Uu v vdod it 39 5

Presented at the Association for LBL-3659
Computing Machinery Conference, ‘ o
: y ym o P :
Washington, DC, February 18-20, 1975 RECIIVE
LAWRENCE

RADIATION LARDRATORY

MAR 14 1875

LISFRARTY A
DOCUMENTS STCTION

- DATA STRUCTURE CHARTING METHODS

Esmond Hart and Gill Ringland

Jénuary 31, 1975

Prepared for the U. S. Atomic Energy Commission:
under Contract W-7405-ENG-48

\>

669¢-"1d"T

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

00 0 vd3IU L 396

DATA STRUCTURE CHARTING METHODS
. Esmond Hart
CAP Ltd.,

14-15 Gt. James St.
London WC1l, England

and

G111 Ringland
CAP Ltd.,

14-15 Gt, James St.
London WC1l, England

and

Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720
ABSTRACT
‘The growing importance of data base implementations, and the

consequent need for describing interrelations between data elements,

- has highlighted the lack of tools for describing data structures.

The paper describes witﬁ examples, a chatting ﬁethod which has
been used sﬁccessfully on a numﬁer of lérge prdjec;s. The iﬁﬁqrtant
features'aré: the compactness of charting\methods; which gnables large
andicoﬁplex structures to be understood; énd the gbility to représent?
also‘detaiied structures such as the sequencing of itéms (occurrences)'.

within a data element (or description).

.
g
ol
<
R 2 o
€l
&
3

-1-

1. INTRODUCTION

The.growing importance of data base implementations, and the
consequent need for describing interrelations betwéen data eleménts,
has highlighted the lack of tools for describing data structures.

The paper describes with exampies, a chartiﬁg method which has -
'beeﬁ used successfully;on a number of large projects. The important
featufes are: the compactness of charting methodé, thch eﬁables large
and complex stfuctures to be understood: and the ability fo represent
also detailed structures such as the sequencing of items (occurrences)

within a data element (or description).

The'only graphic tool in reasonably common use by software
professionals is the floﬁchart. This &escribgs thé execution sequence
~of prégram. Tﬁe gdmpanion paper (l).eitends the notation of flowcharts
.fo cover design and‘specifiCation of online systéms; - The execution
éequence is becoming; ho&ever; #s-data structures become larger and
more complex,. a smaller proportion'of the total deécription of the
system. The design of data structure is being seen instead'as a central
desigﬁ éctivi;y Q-Ito be controlled, for instancé, ﬁy the database
-administratér_(Z). With current database systems, it is even true tﬁaﬁ,
onéé the dafavstructurgvis determined, the‘program:logic is reiatively

'.obviousiand its implementétion relatively simple.

The purpose of this paper is therefore to present a charting

method which is machine and application dependent,_and has evolved over

several projects:. It serves three functions: as a désign tool for new
systems, as an investigative tool while auditing or receiving éxisting

systems, and as a teaching aid when introducing new staff to a system.

2. TERMINOLOGY

The aim of this paper is to describe avmethodology for describing
relationships between data items. Since we realize that there is not
unénimous consensus on terms in this field, we define below the sense

in which we have used the terms.

Data element: The basic unit of information to be defined, (for example,

"color of eyes").

Data item: A specific occurrence of a data element, on the value, (for

example, 'blue').

Set of data items: A collection of data terms with some attribute in

common, (for example, the set of all people with blue eyeé)

Data structure: A collection of data items with some attribute in
common, stored in some manner. (For example, the»people's names might

be stored in a table, a last-in-first-out-queue, etc.)

3. LINKAGE BETWEEN ITEMS

An impBrtant characteristic of data is that:a data iteﬁ may contain
information which can serve to uniquely select ah'aséociatéd data item
in its own pf another set, Such information is avspecial attributevéf
the item termed a iink. Figure 1 shows how our ﬁotation feprésents a
link as ah arrow. The interpretation ofzthe solid link is that the item

always contains a link to the Specified item,

A broken line is used to represent an optionai linkage. This means
that it is not always true that eéch item k contains a link to some igem
Y. This may_lead to an'implementation problem in“réCOgniziné, for
example, that a pointer field in»a set A item has the 'null' value and.

does not actually address any set B item,

-The'chafting method ﬁrovides_no special symbols for spééifying
exactly how a linkage is effected. Whetﬁe£ the link is a fullword or
halfword pointer or a disk address is considered to be an implémentation
detail and gnimportant as far as an overview of data architeéturé ié
concerned. If detailé of ‘the linkage‘implementatibn'need to,bé shown
in a chart,commgnts can be written onbthé arrows as shoWn”in later

figures.

A:link is'fixed when it remains unchanged throughout the 'life'
of‘the item containing it; This heans more precisely that the link is
created when the containing item is stored and thereafter'remainsk

unchanged. The notation for a fixed link is a point above the stem of

Formalism

X —> Y Item X always contains a link
~ - to the master item Y (e.g. queuehead)

X ——=>Y Iltem X may contain a link as above

X —>> Y Item X always contains a link to an
| item Y which is not a master item

Xt—>Y Link XY is fixed when item Y is written
X *—> Y Link XY is fixed at time x

Example ! In which the items X,Y and Z are
— members of sets, or occurences

_Set A | of data elements,A,B and C
STB | STC
Set B | (Disk Set C
't address) — -
Y >3 7

XBLT7411-8306 =

‘Figure 1. Symbols for item linkage.

00 :vd3013099

arrow.

When‘the_point is omitted the link is assumed to be updatablé. If
- required, time code; can be written on the ;rrow stem to show when the
link is updaﬁed. For instance, it might be appropriate to build a link
only on a specific user request; or to rebuild a link with a housekeeping
ruﬁ overnight to reflect structural changes as a result of the updates.on
a file. o | |
Sets éré an imbortant concept, displayed in fhé charting method by
rectangies as in Figure 1. The set names are shoﬁn in a manner corres-—
ponding to their normal usage, e.g. "User Fiienames", as well as by-the
names used in programming, e.g. STA, STB, STC in Figure 1. Thevifems
Qithin the éet;-or the set as a whole, may then have their relationships

displayed by.iinkage arrows as shown.

Two or more links selecting items from a set only select the same
‘item if the stems of the representative arrows share the same arrowhead.
Thus, on Figure 1 the link from X is to the master item'of set C,‘whereés.

from Y the link is to an item, Z, in that set.

b RELA'I-‘II_ON BETWEEN SETS

The conventional pictqrial représentation bf set inclusion relation¥
‘ ship$ is by means of Vennvdiagrams (3) which are difficult t0'iqcorp§rate
into data strucéure charts because they rely on juxtapoéition of the

shapes that represent the sets and upon shéding.

-6-

Data architecture representation | VENN diagram

Set A [SetB

NN

Zero of_ more items of Set A may
be members of Set B

Set A Set B

B

S

Every item of Set A is an item
of Set B

Set A Sel B

=

Every item of Set A is an item

SetA] = [SerB |
e Type |eeeeseeed) ¢ Type=x A

L 4 ' |
. [J
. e (IXL/)
Every member of § Set C

Set A is either ®*°*°®
an item of Set B o Type=y
or an item of Set C '

of Set B and vice —-versa

XBL 7411-8308

Figure 2. Symbols for set inclusion relationms.

ﬁﬂa..-évﬁa;i’ﬂggg@@

-7~

Figure 2 shows how we indicate set.inclusion relatiqnships by making

use of dottgd‘lines which must be drawn carefullybto remain distinct from

the broken lines which indicate optional links. Tﬁe last exaﬁple in this
Figure shows how aidpecific relation, as diétinct from a generic one, is

feprésented. In this case set A contains items of two different types,

X and Y.

This example also éhows the use.of data attributes information to
extend;the utility of the charts. We have found that it is useful to
distinguish between fixed attributes (indicated byla dot) and updatable
.attributes-(indicated by an asterisk). Examples.of.updafable attributes

might be priority, of fixed attributes,'the data type as above.

The convention, point =fixed, can be seen to be consistent with that

used for‘links.

5. DAfA SIRUCTURE REPRESENTATION

The notation so far developed has been based od items in different
sets. HoweVer, much of the complexity of‘data afisés from links.betweep
items in the same set. Sets can be organized in mady:Ways'—- as quéués,
'chains, lists,'stacks,-tabies, and serial files. We define a structured
set as being oﬁe whose ‘items each belodg to a unique structure'and-whqse
items in total make up one or more structures 1ying édmpletely within
the sef. The prime charactetistic of a structure is that-its_items'are
ordered and assqéiated in such a way that it is possible to acéeSs_data"

items. Thus when a structure is implemented in a computiﬁg system there

-8-

General
Control
Master —————
set Ingress ,
stem |] Sample
Egress |structure set

A structured set

Notation summary table

Ingress notation Egress notation
—> Items added to head| «<— {€ms removed
. Items removed
—3 |tems added to tail | le— from tail
y Items added to head [tems removed from
> 4nd tail <K= head and tail
: Items added Items removed
> anywhere < from anywhere
—— Items not added —— Items not removed
Examples
Set A

Task controt
block

| Structured

set B
(Table)
'“' Data éxient
=~ | block chain
&

Each item of set A contains a
control for a structure of set B.
The value of that control {and
thus'the order and number of
items in the structure) remains
fixed throughout the life of
the master item. = .

0O/C 0=open time, C =close time

Items are added to the head of
the data extent block chain at
open time and are removed
from anywhere in the chain at
close time. The chain can be
empty.

XBL7411-8304

Figure 3. Symbols for data structure representation.

must be a mechanism for:
e detefmining the first item, or head of the structure;
. recognizing the last item or structure tail;
+ selecting the next item from the current item when the current

item is not the last.

It is often also convenient to provide a method of accessing items
directly, by means of keys or tags. First, however, we explain how the

storage structures can be described within the formalism.

The notation for structures is illustrated in Figure 3, where a
master set and a sample structure set are interconnected by a double
pronged line termed a 'control'. The Figure indicates that each item
of the master'sét controls a structure of the samﬁlevstrUCture set. . The
two prongs of the control represent the ingress ahd.egress attribdtes of
the'structﬁre{ The various values of these attributes that can be rep4_

resented are shown in the Notation Summary Table.

Thus it can be seen that the "Sample Structure Set'" is a stack, in
which items are added to, andvremoved from, the head. . The other examples

show a table, and a chain.

The "o/c" appearing at the right hand corner of the Data Extent Block
Chain is an example of an availability attribute.: The formalism is that
the first code represents the time at which the item is created (added to

the set), and the second, the time at which the term is destroyed, or

10-11
removed from the set.

Variable length sets--where the length may vary dynamically, or by

syStem generation, can be shown by the = symbol as on the'Data Extent

Block Chain in Figure 3.

Keys and Tags

We have used '"key" to mean a unique selector of an item within a
structure, e.g., personnel number. -"Tag", on the other hand, is used
when one or more data items within the structure may have the same value,

e.g.,.number of years of school.

Data structures.may be ordered, on keys or tags.f.Then, the data

attribute used as key may be identified By
"KL = <name> or KH <name>

for aScending.qrder a descending order. We also use

KI = <name>
forvindexéd déta structures, and

KR = <name>
when the access‘if‘via a hash table or some other randomizing methoa.
Keys and tags afé-usualiy fixed for the life 6f that item -- if they are

not, an asteriskAcan also be used here.

6. LINKAGE INVOLVING STRUCTURES
~ Structures, or terms, may be involved in two types of lirkage. we

have referred to one type previously, as control linkages between a master

i 4 0

‘?‘
4

-12-

Father's

| | children
- Father L | -
e v Birth /death
b - g === '
| N _I_;l
(Eldest son) —3 R
(Eldest nephew) ,
~ Father's
children
Father . | | |
] | |
6——_-
(Eldest brother)——T—a__
(Eldest cousin)—T—_—A\
Grandfather
"~ T T [IGrandfathers |
children | . |
L1 Father’s
children

| (Father) ——// |
(Father’s eldest brother)

- (Eldest uncle) _

XBL7411-8309

Figure 4. Examples of linkage between and within data structures.

and subordinate structure. The other type is when.items within a set are

linked, as would be the case with a chain.

The implicatiéns of these relationships, and linkages, can be con-
veniently -- and conventioﬁally - discussed using family relationships.
For'inétanée,_in Figure 4, the first diagram shows that the father may
have an‘oldef son. He ﬁay also have an eldest nephew, but the link would
be in this case to an item in the set 'father's children’ which was not
under his (but under some other father's) control..'This is shown by the

arrowhead, with the Roman I, indicating one level of indirection.

Thevmiddlé diagram represents the linkage to terms in the same set.
The single arrowhead is used to fepreseﬂt links fo terms in the samé
structure -— in this case the ;father's children' structure, the arrow-
head with éppended I to represent links to items in other occurrences of

the structure.

The last diagram iﬁ Figure 4 shows an extension of the 1inkage con-
ventions to.indicate 'anqther structure’ withinva master set. Thg use
is clarified again by a geneological example. 'Grandfather's childfen'
is a master set of 'father's children'. Taking a given 'father's child':
it contains énvarrowhead link to 'father*, which is a maéter itema’ The
link to 'father's eldest'brothér' has a I becauselffather's eldest brother'
resides in the same étructure as 'father', namely comﬁon 'grandfather's
childreﬁ'.. Howeﬁer, 'eldest uncle' (which might bé 'mother's brother')

does not necessarily reside in the same structure as 'father'. This

SUP USER
Supervisor

~14-

TRN CSM

control area

SuP USER

Supervisor
control area

 —

Transfer table

(1)

CSM

Kl =service
number

(Via transfer table)

CSM

]

Service routine

Kl=zservice

number

Service routine|

Nucleus

Monitor .

control area IGGO Fail Nucleus.

* Fail Folltpondler Nuel

number jroutine o ucleus
L_IFail action
table
N/ Kl =fail

number

User program

(Via FLIH
and SLIH)

108

nput/output
blgck P

lEiEE,
supervisor

{Return to user via SVC exit)

XBLT411-8305

.Figure 5. Representation of programs and data structures.

Uﬁ_is.v@:ﬁ{}é«qﬁqi

15-

relation is'represented by a II to indicate the secondary level of the

link.

It can be seen that the direction of the arrowhead in each case can

be used to represent the access path to a data item.

7. RELATION OF DATA AND PROGRAMS

So far we have been concerned with data relationshipé exclusively.
While not viewing programs only as ancillaries of data, it is often ﬁseful
when designing interrelated data structures or data architecture,:to
specify the programs which may access the data items or sets. An éxample
is given in Figﬁre 5 -- the transfer table has a role'only in causing
entry to the Service Routine Setaof Programs: each itém in the table con-
tains a link to a unique entry point in the Set of Service Routines. In

this particular case, the transfer table is probably uninteresting enough

that the second figure could be used instead.

.Figure 5 also shows how information on the location, or residence,
of a data structure or program may be indicated. We use the upper right
hand position to indicate -- in this case -- that fhé Service Rouﬁiﬁes
are in the Centfal Services Module (CSM). This "résidéncy" attribute

can also be used to indicate storage medium, e.g., DSK or TAB.

The main distinction, of course, between programs and data, is that
a program has a flow of control. Illustrating this passage of control

between programs is not the prime function of charts showing data

-16-
architecture. When, however, the chart can be enhanced by shoﬁing passage
of cdntrol, it is répresented by afrowed doubled lines_supported.by com--
ments which take the form of text in parentheses. The Iast example in
Figure 5 shows é program eﬁtering the EXC? supervisor via the FLIH and
the SLIH, passing as a parameter the address of an IOB'(Input/Output
Block). The EXCP supervisor returns tb the. user by means of SVC exit.

It is important to note that a passage of control is shown: to pro¥
vide cross-reference points to system flowcharts, and.that data archi-
tecture charts are not intended to supplant,bbut fo augﬁent, such speci-

fications.

ACKNOWLEDGMENTS

The authors would like to acknowledge that the ideas have been
developed by numerous designers in CAP: in particular, D. Ieetsward, who

was instrumental in advancing the original definition 6f the methodology(4).

REFERENCES .
1. Ringland, Gili (1974) "Design Tools for‘Data Hahdliﬁg_Systems"
LBL Report 3655 (1975). o
2. See, for example; Schubert, Richard F., "Directiqﬁéiin Database
‘Management Technology"; Datamation 20, 9.(1974). |
3. Birkhoff and MpLane,"A Survey of Modern Algebra", Macmillan (1953).
4. Hart, Esmond (1971), Préliminary Notes on a Data Architecture

Charting‘Method (availabie from CAP).

CUavadoitays

LEGAL NOTICE

This report was prepared as an account of work sponsored by the
United States Government. Neither the United States nor the United
States Atomic Energy Commission, nor any of their employees, nor
any of their contractors, subcontractors, or their employees, makes
any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness or usefulness of any
information, apparatus, product or process disclosed, or represents
that its use would not infringe privately owned rights.

TECHNICAL INFORMATION DIVISION
LAWRENCE BERKELEY LABORATORY
UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA 94720

