
0 J
<iof 0 6

, Pre sen ted at the Association for
Computing Machinery Conference,·
Washington, DC, February 18 - 20, 1975 ·

LBL-3659 Rev.

DATA STRUCTURE CHARTING METHODS

Esmond Hart and Gill Ringland
:· .. ,' i: , .. ~ " .

. , ',• ·: i ('. : .. ~·:

January 31, 1975

Prepared for the U. S. Energy Research and
Development Administration under Contract W -7405-ENG -48

For Reference

Not to be bken from this room

o. I

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

0 0 4 0 7

DATA STRUCTURE CHARTING METHODS

Esmond Hart

Computer Analysts and Programmers Ltd.,
14-15 Gt. James St.
London WCl, England

and

Gill Ringland* t

Lawrence Berkeley Laboratory
University of California

Berkeley, California 94720

LBL-3659 Revised.

*On Leave of Absence from CAP, October 1974 to October 1975.

ABSTRACT

The growing importance of data base implementations, and the

consequent need for describing interrelations between data elements,

has highlighted the lack of tools for describing data structures.

The paper describes with examples, a charting method which has

been used successfully on a number of large projects. The important

features are: the compactness of charting methods, which enables large

and complex systems to be understood; and the ability to represent also

detailed information such as the structure of data sets.

t Work performed under the auspices of the U. S. Energy Research and
Development Administration.

0 0 ..1 -'~ 3 0 \ 4 0 8
M

DATA STRUCTURE CHARTING METHODS
by

Esmond Hart, Computer Analysts and Programmers Ltd.

and

Gill Ringland, Lawrence Berkeley Laboratory*

INTRODUCTION

•The crucial role of correct analysis and design of a computer system,
in providing a cost effective hardware and software solution to a problem,
has long been acknowledged. More recently, computer professionals have
become aware of the need to satisfy other conditions -- such as providing
a reliable system, or one that is easily maintained, or. one that contains
'unbreakable' security facilities. In general, it can be said that com
puter professionals must .now satisfy a wider audience of the viability of
their product, before it enters the user arena.

·Software professionals are especially vulnerable, in that they have
comparative paucity of tools with which to analyze or describe their
products. Hardware designers, for instance, can communicate via circuit
diagrams which use internationally recognized symbols. These diagrams
enable an entire configuration to be represented in a way which expresses
concisely and accurately a large amount of information. The diagrams can
be used to analyze the interactions of components, or to discuss the over
all des~gn with a manager or auditor.

In computer software, the only widely recognized form of system
representation is the flow chart. This was developed originally for pro
gram logic, and has been extended to cover system flow. For instance, a
set of charting conventions for use in designing interactive, teleproces
sing systems, has pr~viously been described (1). However, these charts,
analogously to program flow charts, mainly represent the execution se
quence within the software, and only marginally represent the software
architecture. The software architecture, both the interrelation and
control structure of program modules, and the interrelation and structure
of files, data areas, and control blocks, is usually complex in large
systems. Certainly in data base or teleprocessing systems, the senior
designers concentrate in the main on defining these interrelations. Very
often, the specification and production of individual program modules in
a well designed system is within the. capabilities of relatively junior
staff. These staff work within the system architecture defined by the
design team.

We, in CAP, have needed, because of the size and.complexity of some
projects in particular, to develop an effective methodology for expressing
this system architecture. The methodology is defined in (2): the present
paper is intended to illustrate the utility of the charting method for the
particular problem of representing data structure.

*On leave of absence from CAP, October 1974 to October 1975.

-2-

The problem is discussed under four headings. After establishing
the terminology we will use in referring to groupings of data, we discuss
the representation of data attributes within the charting methodology.
Secondly, we describe how logical relationships -- such as inclusion
or exclusion -- can be charted. Third, we discuss representation of
linkage mechanisms. The fourth (and major) section shows .the use of the.
charting symbols to describe data structure. This section covers control
and storage/access structure, and also the relationship between data with
in the same and separate structures.

The methodology encompasses the representation, concisely and un
ambiguously, of a wide range of constructs. ·It is, therefore, necessarily
complex. Additional examples and case studies are included in (3), which
has been used as a teaching manual for programmers.

TERMINOLOGY

The aim of this paper is to describe a methodology for describing
relationships between data items. Since we realize that there is by no
means unanimous consensus on terminology in this field, we define below
the sense in which we use the relevant terms.

Data element: The basic unit of information to be defined (for example,
"address" or "line in use indicater").

Data item: A logical grouping of data elements, such as a control block,
personnel record, or program module.

Data structure: A collection of data items with some attribute in common,
stored and accessed in some manner, (for example, the personnel records
stored in a table, or a last-in-first-out-queue, etc.).

Set of data structures: A collection of data structures with function
ally equivalent contents, for instance all the tables containing personnel
records.

It should be stressed that, while data items.are essentially logi
cal groupings of elements, data structures are organizations. Thus, the
storage and access algorithms for handling the data items are an es
sential part of the structure definition.

The aspects of data architecture that a systems designer would
normally consider are:

Attributes: Data set attr'ibutes may describe the organization of indi
vidual items in the set, or refer to the set as a whole (for example,
"location");

Logical relationships: The commonality or otherwise of data items stored
in different structures;

- i
i

0 0 v ·'i 3 0 t:-1 0 9
'

-3-

Linkage: The duration and control/slave nature of links between items
or sets;

Structure: The storage and access method, such as queue, table, etc.,
of a group of items, and the relationship between items in the group.

ATTRIBUTES

The attribute information referring to the individual data items
can be summarized as follows:

Number of items in the structure;

Number of structures in the set;

Key which uniquely defines each item; or

Tag which orders the items on non-unique keys.

The information about the set as a whole includes:

Name of the set;

Location, i.e., where the set resides;

Availability, i.e., when items join or leave the set;

as well as the structure, linkage, and logical information.

The set is represented within the charting methodology by a rectan
gle divided into a header and body (see Figure 1). The item-oriented
attributes are written in the body of the rectangle, or "chart element".
The set-oriented attributes are noted in the positions shown outside the
element.

Although in this paper we are not primarily concerned with programs,
it is relevant to note here that a similar chart element; but with cut
off lower corners, is used to represent programs.

Attributes may be fixed for the duration of the life of the item
or set, or may be updatable. The convention used for this is that:

precedes a fixed value attribute,

* precedes an updatable attribute. •

LOGICAL RELATIONSHIPS

In this section, we define the charting symbols used to represent
inclusion and exclusion relationships between sets. The conventional
graphical representation of set relationships is by means of Venn diagrams
(4). These are difficult to incorporate into any scheme showing addition
al information since they rely on juxtaposition and shading.

-4-

NAME LOCATION

header { Title of Set AVAILABILITY

/
I number of items

s number of structures

K = key for items

body \
I T tag for items

/

' corners cut off to represent a program

Figure 1. Set Attributes

0 0 0 4 -~- 0

Figure 2, therefore, shows set relationships within the data
architecture charting scheme. Heavy dotted lines are used to connect two
or more chart elements representing sets. The figure also shows fixed
attributes "type" of the data items X andY, members of sets B and C,
respectively.

LINKAGE

An important character:istic of data is that a data item may contain
information which can serve to uniquely select an associated data item
in its own or another set. Such information is a special attribute of
the item termed a link. Figure 3 summarizes the types of link dis
tinguished within the methodology.

The interpretation of the solid link is that the item always con
tains a link to the specified item. A broken line is used to represent
an optional linkage. This means that it is not always true that each
item X contains a link to some item Y. (This· may lead to an implementa
tion problem in recognizing, for example, that a pointer field in a set A
item has the 'null' .value and does not actually address <my set B item.)

The chartingmethod provides no special symbols for specifying
exactly how a linkage is affected. Whether the link is a fullword or
halfword pointer or a disk address is considered to be an implementation
detail and unimportant as far as an overview of data architecture is
concerned. If details of the linkage implementation need to be shown in
a char~ comments can be written on the arrows as shown.

A link is fixed when it remains unchanged throughout the 'life'
of the item containing it. This means more precisely that the link is
created when the containing item is stored and thereafter remains un
changed. The notation for a fixed link is a point above the stem of the
arrow. Wheq the point is omitted, the link is ·assumed to be updatable.
If required, time codes can be written on the arrow stem to show when the
link is updated. For instance, it might be appropriate to build a link
only on a specific user request; or to rebuild a link with a housekeeping
run overnight to reflect structural changes as a result of the updates
on a file.

Two or more links selecting items from a set only select the same
item if the stems of the representative arrows share the same arrowhead.

_Thus, in Figure 3, the link from X is to the master itemof set C, where
as from Y the link is to an item, Z, in that set.

DATA STRUCTURE

The notation developed in previous sections has been based on
items in different sets. However, much of the complexity of data arises
from links between items in the same set, i.e., the item structure, or
between sets as a whole, i.e., the control structure.

' -6- .

Data architecture representation · VENN diagram

Set A · Set 8

••••••••• 00
Zero or more items of Set A may
be members of Set 8

Set A Set 8, /

~ .
Every item of Set A is an item
of Set B .

. Set A Set 8

~&•••••••;?

@ ••••••••

Every item of Set A is an item
of Set 8 and vice --versa

Set A Set 8

• Type ••••••••> • Type=x.

leg© • • • • Every member of : .,0-A
Set C

Set A is either -.,

an item of Set B • Type=y

or an item of Set C

XBL 7411-8308

Figure 2. Symbols for set inclusion relations.

0 0 , ~ 4 3 0 I 4 I
-7-

Formalism

X > Y. Item X always contains a link .
to the master item Y (e.g. queuehead)

X ---~ Y . Item X 'may contain a link as above

X >> Y Item X always contains a link to an
item Y which is not a master item

X • > Y Link XY is fixed when item Y is written

X x > Y Link XY is fixed at time x •

Example: In which Jhe items X ,Y and Z are

Set A
mem b f t ---A-,8 and C ers 0 se s
-·- ~--------·- -

X •

... ,.

·Set B (Disk Set C
y address) z

*''

(_•,

XBL7411-8306

Figure 3. Symbols for liatage.

-8-

Sets can be organized in many ways -- as queues, chains, lists,
stacks, tables, and serial files. We define a structured set as being
one whose items each belong to a unique structure and whose items in
total make up one or more structures lying completely within the set.
The prime characteristic of a structure is that its items are ordered and
associated in such a way that it is possible to access data items. Thus,
when a structure is implemented in a computing system there must be a
mechanism for :

determining the first item, or head of the structure;

recognizing the last item or structure tail;

selecting the next item within the structure.

Thus, the concepts of structure and control are tightly intercon
nected, in that when defining the storage structure it is also relevant
to define "from which data set or program is the description or instruction
provided". We, therefore, developed the representation shown in Figure 4
to define structures using their interaction with a master set, via a
'control' linkage.

The double pronged control linkage indicates that each item of the
master set controls a structure of the sample structure set. ·The two
prongs of the control represent the ingress and egress attributes of the
structure. The various values of these attributes that can be represented
are shown in the Notation Summary Table.

Thus, it can be seen that the "Sample Structure Set" is a stack·,
in which items are added to, and removed from, the head. Structured set
B is a table, in which each item of A contains a control for a structure
of set B. The value of that control (and hence the order and number of
items in the structure) remains fixed throughout the life of the master
item. The control structure of the task control. block vis-a-vis the data
extent block chain may be null, i.e., the chain may be empty. The chain
has items added to the head at time 0, and removed from anywhere within
the chain at time C.

Not all linkages between sets are of the control type already dis
cussed. A very important element of data structure is the linkage be
tween items in differen-t sets, or between different structures in the
same set. This type of relationship and hence linkage is conveniently
discussed using family relationships as in Figure 5.

The first diagram shows that the father may have an eldest son.
The relationship is to this 'father's children' structure: and is repre
sented by a single arrow. He may also have an eldest nephew, but the
link would be in this case to an item in the set 'father's children'
which was not under his (but under some other father's) control. This is
shown by the double arrowhead, representing connection to another
structure in the 'father's children' set.

0 0 .4
-9-

General
C t I

· Master
on ro

1-;gress '\ set r

Stem 1.,_: Sample ""'
Egress structure set

. '

.

Notation summary table

..

Ingress notation

~ Items added to head ~

~ Items added to toi I IE--

~>
Items added to head <IE-and toil

---+> Items added
<~ anywhere

- Items not added --

Examples

Set A

Task contrb I
block

•
L_ Structured

set B

(Table}

Ootca extent
block chain

) A structured set

I~

Egress . notation

Items removed
from head
Items removed
from tail
Items removed from
head and tail
Items removed
from anywhere

I terns not removed

0/C
... ·-·.--

XBL 7411 ~8304

Figure 4. Symbols for data structure representation.

Father

-]0-

Father's
children

(Eldest son :·--..:ji~~
(Eldest nephew) ·

Father

Grand father

Father's
children

<(- ---,

---., I
I I
I I

(Eldest brotherl~--.J •
· I I

(Eldest cousin) .. ~----.J

J-------1- - - - r---r~-~-----r-1
_--tGrandfathers

children

(Father) --.
(Father's eldest brother) --

(Eldest uncle)--

Father's
children

XBL 7411-8309

Pigure,S. Examples of linkage between and within sets

;

' '

0 0 0 3

The middle diagram represents the linkage· to items in the same set.
Again, the single arrowhead is used to represent links to items in the
same structure -- in this case the 'father's children' structure. The
double arrowhead represents links to items,in other structures of the
'father's children' set.

The last diagram in Figure 5 shows an extension of the linkage
conventions to indicate 'another structure' within a master set. The
use is clarified again by a genealogical example. "Grandfather's
children' is a master set of 'father's children'. Taking a given 'father's
child': it contains a single arrowhead link to 'father', which is a
master item. The link to 'father's eldest brother' has a double arrow
head because 'father's eldest brother' resides in the same structure as
'father' , namely common 'grandfather's children' . However, 'eldest
uncle' (which might be 'mother's brother') does not necessarily reside in
the same structure as 'father'. This relation is represented by a triple
arrowhead.

RELATION OF DATA AND PROGRAMS

So far we have been concerned with data relationships exclusively.'
While not viewing programs only as ancillaries of data, it is often useful
when designing interrelated data structures or data architecture, to
specify the programs which may access the data items or sets.

The main distinction, of course, between programs and data, is that
a program has a flow of control. Illustrating this passage of control
between programs in not the prime function of charts showing data archi
tecture. When, however, the chart can be enhanced by showing passage of
control, it is represented by arrowed doubled lines supported by comments
which take the form of text in parentheses.

F:f.gure 6 shows, as an example, a user program passing control to
the EXCP supervisor program via the FLIH and the SLIH. It passes as a
parameter the address of 13;n lOB (Input/Output Block). The EXCP super
visor returns to the user by means of SVC exit.

CONCLUSION

The data structure charting methods described in this paper are
part of a data architecture charting methodology. The methodology has
been used extensively, as a

design tool,

.. teaching aid,

documentation tool.

The scheme as a documentation tool has been particularly useful in
analyzing systems developed elsewhere, for instance to extend or modify

User program·

-12-

lOB
Input/output
blOCk

EXCP
supervisor

(Return to user via SVC exit)
/

XBL 7411-8305

Figure,6. Representation of programs and data structures.

~ I' .i~ . - 3-

them. The scheme, as a method of introducing new staff to an existing
system or as an aid to explaining the design strategy to a nontechnical
manager, has proved itself many times over.

However, the most urgent reason for adopting a structured method
ology, such as this, is in its contribution to systems design. Designers
carry an awesome responsibility, and may soon be more formally accountable
for their products. Software designers. should be aware that audits are
becoming more common; they should be worried by their lack of defense
against charges that sof~waYe failures could have been avoided by the use
of better design methods.

ACKNOWLEDGEMENTS

The authors would like to acknowledge that the ideas described here
have.been developed by the Advanced Systems Design Group in CAP, over the
span of many projects.

REFERENCES

1. Gill Ringland, "Design Tools for Data Handling Systems", LBL-3655,
January 31, 1975.

2. CAP, "The Data Architecture Charting Method Reference Manual",
197 5, available from either of the authors.

3. CAP, "The Data Architecture Charting Method Tutorial Notes", 1975,
available from either of the authors.

4. Birkhoff and McLane, "A Survey of Modern Algebra", MacMillan, 1953.

. ,

0 u d !5'

.--~--------LEGAL NOTICE-.---..----~-~..,

This report was prepared as an accOunt of worksponsored by the
' '

·United. States Government. Neither the United States nor the United· ..
States Energy Research and D€welopment Administration, nor any of
their employees, nor any of their contractors, subcontractors; or
their employees, makes any warranty, express or implied, ot assumes
any legal liability or responsibility for the accuracy, completeness

. or u~efulness of any information, apparatus, product ()r process
disclosed, :or represents that its !1Se would not infringe privately
owned rights .

0

;.S IL· 4'

TECHNICAL INFORMATION DIVISION

LAWRENCE BERKELEY LABORATORY

UNIVERSITY OF CALIFORNIA

BERKELEY, CALIFORNIA 94720

'

