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Abstract 

We consider the structure of effective lagrangians describing the low-energy dynamics of supersym

metric theories in which a global symmetry G is spontaneously broken to a subgroup H while super

symmetry is unbroken. In accordance with the supersymmetric Goldstone theorem, these lagrangians 

contain N ambu-Goldstone superfields associated with a coset space cc /if, where cc is the complex

ification of G and if is the largest subgroup of cc that leaves the order parameter invariant. The 

lagrangian may also contain additional light matter fields. To analyze the effective lagrangian for the 

matter fields, we first consider the case where the effective lagrangian is obtained by integrating out 

heavy modes at weak coupling (but including non-perturbative effects such as instantons). We show 

that the superpotential of the matter fields is if invariant, which can give rise to non-trivial relations 

among independent H -invariants in the superpotential. We also show that the Kahler potential of the 

matter fields can be restricted by a remnant of ii symmetry. These results are non-perturbative and 

have a simple group-theoretic interpretation. When we relax the weak-coupling constraint, there ap

pear to be additional possibilities for the action of if on the matter fields, hinting that the constraints 
imposed by if may be even richer in strongly coupled theories. 
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1. Introduction 

Supersymmetry provides an elegant framework for understanding the hierarchy between the weak 

scale and much larger mass scales such as the grand-unification and Planck scales that are believed 

to play a fundamental role in nature [1]. However, there is at present no direct information about 

what role supersymmetry will play in the more fundamental theory that we believe lies behind the 

standard model of electroweak and strong interactions. Given this situation, we believe it is essential 

to understand the general features of supersymmetric theories as fully as possible. 

In many models for physics beyond the standard model, the symmetries (approximate, exact, or 

gauged) that we observe are remnants of a larger symmetry that is spontaneously broken at some high 

energy scale A. Because the scale A is often too large to be probed directly, it is important to know 

what constraints this places on the physics at observable energies E «: A. For non-supersymmetric 

theories, this question was answered in an elegant paper by Coleman, Wess, and Zumino [2]. This 

paper derives a useful canonical form for the most general effective lagrangian describing the low-energy 

physics in a model where a global symmetry G is broken spontaneously down to a subgroup H. The 

effective lagrangian contains fields for the Nambu-Goldstone bosons (NGB's) associated with the coset 

space G I H, as well as additional light "matter" fields that can be chosen to transform according to 

linear representations of H. The matter fields can couple to each other in the most general way allowed 

by H invariance, while the NGB's ar~ derivatively coupled [3], so their interactions are suppressed 

by powers of E I A. Therefore, at sufficiently low energies, the only important interactions are those 

of the matter fields among themselves. Since the matter fields can interact in the most general way 

allowed by the unbroken group H, one can describe this result by saying that H in variance is the only 

remnant of the symmetry group Gat energy scales small compared to A. 

In this paper, we show that this result is modified in an interesting way in supersymmetric theories. 

We consider a theory with N = 1 supersymmetry in which a symmetry group G is spontaneously 

broken down to a subgroup H, while supersymmetry is left unbroken.* We consider the most general 

effective lagrangian describing the interactions of N G B 's and their superpartners (which we collectively 

refer to as SNGB's), and "matter" chiral superfields. The SNGB's are described by chiral superfields 

living in the coset space ae Iii' where ae is the complexification of G and ii is the largest subgroup of 

ae that leaves the order parameter invariant; this is in agreement with the supersymmetric Goldstone 

theorem [4]. Clearly, fi 2 He, but ii is in general larger than He [5][6]. (The special case where 

fi =He was discussed extensively in the literature; see e.g., [7].) 

To analyze the matter fields, we begin by discussing the case where the effective lagrangian 

is obtained by integrating out heavy modes at weak coupling. Our results rely only on symmetry 

arguments, and are therefore valid non-perturbatively. This is important despite the fact that non

perturbative effects in weak coupling vanish faster than any power of the coupling (instanton effects, 

for example). This is because non-perturbative effects in supersymmetric theories can lift degenera

cies that persist to all orders in perturbation theory [8][9]. Many of the non-perturbative effects in 

supersymmetric gauge theories discussed in the recent literature [10][11] (see also [12]) are interesting 

examples of this phenomenon. 

For the weak-coupling case, the matter fields transform according to linear representations of 

the group fi, even though the true unbroken symmetry of the theory is H. Supersymmetry restricts 

the way that fi is broken down to H, and our first major result is that holomorphy implies that the 

* We do not treat the case where a U(1)R symmetry is spontaneously broken. 
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effective superpotential of the matter fields is in fact fi invariant. Because fi can be larger than He, 
this can lead to non-trivial relations between different H -invariants in the effective superpotential. 

Perhaps more surprisingly, we show that there can be a remnant of fi symmetry that restricts the 

effective Kahler potential of the matter fields as well. We illustrate these results with simple explicit 

models. 

We then relax the assumption of weak coupling in the fundamental theory and consider the most 

general effective lagrangian describing the low-energy dynamics when G is spontaneously broken to 

H. We are unable to classify the group action of fi on the effective fields in this case: for example, 

there are cases where the fi action cannot be made linear by redefining the effective fields. Even if 

fi acts linearly, there are fi representations for which we are unable to write kinetic terms. While it 

is certainly dangerous to draw any conclusions from ignorance, we note that this may be taken as a 

hint that the role of fi may be even richer in strong-coupling theories. 

This paper is organized as follows: in section 2, we consider the most general effective lagrangian 

that can describe the low-energy dynamics of the spontaneously broken theory. We explain the role of 

the groups cc and fi and give some results on the structure of these groups. In section 3, we turn our 

attention to the matter fields and derive a simple canonical form for the effective lagrangian describing 

the SNGB's and matter fields for the case where the effective theory is obtained by integrating out 

heavy modes at weak coupling; this section contains the main results of this paper. In section 4, we 

analyze the most general effective lagrangian describing spontaneous symmetry breaking. Section 5 

contains our conclusions. 

2. The effective lagrangian for the SNGB's 

In this section, we consider the most general effective lagrangian describing the low-energy dy

namics of a theory with a compact global symmetry group G spontaneously broken to a (compact) 

subgroup H, while supersymmetry is left unbroken. We will concentrate on the SNGB sector of the 

effective lagrangian in this section, leaving a detailed discussion of the matter fields for the next two 

sections. 

2.1. The Role of cc and fi 

The main new feature of the supersymmetric case is that the group cc plays an important role in 

restricting the low-energy couplings. cc is the complexification of G, defined by choosing a hermitian 

basis of generators for G and allowing the group parameters to be complex. To understand the 

importance of this group, consider the underlying "fundamental" theory whose dynamics gives rise 

to the symmetry breaking. We assume that this theory is a N = 1 supersymmetric theory of chiral 

superfields coupled to gauge superfields. We can write the lagrangian for this theory as 

J 2 2- '"- (J 2 ) .Crund= d()d()J\(<I>,<I>)+ d()W(<I>)+h.c., (2.1) 

where we have shown only the dependence on the chiral superfields <I>; gauge fields are also present 

in general, but are not written explicitly. This lagrangian is assumed to have a global symmetry G, 
which must of course commute with the gauge group. 

The first observation is that the superpotential W(<I>) is actually invariant under cc [13]. The 

reason is simply that W is a holomorphic function of <I> (that is, it is independent of <I>), and so it is 

invariant whether the group parameters are taken real or complex. 
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The Kahler potential I< ( 4>, <!>) is not holomorphic, and is therefore not invariant under ac. How

ever, we can make the Kahler potential formally invariant under cc by introducing "spurion" gauge 

field sources V transforming under cc as 

(2.2) 

These gauge fields are not dynamical, and we will set V = 0 at the end of the calculation.* (Differen

tiating with respect to components of V allows us to obtain information about symmetry currents and 

related operators, and is also useful for making contact with the "current algebra" approach to the 

low-energy dynamics.) We can then write the formally Gc-invariant lagrangian by replacing ()) with 

(2.3) 

(If there are derivatives in J{, they must be replaced by gauge-covariant derivatives constructed from 

V.) The role of V is to keep track of how cc is explicitly broken down to G by the Kahler terms in 

the fundamental lagrangian. 

To understand why this is a useful thing to do, it is helpful to contrast our introduction of ev 

with the more familiar case of explicit flavor symmetry breaking by current quark masses in QCD. 

In QCD with Np quark flavors there is a SU(NF)L x SU(NF)R chiral symmetry that is explicitly 

broken by quark masses. The effects of this explicit breaking are taken into account by treating the 

quark mass m 9 as a spurion field transforming under SU ( N F )L x SU ( N F )R as 
I 

(2.4) 

which formally restores the chiral symmetry of the QCD lagrangian. This is useful if the quark masses 

are small (compared to A qeD), because terms proportional to many powers of m9 in the low-energy 

effective lagrangian below the scale Aqcn can then be neglected. If the quark masses are not small, 

introducing the quark mass as a spurion is not useful, since many powers of m9 can be used to write 

down any desired SU(3)-violating term with an unsuppressed coefficient. 

In the supersymmetric case, the symmetry cc is not an approximate symmetry because e v is not 

small in any sense. Nevertheless, it is useful to introduce the gauge field spurion explicitly because one 

cannot use it to write down arbitrary G-invariant terms in the effective lagrangian. To see this, note 

that only terms with no (spacetime or supersymmetry) derivatives acting on V are non-zero when we 

set V = 0, so we can restrict attention to such terms. But functions ofV that do not involve derivatives 

of V cannot appear in the effective superpotential, because their transformation properties involve g t, 

which is an antichiral superfield. Therefore, the superpotential of the effective lagrangian behaves as 

though the underlying theory were invariant under cc. Furthermore we will argue in subsection 3.4 

that the dependence of the Kahler potential on V is restricted by the spurious gauge transformation 

properties of e v, and we find that the K iihler potential of the effective lagrangian is also restricted by 

* This is analogous to the treatment of anomalies by Wess and Zumino [14]. In this· case, global 

symmetries are enlarged to gauge symmetries by introducing spurion gauge fields, and it is required 

that the low-energy effective lagrangian has the same anomalous properties as the microscopic la

grangian. Even when one sets all the spurion gauge fields to zero, one is still left with a non-trivial 

Wess-Zumino term. In this paper we will not address the issue of the appearance of such terms in 

the supersymmetric effective lagrangian [15]. 
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a remnant of Ge symmetry. These are the general principles behind our results; we will see them in 

action repeatedly below. 

The group fi is defined to be the largest unbroken subgroup of Ge. To be precise, we assume 

that G is spontaneously broken by an order parameter v that can be thought of as an element of a 

(reducible) representation p of G. We can extend p to a representation ()f Gc simply by allowing the 

group parameters of G to be complex. The representation matrices therefore do not depend on the 

complex conjugates of the group parameters, so p can be thought of as a holomorphic representation 

of Ge. The group fi is then defined by 

fi = {g E Gc I p(g)v = v }. (2.5) 

That is, fi can be viewed as the unbroken subgroup of Ge; of course, fi is broken explicitly down to 

H by the spurion gauge field e v. We note that fi 2 He, but we will see that fi is in general larger 

than He [6]. We will describe the structure of fi in more detail in subsection 2.3. 

2. 2. The Effective Lagrangian 

We now turn to the general structure of the low-energy effective lagrangian. We begin by dis

cussing the conditions on the effective lagrangian that encode the fact that it describes the low-energy 

dynamics of a theory where a global symmetry G is spontaneously broken down to a subgroup H, 

while supersymmetry is unbroken. First, the effective lagrangian must be supersymmetric, so we as

sume that it can be written in terms of chiral superfields. (Light gauge superfields can be introduced 

by gauging part or all of the global G symmetry. This will not be discussed here.) 

Second, since the original theory (including the field V) is invariant under Gc, there is aGe action 

on the fields of the effective lagrangian that is nonlinear in general, and which we write as 

<I>>-+ T(g)(<I>), (2.6) 

with 
. T(l)(<I>) =<I>. (2.7) 

We assume that the effective lagrangian is invariant under this transformation. The effective theory 

also contains the spurion gauge field V transforming as in eq. (2.2), which breaks Gc explicitly down 

to G. 

Finally, we must also encode the information that the symmetry G is broken spontaneously by 

the order parameter v (introduced above). We want to interpret the fields in the effective lagrangian 

as fluctuations about the vacuum described by the order parameter v, so we demand that the target 

space (space of fields) in the effective lagrangian contain a special point (the origin) that is preserved 

by the action of the subgroup fi. Here we are implicitly assuming that the complex structure of the 

full theory is inherited by the effective theory, that is, that there are no "holomorphic anomalies" in 

the matching that determines the effectiv"e lagrangian. Since this matching is infrared safe, this is a 

reasonable assumption [16]. 

We now consider the most general effective lagrangian satisfying the assumptions above. We will 

follow closely the arguments of ref. [2]. The basic idea is to use the freedom to make field redefinitions 

to put the effective lagrangian into a canonical form where its physical content is manifest. Specifically, 

if we make a field redefinition of the form 

w = <I>F(<I>), (2.8) 
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with F(O) = 1 (that is, the redefinition preserves the origin of field space), then the physics described 

by the the effective lagrangians written in terms of <P and W is identical. 

We therefore make such a field redefinition by decomposing the target space into the orbits of 
the origin under cc and the rest. Specifically, we write 

<P = T(~)(w), (2.9) 

where 

(2.10) 

and W are coordinates for the part of the target space that is left invariant under fi. We can see how 

the new fields ~ and W transform by noting that for any g E cc 

<P ,_. T(g)(T(~)(w)) = T(g~)(w). 

We then decompose 

(EGclfi, hEH 

and write 

That is, the fields ~ and W transform as 

~ ...... g~h-l(g,~), 

w ...... T(h(g, ~))(w). 

The effective lagrangian also contains the spurion gauge field transforming as in eq. (2.2). 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

We see that with our assumptions, the effective lagrangian automatically contains fields ~ that 

live in the coset space cc I fi. One can check that the fields ~ couple to broken symmetry currents 

in the manner required by the supersymmetric version of Goldstone's theorem [4](see also [5][7]), so 

that we can identify them with the SNGB's. The fields W are identi~ed with light "matter" fields. 

The existence of the fields ~ E ac I fi is a direct consequence of our ability to formally promote 

cc to a symmetry of the fundamental lagrangian by introducing the gauge spurion V. Therefore, as 

a consistency check,.we should understand why the presence of V in the effective lagrangian does not 

allow us to write a mass term for the SNGB's in a theory with no matter fields. (For example, a quark 

mass spurion in QCD allows us to write mass terms for the NGB's.) A mass term for the SNGB's 

must be a superpotential term with no derivatives (spacetime or supersymmetry). It is easy to see 

that the constraints ofthe transformation rules in eqs. (2.2) and (2.14), together with the requirement 

of holomorphy, imply that no such term is possible. 

We will not discuss the structure of the effective lagrangian for the SNGB's in much detail, but 

we briefly indicate how to write an invariant kinetic term for the SNGB's. We restrict ourselves to 

groups fi for which 

(2.16) 

We will see in subsection 3.4 how this condition can fail, and how to generalize the construction below 

to all fi. We then define 

(2.17) 
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which transforms like a gauge field for the group if: 

(2.18) 

Then we can write the kinetic term 

(2.19) 

where v is the order parameter in the representation p of cc (see eq. (2.5)). To see that eq. (2.19) 

contains a kinetic term for the SNGB's, note that p(~)v = ip(IT)v + O(IT2), so that 

(2.20) 

Note that p(II)v is linear in IT and is nonzero for all IT =/= 0 by the definition of the SNGB fields, 

completing the argument.* We could go on to discuss the general form of the Kahler potential for 

the SNGB's and the resulting low-energy theorems, but the main focus of this paper is on the matter 

fields, so we will leave these topics for the future. 

2.3. Structure of if 

We now give some results on the structure ofthe group if, and illustrate them with some simple 

examples. The main structure theorem is that if has the Levy decomposition 

(2.21) 

where "/\" denotes a semidirect product (with gc acting on N). Specifically, this means that any 

h E fi can be uniquely decomposed as h = kn with k E /{c, n E N, and that knk- 1 E N for 

any k E /{c and n E N. Here, /{ is a compact group that can be written as a direct product of a 

semisimple group and an abelian group, and N is a unipotent group: that is, N is isomorphic to a 

group of upper-triangular matrices with 1 's on the diagonal. (This is the "algebraic" version of the 

Levy decomposition; see e.g. ref. [20]. In the context of SNGB's, this result is discussed in ref. [6].) 

The multiplication law for the Levy factors of fi is (in obvious notation) 

(2.22) 

where k1k2 E /{c and k2 1n 1kznz EN. 

As the examples below will make clear, H ~ I<, but I< can be larger than H. (In fact, /{ ct. G in 

general.) Thus, fi :J H if either N =/= 0 or /{ :J H. We illustrate both of these possibilities below. 

Consider first an example with G = U(N) broken by an order parameter (c:P) in the defining 

representation of U(N). We can make a U(N) transformation to put (c:P) in the standard form 

(2.23) 

* Similar kinetic terms to eq. (2.19) were discussed in refs. [5][6]. Note that eq. (2.19) is not of the 

form proposed in ref. [17]. This form of the Kahler potential can never appear in a consistent effective 

lagrangian describing the dynamics of SNGB fields [18][19]. 
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and it is clear that the unbroken group is H = U(N- 1). The group ii is given by the set of all 

N x N matrices of the block form 

1 

N -1 

1 

(~ 
N -1 

: ), (2.24) 

where u E U(N- 1)c = GL(N- 1, C) and a is a general complex row vector with N- 1 entries. 

The entries in a are allowed to be non-zero because elements of ii are not required to be unitary 

(equivalently, the generators of ii are not required to be hermitian). Therefore, in this example 

/{ = H = U(N- 1), and N is the group of matrices of the form 

n= 
1 

N-1 

1 

(~ 
N-1 

~ ) . (2.25) 

According to the arguments given earlier in this section, there is one real scalar SNGB for each 

generator of ac 1 ii. rt is easy see that 

dimG/H = 2N -1, dimGc/H = 2N. (2.26) 

Therefore, there is one "extra" SNGB whose superpartner is a NGB. When we discuss explicit models 

in subsection 3.5, we will see that the SNGB's that are not NGB's can be identified with excitations 

along fiat directions of the potential that gives rise to the spontaneous symmetry breaking. 

Next, consider an example with G = U(N) as before, but with two order parameters (or equiva

lently, an order parameter in a reducible representation of G). The order parameters are (<1>+) in the 

defining representation, and (<l>_) in the complex conjugate of the defining representation. We -can 

use U(N) transformations to put the order parameters in the standard form 

(2.27) 

and it is clear that the unbroken group is H = U(N- 2). To see what ii is in this case, note that we 

can use a U(N)c = G L(N, C) transformation to further simplify the order parameters: if we choose 

1 N -1 

aT= C!"} 1 ( 1 a ) E U(N)c, (2.28) 9o = 
N -1 0 1 

then 

go(~+)= en 9alT(<P_) = en (2.29) 
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This shows that fi is given by all matrices of the form 

1 

N -1 

1 

(~ 
N -1 

~ ), (2.30) 

where u E U(N- 1y. Therefore, in this example N = 0 and]{::::: U(N- 1). Note that ]{ct. Gin 

this case (although ]{ is isomorphic to a subgroup of G). It is easy see that 

dimGIH = 4N- 4, dimGc I fi = 2(2N- 1). (2.31) 

·Therefore, there are 2 "extra" SNGB's in this case. As in the previous example, when we discuss 

explicit models, we will see that they can be identified with excitations along flat directions of the 

potential. 

We will see in subsection 3.5 that these symmetry breaking patterns can arise in simple toy 

models, and that they give rise to interesting restrictions on the low-energy effective lagrangian. 

3. Matter Fields: Weak Coupling 

In this section, we ,consider the effective lagrangian including the matter fields in the case where 

the effective lagrangian is obtained by integrating out heavy modes at weak coupling. The reason 

for making this restriction is that in this case, the group fi acts linearly on the matter fields in the 

effective lagrangian, and we will be able to obtain a simple canonical form for the effective lagrangian: 
we find that the superpotential for the matter fields is invariant underif, while the Kahler potential 

is constrained by J{c, both of which are in general larger than He. (As we will see in the next seetion, 

the general case is more complicated.) 

3.1. Transformation of the Effective Fields 

We consider a "fundamental" theory with chiral superfields 4> invariant under a global symmetry 

G. Because the theory is weakly coupled, the order parameter can be taken to be {4>). We can 

therefore write 

4> = p(~) [{4>) + q, +A], (3.1) 

where p is the representation (reducible in general) of G under which 4> transforms, ~ E Gc I fi 
parameterizes the excitations of 4> in the broken symmetry directions (in the generalized sense of Gc 
invariance), and \lf and A are the excitations of 4> in .the remaining directions. We assume that the 

fields \lf remain light (relative to {4>) ), while the fields A get masses of order {4>). (For simplicity, we 

assume that there is a single scale set by {4>). The extension to the case where {4>) contains several 

different scales should be clear.) We then imagine computing an effective action containing only the 

light degrees offreedom by integrating out the heavy fields A. The fields in the resulting low.:energy 
effective lagrangian will transform under Gc as 

~ 1-+ g(ft-l(g,~), 

\lf ...... R(h(g,~))\lf, 

(3.2) 

(3.3) 

where R is the fi representation obtained by reducing the representation p of Gc. The effective 

lagrangian can be constructed by writing down the most general form allowed by the symmetries and 
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then determining the coefficients by matching onto the fundamental theory. We address the first part 

of the problem in this section, concentrating on the matter fields W. 

The striking fact about eq. (3.3) is that the matter fields transform according to representations 
of fl, even though the true unbroken symmetry of the theory is only H. As discussed in subsection 

2.1, the reason for this is the fact that supersymmetry constrains the way the field V breaks H-+ H. 

3.2. The Effective Superpotential 

As pointed out in subsection 2.1, the transformation rule for V in eq. (2.2) does not allow V 
to appear in the effective superpotential unless derivatives act on V. Since such terms vanish when 

V = 0, the effective superpotential is invariant under fl. In cases where fl is larger than He, this leads 

to additional restrictions on the effective superpotential beyond those imposed by He invariance. 

As a simple example, consider a theory with the symmetry breaking pattern of the first example 

in subsection 2.3 (see the discussion surrounding eqs. (2.23) and (2.24)). That is, G = U(N), H = 
U(N- 1), and the order parameter is in the defining representation of U(N). Suppose now that the 

low-energy theory contains matter fields W + transforming according to the defining representation of 

U ( N). Under U ( N- 1), W + decomposes into a singlet and a defining representation, but fl in variance 

mixes these representations, leading to restrictions on the effective superpotential. For example, if the 

low-energy theory also contains matter fields W _ transforming according to the complex conjugate of 

the defining representation of U(N), then we can write 

(3.4) 

and the most general H-invariant quartic terms in the effective superpotential are 

A~. (3.5) 

In the first term, the relative coefficients of three H invariants are fixed by fl invariance. (Note that 

we cannot put the quartic term in this form by rescaling the fields.) Also note that the terms involving 

A+ by itself are forbidden by fl, even though they are allowed by H. We will consider an explicit 

model with this structure after we have discussed the effective Kahler potential. 

3.3. Structure of fl Representations 

In order to understand the structure of the effective Kahler potential, we need some general 

results about the fl representations R of the matter fields. In the class of theories we are considering, 

the fl .representation R is obtained by reducing a Ge representation. To make this precise, we write 

(in the sense of eq. (3.1)) 

w = P\]i[<I>- (<I>)], (3.6) 

where P\]i is a projection operator. That is, we think of W as an element of the representation space 

of the Ge representation p that is nonzero only in a subspace. Because the fields W transform among 

themselves under fl, the relation between p and the representation R of fl is 

(3.7) 
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for all h E fi. Here, we view R as acting on the state space of p, but R is non-zero only on the \II 

subspace.* 

In the appendix, we show that any fi representation R obtained by reducing a cc representation 

as in eq. (3.7) is equivalent to a representation by matrices of the block form 

* (3.8) 
( 

R1(k) 

R(kn) = r 
* 

0 

where k E gc and n EN are the factors in the Levy decomposition of fi. That is, R(k) is an upper

block-triangular matrix with representation matrices of gc in the diagonal blocks. As explained in the 

appendix, this result can be thought of as a generalization of Engel's theorem for the representations of 

Lie algebras. To check that eq. (3.8) defines a representation of fi, we must use the multiplication law 

for the Levy factors given in eq. (2.22). As a special case of eq. (3.8), we note that any representation 

RK of f{c gives a representation of fi, defined by R(kn) = RK(k). 

3.4. The Effective Kahler Potential 

We now discuss how V breaks fi down to H in the effective Kahler potential. Our main result 

is that the allowed term in the Kahler potential for the matter fields are classified by /{ invariants 

(not H invariants). The best way to see this is to work in a "gauge" for V where the structure of the 

unbroken group is as simple as possible. In this language, the explicit breaking of f{ down to H is 

accomplished by the vacuum value of V. 

To make this precise, recall that the group K defined in the Levy decomposition eq. (2.21) can 

be larger than H when there is a cc transformation g0 that can simplify the order parameter. We 

therefore define the group 
• • 1 • • 

I< = {gohg0 I h E H}. (3.9) 

The group k. is isomorphic to fi, but it is a different group of matrices. Maintaining this distinction 

is important for understanding the construction given below. 

The reason for introducing the group f{ is as follows: if f{ is larger than H, then when we 

choose a basis where R has the form given in eq. (3.8), we find that R(h)) =j:. R(h)t. (Here, we 

use the definition of t on cc that makes G and its representations real. The subgroup fi and its 

representations R satisfying eq. (3.7) then naturally inherit a definition oft.) To see why this is so, 

consider the second example in subsection 2.3. The field 4>+ transforms in the defining representation 

of fi, but this does not have the form of eq. (3.8). However, the defining representation of fi is 

equivalent to the representation 

• "-1 (o1 uo). R(h) = g0 hg0 = (3.10) 

(See eq. (2.30).) This example shows that we can find a g0 E cc such that 

-1·t -1· t R(go h 9o) = R(go hgo) . (3.11) 

* Strictly speaking, R defined in this way is not a representation, since it is not invertible as a 

linear operator on the state space of p. However, if we define the inverse of R on the subspace on 

which it acts non-trivially, we can think of R as a representation. 
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The reason for this is that J{ is larger than H only if there is a transformation g0 E cc that can be 

used to simplify the order parameter further than can be done with G transformations alone. 

When /{ is larger than H, it is convenient to work with fields where hermitian conjugation acts 

in a simple way. We therefore define fields 

trapsforming as 

where 

and 

Note that with these definitions, 

{ = Yo~ Yo 1 E cc I i<, 
~ = p(go)W, 

{ ~ -g{k-l('g,{), 

~ ~ R(k(-g,f))~, 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

by eq. (3.11). In order to write invariants, it is useful to work in terms of the transformed spurion 

gauge fields 

eV =:g01teVg01 ~-g-lteVg-1, 

ew = [t ev{ ~ k-lt(g,{)ew k-l(g,{). 
(3.19) 

(3.20) 

These redefinitions simply amount to making a transformation g0 E Gc to twiddled fields. However, 

it is important to note that this is not a symmetry transformation, since 

VI -lt-1...~-1· I e V=D = 9o g0 r m genera . (3.21) 

The advantage of working in terms of these fields is that the most general invariants are simply the 

most general gauge-invariant combinations of the twiddled fields, and the explicit breaking of if down 

to His entirely due to the vacuum value of V. 

We can use the field W to define covariant generalizations of derivative operators, such as 

- -
"Va=:Da+e-WDaew. 

When V is replaced by its vacuum value, the derivative does not explicitly break if, since 

e-w Daew ={-le-v DaeV{ + {- 1 Da{, 

and Da V = 0 when V = 0. 

(3.22) 

(3.23) 

We are now ready to show that the allowed terms in the effective Kahler potential are classified 

by /{ invariants. This is done by constructing new matter fields ~j that transform according to 

(3.24) 
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where Rj is the jth diagonal block of the k representation R (see eq. (3.8)), and k(g, [) E f{c is 

defined by decomposing 

ic(-g, [) = k(g, [)n(g, [), (3.25) 

with n(g,[) E {gong0 1 In EN}. 

We will see that the matter fields ~ j for j = 1, ... , r -1 (where r is the total number of blocks) are 

not holomorphic in the original fields, so they cannot appear in the effective superpotential. However, 

they can appear in the Kahler potential, so any K-invariant function of ~j is allowed in the Kahler 

potential. The matter fields ~j also depend on V, and when f{ is larger than H, /{ is broken only 

by eq. (3.21). This will give rise to relations between the coefficients of different H-invariants in the 

Kahler potential. 

We begin by defining the projection operators P?.i and P 5:.i acting on the representation space 

of R: 
J 1'-j 

P5:.i = j ( 1 0 ) 
r-j 0 0 ' 

j-1 
p>i = 

- r-j+1 

j - 1 r-j+1 

( ~ ~ ), (3.26) 

where the numbers at the border of the matrix count the number of blocks (see eq. (3.8)). Because 

R( k) is an upper-triangular matrix, it is easy to see that 

(3.27) 

where we use the abbreviation k = k(g,{). Similarly, R(k)t is a lower-triangular matrix, and hence 

(3.28) 

We can therefore define the fields 

(3.29) 

- -That is, W?_j transforms according to the representation P?_jRP?.j consisting of the last j subblocks 

of R. In particular, the matter field ~ r = P?.r W transforms according to the representation Rr of f{. 

We can isolate the "middle" blocks using the gauge field spurion. To see how to do this, note 

that by eq. (3.7), 

(3.30) 

where we have used eq. (3.18). Thus, we can define 

(3.31) 

and 

(3.32) 

To see why this is useful, note that 

(3.33) 

where the inverse is defined in the obvious way on the non-zero blocks. Note that 

-1- -
S?.j 1lf = W?_j + 0(11) + O(V), (3.34) 
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but s;J{il transforms according to a /ower-triangular representation whose first non-zero block cor

responds to Rj. Therefore, we can use the projection operator P 'Si to construct matter fields that 

transform according to Rj: 
- 1- - - t-
Wj:: P-siS~1 w......., RJ(k- 1 (g,~)) WJ, (3.35) 

as claimed above. Similarly, we can write invariants inv~lving {if} by noting that 

(3.36) 

Note that it is impossible to project the matter fields down further, for example to H. To see 

this, note that when go = 1, K = H, and it is clear that we can only project down to J{. When 

g0 =F 1, we can perform a "gauge transformation" to define the "twiddled" fields in which g0 only 

appears in the vacuum value of the gauge field. However, the terms we write must respect the full Gc 
symmetry, and so there are no additional invariants when the gauge fields take on particular values. 

3.5. Toy Models 

We now give some explicit toy models that illustrate the main results obtained above, namely 

that the effective superpotential for the matter fields is invariant under fi, while the effective Kahler 

potential is constrained by J{c, both of which are in general larger than He. In order to illustrate 

our results, we must consider models that spontaneously break symmetries, and in addition contain 
"matter" fields that remain light after symmetry breaking. The models are therefore somewhat 

complicated, and we will discuss them in two steps: first, we construct the "symmetry breaking 

sector," and then we add fields to the model to get additional matter fields at low energies. 

The first example has larger K than H and demonstrates that the Kahler potential is restricted 

by K-invariance. It has G = U(N) with fields 

q>_ "'N, (3.37) 

The most general renormalizable superpotential is 

(3.38) 

where we have shifted away a possible linear term in ~- It is easy to see that there are no additional 

accidental symmetries. The most general vacuum of this theory is either 

(~} = 0 or - Mjg, (3.39) 

or 

(3.40) 

where 

(3.41) 
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but V± and w are otherwise arbitrary. We will study this case. (The flat directions are preserved 

to all orders in perturbation theory [8]; ~he techniques of ref. [10] show that this result is true even 

beyond perturbation theory.) Note that we can always take w to be real and also V± relatively real 

using G transformation. Therefore, number of .flat directions in this model is that corresponding to 

w and v+fv_, both real parameters. This precisely coincides with the number of extra SNGB's as 

discussed in section 2.3. 

The symmetry breaking structure is exactly the same as the second example in subsection 2.3 (see 

the discussion surrounding eqs. (2.28)-(2.30)). In this example, fi:::::: U(N -1)c, so that/{ = U(N -1) 

is larger than H. There are 2N -1 massless chiral superfields that can all be identified with SNGB's. 

The SNGB's can be parameterized by writing 

(3.42) 

where go is defined in eq. (2.28) and 

1 N -1 

II= 
N -1 

1 (~ ~~ )· (3.43) 

To get a more interesting theory, we add more fields to the theory. We write G = SU(N) x U(1) 

and take the fields to transform as 

<P+ "'(N;+1), 

E+"' (N; -1), 

<P_ ,..... (R; -1), 

E_ "'(R; +1), 

~"' (1; 0), 

r,..... (1; -2). 

The most general dimension-4 superpotential is now 

M 2 g 3 
W = T~ + 3~ + m<P+<P- + ).~<P+<P-

+ J.lE+E- + ~~E+E- + ,Bf<P+E-· 

There is a vacuum for which (<P±) and (~) are as above and 

(f)= 0. 

The light fields are now the SNGB's discussed above and the matter fields 

'Ill+= 1 (A+) = Yoe-lE+, 
N-1 B+ 

'\ll_ = N~l (;_) 
= Pg(jlTeE_, 

where 
1 N -1 

P= 
1 (~ 0 )· N -1 1 
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(3.45) 

(3.46) 

(3.47) 

(3.48) 

(3.49) 



These fields transform as 

(3.50) 

where u E U(N- 1) parameterizes k(g,{) as in eq. (2.30). Note that B± reduce under the unbroken 

U(N- 2) as a sum of a singlet and a (N- 2)-dimensional representation. To define kinetic terms for 

these fields, we follow the general discussion above and define 

S: [Pe-w Prl (3.51) 

~ ( ~ u~lt) S ( ~ u~l) · 
We can then write the effective Kahler potential 

(3.52) 

and the effective superpotential 

(3.53) 

Note that different U(N -2) invariants are related in both the superpotential and the Kahler potential. 

The second example illustrates that the fi invariance relates invidual H-invariant terms in the 

superpotential. It has global G = U(N) x U(1)R symmetry with fields 

(3.54) 

where U(1)R is defined by 

(3.55) 

The most general superpotential compatible with these symmetries is 

(3.56) 

This term can be imagined to arise from integrating out a heavy singlet chiral superfield in a renor

malizable theory.* It is easy to check that there are no additional accidental symmetries. There are 

supersymmetric ground states for 

(3.57) 

The potential is minimized for arbitrary V±, so the potential has 2-dimensional space of flat directions. 

For simplicity, we will analyze the theory for the special case v_ = 0. 

* For instance, W = All>+~I>-x + Mx 2 , where x has quantum numbers (1; 1). The superpotential 

including the matter fields eq. (3.65) can also be rewritten using additional singlet fields, with our 

results remaining unchanged. The non-renormalizable forms used in the text simplify some of the 

expressions. 
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The theory then has a symmetry breaking structure similar to that of the first example in sub

section 2.3. There is an unbroken U(1)R' symmetry that is a combination of the original U(1)R and 

a broken U ( N) generator: 

where 

T= 1 
N-1 

(3.58) 

N-1 

~ ) E U(N). 

Therefore, the only effect of the U(1)R symmetry is the existence of the symmetry U(1)R' in the 

effective lagrangian, and we write (for v_ = 0) 

G = U(N), H = U(N -1) .. (3.60) 

The group fi is then the same as in eq. (2.24). There are 2N SNGB's in this model, which are 

conveniently parameterized by 

where 

II= 
1 

N-1 

1 

(: 

(3.61) 

N -1 

~ ) . (3.62) 

There is a flat direction parametrized by the real part of cr, consistent with the number of extra 

SNGB's as discussed in section 2.3. There are also N- 1light chiral matter fields 

1 

~ 1 (0 
.:::._:: N -1 0 

N -1 

~ ) e ~- = N ~ 1 ( ~- ) · 

There is no superpotential allowed for the light matter fields because of U(1)R' symmetry. 

(3.63) 

To get a more interesting effective lagrangian, we again add additional fields.· We also impose an 

additional U(1) symmetry, so that the full symmetry is U(N) x U(1) x U(1)R· The fields are now 

~+...., (N;O,~), 

~+...., (N; 1,~ ), 

The most general superpotential is 

~-...., (N;O,~), 

~-...., (N; -1,~ ). 

W = Gl(~+~-)2 + G2(~+~-)2 

+ G3(~+~-)(~+~-) + G4(~+~-)(~+~-). 

This theory has a vacuum with (~±) as before (we again take v_ = 0), and 

(3.64) 

(3.65) 

(3.66) 

giving rise to the same symmetry-breaking pattern discussed above. The low-energy matter fields are 

the fields ::::_ in eq. (3.63), as well as 

w_ =e ·~-· (3.67) 
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If we write 

(3.68) 

The effective superpotential is 

(3.69) 

Just as in the example in subsection 3.2, there are three H invariants related by fi. Also, terms such 

as At are allowed by Has well as U(1)R', but are forbidden by fi. Terms proportional to powers of 

A_ are allowed by fi symmetry, but are forbidden by the unbroken U(1). 

As described in the previous subsection, the effective Kahler potential for the model is written in 

terms of fields transforming under U ( N - 1) representations. In this example, the fields are 

A_ 1--+ A_, (3. 70) 

and the non-holomorphic fields 

(3.71) 

transforming as 

(3.72) 

The Kahler potential for the matter fields is simply the most general U(N- 1) invariant function of 

these fields. 

The final example has a matter field whose mass term is forbidden by fi, even though a mass 

is allowed by H alone. The model is a simple variation on the one just discussed: the symmetry is 

SU(N) x U(1)R with "Higgs" fields 

(3.73) 

and "matter" fields 

(3.74) 

In addition, we impose a Z2 symmetry under which ~± is even and E+ is odd. The superpotential is 

then simply 

(3.75) 

The superpotential has an accidental U(N) symmetry acting only on E+, but this can be broken in 

the Kahler potential by terms such as 

(3.76) 

where the indices are contracted in the obvious way. In the effective theory, the light matter fields are 

,y, _ c-1~ _ (A±) 
'J.'+='> ..:..+= B± . (3. 77) 

A mass term for A+ is allowed by H, but forbidden by fi, since 

(3.78) 

where a is defined in eq. (2.24). 
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4. Matter Fields: General Case 

In this section, we relax the assumption that the low-energy effective lagrangian arises from a 

weakly-coupled theory, and explore the action of the group fi on the matter fields in a general effective 

lagrangian satisfying the assumptions stated in subsection 2.2. For the weakly-coupled case, we found 

that the fi action on the matter fields is linear, and that the fi representations that arise can be 

embedded in cc representations. We will show by explicit examples that the freedom to make field 

redefinitions does not in general allow us to define matter fields on which fi acts linearly. Furthermore, 

even if we restrict attention to linear fi representations, we show that they cannot be embedded in 

cc representations in general. This seems to make it impossible to write Gc-invariant kinetic terms. 

We therefore do not have a good understanding of the general effective lagrangian, and this section is 

mainly an attempt to quantify our ignorance. 

4 .1. Linearization 

We first show that we can redefine the matter fields so that the action of [{c is linear. Expanding 

the transformation eq. (2.15) for small W, we have 

(4.1) 

Note that there is no Ill-independent term on the right-hand side because T(h)(O) = 0. Following 

ref. [2], we then define 

2 =: i w(k) R(k)- 1T(k)(ll!), (4.2) 

where the integral is over the compact subgroup [{ C Kc, and w( k) is the invariant group measure on 

J{. Despite the fact that the integral is defined only over J{, the fields 2 actually transform linearly 

under all of f{c. To see this, note that under f E J{c, 

2 ~---> i w(k)R(k- 1 )T(k)(T(f)(ll!)) 

= i w(k) R(kr 1T(kf)(w) 

= R(f) { w(k') R(k')- 1T(k')(ll!), 
}Kl 

(4.3) 

where we have changed variables to k' = kf in the last line, so the integration is now over K£ = 
{kf IkE K}. Since the group action T(k')(w) and the group measure are holomorphic in the group 

parameters, we can deform the contour back to K, and obtain* 

2 ...... R(f) · 2, (4.4) 

The argument above relies crucially on the fact that f{ is compact, since the group-invariant 

measure is not defined for general non-compact groups. To see that this is not just a technicality, 

• The measure w(k) is the natural analytic continuation of the Haat measure on K to I<c. Note that 
w(k) is dosed in Kc: It is holomorphic in the group coordinates, 8w(k) = 0, and also the highest form 

in the holomorphic coordinates, aw(k) = 0. Therefore, one can continuously deform the integration 

region within f{c as long as one does not encounter singularities in the integrand. 
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we give an explicit example of a fi group action that cannot be linearized by any redefinition of the 

matter fields that preserves the origin. Consider a case with G = SU(2) broken by an order parameter 

transforming in the defining representation. In this case, we can make an SU(2) transformation to 

put the order parameter inthe form 

(4.5) 

and we see that H = 1. The group iJ is given by the set of 2 x 2 matrices of the form 

, ( 1 a) 
h = 0 1 (4.6) 

with a complex. It is easy to see that the a's add under group multiplication, so iJ is isomorphic 

to the group of translations in the complex plane. Now consider a single matter chiral superfield "IJ1 

transforming as 
"IJ1 "IJI,.._. ___ _ 

1 + a"IJI 
(4.7) 

This transformation leaves the origin invariant, and it is easily checked that it satisfies the group 

multiplication law. We wish to define new matter fields 3("1J!) that transform linearly under fi. These 

fields should transform as 

(4.8) 

where t is the "generator" in the linearized transformation. Equating the O(a) terms gives the 

requirement 

(4.9) 

The general solution is 

( 4.10) 

which does not satisfy the condition that 3 = 0 when "IJ1 = 0. Thus we see that the transformation 

eq. (4.7) cannot be linearized. 

To see what fi invariants we can construct in this example, note that eq. (4.7) can be rewritten 

as 
1 1 

"IJ1 ,..._. "IJ1 +a. ( 4.11) 

Therefore, we can write fi invariant terms such as 

(4.12) 

(This shifts by a total derivative under the transformation eq. ( 4.11 ). ) This can perhaps be interpreted 

to give a sensible effective field theory by_ expanding around "IJ1 = oo, but the resulting effective 

lagrangian can certainly not be interpreted as describing fluctuations about "IJ1 = 0. We would therefore 

be inclined to regard this effective lagrangian as "unphysical." We do not know whether the features 

found in this example are general to all non-linearizable group actions. 
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4. 2. Non-embeddable Representations 

We now restrict attention to effective lagrangians where the ii action on the matter fields can be 

linearized, and make some brief comments on general ii representations. We point out that there are 

simple ii representations that cannot be embedded into ac, and that there appears to be no way to 

write kinetic terms for fields transforming according to these representations. 

As discussed in the Appendix, the general representations of ii contain 1-dimensional repre

sentations (characters) of N. If these characters are non-trivial, then the representation cannot be 

embedded into a Gc representation, since elements of the subgroup N E Gc are represented by unipo

tent matrices in a ac representation. We can use this fact to construct simple ii representations that 

cannot be embedded in ac representations. 

A simple example is obtained by considering again the symmetry breaking pattern SU(2) --+1 

discussed in the previous subsection. Consider now a field W transforming under ii as 

( 4.13) 

for some constant t. By the arguments in the Appendix, this representation cannot be embedded in 

ac. The importance of this is that we do not know any way to couple the gauge field spurion V to "IJI. 

(In subsection 3.4, we saw that couplings of V are crucial for writing Gc-invariant kinetic terms for 

the embeddable ii representations.) In the present case, 

(4.14) 

and there appears to be no way to use V to construct an SU(2)c-invariant kinetic term. 

We do not know whether there are any non-embeddable ii representations for which one can 

write a sensible effective lagrangian. The question is an interesting one, since such matter fields would 

be analogs of states with fractional charge, such as dyons. 

5. Conclusions 

In this paper we have discussed the structure of supersymmetric effective lagrangians describing 

the low-energy physics in a situation where a global symmetry group G is spontaneously broken down 

to a subgroup H while supersymmetry remains unbroken. This effective lagrangian contains fields 

describing the supersymmetric Nambu-Goldstone bosons (SNGB's), as well as possible additional 

light "matter" fields. By introducing external "spurion" gauge fields for G, the symmetry is formally 

enhanced to ac, the complexification of G. By studying the way in which this external gauge field 

can appear iri the effective lagrangian, we have shown that the effective couplings of the matter fields 

are constrained by the group ii, the largest unbroken subgroup of ac. The structure of ii is rather 

non-trivial: it can be decomposed into a semidirect product J{c 1\ N, where J{ is compact and N is 

unipotent. J{ contains H, but J{ is larger than H in general. 

We have shown how to write a manifestly supersymmetric effective lagrangian for the SNGB's, 

but our main results concern the matter fields. We showed that the superpotential for the matter 

fields is invariant under ii. In cases where ii can be larger than He, the coefficients of H -invariant 

terms therefore obey relations imposed by ii invariance. The Kahler potential for the matter fields is 

determined by the most general K-invariant function of the matter fields, with the explicit breaking 
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down to H determined as a function of the order parameter. Both these results are considerably 
stronger than the simple H -invariance one naively expects. 

The assumptions made in deriving these result are that the holomorphy of the group action is 

preserved in the quantum theory, and that the action of fi on the matter fields can be taken to be a 

linear representation embedded in a G representation; both of these assumptions are valid in weakly

coupled theories. Relaxing these assumptions, we show that there are if actions on the matter fields 

that cannot be made linear by field redefinitions, and there are if representations for which it appears 

to be impossible to write a cc-invariant kinetic term. It is not clear to us whether a physically sensible 

effective lagrangian can be constructed from matter fields transforming under these more general fi 
actions. 
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Appendix A. Structure of if Representations 

In this appendix, we prove the structure theorem alluded to in subsection 3.2.* Given any 

representation R of fi, Engel's theorem tells us that there is a basis in which 

( 

..\1 (n)

0

S1 ( n) 

R(n) = . 

0 

0 
(6.1) 

0 

for n E N. Here, ..\1 , ... , >.r are !-dimensional representations (characters) of N, and S1 , ... , Sr are 

unipotent matrices: that is, they are upper-triangular with l's on the diagonal. However, if R is a 

representation of fi obtained by reducing a representation of cc, then elements of N are represented 

by matrices with >. 1 , ... , >.r = 1. One way to see this is to note that the representations of cc can 

be obtained by taking tensor products of fundamental representations and reducing them, and these 

operations preserve the property of having 1 as an eigenvalue. Therefore, every unipotent element of 

cc will be represented by a unipotent matrix. 

We now restrict attention to the case where the fi representation is embedded in a Gc repre

sentation. In that case, we denote the state space for the representation R by V and define the 

subspace 

v1 = {v E vI R(n)v = v for all n EN}. (6.2) 

* We thank D. Vogan for this argument. 
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The considerations above tell us that vl i- 0. It is also easy to see that vl is invariant under ]{C' since 
for all v E V1 we have 

R(n) · R(k)v = R(k)R(k- 1nk)v = R(k)v (6.3) 

for all k E gc, n E N (because N is a normal subgroup of H). This means that there is a basis for 

V in which the representation matrices have the block form 

. (6.4) 

It is easy to see that the block in the lower-right corner is again a representation of if, and we can apply 

the same argument to it. Therefore, we obtain that any embedded if representation is equivalent to 

a representation of the form given in eq. (3.8) in the main text. 

It is interesting that a "folk theorem" in the mathematics community states that the converse of 

this result is also true: any if representation of the form eq. (3.8) is isomorphic to a subrepresentation 

of a if representation obtained by restricting a ac representation [21]. 
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