
Presented at the Association for
Computing Machinery Conference,

LBL-3659

Washington, DC, February 18-20, 1975 RECEl V ED
lAWRENCE

RAD!AT10N L.~.r,O'~:\·~oRY

fM\R l~ 19l5

DOCUME:r>JTS s:::cTJON

DATA STRUCTURE CHARTING METHODS

Esmond Hart and Gill Ringland

January 31, 1975

Prepared for the U. S. Atomic Energy Commission
under Contract W -7405-ENG -48

For Reference
Not to b t k e a en from th· .. •s room

~I

l'
b:l
l'
I
w
0'

() Ul
....0 -

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

0 0 ~,~A

~

t.J ~i
~ ~ u ~ 9 .6

DATA STRUCTURE CHARTING METHODS

Esmond Hart

CAP Ltd.,
14-15 Gt. James St.
London WCl, England

and

Gill Ringland

CAP Ltd.,
14-15 Gt. James St.
London WCl, England

and

Lawrence Berkeley Laboratory
University of California

Berkeley, California 94720

ABSTRACT

'l'he growing importance of data base implementations, and the

consequent need for describing interrelations between data elements,

has highlighted the lack of tools for describing data structures.

The paper describes with examples, a charting method which has

been used successfully on a number of large projects. The important

features are: the compactness of charting methods, which enables large

and complex structures to be understood; and the ability to represent

also detailed structures such as the sequencing of items (occurrences)

within a data element (or description).

0 0 0

-1-

1. INTRODUCTION

The growing importance of data base implementations, and the

consequent need for describing interrelations between data elements,

has highlighted the lack of tools for describing data structures.

The paper describes with examples, a charting method which has

been used successfully on a number of large projects. The important

features are: the compactness of charting methods, which enables large

and complex structures to be understood: and the ability to represent

also detailed structures such as the sequencing of items (occurrences)

within a data element (or description).

The only graphic tool in reasonably connnon use by software

professionals is the flowchart. This describes the execution sequence

of program. The companion paper (1) extends the notation of flowcharts

to cover design and specification of online systems. The execution

sequence is becoming, however, as data structures become larger and

more complex, a smaller proportion of the total description of the

system. The design of data structure is being seen instead as a central

design activity -- to be controlled, for instance, by the database

administrator (2). With current database systems, it is even true that,

once the data structure is determined, the program logic is relatively

obvious and its implementation relatively simple.

The purpose of this paper is therefore to present a charting

method which is machine and application dependent, and has evolved over

-2-

several projects. It serves three functions: as a design tool for new

systems, as an investigative tool while auditing or receiving existing

systems, and as a teaching aid when introducing new staff to a system.

2. TERMINOLOGY

The aim of this paper is to describe a methodology for describing

relationships between data items. Since we realize that there is not

unanimous consensus on terms in this field, we define below the sense

in which we have used the terms.

Data element: The basic unit of information to be defined, (for example,

"color of eyes").

Data item: A specific occurrence of a data element, on the value, (for

example, "blue").

Set of data items: A collection of data terms with some attribute in

common, (for example, the set of all people with blue eyes)

Data struatuxoe: A collection of data items with some attribute in

common, stored in some manner. (For example, the people's names might

be stored in a table, a last-in-first-out-queue, etc.)

0 0 .., ~ J 0 -.;

'1 a " \til

-3-

3. LINKAGE BETWEEN ITEMS

An imp-ortant characteristic of data is that- a data item may contain

information which c_an serve to uniquely select an associated data item

in its own or another set. Such information is a special attribute of

the item termed a link. Figure 1 shows how our notation represents a

link as an arrow. The interpretation of the solid link is that the item

always contains a link to the specified item.

A broken line is used to represent an optional linkage. This means

that it is not always true that each item X contains a link to some item

Y. This may lead to an implementation problem in recognizing, for

example, that a pointer field in a set A item has the 'null' value and

does not actually address any set B item.

The charting method provides no special symbols for specifying

exactly how a linkage is effected. Whether the link is a fullword or

halfword pointer or a disk address is considered to be an implementation

detail and unimportant as far as an overview of data architecture is

concerned. If details of the linkage implementation need to be shown

in a chart, comments can be written on the arrows as shown in later

figures.

A link is fixed when it remains unchanged throughout the 'life'

of the item containing it. This means more precisely that the link is

created when the containing item is stored and thereafter remains

unchanged. The notation for a fixed link is a point above the stem of

-4-

Formalism

X > Y Item X always contains a link
to the master item Y (e.g. queuehead)

X---~ y Item X may contain a link as above

X >> y Item X always contains a link to an
item Y which is not a master item

X • >Y Link XY is fixed when item Y is written

XX >Y Link XY is fixed at time x

Example:
STA

In which the items X ,Y and Z are
b f t , or occurences

,A,BandC Set A
mem ers o se s
of data elements

X •

STB ... STC ,.

Set 8 (Disk Set C
y address) z_.., ,..,.

XBL 7411-8306

Figure 1. Symbols for item linkage.

0 0 3 f~ 9

-5-

arrow.

When the point is omitted the link is assumed to be updatable. If

required, time codes can be written on the arrow stem to show when the

link is updated. For instance, it might be appropriate to build a link

only on a specific user request; or to rebuild a link with a housekeeping

run overnight to reflect structural changes as a result of the updates on

a file.

Sets are an important concept, displayed in the charting method by

rectangles as in Figure 1. The set names are shown in a manner corres

ponding to their normal usage, e.g. "User Filenames", as well as by the

names used in programming, e.g. STA, STB, STC in Figure 1. The items

within the set, or the set as a whole, may then have their relationships

displayed by linkage arrows as shown.

Two or more links selecting items from a set only select the same

item if the stems of the representative arrows share the same arrowhead.

Thus, on Figure 1 the link from X is to the master item of set C, whereas

from Y the link is to an item, Z, in that set.

4. RELATION BETWEEN SETS

The conventional pictorial representation of set inclusion relation

ships is by means of Venn diagrams (3) which are difficult to incorporate

into data structure charts because they rely on juxtaposition of the

shapes that represent the sets and upon shading.

-6-

Data architecture representation VENN diagram

Set A Set 8
••••••••• 00

Zero or more items of Set A may
be members of Set 8

Set A Set 8

•••••••tt> @)
Every item of Set A is an item
of Set B

Set A Set 8

:&·······' @ •••••••

Every item. of Set A is an item
of Set B and vice -versa

Set A Set 8

• Type ••••••••:> • Type=x -© • •
8~'-c • • ~~A •

Every member of : Set C
Set A is either

..... .,

an item of Set 8 • Type=y

or an item of Set C

XBL 7411-.8308

Figure 2. Symbols for set inclusion relations.

.0 0 0 0 0

-7-

Figure 2 shows how we indicate set inclusion relationships by making

use of dotted lines which must be drawn carefully to remain distinct from

the broken lines which indicate optional links. The last example in this

Figure shows how a specific relation, as distinct from a generic one, is

represented. In this case set A contains items of two different types,

X andY.

This example also shows the use of data attributes information to

extend the utility of the charts. We have found that it is useful to

distinguish between fixed attributes (indicated by a dot) and updatable

attributes (indicated by an asterisk). Examples of updatable attributes

might be priority, of fixed attributes, the data type as above.

The convention, point~ixed, can be seen to be consistent with that

used for links.

5. DATA STRUCTURE REPRESENTATION

The notation so far developed has been based on items in different

sets. However, much of the complexity of data arises from links between

items in the same set. Sets can be organized in many ways as queues,

chains, lists, stacks, tables, and serial files. We define a structured

set as being one whose items each belong to a unique struc.ture and whose

items in total make up one or more structures lying completely within

the set. The prime characteristic of a structure is that its items are

ordered and associated in such a way that it is pdssible to access data

items. Thus when a structure is implemented in a computing system there

-8-

General
Control

Master
t;gress '\ set I'

"' Stem I~ Sample
Egress structure set

Notation summary table

Ingress notation

~ Items added to head ~

~ Items added to tail ~

~>
Items added to head <IE--and tail

~>
Items added

<~ anywhere

-- Items not added --

Examples

Set A •
L_ Structured

Task control
block

set B

(Table)

11
A structured set

Egress notation

Items removed
from head
I terns removed
from tail
Items removed from
head and tail
Items removed
from anywhere

I terns not removed

Each item of set A contains a
control for a structure of set B.
The value of that control (and
thus the order and number of
items in the· structure) remains
fixed throughout the life of
the master item.

t-------f----- r--~~r------,0/C O=open time, C =close time
Data extent Items are added to the head of
block chain the data extent block chain at

open time and are removed
from anywhere in the chain at
close time. The chain can be
empty.

XBL 741 I -8304

Figure 3. Symbols for data structure representation.

0 0 0

-9-

must be a mechanism for:

• determining the first item, or head of the structure;

• recognizing the last item or structure tail;

• selecting the next item from the current item when the current

item is not the last.

It is often also convenient to provide a method of accessing items

directly, by means of keys or tags. First, however, we explain how the

storage structures can be described within the formalism.

The notation for structures is illustrated in Figure 3, where a

master set and a sample structure set are interconnected by a double

pronged line termed a 'control'. The Figure indicates that each item

of the master set controls a structure of the sample structure set. The

two prongs of the control represent .the ingress and egress attributes of

the structure. The various values of these attributes that can be rep-

resented are shown in the Notation Summary Table.

Thus it can be seen that the "Sample Structure Set" is a stack, in

which items are added to, and removed from, the head. The other examples

show a table, and a chain.

The "o/c" appearing at the right hand corner of the Data Extent Block

Chain is an example of an availability attribute. The formalism is that

the first code represents the time at which the item is created (added to

the set), and the second, the time at which the term is destroyed, or

10-11

removed from the set.

Variable length sets--where the length may vary dynamically, or by

system generation, can be shown by the ~ symbol as on the Data Extent

Block Chain in Figure 3.

Keys and Tags

We have used "key" to mean a unique selector of an item within a

structure, e.g., personnel number. "Tag", on the other hand, is used

when one or more data items within the structure may have the same value,

e.g., number of years of school.

Data structures may be ordered, on keys or tags. Then, the data

attribute used as key may be identified by

KL = <name> or KH <name>

for ascending order a descending order. We also use

KI = <name>

for indexed data structures, and

KR = <name>

when the access if via a hash table or some other randomizing method.

Keys and tags are usually fixed for the life of that item -- if they a:r'e

not, an asterisk can also be used here.

6. LINKAGE INVOLVING STRUCTURES

Structures, or terms, may be involved in two types .of linkage. "'.,:

have referred t·o one type previously, as control linkages between a master

Father

-12-

Father's
children

Birth /death

(Eldest son:---j,~i
(Eldest nephew)

Father

Father's
children

~----------~----
I

I '

Grandfather

{Eid
{ El

est brother)-
dest cousin)-

...._ _______ --- - ---------
_--tGrandfathers

children

~ I
' --

I
I

'

(Father)
{Father's eldest brother l----J

{Eldest uncle)----~

Father's
children

XBL 7411-8309

Figure 4. Examples of linkage between and within data structures.

0 0 3 0 0 3,

-13-

and subordinate structure. The other type is when items within a set are

linked, as would be the case with a chain.

The implications of these relationships, and linkages, can be con-

veniently -- and conventionally 7- discussed using family relationships.

For instance, in Figure 4, the first diagram shows that the father may

have an older son. He may also have an eldest nephew, but the link would

be in this case to an item in the set 'father's children' which was not

under his (but under some other father's) control. This is shown by the

arrowhead, with the Roman I, indicating one level of indirection.

The midd~e diagram represents the linkage to terms in the same set.

The single arrowhead is used to represent links to terms in the same

structure -- in this case the 'father'~ children' structure, the arrow-

head with appended I to represent links to items in other occurrences of

the structure.

The last diagram in Figure 4 shows an extension of the linkage con-

ventions to indicate 'another structure' within a master set. The use

is clarified again by a geneological example. 1GJ;andfather's children'

is a master set of 'father's children'. Taking a given 'father's child':

it contains an arrowhead link to 'father', which is a master item. The

link to 'father's eldest brother' has a I because 'father's eldest brother'

resides in the same structure as 'father', namely common 'grandfather's

children'. However, 'eldest uncle' (which might be 'mother's brother')

does not necessarily reside in the same structure as 'father'. This

SUP USER
Supervisor
control area

SUP USER
Supervisor
control area

Nucleus
Monitor
control area -
• Fail

number

User program

L.,_

-14-

TRN CSM

Transfer table

K I= service
number

CSM

Service routine

Kl =service
number

IGGO Fail Nucleus
Fall handler
routine

lOB
Input/output
blOCk

(I) CSM

Service routine

\..

• Nucleus
L- Fail action

table

Kl•fail
number

(Return to user via SVC exit)

XBL 7411-8305

Figure 5. Representation of programs and data structures.

0 0 \; t
-~- ((J 0

-15-

relation is represented by a II to indicate the secondary level of the

link.

It can be seen that the direction of the arrowhead in each case can

be used to represent the access path to a data item.

7. RELATION OF DATA AND PROGRAMS

So far we have been concerned with data relationships exclusively.

While not viewing programs only as ancillaries of data, it is often useful

when designing interrelated data structures or data architecture, to

specify the programs which may access the data items or sets. An example

is given in Figure 5 -- the transfer table has a role only in causing

entry to the Service Routine Set of Programs: each item in the table con-

tains a link to a unique entry point in ~he Set of Service Routines. In

this particular case, the transfer table is probably uninteresting enough

that the second figure could be used instead.

Figure 5 also shows how information on the location, or residence,

of a data structure or program may be indicated. We use the upper right

hand position to indicate -- in this case -- that the Service Routines

are in the Central Services Module (CSM). This "residency" attribute

can also be used to indicate storage medium, e.g., DSK or TAB.

The main distinction, of course, between programs and data, is that

a program has a flow of control. Illustrating this passage of control

between programs is not the prime function of charts showing data

-16-

architecture. When, however, the chart can be enhanced by showing passage

of control, it is represented by arrowed doubled lines supported by com

ments which take the form of text in parentheses. The last example in

Figure 5 shows a program entering the EXCP supervisor via the FLIH and

the SLIH, passing as a parameter the address of an lOB (Input/Output

Block). The EXCP supervisor returns to the user by means of SVC exit.

It is important to note that a passage of control is shown to pro

vide cross-reference points to system flowcharts, and that data archi

tecture charts are not intended to supplant, but to augment, such speci

fications.

ACKNOWLEDGMENTS

The authors would like to acknowledge that the ideas have been

developed by numerous designers in CAP: in particular, D. Ieetsward, who

was instrumental in advancing the original definition of the methodology(4).

REFERENCES

1. Ringland, Gill (1974) "Design Tools for Data Handling Systems"

LBL Report 3655 (1975).

2. See, for example, Schubert, Richard F., "Directions in Database

Management Technology", Datamation 20, 9 (1974).

3. Birkhoff and McLane, "A Survey of Modern Algebra", Macmillan (1953).

4. Hart, Esmond (1971), Preliminary Notes on a Data Architecture

Charting Method (available from CAP).

. .

0 u

r-----------------LEGALNOTICE------------------~

This report was prepared as an account of work sponsored by the
United States Government. Neither the United States nor the United
States Atomic Energy Commission, nor any of their employees, nor
any of their contractors, subcontractors, or their employees, makes
any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness or usefulness of any
information, apparatus, product or process disclosed, or represents
that its use would not infringe privately owned rights.

TECHNICAL INFORMATION DIVISION

LAWRENCE BERKELEY LABORATORY

UNIVERSITY OF CALIFORNIA

BERKELEY, CALIFORNIA 94720

