen from an appropriate KAM torus of some 

zeroth order Hamiltonian H0 , with the corresponding angles unformly distributed 

over the interval [0, 21l' ). The remaining part of the Hamiltonian, H - H0 , is treated 

as a perturbation. Now the trajectories are allowed to evolve under the following time 

dependent Hamiltonian 

H(t) = Ho + A(t) (H - H0 ), (2.25) 

where A(t), the switching function, starts out at zero and reaches unity at some later 

timeT, the switching time. The principle of adiabatic invariance[30) guarantees that 

the actions remain approximately constant during the switching process whereas the 

energy changes to the correct value. At time T we have the correct KAM torus 

from which the initial conditions for our calculations are chosen. Our choice for 

H0 included the kinetic energy terms and an harmonic approximation for V(qb q2) 

about the minimum. The anharmonicities constitute the perturbation term which is 

switched on by using 
t 1 [21l't] A(t) = -- -sin - . 
T 21l' T 

(2.26) 

At the end of the switching process the time t is set equal to zero and the equations 

of motion are integrated with the full potential. 

We have used another simpler procedure to choose initial conditions from 

the appropriate KAM torus. In this scaling method [31) initial conditions are chosen 

from an appropriate KAM torus corresponding to a zeroth order H 0 , with the initial 

angles uniformly distributed over the interval [0, 21l'). We then rescale the harmonic 

initial momenta accordingly to achieve the necessary energy corresponding to the 

specific inital metastable state. This scaling procedure, though less rigorous as com­

pared to the adiabatic switching method, is much more easily implemented in a truly 

large system. Adiabatic switching techniques are difficult to routinely apply to large 

systems. 

4The assumption here is that the dynamics is regular. 
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We performed the calculations described in this section with both methods 

and the differences were negligible. 

2.3.2 Results and Discussion 

The unimolecular decay rates for specific initial states were calculated using 

Eq. (2.23) where the averaging is done over the angle variables corresponding to 

the appropriate KAM torus. In order to compare our results to the exact quantum 

results, we computed the width of the metastable states using the method of complex 

scaling[32]. The q1 coordinate was rotated as q1 ---+ q1 eicr, while the q2 coordinate 

remained real. The resulting complex scaled Hamiltonian was diagonalized in a real 

basis set and the complex eigenvalues 

(2.27) 

which were stable under change of the scaling angle a were identified as resonances. 

The decay rate is then given by 
£· 

kuni = n• (2.28) 

Shown in figures 2.2, 2.3, 2.4 are the semiclassical kuni along with the ac­

curate quantum results for various initial states as a function of the energy of the 

state. For the specific parameters chosen for our model potential there are about 

seven bound metastable states. As the perturbation calculations were done about 

the saddle point the model is not expected to perform as well for states lying far 

below the barrier. However, as a test we calculated the rates for all the metastable 

states. In the figures ( n1 , n2 ) denotes the specific initial reactant state for which the 

calculations were done where n 1 corresponds to the reactive, q1 , mode. Each point 

was averaged over 1000 trajectories, but the results are reasonably converged with as 

few as a couple of hundred trajectories. 

In the case of figure (2.2) with zero coupling constant the semiclassical results 

compare very well with the exact quantum results. This is to be expected since for 

c = 0 the system is integrable and effectively an one dimensional problem. The 

perturbation calculation combined with the uniformly valid tunneling probability 
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Figure 2.2: Unimolecular deacy rates for specific reactant quantum states (nt, n 2 ) as 
a function of the energy of the state. The coupling constant c is equal to zero. Each 
point is averaged over 1000 trajectories. Notice the strong mode specificity between 
the states (0, 4) and (1, 0). 
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Figure 2.3: Unimolecular decay rates for coupling constant c = 0.001 au. Each point 
is averaged over 1000 trajectories. Strong mode specificity still persists at this value 
of c. 
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rates are purely a function of the total energy. Also note the nontrivial dependence 
of rate at high energies i.e., (0, 5) state has a lower rate than the (1, 0) state. This 
feature is also predicted by the semiclassical model. 
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of Eq. (2.18) is as good as the WKB result. For the case of moderate coupling, 

c = 0.001 au, in figure (2.3) the semiclassical model again performs well for all low 

lying states. For both c = 0 au and c = 0.001 au we see a strong mode specificity 

in the decay rates. As an example, for the moderate coupJ.ing case the states (0, 4) 

and (1, 0) differ in energy by less than 0.1 kcal mol-1 but the corresponding rates 

differ by almost two orders of magnitude. Our model is successful in describing this 

mode specific effect. There is a lot of interest in mode specific chemistry[36] and it is 

significant that our simple model can a:ccount for this effect. Figure (2.4) shows the 

results for the highest coupling constant, c = 0.005 au. There is no mode specificity 

and the rates are almost a function only of the total energy of the system. The 

semiclassical rates agree very well with the exact rates for states close to the barrier. 

For states far below the barrier the agreement with exact values of tlie rate are not 

as good since the second order perturbation results at this high coupling are not as 

.reliable. Note the slight decrease in the decay rate of the state (0, 5) relative to the 

state (1, 0). This nontrivial feature is also successfully captured by the semiclassical 

model. It is impressive to note that the semiclassical results in the worst case are off 

from the exact quantum rates by a factor of two. 

_2.4 Concluding remarks 

In this chapter we have outlined a semiclassical model for multidimensional 

tunneling which is based on locally conserved actions. The model performs very well 

in predicting unimolecular decay rates from specific initial reactant states. More sig­

nificantiy~ it is dynamically self-consistent and requires fewer ad hoc assumptions in 

order to define it as compared to earlier models for tunneling. As the tunneling ac­

tions and times are determined in a dynamically consistent fashion, this model has 

the ability to directly incorporate the underlying, presumably complicated, dynamics 

of the system of interest. In the present version it is possible to exploit the informa­

tion around stationary states on the potential surface provided by ab initio quantum 

chemistry calculations. This model certainly seems to show promises of applicabil­

ity to real chemical systems where the tunneling motion of hydrogen atoms is an 
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important aspect of the reaction dynamics. 

2.4.1 Comments on the choice of tn 

It is satisfying to note that the semiclassical model described above is capable 

of obtaining reliable tunneling decay rates for specific reactant states. However we 

have not addressed the question as to why does this perturbative model give such 

encouraging results even though the dynamics is nonintegrable. In this section we will 

attempt to answer the question which, in turn possibly leads to a clearer mathematical 

and physical basis for our choice of the tunneling action and times. 

Realizing the hopelesness of finding a canonical transformation, or a series 

of canonical transformations which would reduce our Hamiltonian to a function of 

actions alone, we put forward a perturbative model. In order to be of practical utility 

the perturbation series is truncated at a certain order. Note that the formal pertur­

bation series almose always diverges. The resulting truncated Hamiltonian allows us 

to study the behaviour of the system of interest over an appreciable period of time 

for inital conditions close to the point in phase space z0 about which the pertur­

bation is done[19]. In other words, by truncating the perturbation series we have 

replaced our original nonintegrable Hamiltonian with an integrable one5 . This makes 

sense as locally every Hamiltonian is integrable6
• However, it would be erroneous to 

. calculate observables corresponding to our original Hamiltonian by doing dynamics 

on the truncated, integrable Hamiltonian. This is because trajectories which lead to 

important contribution could have initial conditions which are nowhere close to the 

region around which the perturbation analysis was performed. This error would be 

especially serious for tunneling which is inherently an observable corresponding to 

long time dynamics. Thus, the classical dynamics must correspond to the original 

Hamiltonian and when the exact trajectory is in the neighbourhood of z0 the corre­

sponding actions and energies are approximated well by the perturbation analysis. In 

fact in the time interval when the imaginary action is approximately conserved, the 

5We are assuming for the argument that there are no resonances. In presence of resonances the 
argument can be suitably modified. 

6 This is the celebrated Darboux's theorem in classical mechanics[19]. 
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Figure 2.5: In the main figure ]p(t) is shown as a function of time. The inset shows 
the exact trajectory energy E (dashed line) and the perturbative energy Epert (dotted 
line) as a function of time along the same trajectory. Notice that Epert and ]p(t) are 
locally conserved in the same time interval. In that interval the system is locally 
integrable. 

value of the truncated Hamiltonian is very close to the exact energy of the trajectory. 

In that particular time interval it is plausible that there exist F locally conserved 

quantities which render the dynamics locally integrable. For example, as shown in 

figure 2.5, in our two dimensional model case presented earlier the two conserved 

quantities happen to be J F and the value of the truncated Hamiltonian Epert. The 

teal action is not conserved except at very low coupling constants. 

At this stage we will briefly consider the rigorous approach to tunneling 

based on analytically continued classical mechanics[ll]. In a conservative one dimen­

sional system, which is always integrable, it is relatively simple to calculate tunneling 

actions by considering complex time trajectories. In fact one can choose a proper 
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contour in complex time plane to keep the coordinate real. However, for a general 

multidimensional nonintegrable system it is not possible to keep all of the coordinates 

real but one. Thus there is no way to avoid dealing with complex valued trajectories. 

Suppose the multidimensional F degree of fr~edom system is indeed integrable and 

all of the constants of motion are known. In this case it is still possible to keep all of 

the coordinates real because one has F independent time like parameters which can 

be chosen appropriately to keep the trajectory real7
. What happens in the situation 

when we do not have global contants of motion but only local constants of motion? 

This is exactly where the connection lies to our semiclassical model described in this 

chapter. In our model we do have, over a certain time interval, a locally integrable 

system and we know the corresponding locally conserved quantities. We then use 

the values of various dynamical quantities along the numerically exact trajectory in 

-that time interval to determine, perturbatively, the tunneling action. Our model has 

implicitly chosen the right branches and the correct tunneling action to that order in 

perturbation theory. This is perhaps some justification for our choice of the tunneling 

time and the action. 

.2.5 Appendix I: Classical perturbation theory 

Classical perturbation theory has a long illustrious history going back to 

Poincare and Von Zeipel. Reports on progress in perturbation theory applied to 

systems where they fail and do not fail can be found in the articles by Chirikov[33] 

and Cary(27]. In this appendix we will give a brief introduction to Lie transform 

perturbation theory 8 which is a more efficient method utilizing the natural structure 

assosciated with infinitesimal canonical transformations. In particular, the detailed 

differences between previous methods and Lie transform methods will not be pre­

sented. 
7 For example, these could be the angle variables on the KAM torus in phase space. Remember, 

for a harmonic oscillator .,P(t) = .,P(O) + w t. 
8 Most of this appendix relies heavily on the unpublished notes of Prof. Littlejohn. 
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2.5.1 Notations 

In order to keep the presentation clear. we will adopt the following nota­

tions. Any point in phase space is ~enoted by z = (p, q). We introduce a 2F x 2F 

antisymmetric matrix r given by its partition into fou.r F X F matrices 

(2.29) 

With this notation we can write down Hamilton's equation of motion as 

dz = r. aH 
dt az . (2.30) 

We will also use a notation for Poisson brackets given by 

{ A B} = 8A . r . 8B 
' az az' 

2F aA as 2F 

L arkla = L A,krkzB,z, 
k,l=l Zk Z[ k,l=l 

(2.31) 

where A and B are some functions on phase space. Notice the notation we are 

using for derivatives of functions on phase space with respect to the coordinates. In 

particular, the Poisson brackets of the coordinates among themselves are just the 

components of the matrix r' 
(2.32) 

2.5.2 Transformation operators 

In this section we will obtain an operator representation of a canonical trans­

formation. We will assosciate a canonical transformation z' = Z(z) with an operator 

T, defined by 

(T f)(z) = f(Z(z)), (2.33) 

· which is written as 

Tf=foZ, (2.34) 
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where o is the operation of composition. T is an operator which maps old functions 

into new functions, in terms of which we can write the transformation of Hamiltonians 

in the form, 

H(z) K(z') - (K o Z)(z), (2.35) 

or, 

(2.36) 

Note that T transforms the new Hamiltonian K into the old one Hand not the other 

way. The inverse transformation of z' = Z( z) is written down as 

z = Y(z'). (2.37) 

It is easy to check that 

YoZ=ZoY=I, (2.38) 

where I is the identity function i.e.,h(z) = Zk for all z. 

Using Y we can define the inverse transformation operator as 

(T-1 J)(z) = f(Y(z)). (2.39) 

If we now compute the action of T T-1 on a function f by evaluating at a point z 

then we get the function back. Hence, T T-1 = I is the identity transformation. 

Now let us consider a canonical transformation Z(z, E) which is a solution 

of the following Hamilton's equation 

azk(z, €) 
BE = rkl W,t(Z(z, E)), (2.40) 

where w is the "Hamiltonian" and € is the variable of evolution. The function w 

is not the real Hamiltonian, but a function used in Hamilton's equations to gener­

ate a canonical transformation. This is in direct analogy with the usual situation 

when the real Hamiltonian is used to generate time evolution which is a canonical 

transformation[19]. Just as the Hamiltonian is called as the generator of time evolu­

tion, we will call w as the Lie generator of the canonical transformation z = Z(z, €). 
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The initial conditions for Eq. (2.40) is Z(z, 0) = z for all z. Given this € dependent 

canonical transformation, we associate an € dependent operator, 

(T(E) f)(z) = f(Z(z, E)). 

Differentiating both sides of Eq. (2.41) with respect to € we have 

(d~~€) 1) (z) - J,I(Z(z,E)) az~:,E) 
f.I(Z(z, €)) rlk W,k(Z(z, €)) = {j, w }(Z(z, €)) 

(T(E){j, w} )(z) = -(T(€) Lwf)(z). 

This holds for all z and f and hence we have 

d~~€) = -T(E) Lw, 

(2.41) 

(2.42). 

(2.43) 

which is an operator equation. Assuming that Lw is independent of E, i.e., w has no 

explicit dependence on € we can integrate Eq. (2.43) easily to obtain 

(2.44) 

A canonical transformation expressed in this form is called a Lie transform. Equation 

.(2.44) is an operator representation of a canonical transformation. 

2.5.3 Perturbation series 

To get explicit formulae connecting old and new variables we use the fact 

that 

(T( E) I)(z) = Z(z, E), 

and use Eq. (2.44) by expanding the exponential to obtain 

€2 
Z(z,E) = z- E{w,z} + 2 {w,{w,z}}- .... 

(2.45) 

(2.46) 

Similar equation is obtained for the inverse transformation. The transformed Hamil­

tonian K = r-1 His obtained to required order in € by expanding both Hand K 

in powers of € 

€2 

= (I + € Lw + 2 L! + ... ) (2.47) 

x ( Ho + € H1 + E
2 H 2 + ... ) . 
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Equating powers of € on both sides of Eq. (2.47) we get 

0(€0) : Ko Ho 

0( €1) : !{1 H1 + LwHo 

0( €2) : !{2 1 2 
H2 + LwH1 + 2LwHo. (2.48) 

For example, H0 would correspond to a solvable Hamiltonian. 

Suppose now that our original Hamiltonian H was expresses in terms of the 

action-angle variables. These action-angle variables correspond to the solvable H0 . 

The aim here is to choose the generating function w such that our new Hamiltonian at 

0( €) is independent of the angle variables and w itself is independent of secular terms 

in the angles. Secular terms are terms which are unbounded in time. For example, 'ljJ 

is a secular term and sin( 'ljJ) is not secular. Thus the presence of secular terms causes 

the perturbation solution to diverge from the true solution at long times. In order to 

. satisfy these requirements, say at 0( €1 ), the following choice of K 1 and w is made 

(2.49) 

where H 1 and H1 denote the average and oscillatory parts of H1 respectively. They 

are defined as 

(2.50) 

A more efficient way is to slightly generalize our transformation operator to 

(2.51) 

where we are now doing a sequence of transformations and each one comes with its 

own Lie generator Wj ~ Lj. We can write down the new Hamiltonian as 

(2.52) 
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This version of Lie transform perturbation theory is very similar to canonical Van­

Vleck perturbation theory(28] for the quantum analog of our classical Hamiltonian. 

In particular, if we make the formal Dirac quantization[34] of the Poisson bracket 

(2.53) 

where 

(2.54) 

is the usual quantum commutator, then we can write the quantum analog of Eq. 

(2.52) as 

(2.55) 

Continuing the analysis along similar lines as described above we can get the new 

Hamiltonian to the desired order in E. Again, at each order the generating function 

is chosen such that the new Hamiltonian at that order does not depend on the angles 

and there are no secular terms in the generating function. 

2.5.4 Simple example 

In this section we will apply Lie transfrom perturbation theory to a simple 

·one dimensional example. The Hamiltonian is 

1 3 -q 
3 

(2.56) 

This is just the uncoupled case of our two dimensional model Hamiltonian considered 

in this chapter. For clarity the parameters have been scaled to unity. The maximum 

for this potential is at q t = 1. Around this maximum we can write our Hamiltonian 

as 

h(q,p) 
1 

H(q,p) - 6 
1 2 1 t)2 1 ( t 3 - p + - (q - q - - q - q) . 
2 2 3 

Now we make the following action-angle transformations 

p -I2J cosV; 

(2.57) 

(2.58) 
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Hence we can formally write our Hamiltonian in terms of these action-angle variables 

as 

(2.59) 

where e is a formal perturbation parameter and 

(2.60) 

It is clear that at 0( e0
) 

I<o = Ho = J'. (2.61) 

J' is the corrected action. To zeroth order it can be replaced by J. Similarly for the 

corrected angle 'lj;'. (J','Ij;') can be obtained from Eq. (2.46). At O(e1) we obtain 

- hl = 0 (2.62) 

1 ( ') 3 ( 1 ') 

36 
2 J 2 cos3'lj; - 9 cos'lj; . 

Hence we have to go to 0( e2 ) in order to get the first correction to our Hamiltonian. 

At this order the relevant equation is 

(2.63) 

In our example, hn = 0 for all n > 1 and I<1 = 0. We get the following results at 

O(e2
) 

~ { w h } - - ~ J'2 
2 I, 1 - 12 

-
4

1

8 
J'2 (8 sin2'1j;' + sin4'1j;') . (2.64) 

We can easily continue this analysis and at O(e4
) obtain the new Hamilton~an as 

l{ = J' - ~ J'2 - 235 J'3 
12 432 ' 

(2.65) 

where we have set the formal perturbation parameter e = 1. Now the action J~ is 

pure imaginary as we are doing perturbation around the barrier. By substituting 

1 , = in 8 
' 7r 

(2.66) 
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and inverting Eq. (2.65) we obtain the barrier penetration integral () for our example 

problem as 

() ~ - -I< + -I< - -I< . 7r [ 5 2 385 3] 
n 12 432 

(2.67) 

By identifying I< = ( E - ~) we can prove that the resulting () is the same as that 

obtained from approximations on the usual definition of the one dimensional barrier 

penetration integral[35]. 
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Chapter 3 

Semiclassical Scattering Theory 

·3.1 Introduction 

Chemical reactions at the most fundamental level are scattering processes 

z. e., collision between two chemical species leading to products. For example, the 

bimolecular reaction 

(3.1) 

involves a hydrogen atom colliding with a water molecule to give hydrogen molecule 

and hydroxy radical as products. As chemists we are interested in obtaining the 

rate of a chemical reaction and the effect of various vibrational-rotational couplings 

of the reactants on the rate. The advent of modern experimental techniques which 

include molecular beam methods[38] and high resolution spectroscopies[39] has made 

it possible to measure the rates of chemical reactions in a very detailed fashion. These 

experimental advances have provided a great impetus for theoreticians to calculate 
\. 

rates of chemical reactions from the fundamental viewpoint of scattering theory. 

The most detailed characterization of a bimolecular reaction is obtained by 

computing the scattering matrix (S-matrix) for the chemical reaction. The S-matrix, 

Snp,nr(E), gives the amplitude for reaction at a total energy E. The quantum numbers 

Dp and Dr characterize the internal asymptotic states of the products and reactants 

respectively. For instance, in Eq. (3.1), Dr describes the initial vibrational states of 

the water molecule. Once the S-matrix for a reaction has been calculated, the thermal 
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rate constant is given by[40] 

k(T) = 1i~ ( ) joo dE e-f3E N(E), 
27r r T -oo 

(3.2) 

where f3 = (kBT)-I, kB is the Boltzmann's constant, and Qr(T) is the reactant 

partition function including relative translational motion, per unit volume. The mi­

crocanonical cummulative reaction probability N(E) is defined as[40] 

N(E) = 2:: 2:: 1Snp,nr(E)I2
. (3.3) 

np nr 

In recent years, considerable amount of progress has been made i~ the 

methodologies for calculating the S-matrix via exact quantum reactive scattering 

(QRS) theory[41]. The S-matrix Kahn variational principle (KVP) formulation of 

QRS[42] represents an important milestone as far as exact quantum approaches to 

reactive scattering are concerned. However, the computational effort required in these 

exact approaches in order to calculate the entire S-matrix is considerable. This nu­

merical bottleneck, despite ingenious numerical strategies, has prevented applications 

to more than three atom systems. On the other hand, the fact that k(T) and N(E) 

are average quantities leads one to believe that it must be possible to calculate them 

directly without obtaining the full S-matrix for the system of interest. This impor­

tant observation has led to dramatic advances in the theory of reaction dynamics for 

calculating the rates for much larger systems. Miller, Schwartz and Tromp proposed 

a method based on flux-flux correlation functions[43] in order to directly calculate 

k(T). More recently, a whole range of direct methods[44] have been put forward to 

directly compute N(E). In all of the direct methods to calculate N(E) the central 

'object of interest is the outgoing wave energy Green's function G+(E). The aim is 

to obtain a convienient, well-behaved representation of G+(E) which has numerically 

attractive features. In the recent methods this is achieved by using a discrete variable 

representation[45] for the Hamiltonian with absorbing boundary conditions (DVR­

ABC)[44, 46]. This makes the resulting Hamiltonian matrix sparse which can now be 

dealt with by using iterative techniques[48]. Investigations in these directions have 

led to a very promising approach for calculating k(T) for large systems[49]. 
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It is important to realize that the significant advances in rigorous quantum 

mechanical calculations are not only due to these new developements in theoretical 

methodologies but also due to continued increase in computational power. It is now 

possible to calculate k(T) and N(E) for four atom systems. In fact the most complex 

reaction that has been described rigorously (i.e. in its full dimensionality, six degrees 

of freedom) is H2 + OH - H + H 2 0(50]. Even for these direct calculations, going 

beyond four atom systems warrants new numerical techniques and better computing 

machines. It is important to note that in order to perform reaction dynamics, classical 

or quantum, we require global ab initio potential energy surfaces which, with current 

ab initio technologies, are limited to a few atom systems. Nevertheless, from a purely 

numerical standpoint the memory requirements for an exact calculation on a system 

with greater than four atoms is very large. However, it is well known that performing 

classical trajectory calculations on large systems is not. memory intensive. This has 

led to a considerable amount of work in the area of quasiclassical trajectories based 

scattering calculations[51]. In most cases quasiclassical trajectory calculations have 

preceded exact calculations in order to obtain rates and cross-sections for reactions(51, 

52]. These calculations, despite their importance as far as to provide a qualitative 

and semi-quantitative description of the reaction, have some significant drawbacks. 

One of the drawbacks is that they cannot account for classically forbidden processes. 

This implies that close to the reactive threshold the calculations are not very reliable. 

The other significant, long standing problem in classical trajectory calculations is the 

zero point energy problem(53]. In quasiclassical trajectory calculations this is taken 

care of by rejecting those trajectories which lead to products with the wrong zero 

point energies. This is the best that can be done as to date there is no consistent 

and practical way of including zero point energy effects in quasiclassical trajectory 

simulations (54]. 

One way to overcome the drawbacks mentioned above is to use semiclassical 

methods. Semiclassical dynamics can account for classically forbidden processes and 

incorporate the correct zero point energies. At the same time the rest of the attractive 

features of classical trajectory simulations are kept intact. Of course there is a price to 

be paid i.e., now the amplitudes and phases assosciated with each classical trajectory 
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have to be calculated. There already exist semiclassical theories which have had 

considerable success in calculating reaction rates. Of these theories, classical S-matrix 

theory[9) developed by Miller has a special place in semiclassical dynamics due both 

to its elegant formulation and applicability. In traditional S-matrix theory classically 

forbidden processes are handled by complex valued trajectories[ll). This feature is 

perhaps the only one that limits its applicability to large systems wherein tunneling 

plays a significant role. However, as it will be demonstrated in this chapter, it is 

possible to alleviate the problem if the stationary phase approximation is not imposed 

on the classical S-matrix theory. For a complex system consisiting of many strongly 

coupled degrees of freedom it is plausible that an entirely semiclassical theory would 

not perform very well. An attractive possibility is to come up with a hybrid method 

which would combine an accurate quantum treatment of the few strongly coupled 

degrees of freedom with a semiclassical treatment of the rest. In this fashion we 

would be using the information from a reduced dimensionality quantum calculation 

and semiclassically correcting for the weakly coupled degrees of freedom that were 

ignored in the quantum calculation. In addition, if the weakly coupled modes are 

approximately harmonic then semiclassical approaches are essentially exact. Feynman 

path integral methods[5) offer one approach for devising methods of this type, as does 

the time-dependent self-consistent field (TDSCF) method[6, 56). 

In this chapter another approach for combining an approximate quantum de­

scription with a semiclassical approximation is described[55). This approach is based 

on time-independent scattering theory. The motivation for this method is due to the 

recent work of Heller and coworkers[58). They showed that primitive semiclassical 

approximations can be surprisingly accurate, even for long times and in situations 

where the classical dynamics is chaotic. The results for a nontrivial test problem 

indicate that it is indeed possible to accurately correct an approximate quantum cal­

.culation within this semiclassical approach. Interestingly enough, contributions due 

to tunneling are accounted for rather well with purely real time classical trajectories, 

A brief description of S-matrix KVP is given in the next section. The semi­

classical hybrid approach and results are discussed in the following sections. Finally, 

conclusions and important observations are discussed. 
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3.2 S-Matrix Kohn variational principle 

In this section we introduce the S-matrix version of the Kohn variational 

principle for reactive scattering[61]. In order to be general we will explicitly denote 

the various chemical arangements (channels) by a. For a given arrangement we denote 

the radial scattering coordinate by Ra and the internal coordinates by ra. A formally 

exact expression for the S-matrix elements in the distorted Born representation is 

Sn'a',na(E) = S~'a',na(E) 
z A 

h («Pn'a'IH - EI«Pna) + 

+ 
z A+ 
h ('Pn'a'IG (E)I'Pna), (3.4) 

where tJ+(E) lim~ ..... o+ (E + iE - ff.)- 1 1s the scattering Green's function with 

outgoing wave boundary conditions and 

'Pna = · (H-E) «Pna 

'Pn1a 1 (H-E) «Pn'a'. (3.5) 

In Eq. (3.4), na and n'a' denote reacta~t and product channels respectively and 

S~'a',na(E) is the unitary reference S-matrix assosciated with the trial wavefunction 

«Pna ( Ra, r a). In addition we are using the convention that wavefunction in the bra 

symbol (I are not complex conjugated. This and the specific form and normalization 

used for the «P's are standard conventions in quantum scattering calculations via the 

S-matrix KVP[42]. It is useful to adopt this particular convention because it more 

explicitly reveals the symmetry of the S-matrix. fi is the total Hamiltonian and «Pna 

is any regular reactive scattering wavefunction with the following asymptotic form: 

0 

+ (3.6) 
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where 1/Jna(ra) and Vna are the internal eigenfunction and asymptotic translational 

velocity in channel na respectively. In Eq. (3.6), the sum is over all open channels 

available at energy E. The asymptotic form for the scattering wavefunction, physi­

cally, corresponds to a unit incoming wave in channel na and outgoing waves in all 

other open channels n'cl. Note that if q,na(Ra, ra) is exact then the exactS-matrix 

. . b 5° 
lS giVen y n'a',na· 

In the Kohn variational method all of the effort is concentrated on finding 

a good trial wavefunction. The better the trial wavefunction the smaller is the third 

term !::l.Sn'a',na(E) in Eq. (3.4) involving the full Green's function. Usually the q,'s 

are chosen as a linear combination of a given basis set. The exapansion coefficients 

are calculated by variationally optimizing the trial wavefunction based on making the 

first two terms in Eq. (3.4) stationary i.e., 

If the basis is large enough the correction term involving a+ (E) will be negligible 

because 'Pna = (if - E) q,na ~ 0. However, for sufficiently large molecular systems 

this will not be possible and it becomes important to consider techniques to evaluate 

the full Green's function. 

There are many possible ways of choosing approximate scattering wavefunc­

tions for the q,'s. For example, we could choose partially distorted waves but we are 

more interested in this chapter to choose the reduced dimensionality wavefunction. 

This reduced dimensionality wavefunction is obtained by carrying out a quantum 

·scattering calculation for the few most important degrees of freedom, assuming the 

rest to be uncoupled from them (or perhaps treating them within a vibrationally adi­

abatic approximation). The reduced exact calculation provides us with Si[,~'~na(E) 

which is then corrected by calculating !::l.Sn'a',na(E) which contains all higher order 

corrections beyond the Kohn variational treatment. There has been a considerable 

amount of work on calculating ~Sn'a',na(E) by quantum methods[44]. As indicated 

in the introduction to this chapter, the numerical bottleneck to exact quantum meth­

ods is the calculation of the full Green's function. This feature, in accordance with 

the conservation of difficulty principle, has limited the applications to atmost four 
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atom systems. In the next section we will present a semiclassical approximation to 

flSn'a',na(E) which has the potential to be applicable to larger systems. 

3.3 Semiclassical approximation to D..Sn'a',na(E) 

The starting point for the semiclassical approximation is to note the follow­

ing exact operator relation: 

A 1 [
00 (iEt) ( iHt) c+(E) = in lo dtexp T exp -T (3.8) 

There is a crucial reason for changing over to the time representation as opposed 

to directly performing the semiclassical approximation in the energy representation. 

The reason being that time domain and energy domain are not exactly equivalent in 

semiclassical dynamics. In order to see this clearly let us denote the position space 

representation of {;+(E) and e-iflt/n by 9 and J( respectively. The following diagram 

summarizes the reasoning: 

SP FT SP 9 sc ~ 9 f----+ J( -----+ J( sc 

r! SPFT 
':::lsc f----+ (3.9) 

9sc and Ksc are semiclassical counterparts of 9 and JC obtained via stationary phase 

(SP) approximation. While 9 and JC are equivalent through the Fourier transform 

(FT) defined in Eq. (3.8), the semiclassical counterparts are not. Instead 9sc and 

Ksc are equivalent under stationary phase fourier transform (SPFT). In particular 

semiclassical approximations in energy representation can have very different accura­

cies when compared to approximations in the time representation. Thus, depending 

on the dynamics of the system of interest, it is better to perform the semiclassical 

approximation in a particular representation. For example, in the case of a simple 

harmonic oscillator it is well known that Ksc is exact whereas 9sc is not[57]. This is 

the essence of the important idea put forward by Heller and coworkers[58]. Antici­

pating short time dynamics in our case we perform the semiclassical approximation 

in the time domain. 
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Using relation (3.8) and inserting complete sets of position states into the 

correction term ~Sn'a',na(E) we obtain 

(3.10) 

where we have explicitly labeled the arrangement index on the position states collec­

tively denoted by x and for compactness adopted the following notation: 

(3.11) 

The exact propagator K(x~', t; xf, 0) is defined as 

(3.12) 

The exact propagator can be formally defined via Feynman path integrals[62). A 

path integral analysis of the correction term can be performed leading us to the 

standard theory of reactive scattering based on path integrals[9, 11, 63]. However, 

we are interested in a semiclassical approximation for the propagator. This can be 

achieved by doing a stationary phase analysis on the path integral or through the 

traditional WKB approach. Both approaches result in the celebrated Van Vleck­

Gutzwiller approximation[64) for the exact propagator1 

K(xf, t; xf, 0) ~ 

(3.13) 

In Eq. (3.13) the Jacobian determinant plays the role of a classical probability and 

the phase is determined by the classical action Sk ( x~', xf; t). F is the number of 

degrees of freedom. The classical action for the kth trajectory that goes from xf 

1 We are assuming that the Hamiltonian is of cartesian form. This is true for one degree of freedom 
system and collinear atom-diatom collisions. For non-cartesian systems it is straightforward to work 
out the relevant expression through point coordinate canonical transformations. 
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at time t = 0 to x~' at time t is given by the time integral of the corresponding 

Lagrangian £, 

lot dt' .C(x, :X; t') 

lot dt' [p(t') 0 x(t') - 1-l(p(t'), x(t'))]' (3.14) 

where 1-l is the classical Hamiltonian and the sum over k in Eq. (3.13) is over all 

possible classical trajectories that satisfy this double ended boundary condition. The 

Maslov indeil Jlk is given by the number of zeros experienced by the inverse of the 

Jacobian determinant in the time interval (0, t)[60]. Sustituting the semiclassical 

propagator into Eq. (3.10) we obtain the semiclassical approximation for ~Sn'a',na(E) 

(21rin )-F/2 

fi2 

"'1 Ll(k) (a' a·t) z. x2,xi;t 
( 

·p(k)( a
1 a )) 

X L..J "'"n'a' na x2 'XI' exp i: ' 
k x2' ,xf,t ' n 

(3.15) 

where 

A(k) ( a' a t) 
""'n'a' na x2 ' XI ; 

' 

p(k)(xa' xa· t) 
2 ' I' (3.16) 

In Eq. (3.15) we still have to sum over all trajectories that go from xf to x~' in timet. 

For a given system there are, in general, many such trajectories and we have to search 

for them all in the full phase space of the problem. This root search problem for the 

double ended boundary conditions can become prohibitive for large systems. A way 

to avoid the root search problem is to transform to an initial value representation. 
r 

It is well known in classical mechanics that a 'classical trajectory with a given initial 

condition is unique[19]. Thus for fixed xf and t we change the integration variable 

fr a' t a om x 2 o PI, 

"' d a' In (ax<{ ( xr, pf; t)) I d a 
L..J x2 ____. et a (l' PI ' 

k PI 
(3.17) 

2Van Vleck originally wrote down the semiclassical approximation in 1928 without the sum over 
k or the Maslov index. This limited the approximation to very short times. The more accurate 
form, as presented in this section, was worked out by Gutzwiller. 
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where the sum over root trajectories is subsumed in the integration over pr. Notice 

that. we have not solved the root search problem but only circumvented it by going 

to an initial value representation. We have to run classical trajectories in the full 

phase space in order to perform the root search and sum over the root trajectories. 

In the initial value representation we are making use of all the trajectories and thus 

implementing the root search in a straightforward fashion. There is a price to be 

paid i.e., now we are running more trajectories then the number of root trajectories. 

Nevertheless, it can be argued that this extra cost is offset by the efforts required to 

determine the root trajectories. This is especially true for large systems for which we 

are interested in applying this model. Using the relation 

8S(x2', xr; t) o ( ) axo = -pl , 3.18 
1 

and substituting into Eq. (3.15) we obtain the semiclassical correction term in the 

_initial value representation as 

(27ri1itF/2 
1i2 

1 ( o' o ) (iP(x~', xr; t)) 
"' "' An'o',no x 2 , x 1 ; t exp 1i , 

xl ,pl ,t 
X (3.19) 

where 

An'cr',na(xf, x~; t) IDet ( aaxp~~') 11/2 ~ i.pn'o'(x~') l.pno(x~) 

I 'Jr 1i J.l 
S(x~, x~; t) + Et - -

2
- (3.20) 

The Maslov index J.l is now given by the number of zeros experienced by the deter­

minant in the time interval (0, t)., The matrix occuring in Eq. (3.20) is part of a 

2F x 2F matrix called as the monodormy matriJf which provides information about 

the stability of nearby classical trajectories in phase space. The time evolution of the 

monodormy matrix M is given by: 

d 
dt M(t) + F(t) · M(t) = 0, (3.21) 

3This also goes by various other names in the literature. For example, stability matrix, Whittaker's 
matrix etc. M is invariant under canonical transformations. 
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where we have denoted 

M(t) = B(x~~' p!') (t), 
8(xl, P1) 

and F is a generalized force constant matrix 

F(t) = ( 
-8px1i -8pp1i ) . 

Oxx1i Oxp1i 
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(3.22) 

(3.23) 

The coupled equations of motion in Eq. (3.21) are integrated along with the usual 

Hamilton's equations of motion with the initial conditions 

M(O) = ( 1 0) . 
0 l, 

Thus the Maslov index is kept track of along the classical trajectory. 

(3.24) 

Eq. (3.19) is the fundamental result of this chapter. There are a few sig­

nificant features of this result that we wish to emphasize. Firstly, classical S-matrix 

theory is obatined from Eq. (3.19) if the integral over initial phase space variables is 

performed via stationary phase approximation. Here, however, we are interested in 

evaluating them exactly (numerically) as discussed in the beginning of the section. 

The functions <r?n'a' ( x~') and <r?na ( xn are decaying rapidly (as £,2 functions) for large 

x} and x~'. This implies that only relatively short time dynamics is required and 

hence the reason for performing the semiclassical approximation in the time domain. 

Thus we expect the approximation to have an even better chance of being usefully 

accurate then the generic long time accuracy indicated by Heller's recent work. 

Secondly, tunneling contributions are calculated via real time classical tra­

jectories only. In order to see this, concentrate on the time integral. The trajectory 

that corresponds to zero time is the one with an infinite amount of energy4-a trajectory 

far above the barrier. On the other hand, the classical trajectory that corresponds 

to infinite time is the separatrix trajectory i.e., one which just skims the top of the 

harrier. Hence if we do all the integrals numerically exactly then all of the tunneling 

4 This trajectory energy £ is different from the energy E at which we are calculating the S­
matrix. Since we are in the time representation, we are summing over all trajectories with different 
energies. Stationary phase result would only sum up contributions from trajectories which satisfy 
£(x~,pn =E. 
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contributions are included in the real time trajectories with energies above the bar­

rier. The tunneling contributions are small and it will be demonstarted in the next 

section that it is indeed possible to calculate these small numbers relatively well with 

real valued classical trajectories. 

Finally, in performing the integrals in Eq. (3.19) exactly, we are not consis­

tent to O(n) anymore. This implies that we lose canonical invariance to O(n) with 

respect to certain parameters in our system which we would have if stationary phase 

was the method of choice for integration. In other words, our results would have sub­

tle dependencies on some parameters which, otherwise, would not be expected. For 

example, in the next section it will be seen that the amplitudes and hence probabili­

ties vary with a parameter assosciated with the trial wavefunction although the exact 

results do not depend on this parameter. In some sense, the stability of the results 

under the variation of the parameter would be an indication of the robustness of the 

semiclassical approximation. For harmonic systems we still have canonical invariance 

as stationary phase result is exact in this case. 

3.4 Application to a model potential 

In this section we will use the following notation: 

h(x) h(-x- xo) 

8(x) - 8(-x-x0 ) 

h(x) = h(x- xo) 

8(x) = 8(x- xo), (3.25) 

where h(z) is a smooth step function(= 1 for z ~ 0, and 0 for z ~ 0) and 8(z) is 

the corresponding smooth pre-limit version of a Dirac delta function. x 0 denotes the 

position of the smooth step function. For the applications below we used 

h(z) 
1 

1 + e-..\z 

8(z) A 2 (>-z) 
4 sech T (3.26) 

We apply the ideas of the previous section on a one dimensional model of a 
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chemical reaction, namely transmission through an Eckart barrier[65], 

V(x) = Vo sech2 (ax). (3.27) 

The barrier height Vo and mass m were chosen to be 0.01562 au (:::::::: 0.425 e V) and 

1060 au respectively. The parameter a, related to the anharmonicity of the barrier, is 

set equal to 1.3624 au. With this choice of parameters, the potential approximately 

corresponds to the collinear H + H2 reaction. 

The Eckart barrier is the simplest model of chemical reaction but not com­

pletely trivial. Furthermore, in order to provide the most stringent test of the semi­

classical approximation, we make the simplest possible choice for the trial wavefunc­

tions as smoothly cutoff plane waves, 

<l>n(x) 

<l>n(x) (3.28) 

where n represents reactants to the left and n represents products to the right of the 

barrier. v and k are the asymptotic velocity and wavevector respectively, given by 

the usual relation v = nk/m = J2Ejm. Thus <l>n(x) is cutoff smoothly on. the left 

side of the barrier at x :::::::: -x0 , so that 

eikx 
,......, 

vv' 
,......, X~ -Xo 

,......, 0 1 
,......, X~ -Xo (3.29) 

and similarly for <l>n:(x) at x :::::::: x 0 • Note that in our choice of the trial wavefunctions 

there is no distortion and thus corresponds to the simplest Kohn calculation for our 

system. As a result, the semiclassical correction term is rather large. With this choice. 

for the trial wavefunctions the zeroth order term in Eq. (3.4) is zero and the Kohn 

part of the S-matrix is given by 

S!!VP(E) n,n 
z ' 
h (<l>n:IH- El<l>n) 

niv 1 [v(x)h(x)h(x) + i1ivh(x)8(x)- ;~ 8(x)8(x)], (3.30) 
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where we have used the result 

eikx [ - - 1i2 d8(x)l 
<f'n~x) = y'v V(x)h(x) + i1iv8(x) + 

2
m a:;- , (3.31) 

and similarly for <pn. ( x). In this case we can write down the explicit form of the 

semiclassical correction term as 

(3.32) 

where 

(3.33) 

The integral over time in Eq. (3.32) is evaluated simultaneously with computing 

the trajectory with initial conditions (Pb x1 ). The behaviour of the integrand with 

respect to the initial phase space variables is not completely smooth. As expected, 

the integrand as a function of p1 for fixed XI is oscillatory. Figure (3.1) shows a typical 

plot of the integrand as a function of PI· 

For E > Vo there is a stationary phase region in the integrand which corre­

sponds to the classical trajectory with energy £(p1 , xi) = E. In the case of E < Vo 

there is no real (Pb xi) such that £(p1 , x1 ) = E and, not surprisingly, we do not see a 

stationary phase region. On studying the integrand in Eq. (3.32) as a function of p1 

for a given XI we observe a singularity at some sharp value p1 = p~P. Analyzing the 

e integrand more carefully revealed that the singular point corresponded to the sepa­

ratrix trajectory i.e.! t'(p~P, xi) = Vo and more importantly that it is a removable 

singularitif. In order for the numerical integration to be smooth, we transformed 

from P1 to a variable fh 
' -2 sp 

Pl = PI +PI ' (3.34) 

5 Please see appendix for a theoretical analysis of the singularity assosciated with the separatrix 
trajectory. 
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Figure 3.1: A typical integrand in Eq. (3.32) is shown here as a function of p1 for 
a fixed value of x1 and the parameters x 0 , >.. Barrier height Vo = 0.425 eV. Notice 
the stationary phase region for E > Vo, indicated in the plot by an arrow. The inset 
shows the singularity in the integrand corresponding to the separatrix trajectory. 
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·where p~P is the separatrix momentum, determined for a given x 1 as 

sp 
P1 V[2m(Vo - V(x 1 )] 

V2m Vo tanh( ax1) . 

3.4.1 Results and discussion 

52 

(3.35) 

Figure (3.2) shows the transmission probability P(E) = 1Sn,n(E)i2 as a 

function of energy for the cutoff parameter ·x0 = 5 au. For comparison we have also 

shown the exact[66] and WKB[13] results for the probability 

with 

B(E) 

b 

{1 + [cosh(c)/sinh(b)] 2
}-

1 

(1 + e20(E))-1, 

-b+R 
~ff*', c= 

2 

8VQm 
(an)2 - 1 

(3.36) 

(3.37) 

Our choice for x 0 implies that we have cutoff the cp 's well into their respective 

asymptotic regions. Thus in the interaction region (where the potential is significantly 

larger than its asymptotic value of zero) the trial wavefunctions «P n ( x) and «P n ( x) 

have essentially zero overlap. As a result of this the Kohn variational term in Eq. · 

(3.30) vanishes. Thus the entire contribution to the transmission probability is from 

the semiclassical correction term flS~~n(E). It is impressive to see how well the 

semiclassical approximation does even in the deep tunneling region. For the values 

of P( E) below 10-6 the results become progressively worse, being about an order of 

magnitude too large when P ~ 10-7
• In this one dimensional example, the WKB 

results do better than the present semiclassical model. However, this is to be expected 

as WKB is quite accurate for one dimensional systems. The important point to be 

made here is that the present semiclassical model is applicable to systems with many 

degrees of freedom whereas, there is at present no consistent WKB theory for such 

systems. Note that all the trajectories that contribute in Eq. (3.32) go from x1 ::::; -xo 
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Figure 3.2: Transmission probability, P(E), is shown as a function of the total energy 
E. The cutoff parameters are >. = 2.5 au and x0 = 5.0 au. Also shown are the 
exact results and the results from a one dimensional WKB analysis. For this potential 
E = 0.2 e V already corresponds to deep tunneling regime. 
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Figure 3.3: Shown here is the variation of P( E) with the cutoff parameter x 0 for 
several representative values of the energy E. The parameter A is fixed at 2.5 au . 
.The barrier height is about 0.425 e V. Notice the stability of the results with respect 
to x 0 • 

to x 2 > x0 in real timet. Thus we are getting tunneling probabilities from purely real 

time trajectories. 

As indicated in the previous section, it is important to verify the stability 

of these results with respect to the parameters in order to make sure that we did not 

have a special set of parameters. Figure (3.3) shows how the probabilities vary with 

respect to the cutoff parameter x 0 • If the semiclassical approximation were exact, 

P(E) would be independent of x0 and of the particular choice of q,'s in general. The 

results vary only modestly for energies above and below the barrier height over a 

wide range of xo. This stability of the results with respect to variations in x 0 is an 

indication of the robustness of the semiclassical approximation. In these calculations, 

for small x0 the Kohn variational term becomes non-negligible and has to be taken into 
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account. Similar stability is also seen with respect to variations in the parameter -\. It 

is relatively easy to verify that the small numbers obtained for tunneling probabilities 

are indeed correct. This can be achieved by performing n-scaling caculations on the 

system and demonstrating that the small numbers scale exponentially with 1i as 

p "' e -constfli 
' 

(3.38) 

which is a familiar result for tunneling probabilites(37, 67]. Performing such a calcu­

lation on our system we see scaling of the form in Eq. (3.38). 

3.5 Concluding remarks 

The semiclassical hybrid approach described in this chapter shows promise of 

applicability to large systems. The test case of a simple but nontrivial one-dimensional 

potential demonstrates the quantitative and qualitative abilities of this approach. 

For the application described in the previous section, the semiclassical method was 

pushed to its limits by our choice of the parameters and trial wavefunctions. The 

results even in. these extreme limits were quite good. Clearly, the results can be 

significantly improved by using better trial wavefunctions i.e., distorted waves which 

would be desirable when d~aling with multidimensional systems. It is important to 

emphasize that this approach is much more theoretically sel£-consisitent than many 

other approaches considered before. 

This chapter was concerned mainly with calculating the state-to-state S­

matrix elements which is a very detailed quantity. It is natural to enquire if there 

are similar semiclassical approaches within which we can directly calculate N(E) and 

k(T). There is already a way to calculate N(E) directly using absorbing boundary 

conditions(69]. There is also a half-state-selected version of the theory presented in 

this chapter. However, unlike in the exact quantum calculations, there does not seem 

to be any significant savings in performing a direct calculation as opposed to a state­

to-state calculation. Further studies are required in order to see if it is possible to 

obtain accurate results with a much smaller number of trajectories than that needed 

for a fullS-matrix calculation. The case of k(T) is much more difficult and challenging. 
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For some of the difficulties and a new transition state result, see appendix II of this 

chapter. 

Some of the features resulting from this approach are worth mentioning. 

Historically, stationary phase approximations have always been the method of choice 

for highly oscillatory integrals. Indeed the stationary phase method is the main tool 

of analysis in most of the classic studies in semiclassical methods. There has been 

some work in the area of going beyond stationary phase approximation i.e., beyond 

0(1i) but the asymptotic nature of the expansions limit their practical utility[13]. 

It was realised that the stationary phase approach to classically forbidden processes 

necessiates the use and understanding of complex valued classical trajectories. This 

work, in stark contrast from earlier studies, shows that it is possible to go beyond 

stationary phase and to deal with the highly oscillatory integrals numerically. This 

is made possible by gaining a deeper understanding of the wide variety of classical 

trajectories which constitute the phase space of the system. For example, one of 

the key feature in the integrals, manifesting itself in the forni of a singularity, was 

attributed to the separatrix trajectory. Once we had isolated the family of trajec­

tories leading to this behaviour it was realtively simple to alleviate the problem. A 

similar analysis by Tomsovic and Heller enabled them to go beyond stationary phase 

in a system whose classical dynamics exhibits hard chaos and to establish semiclas­

-sical accuracies for much longer times than previously considered possible[68]. Thus, 

within our approach, we were able to calculate tunneling probabilities with purely 

real-time classical trajectories. This is an important step forward as far as applica­

bility to larger systems is concerned due to the fact that computing complex valued 

classical trajectories for such systems is extremely difficult. More importantly, our 

approach also provides a consistent way to take into account both classically allowed 

and forbidden processes in multidimensions. There is no clear generalization of WKB 

to multidimensional problems which can do this in a practical way. 

On the numerical side it becomes important to consider the total number of 

trajectories needed in order to obtain the results provided in the previous section. In 

any numerical approach, quantum or semiclas~ical, in addition to the scaling with the 

system size there is also a prefactor. Although the scaling for classical trajectories 
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·only increases linearly with the number of degrees of freedom, the prefactor might 

become uncomfortably large. In order to study this more carefully, we optimized the 

problem and found that the prefactor in the one dimensional case is very reasonable. 

Another attractive numerical feature is that for all the energies of interest, a single set 

of trajectories is all that is needed. Thus it is possible to parallelize the computation 

and a single run gives us the entire S-matrix over the required energy range. This is 

a highly desirable feature for multidimensional systems and we are thus guaranteed 

of a reasonable prefactor for our numerical calculations. 

In light of the above remarks, it is clear that this is an approach worthy of 

further studies and applications to truly complex chemical systems. 

3.6 Appendix 1: Analysis of the singularity in the 

integrand of Eq. (3.28) 

In this appendix we will show that the singularity in the integrand of Eq. 

(3.32) is assosciated with the separatrix trajectory. The form of the singularity, 

generic to all one dimensional barrier potentials, demonstrates that it is removable 

via the transformation given by Eq. (3.34). 

To begin with, we will cast Eq. (3.32) into a simpler but equivalent form. 

Trajectories are evolved from a fixed initial position (x1 = -x) to a fixed final 

position (x2 (x1 ,p1 ; t) = x). The value of xis chosen such that it corresponds to the 

asymptotic region of the potential i.e., V(x) ~ 0. As a result, the time integral can 

be trivially done due to the fact that for a given x and p1 the time f is fixed by the 

relation x 2 ( -x,p1 ;f) = x. Thus we are left with an integral over initial momenta 

only. The final expression for the S-matrix in this sharp cutoff limit is 

where 

sc ( ) { A( _ ~ (iP(-x,p1;f)) 
sn,n E = v JP1 -x,pl; t, exp 1i 

A( -x,p1; f) 

P( -x,p1; f) 

(3.39) 

(3.40) 
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and now l = l( x, PI) with the final momentum p2 determined as a function of ( x, PI). 

It is easy to check that for a free particle, Eq. (3.39) gives unity for the 

S-matrix. In order to see the singularity, let us consider a parabolic barrier 

V(x) = 1 2 --mwx 
2 

(3.41) 

The Eckart barrier, treated in the previous section, can be closely approximated by the 

parabolic barrier near the maximum by appropriately choosing w. For the discussion 

in this section the parabolic barrier example will suffice since the structure of the 

singularity depends on the form of the barrier. Thus any one dimensional potential 

with a quadratic (parabolic) barrier will give rise to the singularity. The relevant 

quantities for Eq. (3.39) can be worked out analytically in this case and we find 

S(x,pi; l) xpi 

l(x,pi) ~ ln (PI 
w PI 

+ P?) . sp 
-PI 

P2(x,pi; l) PI 
8x2 sinh(wl) 2pix 

(3.42) 
8pi ( sp) ( sp) · mw PI+ PI PI- PI 

The separatrix momentum is denoted by p~P = mwx and for the parabolic barrier 

·corresponds to an energy equal to zero. Using the above relations, it is seen that both 

the amplitude and phase in Eq. (3.39) exhibit singularities as PI -+ p~P, 

A "' (PI - p~P)-I/2 

p "' ln(pi - p~P) · (3.43) 

The other momenta which lead to singularity in the amplitude do not matter as we 

are only running trajectories with positive momenta and above the barrier height. 

Notice that the singularity assosciated with the phase is very weak (logarithamic) as 

.compared to the square-root singularity of the amplitude. It is clear that the nonlinear 

transformation of Eq. (3.34) will remove the singularity in the amplitude. With this 

transformation the integral can be done via stationary phase approximation which is 

exact for the parabolic barrier. A little bit of algebra leads to the exact result for the 

probability 

(3.44) 
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In one dimension we were successful in dealing with the singularity as it is 

possible, a priori, to locate the singularity. The reason being that we are given an 

invariant function in phase space assosciated with the trajectories which characterizes 

the separatrix. In one dimensional cases the Hamiltonian (total energy) provides us 

with such an invariant function. In addition, the singularity was removable as demon­

strated in this section. Thus, the numerical integration of the oscillatory integrals 

presented no particular problem. However, a different kind of problem presents it­

self in two dimensional collinear scattering systems. Preliminary studies suggest that 

there are certain singularities which are not removable. These singularities correspond 

to chaotic scattering[70] in the system. It will be shown in the next chapter that peri­

odic orbit dividing surfaces (PODS)[8] result in these non-removable singularities and 

some suggestions are offered to efficiently deal with them. 

3. 7 Appendix II: Direct semiclassical approach to 

thermal rate constant k(T)-challenges and a 

new transition state result 

The main focus of this chapter was to formulate a hybrid approach to cal:.. 

culate state-to-state S-matrix elements. Once the S-matrix elements have been cal­

culated, the thermal rate constant k(T) can be obatined via Eq. (3.2). In order to be 

accurate we would calculate the cummulative reaction probability N(E) over a wide 

. energy range with a fine enough grid in E and then .perform a Boltzmann average. 

However, it would be more efficient if we could directly calculate k(T) without re­

course to calculating N(E) first. In recent years remarkable progress has been made 

towards directly calculating k(T) by exact quantum methods[49, 74]. Again, we are 

interested in semiclassical methods to compute k(T) for applications to larger sys­

tems. Perhaps it is feasible to make use of a reduced dimensionality exact calculation 

and correct for the neglected, weakly coupled degrees of freedom within a semiclassi­

cal approach. At present, we will not go into the details as to how it could be done 
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Figure 3.4: This sketch summarizes the difficulty in calculating k(T) semiclassically. -r 
-denotes complex time and cr denotes some Stokes' surface. It is possible to analytically 
continue the semiclassical propagator from either the real or imaginary time axis as 
long as the Stokes' surface is not crossed. 
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but indicate some problems that prohibit a direct semiclassical approach. 

A formally exact expression for the thermal rate constant can be written 

down as 

(3.45) 

where P is a projection operator onto reactive space, Qr is the reactant partition 

function and F is a symmetrized flux operator. With the following choice of the 

projection operator 

lim e -iiltft. h(p)eiHtft. , 
t ..... oo (3.46) 

we can write down the thermal rate constant as 

(3.47) 

where h(p) is a momentum step function and T denotes complex time, T = t- if31i/2 

with f3 = ( kBT)-1
. A direct calculation of k(T) thus involves the propagator in 

-complex time T. In order to implement Eq. (3.45) semiclassically, we need to know 

the analog of the VanVleck-Gutzwiller approximation for complex time. A first guess 

is to simply analytically continue the real time result- in Eq. (3.13). Unfortunately, 

this is completely wrong due to the fact that the semiclassical approximation in Eq. 

(3.13) is an asymptotic result. It is important to realize that asymptotic expressions 

cannot be analytically continued in a naive fashion since the asymptotic series is valid 

within a certain region only. In another region, the asymptotic approximation to a 

function can be of a completely different form. The boundary between these different 

regions is known as the Stokes' lines or surfaces. On the other hand, if we had an 

analytic series representing a function then it is possible to analytically continue the 

series. As a simple example, consider the integral representation of the Airy function 

1 joo ( ik
3

) Ai(z) = -, dk exp ikz +- . 
21!" -oo 3 

(3.48) 

Stationary phase approximation leads to the following asymptotic forms for the Airy 

function [72] 

Ai(z) ~ 1 
· exp ( 

2 
z312

) 2?rl/2zl/4 -3 real z > 0 

Al. (z) ~ 1 
cos [~(-z)312 - ~] 

?rt/2(-z)I/4 3 4 
real z < 0. (3.49) 
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It is obvious that the asymptotic form for the Airy function for negative real z cannot 

be obtained by simply substituting -z in the asymptotic form of Ai(z) for positive 

real z. This is due to the fact that in case of the Airy function there are three stokes 

lines in the complex z plane and we cross one of them in going from z to - z. It is also 

clear that on crossing a stokes line, the asymptotic form does not merely change by an 

overall phase. Asymptotic series actually have a discontinuity at the stokes boundary. 

There are stokes rules which tell us as to how to continue an asymptotic series across 

the stokes boundaries. However, the statement of these rules and the mapping of the 

stokes boundary themselves are extremely difficult for multidimensional systems. In 

fact a proper generalization of the Van Vleck- Gutzwiller propagator to complex time is 

a long-standing open problem in semiclassical dynamics. Note that the semiclassical 

propagator in purely imaginary time is relatively straightforward. This is due to the 

fact that in classical mechanics purely imaginary time dynamics on a potential V 

can be mapped over to purely real time dynamics on the upside-down potential - V. 

Figure (3.4) _schematically summarizes the difficulty. In the complex time plane, it 

might be possible to move off the real axis and calculate rates for large temperatures. 

_It is also possible to move off the purely imaginary time axis (TST calculation, real 

timet= 0) to correct for short time dynamics. But the presence of stokes boundaries 

cr prevents us from rotating too far out of the real or imaginary time axis. Even if 

we did have the semiclassical propagator for complex times we would have to deal 

with the issue of complex valued classical trajectories. In one dimension it is possible 

to keep the trajectory real by appropriate choice of the time contour but it is not 

possible to do so in a general multidimensional system[76). These ar~ some of the 

main difficulties involved in a direct semiclassical calculation for the thermal rate 

constant. Nevertheless, from a practical viewpoint, it is perhaps better to calculate 

k(T) in the TST approximation first and then move off the imaginary time axis to 

correct for real time dynamics. 
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3. 7.1 A new semiclassical TST result for k(T) 

The starting point is Eq. (3.45) with the real time set to zero. This is an 

approximation as the projection operator commutes with the Hamiltonian only in the 

t -+ oo limit. Subtleties aside, we can write the transition state approximation as 

k(T)Qr ~ Tr[e-t3H Fh(p)] = krsr(T)Qr. (3.50) 

The result is stated in one dimension and is relatively easy to generalize to many 

degrees of freedom. Inserting a complete set of position states we get 

krsr(T)Qr = 1 (xtle-t3Hixz)(xziFPixt). 
X!,X2 

(3.51) 

For the imaginary time propagator we perform a semiclassical approximation and use 

Weyl rules[73] to calculate the flux-projection operator matrix elements. The final 

result in an initial value representation is 

(3.52) 

( ) 

1/2 
1 oxz 8(xt + xz) 

A(xbxz;rB) = -
2 

i: ~ ( )2, 
1rn vp1 X1 - Xz 

(3.53) 

and S is the classical action on the upside-down potential 

rB S(x1 ,xz;rB) = lo dr[p(r)x(r) -1-l(p(r),x(r))]. (3.54) 

Thus trajectories are evolved on the upside-down potential from time 0 to TB and the 

thermal rate constant in the TST approximation is calculated from Eq. (3.52). It 

is easily checked that Eq. (3.52) gives the exact results for the free particle and the 

parabolic barrier cases. 

Note that the resulting integrals are not oscillatory anymore. In fact only 

a finite (perhaps small) number of trajectories contribute to the integral due to the 

delta function restriciton. It would be interesting to see as to how Eq. (3.52) can now 

be corrected for real time dynamics i.e., take into account the fact that there can be 

barrier recrossings. 



Chapter 4 

Application to collinear A + BC 

reactions 

4.1 Introduction 

64 

In the previous chapter we described a semiclassical approach to scattering 

theory in order to calculate state-to-state S-matrix elements. The impressive success 

and numerical advantages of the method were self-evident from the example of the 

"Eckart barrier. In order for the method to be useful for general multidimensional 

problems we need to demonstrate similar quantitative and qualitative results for two 

and three dimensional systems. Collinear i.e., two degrees of freedom reactions have 

been a fertile test ground for exact quantum as well as approximate methodologies[41, 

42, 44]. From a fundamental viewpoint, the classical dynamics of such systems is also 

considerably rich and interesting(19]. 

Collinear atom-diatom collisions also offer a representative case to study the 

effectiveness of the hybrid semiclassical approach. It is now possible, in contrast to one 

dimensional cases, to systematically study the effect of choosing various approximate 

trial wavefunctions on the resulting S-matrix. In the previous chapter we applied the 

method to a one dimensional test case with very stringent choice of parameters and 

-trial wavefunctions. However, a very significant aspect of chemical reaction dynamics 

i.e., resonances do not manifest themselves in one dimensional barrier problems. It is 
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well known that resonances give rise to sharp features for the transition probabilities 

in collinear systems[41]. Systems with larger than two degrees of freedom also have 

resonance features, but are typically of less importance. Thus, it becomes important 

to apply the semiclassical method to collinear reactions in order to completely assess 

· the reliability and accuracy of the approach. 

In this chapter we will apply the theoretical ideas developed in the previous 

section to the collinear H + H 2 reaction. This reaction, apart from being a very good 

test problem, has been thoroughly studied both classically and via exact quantum 

methods[8, 44]. In addition, we have a very reliable ab initio potential energy surface 

for this system in order to perform classical dynamics. An analysis of the phase 

·space integrals for this reaction reveals a significant bottleneck to the calculations 

arising from chaotic scattering trajectories[70]. In the next few sections we describe 

the choice of parameters and trial wavefunctions for the system and offer suggestions 

to handle the numerical problems due to chaotic scattering. 

4.2 The Jacobi Hamiltonian 

For a general collinear reaction A + BC it is convenient to use Jacobi co­

ordinates (r, R). Here r is the vibrational coordinate of the diatom BC and R is the 

translational coordinate describing the relative motion of the atom and the diatom. 

These coordinates are Cartesian for a collinear system. The classical Hamiltonian is 

given by 

( 
1 2 1 2 

1i Pr,Pn,r,R) = --Pr + --Pn + V(r,R), 
2mr 2mn 

(4.1) 

where Pr and Pn are the momenta conjugate to the coordinates r and R respectively. 

The corresponding reduced masses are 

mBme 

mB+me 
mA(mB +me) 
rnA +mB +me 

( 4.2) 

Classical trajectories are evolved with this Jacobi Hamiltonian and the potential 

V(r, R) is the Liu-Siegbahn-Horowitz-Truhlar (LSTH) ab initio potential[75]. Note 
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that we have two sets of Jacobi coordinates, one for describing the reactants A+ BC 

and another set for describing the products AB + C. Throughout this chapter super­

scripts {3 and a will be used to indicate the product ~nd reactant Jacobi coordinates 

respectively. It is important to distinguish the two sets of ccordinates as we are con­

cerned with reactive scattering. The transformation between product and reactant 

Jacobi coordinates is 

Ro: - [ md ] ro: mB+mc 
[mA :AmB] Ro: + [m~(::7 mB)l ro:' (4.3) 

with the corresponding transformation for the conjugate momenta (Pf, P~). 

4.3 The semiclassical S-matrix 

As shown in the previous chapter, the semiclassical correction term to the 

KVP S-matrix can be written down as the four dimensional phase space integral 

X 

where we have explicitly indicated the reactant and product channels and 

P(x~,xf; t) 

xg 

(4.4) 

(4.5) 

· In the above expression we have denoted x = ( r, R) and p = ( Pr, PR) for compactness. 

However, we want to work with an equivalent expression which does not involve the 

time integral and the integral over translational coordinate R. In order to go to such 

an expression, we run classical trajectories from a fixed asymptotic value of the initial 

translational Jacobi coordinate to a fixed asymptotic value of the final translational 
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Jacobi coordinate. In other words, classical trajectories evolve from Rl. R to 

R~ = R. The time integral is trivially done as for a given set of initial conditions 

( r':{, R, P:;_, PR1 ) the time f is fixed by the relation R~ ( r':{, R, P:;_, PR1 ; f) = R. As a 

result, the full S-matrix is given by[76] 

1 

(4.6) 

where 

( 4. 7) 

and we have explicitly denoted the parametric dependence of the relevant functions 

on R and f. Note that even though the Jacobian determinant is needed only at a 

time f, we still require it along the trajectory in order to keep track of the Maslov 

index[60] f.l· 

4.3.1 Choice of the trial wavefunctions 

· In Eq. ( 4. 7) we have to specify the form of the trial wavefunctions c.p. For 

the present case of collinear H + H 2 we take the vibrational part to be eigenfunctions 

of an appropriate Morse oscillator[77] potential V(r) 

V(r) = D[l- exp( -a(r- ro)W, (4.8) 

and plane waves for the translational degree of freedom. The parameters for the 

Morse potential D, a, r0 are chosen to agree with the LSTH potential. Thus we have 

(4.9) 

where Vn is the asymptotic velocity in channel n and 'l/Jn are Morse oscillator eigen­

functions which can be analytically obtained by solving the corresponding Schrodinger 
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equation[77]. The resulting expression is 

.!, ( ) [ a K n! ]1/2 e-z/2 z"'/2 L"'n(z)' 
'f'n r = r( K + n + 1) (4.10) 

where K = (- 2n- 1, r(b) is the Gamma function[78] and L~(z) are the assosciated 

Laguerre functions[78] evaluated using the following series 

L~(z) 
n (-1)m(K+n)! m 

.Eo m! (n- m)! (K .+ m)! z 

z ( exp( -a(r- r 0 )) ( = :n J2mrD. (4.11) 

For collinear H + H2 the parameters were chosen as D = 0.17447 au, r0 = 1.402 au 

and a = 1.026 au. The parameters D and r0 correspond to the depth of the potential 

and equilibrium bond length of the diatom respectively[75]. The factorials in Eq. 

(4.11) are evaluated using the Gamma function definition r(b) = (b- 1)! since K is 

not an integer. The asymptotic velocity in channel n is given by 

(4.12) 

where e:n are the eigenenergies of the Morse oscillator. Note that we have again chosen 

a very simple form for our trial wavefunctions in order to test the semiclassical model 

in the extreme limits. 

4.3.2 Evaluating the Jacobian determinant 

The Jacobian determinant in Eq. ( 4. 7) is part of the full monodromy matrix 

and we require the determinant along each classical trajectory in order to properly 

account for the Maslov index. As discussed in the previous chapter, the time evo­

lution of the Jacobian requires the knowledge of second derivatives of the potential 

with respect to the Jacobi coordinates. Unfortunately, the LSTH ab initio potential 

provides us with only the first derivatives of the potential. It is possible to use the 
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• 

Figure 4.1: This figure summarizes the startegy outlined in this chapter in order to 
-determine the Jacobian determinant along a classical trajectory. For each trajectory, 
sketched by the heavy dotted line, a set of four au."'Cillary trajectories a.re evolved with 
the same initial positions {rf, R) .but different momenta. These au.--cillary trajectories 
a.re schematically shown as thin solid lines. This trajectory bundle is then used to 
determine the Jacobian at timet. 

:first derivative information to obtain the necessary second derivatives by finite dif­

.ference methods but, we adopt a different strategy to evaluate the Jacobian which 

is very easy to implement in problems with very high degrees of :freedom. The finite 

difference approach using :first derivatives of the potential can be very expensive and 

generally unreliable for larger systems. 

Figure (4.1) summarizes the sta.rtegy. We evolve four au.--cillary trajectories 

simultaneously with our original trajectory which differ in their inital momenta but 

with the same initial positions ( rf, R). The initial momenta for the four au.--cillary 

trajectories a.re (P~ ± 5P;r /2, PR. ± 5PR./2) with the original trajectory (P:Z, PR)· 

This trajectory bundle will give us the J acobia.n determinant at any time t along the 
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trajectory. For example, one of the elements of the Jacobian is obtained as[78] 

or~ ,.... 1 [ 13 ( . cr 8 PR.1 ) f3 ( • cr 8 PR.1 ) ] 
OPRI (t) ,.... 8PRI r2 t, PRI + -2- - r2 t, PRl- -2- ' (4.13) 

and similarly for the other three elements. In the above expression we have supressed 

the dependence of r~ on the other initial conditions for sake of clarity. For our case 

we found that a spacing of about 10-8 for the trajectory bundle is optimal. If the 

spacing is too small it leads to numerical errors due to the limits on the precision 

with which we are integrating the trajectories. Applying this method to the one 

dimensional Eckart barrier yielded results which were in very good agreement with 

the ~esults obtained in the previous chapter. 

4.4 Behaviour of the integrand 

We are now ready to perform the integrals in Eq. (4.6). However, this is 

not an easy task at all due to the complicated nature of the integrand. Figure ( 4.2) 

shows a typical plot of the imaginary part of the integrand as a function of the initial 

translational momentum with the other variables fixed. The nonreactive trajectories 

for the system are identified and assigned zero amplitudes. It is clear from the figure 

that there are regions of reactive trajectories and nonreactive trajectories, both having 

a very smooth behaviour as a function of PR_. More crucially, it is seen that the region 

seperating the reactive and nonreactive trajectories are extremely complicated. In 

particular, these boundaries between reactive and nonreactive trajectories manifest 

themselves as singularities in the integrand. These singularities occur at energies 

much higher than the barrier height energy of 0.425 e V. It is important to note that 

the results in figure ( 4.2) do not change when we do the trajectory calculations in an 

more accurate fashion. 

In fact the situation is much more complex than that suggested by figure 

(4.2). Looking at the integrand more closely around one of these boundaries shows 

that these singularities arise due to irregular or chaotic scattering trajectories. Figure 

(4.3) shows the integrand in greater detail around one ofthe boundaries. Interspersed 

in that random smatter of points are both reactive and nonreactive trajectories. This 
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Figure 4.2: Shown here is a typical plot of the imaginary part of the integrand as a 
function of PR_ with the other variables being held fixed. The labels R and NR denote 
reactive and nonreactive trajectories respectively. The solid points are calculations 
done with aPR_ grid much coarser than the results shown by the dotted line. Notice 
the singularities at the boundaries between R and NR trajectories. The contribution 
_from R trajectories are very smooth. Some of the total energies of the trajectories are 
also indicated in the figure. For comparison, the barrier height for collinear H + H2 

reaction is about 0.425 e V. 



CHAPTER 4. APPLICATION TO COLLINEAR A + BC REACTIONS 72 

1.0 

• 
0.5 

Chaotic scattering -"0 (NR + R) c: 
ccs 
'-
0> 
Q) .... 0.0 . .. -.. ----·. ·-.. - . - . - . ·- .. c: 

\ -0> 
ccs : . . (NR) E . ... . "' . . . 

-0.5 ... 

-1.0 
-6.173335 -6.173330 -6.173325 -6.173320 

Figure 4.3: This plot shows the imaginary part of the integrand as a function of PR 
near a R-NR boundary. It is clear that the singularity is due to chaotic scattering 
and hence not integrable. 

shows th~ sensitivity of the trajectories to initial conditions. It is obvious for well 

known reasons that these singularities are nonintegrable[70]. Thus, any naive numer­

ical integration scheme has negligible chances of converging. 

The phenomenon of chaotic scattering is well known in two dimensional dy­

namical systems[70, 81]. Considerable work has been done to understand chaotic 

scattering in collinear ato~-diatom collisons. It was demonstrated by Pechukas, Pol­

lak, Davis and many others[8, 80] that these boundaries are actually periodic orbit 

dividing surfaces (PODS). Davis[8, 79] has done a thorough analysis of classical dy­

namics around these PODS by explicitly mapping them out. It is now well known 

that there can be a total of nine such PODS for the collinear H + H2 reaction[79]. 

Furthermore, the existence of more than one PODS was linked to the failure of vari­

ational transition state theory[80]. In figure (4.4) we show three different kinds of 
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reactive trajectories-a simple reactive trajectory which crosses the transition state 

·once, a reactive trajectory which spends a lot of time near the asymmetric stretch 

periodic orbit and the most complicated one at an energy of about 0. 75 e V which re­

crosses the transition state. The latter kind of trajectory are the ones which exist near 

the boundaries. For the moment, let us think of the PODS as some kind of adiabatic 

barriers. Then the separatrix assosciated with them have an extremely complicated 

structure as compared to an one dimensional barrier like the Eckart barrier. Thus, it 

is not possible to transform away these singularities in a manner analogous to what 

we did for the Eckart barrier1 . 

Given this complicated situation, it is natural to ask as to how is it possible 

to make any progress with integrating Eq. (4.7). An obvious approach is to explicitly 

map out all the periodic orbits and use a customized integration scheme in order to 

·perform the integrals. This is certainly feasible in two dimensions but impractical 

in higher dimensions. The mapping of periodic orbits in three or higher degrees 

of freedom can become prohibitively difficult. Since we are interested in applying 

the semiclassical hybrid approach to multidimensional systems we have to develop a 

method which does not rely upon a priori knowledge of the PODS. This, however, 

.is a very difficult task and still an open question in numerical analysis. Nevetheless, 

as a beginning effort, the modified Filinov method[82] may have some advantages in 

dealing with this problem. 

4.4.1 The modified Filinov method 

Consider a generic multidimensional integral 

I = h A(p) eiP(p). ( 4.14) 

Following Filinov, we insert unity in the form 

( 4.15) 

1 Please refer to appendix I of chapter 2. 
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·Figure 4.4: Three different kinds of reactive trajectories are shown in this figure. The 
inset shows a trajectory with E ~ 0.6 e V which crosses the transition state only once. 
In the main figure, the trajectory with E ~ 0.6 e V also crosses the transition state 
only once but spends considerable time trapped near the asymmetric stretch periodic 
orbit. Finally, the trajectory with E ~ 0. 75 e V violates transition state assumption 
as it recrosses the transition state and spends some time trapped near two of the 
PODS. 
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where B is a positive definite matrix, into the integrand of Eq. (4.14). Interchanging 

the order of integration, the integral becomes 

[ (B)] 1

/

2 1 I= ~o Det 27r ~ A(p)exp (i'P(p)- 2(p- Po)· B · (p- Po) (4.16) 

Note that in the above expression the gaussian factor insures that the integral is 

dominated by values of p ~ p 0• Thus, we expand 'P(p) in a Taylor series about p0 

through quadratic terms: 

1 
'P(p) ~ 'P(po) + 'Pt(Po) · (p- Po)+ 2(p- Po)· P2(Po) · (p- Po), ( 4.17) 

where 'P1(po)- BP j8p and 'P2(p0 ) = 82P /8p8p. With this quadratic expansion we 

can analytically integrate over p, obtaining 

I ~ I(B) 

{ [Det(l-i'P2(Po)·B-1)r112 
A(p0 ) 

}po 

x exp (i'P(po)- ~'Pt(Po) · [B- i'P2(Po)t1 
• Pt(Po)) ( 4.18) 

The above equation results from the standard Filinov procedure. Note that we have 

replaced the amplitude A(p) by the zeroth order term A(p0). It is possible to make 

-a better approximation by including higher order terms but for now we make the 

simplest possible choice for the amplitude. At this juncture we make a small mod­

ification as suggested by Makri and Miller[82) in order to make the approximation 

more useful. Notice that Eq. (4.15) is true even if B is complex and approximately 

true if B is a function of p 0 . Accordingly, we modify B as 

B = B(po) = i'P2(Po) + b, (4.19) 

as a result of which Eq. (4.18) becomes 

I ~ I(b) 

~o [net (1 + iP2(Po). h-1)r1~ A(Po) 

x exp (iP(po)- ~Pt(Po) · h-1 
· Pt(Po)) , (4.20) 
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where the matrix b is a constant positive definite matrix. Eq. ( 4.20) is the modified 

Filinov result. As a simple choice for the matrix b we take b = b 1 with b > 0. One 

of the main attractive features of Eq. ( 4.20) is that it has the stationary phase result 

as its worst limit. It can be shown that 

lim I(b) 
b->oo 

Lex act 

lim I(b) 
b-+0 

( 4.21) 

where Ie:xact is the exact integral and Isp is the stationary phase approximation to the 

exact integral. Thus, it is possible to systematically go beyond stationary phase by 

increasing the value of b. In additon, if 'P(p) is a quadratic function then I(b) = I 

for all values of b. There are other numerically attractive features of this method[83] 

hut for the purposes of this chapter we will take Eq. (4.20) as the basic result. 

4.4.2 Eckart barrier revisited 

Before applying the modified Filinov trick to the collinear reaction we test 

it on the one dimensional Eckart barrier problem. Specifically, we want to see the 

.-accuracy of the results as compared to the results obtained in the previous chapter. 

Since in the collinear problem we do not have a priori knowledge of the PODS, we will 

analogously perform the modified Filinov trick on the Eckart case without integrating 

out the singularity2 . 

The full S-matrix can be written down in analogy with Eq. ( 4.6) as3 

S~~n(E) =- ( 21ri~)1/2 l1 A(p1;f,x)exp(i'P(p1;t,x)), (4.22) 

where we have used a slightly different notation for A and 'Pas compared to the ones 

used in the previous chapter with 

A(p1; t, x) 
I 

a 
1

1/2 m x 2 

IP21 Bpl X 

-2kx + k [Et + S(p1;f, x)]. ( 4.23) 

2 In the previous chapter we had explicitly changed variables in order to transform away the 
singularity in the integrand assosciated with the seperatrix trajectory. Please refer to chapter 2 of 
this thesis. 

3 See appendix I of the previous chapter. 



CHAPTER 4. APPLICATION TO COLLINEAR A + BC REACTIONS 77 
I 

In order to calculate the Filinov derivatives of the phase P we have to be careful as the 

derivatives have to be taken with the condition that x2 =xis fixed and l = l(x,pt). 

Thus, for example the first derivative of the phase with respect to p1 is calculated as 

follows: 
- ap I ap I ap at Pl(Pl;t,x) = ~ = ~ + ~- ~, 

upl :i upl f ut upl 
(4.24) 

where a subscript denotes the quantity being held fixed. Using the relations 

as ax2 
apl 

P2_ 
apl 

as 
1-l ( 4.25) 

at 
at m ax21 = 

apl t ' apl P2 
with 1-l being the classical Hamiltonian, we obtain 

nPl(Pl;t,x) = P2 ~x2 1 - m (E+1-l) ax21 
upl f P2 apl f . 

(4.26) 

Similar analysis can be done for the second derivative of the phase obtaining 

+ (4.27) 

Thus, the modified Filinov approximation to Eq. ( 4.22) is given by 

s~c (E) ~ s~c (E· b) 
n,n n,n ' 

v r AMF( - -) (. MF( - -)) - (21ri1i)1/2 }P p; t, x exp zP p; t, x , (4.28) 

where 

AMF(p;l,x) A( __ ) ( iP2(p; l, x)) 112 

p; t, X 1 + b 

P(p; l, x) + ;b Pi(p; t, x) . ( 4.29) 

Trajectories are now propagated with initial conditions (p, -x) until a fixed final 

position x is reached and the integral in Eq. ( 4.28) is calculated. Note that all 
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Figure 4.5: This figure shows the imaginary part of the integrand in Eq. (4.28) for 
various values of the Filinov parameter b for E = 0.55 e V. Notice the smooth form 
-of the integrand for very small values of b (stationary phase limit) and the separatrix 
singularity emerging for larger values of b (exact limit). The stationary phase ( SP) 
and singularity momenta are also indicated on the plot. 
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the relevant quantities required for the modified Filinov method are already being 

computed along the trajectory. 

Figure (4.5) shows the imaginary part of the integrand in Eq. (4.28) for 

various values of the Filinov parameter b. The energy E is set equal to 0.55 eV. For 

very small values of b we see that the gaussian factor in the integrand of Eq. ( 4.28) 

samples a very narrow region around the stationary phase region and damps out the 

rest leading to a very smooth behaviour of the integrand. The separatrix singularity 

is damped out at this value of b and a slightly larger value of b as well. For very 

large values of b we see the singularity manifest itself in the integrand since we are 

approaching the exact integral in this limit. It is clear that for E less than or close 

to the barrier height, the results With a very small value of b will be essentially zero. 

This is due to the fact that there are no real stationary phase points at these energies 

for the integrand. It is thus necessary to consider larger values of b in order to obtain 

the probabilities at these energies. Thus it is seen that a calculation with very small 

b yields fairly good results for the transmission probabilities at energies above the 

.barrier height. As the value of b increases the tunneling contribution become finite 

and begin to move towards the correct results. The results are very encouraging and 

provide some hope that the collinear problem can be dealt with more efficiently in 

the future. 

4.4.3 Modified Filinov approach to collinear systems 

The modified Filinov method is applied to Eq. ( 4.6) only to the translational 

momentum part of the integrand. In general, we could apply it to both the transla­

tional and vibrational momentum part of the inte~rand but we consider the simpler 

case in this section. The first and second derivatives of the phase are calculated as 

outlined in the previous section. Again, the derivatives are calculated for fixed value 

of the translational Jacobi coordinate R. We will just state the results: 
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(4.30) 

where 

( 4.31) 

and we have denoted 

8R~ 8r13 
MT Mv= 

2 -
' ap~l ap~l 

MTP 
8P~2 8P~ 

(4.32) -
ap~l ' Mvp = apa Rl 

v~2 
av 13 _ av 

-
8R~ ' 

v;.2 = -{3. 
8r2 

The dots on theM's indicate time derivative and it is easy to show, using the Jacobi 

Hamiltonian, that the time evolution is given by 

MT 
1 

-MTP 
ffiR 

Mv 
1 

( 4.33) - -Mvp. 
mr 

The derivatives are approximate since we have neglected certain terms involving the 

Jacobian elements. Note that the first derivative of the phase does not vanish at 

stationary phase points because we are applying the method only to the translational 

momentum part of the integrand. This is in contrast to the one dimensional case 

where the first derivative does vanish at the stationary phase points. Nevertheless, 

it is interesting to analyze the integrand in Eq. ( 4.6) as a function of the Filinov 

parameter b. 

In the figure ( 4.6) we show the imaginary part of the integrand for two 

different representative values of the Filinov parameter b. It is clear that with a small 

value of bit is possible to damp out the PODS singularity around 0.48 e V. The main 
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Figure 4.6: This figure shows the imaginary part of the integrand in Eq. ( 4.6) for two 
representative values of the Filinov parameter b for E = 0.6 eV. Notice the smooth 
form of the integrand for very small values of b (stationary phase limit) and the PODS 
singularity structure at E :::::::: 0.48 e V emerging for larger values of b (exact limit). The 
reactive contribution for small values of b is concentrated around the 0.6 e V region. 
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contribution for small b is definitely concentrated in the stationary phase region at 

E = 0.6 eV. Even though the integrand looks reasonably smooth as a function of 

the initial translational momentum, the results still do not compare well with the 

exact results for collinear H + H2 • One of the reasons might be that we have not 

applied the method to the vibrational momentum part of the integrand. It is well 

known from previous studies that chaotic scattering arises due to the sensitivity of the 

scattering trajectories to the initial vibrational phase of the diatom. Perhaps treating 

both the translational and vibrational part of the integrand with the modified Filinov 

trick would be the correct approach. Another, more pessimistic, reason could be that 

the complicated nature of these PODS singularities and close proximity of many 

PODS in a small energy region lead to the failure of this method. It is important 

to remember that the semiclassical hybrid approach has the best chances of being 

accurate when the dynamics of interest is inherently of a short time nature. However, 

reactive trajectories in the neighbourhood of the PODS are relatively long lived and 

might be a significant factor in the accuracy of the results obtained for this collinear 

system. 

4.5 Conclusions 

The semiclassical hybrid approach as applied to collinear reactive scattering 

has a significant numerical bottleneck due to the complicated nature of the integrand. 

The complications arise due chaotic scattering as a result of which reactive and non­

reactive regions are seperated by PODS. We were interested in developing a method 

which did not rely upon explicitly mapping out the PODS since mapping periodic 

orbits in greater than two dimensions is prohibitively difficult. The modified Filinov 

method demonstrated some promise of being successful but application to collinear 

systems requires a much more careful analysis than presented in this chapter. On 

the other hand, it is well known from recent work in dynamical systems that chaotic 

scattering is supressed in greater than two dimensions[81]. The reason being that 

periodic orbits are one dimensional objects in phase space and clearly in greater than 

two dimensions will be of less importance for reactive scattering. Thus, it seems 
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reasonable to apply the semiclassical hybrid approach to three dimensional systems 

and test the accuracy of the method. From a numerical standpoint the PODS sin­

gularity are the largest bottleneck in implementing the semiclassical approach for 

collinear reactive scattering. Perhaps it would be useful to explicitly map the PODS 

for collinear systems and develop a customized integration routine to handle the 

singularities. Finally, if we have a reactive system which exhibits an interesting and 

important resonance structure then it becomes necessary to develop efficient methods 

to handle them within our semiclassical hybrid approach. 
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