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Abstract 

Three Dimensional Nuclear Magnetic Resonance 

Spectroscopic Imaging of Sodium Ions 

Using Stochastic Excitation and Oscillating Gradients 

by 

Blaise deBonneval Frederick 

Doctor of Philosophy in Biophysics 

University of California at Berkeley 

Professor Thomas F. Budinger, Chair 
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Nuclear magnetic resonance (NMR) spectroscopic imaging of 23Na holds promise 

as a non-invasive method of mapping Na+ distributions, and for differentiating pools 

of Na+ ions in biological tissues. However, due to NMR relaxation properties of 23 Na 

in vivo, a large fraction of Na+ is not visible with conventional NMR imaging meth

ods. An alternate imaging method, based on stochastic excitation and oscillating 

gradients, has been developed which is well adapted to measuring nuclei with short 

T2. 

Contemporary NMR imaging techniques have dead times of up to several hun

dred microseconds between excitation and sampling, comparable to the shortest in 

vivo 23Na T2 values, causing significant signal loss. An imaging strategy based on 

stochastic excitation has been developed which greatly reduces experiment dead time 

by reducing peak radiofrequency (RF) excitation power and using a novel RF cir

cuit to speed probe recovery. Continuously oscillating gradients are used to eliminate 

transient eddy currents. Stochastic 1 Hand 23 Na spectroscopic imaging experiments · 
. . ' 

have been performed on a small animal system with dead times as low as 25J.Ls, per-

mitting spectroscopic imaging with 100% visibility in vivo. As an additional benefit, 

the encoding time for a 32x32x32 spectroscopic image is under 30 seconds. 
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The development and analysis of stochastic NMR imaging has been hampered 

by limitations of the existing phase demodulation reconstruction technique. Three 

dimensional imaging was impractical due to reconstruction time, and design and 

analysis of proposed experiments was limited by the mathematical intractability of 

the reconstruction method. A new reconstruction method for stochastic NMR based 

on Fourier interpolation has been formulated combining the advantage of a several 

hundredfold reduction in reconstruction time with a straightforward mathematical 

form. This permits the determination of important image parameters, such as point 

spread function and noise propagation. 

The reduction in image reconstruction time from over 1700 hours to under 3 

hours for a 3:;P image has made stochastic spectroscopic imaging practical. In ad

dition, the active probe Q-spoiling circuits developed for this experiment can be 

added to any RF probe and used with any imaging sequence to significantly reduce 

dead time between RF excitation and sampling for short T2 experiments. 

Professor Thomas F. Budin r 
Dissertation Committee Chair 

w' 
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Chapter 1 

Introduction 

1.1 Interest in Ions 

The principal medical use of nuclear magnetic resonance (NMR) imaging is to 

glean information about tissue structure by using contrast between various types of 

tissue in 1 H images. This contrast arises from differences in 1 H density, T 1 and T 2 

relaxation times, and differences in flow and diffusion rates of bodily fluids. 1 H is 

the nucleus of choice for most NMR imaging because its high concentration, 100% 

natural isotopic abundance, and high NMR sensitivity give a significantly higher 

signal to noise ratio than any nucleus found in the body. There are, however, many 

other NMR sensitive nuclei in the body, some of which carry functional information 

about the aCtivity and health of cells. NMR imaging and spectroscopy experiments 

that observe these nuclei offer a non-invasive technique for monitoring metabolism 

and pathology locally and dynamically in a clinically useful wa,y. 23Na is an NMR 

active nucleus with 100% natural isotopic abundance and a high gyromagnetic ratio; 

this and its relatively high concentration in the body give it the second highest NMR 

signal to noise ratio in the body, making it a good candidate for NMR imaging in 

vivo. The NMR properties of 1 H and 23Na are compared in Table 1.1. 

The relative concentrations of certain ions inside and outside of the cell are 

critical to many of the processes of cell function. Ion balance affects the osmotic 

pressure across the cell membrane, which determines cell volume and constituent 
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1H 23Na 

Concentration 111M 39mM 
intracellular llmM (14mM x 80% v.f.) 
extracellular 28mM (142mM x 20% v.f.) 
Natural Abundance 99.98% 100% 
Gyromagnetic Ratio 42.57 MHz/T 11.26 MHz/T 
Spin 1/2 3/2 
Sensitivity (relative to 1 H ) 
Raw 1 0.35 
In vivo 1 0.00013 
T 2 Relaxation times 30ms-2000ms 300 ,us-50ms 

Table 1.1: Comparison of NMR properties of 1 H and 23 Na 

concentrations, and the balance between the osmotic pressure and electrostatic forces 

establishes the membrane potential. Two of the most important ions in animal cells 

are Na+ and K+ . Fully one third of the energy used in animal cells is devoted to the 

ATPase which pumps Na+ out of the cell while pumping K+ in (70%.in electrically 

active cells) to maintain Na+ and K+ gradients across the cell membrane[l]. These 

Na+ and K+ gradients are responsible for drivil:g many of the transport systems 

which bring substances in and out of the cell. Any stress on the cell which inhibits 

metabolism will cause this gradient to change, and a method of determining the 

relative and absolute concentrations of these ions inside and outside of the cell has 

great potential for indicating pathology in tissue. Of the two nuclei, 23Na is more 

practical to study clinically with NMR, as it has a much highet sensitivity in vivo. 

1.2 Medical Applications of Sodium Imaging 

The potential of 23 Na imaging in medicine has already been demonstrated in the 

study of the brain, heart, and kidney. Clinical 23Na images have shown significant 

promise in detecting brain lesions which are essentially invisible in 1 H images by 

seeing dramatic changes in the amount of extracellular Na+ in damaged tissue[2]. 

Spectroscopic studies which monitored intracellular/extracellular Na+ concentration 

ratios in perfused hearts dynamically during and after ischemia[3] and statically 
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postmortem[4] have shown that these concentration ratios can be used to predict 

whether or not reperfused tissues will recover from ischemia and regain full con

tractile function. Sodium imaging has also been used to track the 3D distribution 

of Na+ in the kidney in vivo[5], which allows the monitoring of kidney Na+ under 

different physiological stresses. 

The clinical utility of 23Na imaging has been limited by relatively long imag

ing times which are due to low signal to noise ratios and the low (and sometimes 

indeterminate) visibility parameter- the 23 Na signal in many physiological environ

ments relaxes away so quickly it is "invisible" or greatly attenuated in conventional 

images. This makes these images somewhat qualitative; anomalous features can be 

detected but not characterized. While the technique is still useful without quan

titative measurement, there is another area where quantitative Na+ imaging could 

provide information impossible to obtain by any other means. There are indications 

that brain Na+ concentration ratios are disturbed in some types of mental illness, 

such as bipolar illness[6]. There has been little experimental exploration of this area, 

however, because there are no non-invasive techniques for measuring these concen

trations in vivo. Therefore this hypothesis has not been unequivocally tested, and 

is currently of no use clinically. If this hypothesis could be confirmed or disproved, 

this would increase the understanding of the physical bases of mental illness, and 

would provide a non-invasive physical diagnostic tool. for mental illness. These con

ditions can currently only be diagnosed behaviorally; there are no direct diagnostic 

methods. Therefore there is a strong incentive to develop a quantitative method of 

measuring 23Na concentration. 

1.3 NMR Imaging of Ions 

There are two major difficulties in measuring the concentrations of these phys

iological electrolytes in vivo with NMR. The first is that the nuclear quadrupole 

moments of both 39 K and 23Na give them short relaxation times when they are mo

tionally restricted, as they often are in the body. The short relaxation times make 

it difficult to "see" much of the 23 Na and 39K in vivo. In most conventional imag-
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ing pulse sequences, many T 2 time constants have passed before any NMR signal is 

measured; in fact, the relaxation times of these nuclei are so short that the actual 

ranges of relaxation rates in vivo are unknown; for many tissues, only an upper 

bound for T 2 is known. There is, however, some evidence from data on packed, Na+ 

loaded yeast cells[7], that 300tts may be the lower bound for intracellular 23 Na T 2 . 

For an NMR technique to be able to estimate the distribution of Na+ in the body, 

the experimenter must either have 100% 23Na visibility or be able to confidently 

calculate what the visibility factor is for a given experiment for each compartment 

of physiological interest. Rooney and Springer have calculated and verified that 

100% visibility of 23 Na with a T2 of 300tts requires a dead time before sampling of 

<25tts[8]. 

The ·second major difficulty is in differentiating the NMR signatures of these 

electrolytes. The resolution of NMR imaging techniques depends on many factors, 

but the major determinant of voxel size is the signal to noise ratio attainable in a 

reasonable amount of time. Imaging 23 Na in a fair sized animal in vivo cannot ap

proach cellular resolution by many orders of magnitude (a typical reported voxel size 

is 0.36cm3 )[2]. Therefore, intracellular and extracellular Na+ must be distinguished 

by NMR parameters rather than by directly resolving them spatially. Because the 

electrolytes exist as free ions, there is no chemical shift information in the spectra 

of the ions in normal physiological conditions. One way to differentiate ions in dif

ferent environments (i.e. between the intracellular and extracellular compartments) 

is through the use of paramagnetic shift reagents such as dysprosium. Ions that 

can bind temporarily to these reagents experience a large magnetic field due to the 

unpaired electron in the dysprosium, changing their average resonance frequency. 

These reagents do not penetrate the cell membrane, however, so only extracellular 

Na+ is affected, offering a way to distinguish the two compartments. Unfortunately, 

current shift reagents are cardiotoxic, limiting their use in humans. Also, they are 

not likely to be isotropically distributed in the extracellular spaces in intact tissue. 

This is espechtlly true in the brain, due to the blood-brain barrier. Therefore, an 

experimental protocol which did not rely on shift reagents would be preferable. 

There are two other proposed methods for separating various Na+ compartments. 
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The first is the use of multiple quantum filters, which detect the coherences between 

non-adjacent energy levels in nuclei with more than two levels ( 23 Na and 39 K have 

spin 3/2; they have 4 energy levels when the nuclei are placed in a magnetizing field). 

These coherences develop when the quadrupolar field of the nucleus interacts with 

electric fields that do not average to zero in a time short compared to the nucleus' 

NMR precession period. This happens when nuclei are motionally restricted; as they 

are in the intracellular medium. However, these signals are as much as ten times 

smaller than the single quantum signals, and require significant signal averaging to 

discern, which may limit the clinical utility of this technique. 

The last method for distinguishing 23Na in different environments is relaxome

try - measuring the distribution of relaxation times and estimating the amount of 
23Na with each T 2 . 

23Na in the intracellular medium in general has much shorter 

relaxation times than the extracellular environment because of longer correlation 

times for the Na+ ions and larger electric field gradients, although exactly what the 

distributions of T 2 ate is not known[9]. An imaging method which preserves the free 

induction decay signal (FID) at every voxel allows the experimenter to estimate the 

populations with various relaxation times within the voxel, and therefore to form 

spatially resolved maps of these populations. These maps, coupled with information 

about the extracellular volume fraction can be used to estimate the intracellular 

and extracellular Na+ concentration. The feasibility of "relaxographic" imaging has 

been demonstrated (for 1H) by Labadie, et al[lO]. This technique has the advantage 

of making use of the single quantum signal, and is perhaps the most straightforward 

way to do the experiment, as it measures all the 23Na simultaneously. 

1.4 Goals 

Current imaging methods are not well adapted to quantitative sodium imaging. 

The goal of this thesis is to develop an NMR imaging method which can be used 

for clinical relaxographic 23N a imaging. An ideal imaging method for this purpose 

must satisfy the following criteria: 
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1. The imaging method should allow the collection of spatially resolved T 2 relax

ation data. 

2. The imaging method must have a very short dead time before sampling (less 

than 25JLs) .. 

3. The imaging method must be implementable on a clinical system and have a 

sufficient signal to noise ratio to complete an experiment in a tolerable amount 

of time (less than one hour). 

Spectroscopic NMR imaging with stochastic excitation and oscillating gradients 

can fulfill all of these requirements. Stochastic NMR imaging can measure the time 

evolution of spins resolved in three dimensions. The data contain all of the infor

mation necessary to reconstruct spatially resolved spectra or free induction decay 

signals. The latter can be used to determine the T2 relaxation components in each 

voxel of an object, much like a chemical shift imaging (CSI) experiment. Unlike CSI, 

however, the very low dead time to sampling required for 23 Na imaging is easily ob

tained. With a few modifications, a clinical spectrometer can perform the stochastic 

experiment. Experiments on physiological phantoms indicate that acceptable signal 

to noise levels are obtainable in reasonable examination times. 

This thesis will demonstrate the feasibility of implementing a clinical 23Na imag

ing experiment based on stochastic NMR. Chapter 2 will review the theoretical basis 

for the stochastic imaging experiment, Chapter 3 will describe the particular imple

mentation of the experiment. Chapter 4 will develop and analyze a reconstruction 

algorithm for producing three dimensional spectroscopic images from stochastic data 

sets. Chapter 5 will present the results of simulations to validate the experiment, and 

Chapter 6 will present the results of experiments performed on a 2.35T horizontal 

bore imaging system, demonstrating the real-world performance of the technique. 
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Chapter 2 

Stochastic NMR 

2.1 Introduction. 

This chapter describes the concepts underlying the stochastic NMR experiment. 

Section 2.2 provides some background on NMR fundamentals, describing the physical 

phenomenon and how it can be used to determine chemical and physical properties of 

samples by observing differences in NMR spectra. Section 2.3 describes the various 

experimental methods for deriving NMR spectra. Section 2.4 examines the motiva

tion for performing a stochastic NMR experiment. Finally, Section 2.5 describes how 

the stochastic spectroscopic experiment can be extended into an imaging technique. 

2.2 Background 

The nuclei of many isotopes have a non-zero spin angular momentum quantum 

number, I. Because nuclei are charged, this spin leads to a nuclear magnetic moment, 

1-L· When these nuclei are placed in a magnetic field, the projection of the magnetic 

moment along the applied field direction (which by convention is the z axis of the 

system) is quantized into 21 + l.states which differ in energy by 2~-LBo, where B0 is 

the applied magnetic field. 

It is usually more convenient in NMR to characterize a nucleus' magnetic moment 
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in terms of the gyromagnetic ratio 'Y: 

21r J.L 
'Y= --' Ih (2.1) 

where h is Planck's constant. Because of their angular momentum, nuclei placed 

in a magnetic field do not simply align with the applied field, they instead precess 

around the field at a characteristic frequency 'YBo, known as the Larmor precession 

frequency. This nuclear precession is the basis of NMR spectroscopy. 

Nuclear magnetic resonance experiments measure the properties of a spin system 

by determining the spectrum of NMR resonances near the Larmor frequency of the 

nucleus being studied. When the spin system is in equilibrium in a static magneti~ 

field, all of the spins have random projections in the xy plane; the net magnetiza-
, 

tion is aligned with the z axis. Energy is put into the system by exciting it with a 

radiofrequency (RF) magnetic field; this induces transitions between the magnetic 

energy levels which rotates the net magnetization vector around the applied field 

direction. The resultant magnetization vector precesses in the xy plane at the Lar

mor frequency. The xy component of the field can be detected by an RF resonator. 

The spin system radiates radio frequency energy as the spins relax back to the low 

energy configuration. This radiated signal is digitized and processed to determine 

the properties of the spin system. 

The chemical and physical environment of each nucleus will affect its Larmor 

precession. Modifications of the density of the electron cloud around a nucleus 

(by chemical bonds between atoms) will change the local B0 that impinges on the 

nucleus. This is manifested as slight differences iri the resonance frequencies (on the 

order of parts per million) of populations of nuclei in different chemical residues. 

This is known as chemical shift (denoted a'). For instance, hydrogen nuclei in lipids 

have a resonance frequency different from the nuclei in water molecules. 

Also, the coupling of pools of nuclei to the lattice (a term referring generically to 

other energy storage modes in surrounding medium) and to each other will determine 

how long it. will take the nuclei to relax back to their ground state so that they can 

be reexcited, and how long a group of nuclei that are precessing will remain coherent 

in their precession so that they produce a net magnetic field that can be observed. 

.. 
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These properties are known respectively as longitudinal (T 1 ) and transverse (T 2 ) 

relaxation times. 

Chemical shift, relaxation times, and other properties are usually examined in 

the spectral dimension and are reflected in the amplitude, phase, relative position 

and width of resonance lines. These resonance characteristics in turn can indi

cate chemical and physical properties of the system being studied, such as .chemical 

composition and concentration, physical environment of chemical species, rates of 

dynamic processes like proton exchange, flow and diffusion rates, et cetera. 

Spatial information can be encoded into the NMR signal with the addition of 

spatial magnetic field gradients. These gradients alter the local polarizing field B0 , 

which in turn changes the Larmor frequency of the nuclei in different parts of the 

sample. This spatial information encoding can occur during either the excitation of 

the sample, the measurement, or both. For example, a two dimensional region of an 

object can be selectively excited by applying a magnetic field gradient while exciting 

the sample with a narrowband RF pulse. When the gradient field is applied, the 

resonance frequency of the spins in the sample will vary over a range determined by 

the strength of the gradient. By applying a narrowband RF pulse, only a fraction 

of these spins which experiences a particular range oflocal B0 will be resonant with 

the applied field; therefore only a slab of magnetization will be excited. Similarly, 

if a gradient is applied to a group of spins which is already excited, and while 

the signal is being measured, the resonance frequency change will affect the signal 

measured from the sample; the resonance frequency of a spin indicates its position 

along the gradient (this is known as frequency encoding). If the gradient is applied 

transiently between excitation and measurement, the relative phase of the spins will 

be altered in the recorded signal (this is called phase encodi~g). By applying the 

proper set of gradient values during an NMR experiment, the NMR parameters 

described above (and the underlying physical and chemical properties that cause 

them) can be resolved into images. 
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Figure 2.1: Schematic representation of the continuous wave (CW) NMR experiment. The 
RF input to the apparatus is a continuous signal which is slowly swept in frequency. The 
reflection properties of the probe are recorded over the frequency range and measure the 
NMR spectrum directly. 

2.3 Spectroscopy 

NMR spectra are measured by placing a sample in an RF resonator (probe) 

which can transmit and receive RF energy polarized in the plane perpendicular to 

the polarizing field B0 . A strong static magnetic field B0 (typically 0.5 - 14T) is 

imposed on the apparatus to polarize the nuclei in the sample and causes them to 

precess at the Larmor frequency. The RF probe is tuned to this frequency, and the 

RF properties of the sample are measured. 

The first method employed to determine NMR spectra was a direct frequency 

domain technique. A continuous wave ( CW) single frequency RF signal is transmit

ted into a probe, and the reflection characteristics of the probe-sample system are 

measured. The excitation frequency is slowly scanned over the range of interest, and 
' 

the resonator reflection coefficient changes as the spin system comes into resonance 

with the RF. This method, while straightforward, has a number of disadvantages. 

One is technical; it is difficult to average signals to increase sensitivity. The other 

limitation is the slowness of the technique - the scanning must be slow enough to 

give an accurate representation of the spectrum (the "slow passage condition"). The 

result is that a large fraction of the experiment time is spent traversing regions of 

the spectrum that have no resonances, ·which makes the technique inefficient. The 

CW experiment is shown schematically in Figure 2.1. 

•· 
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In 1966 Ernst[ll] introduced Fourier transform NMR (FT-NMR) as a more ef

ficient method of determining a spin system's characteristics. A broadband pulse 

of RF energy (usually 10 to 100 microseconds long) is transmitted to the probe to 

excite the nuclei; the probe is then switched to receive mode, and the response of 

the system (the Free Induction Decay, or FID) is recorded. This time domain signal 

is the impulse response of the spin system - which is the Fourier transform of the 

spectrum. Therefore the spectrum can be derived from the measured signal by a 

Fourier transform operation. FT-NMR excites all of the resonances in parallel, and 

records all of the responses simultaneously. The Fourier transform separates the 

responses into distinct spectral lines. This is a much more efficient process than 

single frequency scanning, as no additional time is spent exciting the spin sy.stem in 

frequency bands where there is no response to measure. The FT-NMR experiment 

is shown schematically in Figure ~.2. 

When discussing pulsed RF NMR techniques, it is convenient to introduce the 

concept of the "flip angle" (a). The flip angle is a measure of how much magne

tization is rotated from the z axis into the xy plane by an RF pulse. The ratio 

of the xy magnetization resulting from an RF pulse to the starting magnetization 

along the z-axis is the sine of the flip angle. A 90° pulse rotates all of the avail

able magnetization along the z direction into the xy plane, therefore producing the 

maximum measurable signal. Once magnetization is rotated into the xy plane, the 

z magnetization grows back as e-t/T1 • Therefore, subsequent pulses will have less 

initial magnetization to rotate into the xy plane for detection. The optimum sig

nal to noise ratio per unit experiment time is achieved when the time between RF 

pulses (TR) is comparable to the T1 of the spins being studied. The flip angle which 

produces the maximum signal to noise ratio per unit time is called the Ernst angle: 

-1 ( -TR/T1) CXErnst =. COS e . . (2.2) 

Ernst[12] and Kaiser[13] independently proposed yet another way to obtain NMR 

spectra in 1970; the use of stochastic excitation. The impulse response of a linear 

system can be derived by exciting the system with Gaussian white noise and cross

correlating the input and output signals. Although the NMR system response is not 
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Figure 2.2: Schematic representation of the Fourier Transform {FT-NMR) experiment. 
The RF input to the apparatus consists of broadband pulses. After each pulse, the RF 
signal (the FID) from the sample is measured in the time domain. The FID is Fourier 
Transformed to give the NMR spectrum. 
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Figure 2.3: Schematic representation of the stochastic NMR experiment. The RF input to 
the apparatus consists of a train of random broadband RF pulses. The voltage on the probe 

· is sampled after each pulse. The input signal is crosscorrelated with the output signal to 
give the FID, which is then Fourier transformed to give the NMR spectrum. 

truly linear, it can be treated as linear for sufficiently small excitations[12, 13, 14]. 

As with FT-NMR, all resonances are excited simultaneously and encoded into a time 

domain signal. The stochastic NMR experiment is shown schematically in Figure 

2.3. The total excitation power integrated over the course of the experiment is com

parable to that of ~n FT-NMR experiment. The expression for the average pulse 

excitation angle for optimum signal to noise ratio in the stochastic experiment is 

given in Equation 4.4. This equation is similar to 2.2, with the difference that aErnst 

refers to the root mean square flip angle in the stochastic case. 

Mathematically, measuring the impulse response of a linear system directly or 

through crosscorrelation is exactly equivalent. Ernst showed that the the signal 

to noise ratio of the optimum stochastic NMR experiment is equal to that of the 
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optimum FT-NMR experiment[12]. Thus at first sight it would seem that the sig

nificantly higher level of complexity of the stochastic experiment is unwarranted. In 

many practical situations, however, the optimum FT-NMR experiment is impossible 

to perform for a number of reasons, such as hardware or safety limitations on allow

able peak RF power, or dead time in the receiver hardware following transmission 

of an RF pulse. Stochastic NMR experiments have a very different set of tradeoffs 

that make the technique very well suited to some spin systems that are difficult to 

study with conventional FT-NMR. 

2.4 Advantages of Stochastic Excitation 

The most obvious difference between stochastic excitation and FT-NMR is that 

while the total RF excitation energy applied during the experiment is about the 

same, the excitation duty cycle is very much higher in the stochastic experiment 

since the RF excitation is essentially continuous. As a result, the instantaneous 
' 

power applied to the system can be very much smaller using stochastic excitation. 

This has the benefits of reducing the demands on RF components, such as probe 

breakdown voltage and peak amplifier power. The largest benefits, however, result 

from the reduction of system dead time. 

The RF resonators used in NMR are high Q structures which store RF energy 

quite efficiently. As a result it takes some time for residual RF energy to dissipate 

after a pulse is applied to them. The peak power transmitted to the probes is often 

on the order of kilowatts for in vivo FT-NMR. This means that several thousand 

volts can be resonating in the probe after the excitation pulse is delivered. Typical 

induced voltages from the nuclei in the probe are on the order of microvolts, many 

orders of magnitude less than the residual RF voltages left over from the excitation. 

Also, high gain preamplifiers which are used in NMR imaging are easily saturated 

by signals much larger than the expected NMR signals. It can take hundreds of 

microseconds for the RF probe and receiver electronics to recover from a high power 

transmitted pulse to the point where the induced NMR signal can be observed. For 

many nuclei this is not a problem; however, for nuclei such as 23Na, where the T2 
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relaxation time is short (a few milliseconds and below), the dead time in the RF 

electronics can have a serious impact on the signal to noise ratio of th~ experiment. 

Much of the strongest NMR signal will have decayed away before the data are 

recorded. 

NMR with stochastic excitation reduces the peak RF power by approximately 

three orders of magnitude relative to an FT-NMR experiment, which dramatically 

reduces the recovery time of the RF system. The dead time from excitation to 

sampling in the sodium experiments presented here are on the order of 20J.LS to 30J,Ls, 

which means that even for the shortest T 2 expected in vivo there will be negligible 

signal loss before the onset of sampling. As a result, the imaging method is expected 

to have 100% visibility factor for sodium in vivo. 

2.5 Extension to Imaging 

The stochastic NMR experiment is not limited to performing spectroscopy. In 

1984 Bli.imich proposed extending the stochastic experiment to include time varying 

gradients to perform imaging experiments[15]. He initially proposed using random 

gradients as ~ method of covering k-space while acquiring data, and developed a 

method of reconstructing images from the data sets using a crosscorrelation and 

averaging technique. This imaging method, however, was somewhat impractical due 

to transient eddy current response; he later modified the proposed experiment . to 

use nonrandom sinusoidally oscillating gradients in three orthogonal dimensions[16]. 

In 1987, Roos and Wong extended the analysis of stochastic NMR to demon

strate how a spectroscopic imaging experiment could be performed using stochastic 

excitation and oscillating gradients[17]. This involved modification of the crosscorre

lation method-to include a weighting function which would correct for the sampling 

density of the gradient trajectory, and allow the signals with different chemical shift 

evolution times to be separated. They also performed a detailed analysis of the 

relationship between T 2 , gradient. parameters, and the resulting image quality. 

The most serious obstacle to practical application of stochastic NMR imaging at 

this point was the difficulty of reconstruction. The weighted crosscorrelation method 
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is computationally expensive, and the reconstruction time grows linearly with the 

number of image voxels. In addition, the mathematical form of this reconstruction 

algorithm makes analysis of reconstructed image parameters quite tedious for all but 

the simplest gradient trajectories. 

A much more efficient and easily analyzed reconstruction method for·stochas

tic NMR experiments has been developed which is based on Fourier gridding, a 

technique for resampling arbitrarily spaced Fourier domain data onto Cartesian 

grid. Originally developed for radioastronomy, Fourier gridding has been applied 

to conventional NMR data in the last few years to allow the use of new sampling 

trajectories[18, 19]. The technique has been extended here to reconstruct stochastic 

NMR data. The new reconstruction method reduces reconstruction time by almost 

three orders of magnitude, and is quite amenable to detailed analysis of the relation 

between the choice of experimental parameters and the resulting images. The new 

reconstruction algorithm is described in detail in Chapter 4 . 
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Chapter 3 

Materials and Methods 

3.1 Introduction 

This chapter will describe the procedures and apparatus used for performing the 

stochastic NMR imaging experiment. In order to perform a spectroscopic stochastic 

NMR imaging experiment, there are a number of criteria that need to be satisfied by 

the RF and gradient waveforms. The major requirements on the RF sequence are 

that the individual RF pulses be broadband enough to excite all of the resonances in 

the spin system, and that the correlation properties of the train of pulses in the noise 

sequence allow for unambiguous reconstruction of an estimate of the spin density of 

the sample from the received signal. The gradients used in the experiment must fully 

sample the four dimensional k,t-space representation of the sample over the course 

of the experiment. The specific choice of RF sequence and gradient trajectory are 

independent and quite fl.exible .. This fl.exibility allows the experimenter to base the 

choice of RF and gradients on practical considerations such as ease of generation, 

eddy current minimization, hardware limitations, and ease of reconstruction. Section 

3.2 will describe the RF and gradient waveforms tailored to observing short T2 

nuclei, which will be used for the. experiments presented. The effect of the physical 

properties of the spin system being studied on the choice of experimental parameters 

wi~l be discussed. Section 3.3 will describe the hardware used to carry out the 

experiments, including descriptions of special hardware required, and Section 3.4 
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Figure 3.1: Pulse sequence of the stochastic experiment. sn is the nth pseudorandom RF 
pulse, Gn is the gradient under which the magnetization evolves, and Yn is the NMR signal 
at the sampling time nTR. 

will discuss special spectrometer calibrations which must be performed in order to 

do the stochastic imaging experiment. 

3.2 Experiment Parameters 

3.2.1 Pulse Sequence 

The stochastic NMR experiment is diagrammed in Figure 3.1. The basic pulse 

sequence repeats throughout the course of the experiment (Figure 3.2): a new gra

dient value is asserted along all three axes, a short RF 'pulse is transmitted, and a 

data sample is taken after a period (e.g. 10-30J.LS) to allow for active and passive 

RF hardware recovery. This sequence repeats with a period TR (usually 50-lOOJ.L,s) 

determined by the bandwidth of .the signal from the spin system evolving under the 

gradients (Section 3.2.4). The RF pulse amplitudesand phases and the sequence of 
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gradient values determine the characteristics of the experiment. 

3.2.2 RF Noise Sequence 

The RF noise sequence used in the stochastic experiment is assumed to meet 

three conditions: 

1. Each pulse excites all spins in the system 

2. The repetition time of the noise sequence is long compared to T 1 . 

3. The autocorrelation of the excitation sequence is a delta function in the time 

domain. 

The first requirement for the RF excitation is that each pulse be broadband 

enough to excite the entire spin system. This is accomplished by using short hard 

pulses. Typical RF pulses are 3f.J,S to 15f.J,S long, giving single pulse excitation band

widths of 67kHz to 333kHz. These bandwidths are typically 3 to 60 times the 

bandwidth of the spin system evolving under the gradients which are used for spec

troscopic imaging. 

The second and third conditions are on the properties of the overall sequence 

of pulse amplitudes and phases. In order to uniquely reconstruct the k,t-space rep

resentation of the spin system using the Fourier gridding crosscorrelation method 

described in Chapter 4, the noise sequence must satisfy two conditions. First, for 

a noise sequence which repeats, the repeat time must be longer than 5 times the 

longest T 1 in the spin system to avoid setting up steady state magnetization which 

would lead to artifacts in the reconstruction. This consideration is easily met for 

even long T 1 values and short Ta values. For example, a sample with a T1 of 5 

seconds and a Ta of 50J.LS (an extreme case) would require a noise sequence at least 

500,000 points long, which is quite practical. In an in vivo sodium experiment, T 1 

values will be less than 100 ms, so a repetition time of > 10,000 points is sufficient. 

The last condition on the RF noise sequence is that the autocorrelation function 

of the sequence should be a delta function. This condition is necessary to be able 
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Figure 3.2: Single cycle of the pulse sequence for the stochastic imaging experiment. For 
a typical sodium experiment, TRF = 15J.Ls, TQsP = 14J.Ls, TRecover = 10J.LS, Tint = 32J.Ls, 
Tsamp <<1J.LS, Txwarm = 4J.LS, TR = TRF + TQSP + TRecover +Tint+ Txwarm =75f.i,s. 
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to uniquely reconstruct the object density from the received signal. Each data sam

ple contains information from different chemical shift evolution times and k-space 

positions; the validity of the reconstruction method for,forming a k,t-space image 

estimate relies on the fact that the noise sequence has a delta function autocorre

lation (see Section 4.4). In practice, this last condition is very difficult to attain 

exactly. The T 2 of the spins in the sample will weight the autocorrelation function 

so that spins with different T2 values will see different noise sequences from the same 

excitation. Also the gradients will affect the excitation values included in the auto

correlation differently for every position in k-space. At best one can choose a noise 

sequence which is relatively free from high order autocorrelations, with the result 

that for any given combination of points from the noise sequence the autocorrelation 

is "delta function like". 

One class of RF modulation functions which satisfies these conditions is quadra

ture phase modulation using pairs of binary maximum length sequences (MLS). 

MLS generators provide a sequence of pseudo random·bits with desirable autocorre

lation properties. An RF pulse o.f constant amplitude is phase modulated between 

45°(+X+Y), 135°(-X+Y), 225°(+X-Y), and 315°(-X-Y). The sign of the phase along 

each axis is selected by a bit output from a separate MLS generator. This modu

lation scheme was examined in detail by Wong [14), and found to be quite effective 

for stochastic NMR. MLS's are attractive because they are very easily generated in 

simple hardware using a shift register, or 'in software using bit manipulation opera

tions. Digital signal processing chips can generate the two random bit values needed 

.for the RF envelope in real time at the highest excitation frequencies used for the 

experiments presented (20,000 phase values/second). 

Maximum length sequences are specified by three integers: the number of terms 

in the generating polynomial, the "mask value" (which specifies compactly which 

terms of the generating polynomial have non-zero coefficients), and the seed, which 

specifies the starting state of the generator. The ~umber of terms in the generating 

polynomial determines the repeat time of the sequence; an MLS with N terms repeats 

after 2N - 1 points. The experiments described here use 19 term MLS sequences, 

which repeat in 524287 points, which will always be longer than 5 T 1 values for any 

.. 
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practical sodium experiment. Different mask values specify different bit sequences 

of this length, and the seed determines the starting point within a given sequence. 

For simplicity these experiments use the same mask value for both bits of the phase 

selection, but start the generator at different seed values which are 2N-l points apart 

in the bit sequence. 

3.2.3 Gradient Trajectories 

The gradient trajectory used in the stochastic experiment must s~tisfy the fol

lowing conditions: 

1. k-space must be critically sampled over a simply connected region. 

2. Each point in k-space must be critically sampled in the time domain to allow 

spectral reconstruction. 

3. Gradient slew rates must be within hardware and safety limitations. 

4. Eddy currents should be minimized m: fully characterized to eliminate dead 

time due to gradients. 

All of these conditions can be met through the use of gradient waveforms based 

on one dimensional periodic oscillating gradients. Periodic waveforms retrace them

selves over a region of k-space through the origin, providing k-space samples of 

arbitrary density along a line. They also revisit the same region in k-space at least 

once per cycle, so if the oscillation frequency is at least equal to the chemical shift 

bandwidth of the system, k,t-space will be adequately sampled to reconstruct a 

spectroscopic image. Periodic waveforms are easily generated by resonant hardware, 

so very large gradient slew rates can be achieved with relatively low power input. 

Finally, periodic gradients by necessity have steady state eddy currents. 

Roos and Wong[17] examined the special case of sinusoidally oscillating gradi

ents, which have very desirable characteristics from the point of view of eddy currents 

and ease of generation. Unfortunately, the k-space sampling density which results 
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from using a sinusoidal gradient and equal time sampling is not uniform; the sam

pling density is strongly peaked at high spatial frequencies. This leads to uneven 

distribution of measurement noise power in the reconstructed image, and uneven 

cancellation of systematic noise arising from stochastic excitation. Two methods 

were considered for modifying sinusoidal gradients to correct the sampling density 

while preserving the ease of generation and the steady state eddy current behavior. 

3.2.3.1 Truncated Square Wave (TSW) Gradients 

Because periodic gradients will always have steady state eddy currents, a periodic 

gradient can have an arbitrary shape depending on the sampling density required. In 

particular, a much more uniform sampling density can be obtained by adding odd 

harmonics to the fundamental sinusoid to generate an approximation to a square 

wave gradient, as shown in Equation 3.1. 

G = ir G cos (2(2i- 1)1r fop!).T) 
p i=l ( -1)i(2i- 1) 0 

(3.1) 

The peaking of the sampling density at high spatial frequencies is greatly reduced by 

adding more harmonics to the gradient, but it also increases the maximum gradient 

slew rate. The experiments analyzed and presented in Chapters 5 and 6 using 

truncated square wave gradients use the first three components (imax = 3). This 

number of harmonics represents a good compromise between the even sampling 

density of square wave gradients and the limited slew rate of sinusoidal gradients. 

The sampling density of this class of one dimensional periodic gradients will be 

analyzed in more detail in Section 4.6.2. 

3.2.3.2 Amplitude Modulated Sinusoidal (AMS) Gradients 

A different approach to correcting the sampling density of a sinusoidal gradient 

is to slowly modulate the amplitude of the oscillating gradients [21]. Changing the 

gradient amplitude gives sampling patterns of the same shape but covering different 

extents ink-space. The lower sampling density near the origin of k-space can be 

corrected by emphasizing smaller gradient amplitudes in the modulation function. 



23 

-1 

(a) Gradient waveforms 

(b) k-space trajectories 

(c) Gradient slew rates 

Figure 3.3: One dimensional gradient waveforms generated by Equation 3.1. (a) shows 
the gradient waveforms for imax of one, two and three. (b) shows the resulting k-space 
trajectories (in arbitrary units) and (c) shows the gradient slew rates (again in arbitrary 
units). 
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The modulation must be slow relative to the period of the sinusoid to keep the shape 

of the sinusoidal sampling density constant. In a typical experiment, the oscillation 

frequency will be 200-lOOOHz, and the modulation period will be on the order of a few 

seconds. This yields a flat spatial noise power spectrum in the reconstructed images. 

Because the modulation is very slow compared to the time for eddy currents to come 

into equilibrium, steady state eddy currents are preserved, and resonant gradients 

can still be employed. 

3.2.3.3 AMS Modulation Function 

A stochastic NMR experiment has (in general) a different sampling pattern for 

every time point q in the reconstructed FID image (see page 51). For a stochastic 

experiment with a sinusoidal gradient and a constant sample period, the number of 

samples at a location in k space for a time point q is proportional to: 

(3.2) 

where k~ax is the maximum extent ink-space for a given time point tq· This sampling 

pattern is shown as the dashed line in Figure 3.4. 

To construct an envelope function which fills in the center of k-space, we make 

k~ax' which is proportional to the amplitude of the sinusoidal gradient (G), a func

tion of time. A G(t) of the form: 

{ J [ ]2 10- ~ 
G(t) = O · tmax 

ltl::; ~ 
otherwise 

(3.3) 

yields a constant sampling density ink when integrated from 0 to tmax, where tmax is 

long compared to one period of the sinusoidal gradient. This function can be made 

periodic by convolving it with a series of delta functions spaced tmax apart. If the 

total experiment time is a half integral number of tmax long, the sampling density 

will be constant over the range -kmax to kmax· The modulated waveform is shown 

in Figure 3.5, and the resulting sampling density is shown as the solid line in Figure 

3.4. 
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Figure 3.4: Normalized sampling density over range -kmax, kmax with sinusoidal gradient 
(dashed) and modulated sinusoid (solid/ Histogram shows the distribution of 1048576 
sample points distributed over 104 bins. 

Figure 3.5: Sine wave modulated by periodic G(t) from time 0 to 5tmax (solid line}. The 
frequency of the sinusoid is reduced for clarity. In an actual experiment, tmax > > one 
oscillation period. The modulation function is the dashed line. 
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3.2.3.4 Gradient Oscillation Frequency 

The frequency of the gradient is determined by the chemical shift bandwidth of 

the sample. 23Na has no natural chemical shift in vivo. However, there are two 

sources of chemical shift bandwidth to the sodium system: T 2 relaxation and shift 

reagents. As mentioned before, the shortest relaxation component of sodium may 

be as low as 300tts. This leads to a linewidth of approximately 1000Hz. Therefore 

the oscillating gradient frequency may need to be as high as 1000Hz for some in 

vivo experiments to fully capture the short relaxation signal. The effect of shift 

reagents is usually somewhat less; on the order of a few hundred Hz, so the T 2 value 

will usually determine the minimum useful gradient frequency. The experiments 

presented here use gradient oscillation frequencies of approximately 500 to 600Hz. 

3.2.3.5 Extension to Three Dimensions 

There are many ways to extend a one dimensional oscillating spectroscopic imag

ing experiment to three dimensions; two methods will be examined here. These 

trajectories are chosen for ease of generation, and for the fact that they allow the 

oscillating part of the gradient and the method of extension to three dimensions to 

be considered separately; the requirements on gradient frequency and strength are 

the same for a one dimensional and a three dimensional experiment. 

The first method is to rotate the direction vector of the oscillating gradient so 

that it slowly traces out a spiral on the surface of a sphere. This is essentially a 

three dimensional projection experiment. Over short time scales, this trajectory 

repeatedly samples a line in k-space through the origin. Over the course of the 

experiment, the direction of this line rotates to sample all solid angles. The resulting 

sampling pattern is a sphere in k-space. If the rotation is very slow compared to 

both the oscillation frequency of the gradient and to the longest time constants of 

eddy currents in the magnet bore, the rotation does not invalidate the assumption 

of steady state eddy currents. 

The second method of extending oscillating gradients to three dimensions consists 

of simultaneously applying periodic oscillating gradients which are not harmonically 
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related along the three Cartesian axes (called "incommensurate frequency oscillating 

gradients", after Bliimich[16]). The incommensurate frequency gradients trace out a 

three dimensional Lissajous pattern, giving a cubical sampling patterns in k-space. 

By proper choice of the relative frequencies of the oscillating gradients and the 

sampling frequency, the sampling density in k,t-space can be made very uniform. 

The relation of the gradient trajectory to the point spread function and the noise 

characteristics of the reconstructed image are examined in Sections 4.5 and 4.6. 

As a practical matter, the second method, inc?mmensurate gradients, is more 

desirable for these experiments, for a number of reasons. The first is that the overall 

k-space sampling density can be made uniform in three dimensions for all time 

points, which is very difficult to do using the rotating oscillating gradient trajectory; 

also, the point spread function is the familiar three dimensional sine, which has 

well understood sidelobe properties. Also, because the gradient functions along the 

three axes are independent, their eddy currents and phase shifts can be mapped and 

compensated independently (using the procedure described in Section 3.4.1). 

The sampling density of a one-dimensional stochastic imaging experiment with 

an unmodified sinusoidal gradient varies by a factor of 8 from the center to the edges 

of k-space. In a three dimensional incommensurate frequency os~illating gradient 

experiment, most of the sampling density is concentrated in the eight corners of a 

cube ink-space, where there is little object information; the sampling density at the 

origin of k-space is only 25% of the average value, and 1/64th of the peak value. 

Flattening the sampling pattern using the three dimensional AMS gradient leads to 

significantly reduced systematic and measurement noise in the reconstructed image 

for a given imaging time. 

If the AMS technique is used for a three dimensional experiment, care must 

be taken to keep the gradient modulation functions incommensurate in addition 

to having the oscillation functions incommensurate. If the gradients are modulated 

synchronously, the gradients cannot be considered fully independent in terms of sam

pling pattern, and the flat sampling density in one dimension will not be preserved 

in three dimensions. The resulting sampling pattern is concentrated along diagonal 

lines radiating from the origin. Since the modulation function can be made periodic, 
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Figure 3.6: Modulation functions for x, y and z. The number of modulation periods has 
been chosen so that the gradients along x, y and z are modulated asynchronously. In this 
example the three modulation function goes through 8, 10 and 12 tmax along x, y, and z 
during the course of the experiment. 

the number of periods along each axis during the experiment can be different, which 

eliminates the concentration of sampling along the diagonals of k-space. 

3.2.4 Sampling Frequency 

The sampling frequency required for the stochastic experiment depends on the 

amplitude of the gradient, the field of view covered, the oscillation frequency of the 

gradient, and to a lesser extent, the shape of the gradient. 

Oscillating gradients have the effect of frequency modulating the NMR signal pro

duced by the spin system. This modulation produces sidebands spaced at multiples 

of the oscillation frequency, with an envelope function on the sideband amplitudes 

determined by the shape of the object. The sideband amplitudes never fall exactly 

to zero; however, there is an effective bandwidth where most ofthe energy is concen

trated. A common rule adopted in communications is that sideband is signifi.cant if 

its amplitude is greater than or equal to one percent of the unmodulated signal[22). 

In analogy to the terminology of communications, the oscillating gradient amplitude 

and the field of view are expressed as the quantity /3, the "modulation index": 

/3 = ')'GTmax 
fo 

(3.4) 
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where 'Y is the gyromagnetic ratio, G is the gradient amplitude, rmax is the maximum 

extent of the object relative to the origin along the direction of the gradient, and fo 

is the gradient oscillation frequency. 

For a sinusoidal oscillating gradient, the effective signal bandwidth is determined 

using Carson's rule[17]. The approximate bandwidth of the stochastic experiment 

with a sinusoidally oscillating gradient is therefore:. 

S1 = 2fo(l + /3) (3.5) 

The bandwidth of a three dimensional rotating oscillating gradient is the same 

as the sinusoidal gradient case, because the rotation frequency is very slow com

pared to the oscillation frequency the rotation makes a negligible contribution to 

the bandwidth. In the case of the incommensurate frequency gradient, the gradients 

can be considered independently, and the experiment bandwidth is the maximum of 

the bandwidth determined by Equation 3.5 along each of the three axes. 

Because the modulation frequency of the AMS gradients is very slow compared 

to the sinusoidal oscillation frequency, the modulation has no observable effect on 
' 

the overall bandwidth, and Carson's rule holds using the maximum amplitude of the 

gradient to calculate the bandwidth. 

Frequency modulation is a nonlinear process, so the bandwidth resulting from 

multiple component gradients cannot be simply determined; the expression for side

lobe amplitude is rather unwieldy. Simulations and experiments have shown that in 

the regime of /3 >> 1, which is the usual case for stochastic NMR, the bandwidth 

of the sinusoidal experiment and the multiple component gradient is very similar, 

and Equation 3.5 can be used to determine the necessary sampling frequency. Power 

spectra from simulated experiments are compared in Section 5.3. 
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3.3 Apparatus 

3.3.1 Spectrometer 

All experiments were performed on a 2.35T imaging system. The imager is 

homebuilt around a 2.35T Bruker horizontal bore magnet with a 40cm bore. The 

gradients employed are custom designed actively shielded gradients with a clear 

bore of 25cm, powered by six Techron 7700 series amplifiers. The gradients have a 

maximum field strength of 60mT /m and a maximum slew rate of 300T /m/s. 

The data acquisition system is divided into two parts; all realtime experimental 

tasks are handled by a dedicated multiprocessor VME-based computer system. Gra

dient and RF waveforms can be precomputed or generated in real time using two 

TMS320C30 digital signal processors on a Sky Challenger processor board; averag

ing and control of the pulse programmer and RF hardware is handled by a Motorola 

MVME147 68030 processor. All display and interface tasks are handled by Sun Mi

crosystems SPARCstation-10 which is connected to the realtime system using socket 

connections over an Ethernet connection. 

3.3.2 Probes 

The probe used for the 23 Na experiments was a home built dual tuned (1 Hj23Na) 

four-ring lowpass-lowpass birdcage resonator (Figure 3.7). The probe layout was 

adapted from the 1H/31P probe devised by Murphy-Boesch and coworkers.[23]. The 
1 H mode of the probe is used for shimming and sample positioning; it is driven 

linearly. The 23 Na mode of the birdcage transmits and receives in quadrature. 

An NMR probe is designed to be a high Q resonant structure for maximum 

signal to noise ratio. In order to minimize the preamp recovery time, an active 

Q-spoiling circuit was developed and added to the RF probes used for stochastic 

NMR experiments. This circuit provides a means of actively dissipating the power 

remaining in the probe after transmission by lowering the 23Na probe Q by a factor 

of 6. 7 for several microseconds. The Q-spoiler circuit is mounted on two panels 90° 

apart on the probe body (one for each linear mode in the birdcage). The Q-spoiling 
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Figure 3. 7: Dual tuned four-ring lowpass-lowpass (1 Hj23 Na) birdcage resonator with 
quadrature Q-spoiler. One of the two Q-spoiler loops can be seen mounted on the left 
side of the probe; the second loop is on the bottom of the probe. 

circuitry is described in the next section. 

The 1 H experiments were performed on a single frequency Alderman-Grant probe 

with an added Q-spoiler circuit. The probe is not shown. 

3.3.3 Active Probe Q-spoiling 

To maximize the signal to noise ratio, especially with short T 2 samples, the 

receiver gate should be open as long as possible during the sampling period to allow 

signal to integrate before sampling. To prevent the preamplifier from saturating, 

the probe must be given time to ring down after transmission of an RF pulse. This 

ringdown time can be quite long for a high Q probe, which is necessary for sensitive 

detection of the NMR signal from the sample. To resolve this apparent paradox, a 
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RF Enclosure 

Q spoiler R~Choke . +15V, 75mA 
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Unitrode 4010B 
( C PIN when backbiased) [ 

Figure 3.8: Circuit diagram, PIN diode Q-spoiler. The Q-spoiler is inductively coupled to 
the main tank circuit of the RF probe. When the PIN diode is backbiased, the resonant 
frequency of the Q-spoiler is much higher than that of the tank circuit, and does not affect 
it. When the diode is forward biased, the Q-spoiler is resonant at the probe's frequency 
and couples strongly to the main tank circuit, lowering its effective Q. 

circuit was designed to give the RF probe a switchable Q, so that the residual power 

from the excitation pulse could be dissipated prior to opening the receiver gate. 

PIN diode circuits have been employed previously to reduce probe recovery time 

[24, 25, 26] and to eliminate interaction of multiple coils [27]. These existing circuits, 

however, either generate noise in the high Q state or require extremely high voltage 

diodes, which in turn have high capacitance and slow switching times. Therefore 

an inductively coupled PIN diode circuit for rapid switching of an imaging probe 

between a high Q and low Q state was developed [28]. The circuit described allows 

the dead time between the end of RF transmission and receiver gate opening to be 

reduced significantly, which is essential for detection of spins with short T2 and for 

stochastic NMR. 

The Q-spoiling is achieved by inductively coupling a tuned split resonator to the 

probe, as shown in Figure 3.8. During transmit and receive, the PIN diode is reverse 

biased, forming a low Q resonator with resonance frequency: 

w= 
Crune + Cstray + CPIN 1 

L(CPIN + Cstray)Crune ~ L(CPIN + Cstray) 
Crune >> CPIN > Cstray (3.6) 
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Figure 3. 9: The Q-spoiler used for the birdcage coil used in this experiment consists of two 
loops 9(? apart on the probe body, each coupled over a window of the birdcage. The loop 
is constructed of 14 AWG wire, and has an inductance L. For the 26.46MHz probe, r = 
5.5cm, CTune = 130pF, R1 = 9D, and R2 = 120ft D1 is a Unitrode 4010B PIN diode. 

This frequency is much higher than the probe resonance frequency, so the effect on 

the main probe resonator is quite small. Also, because the coupling is not resonant, 

the voltage across the diode is much lower than the voltages on components in the 

tank circuit. When the diode is forward biased during the Q-spoil interval, the loop's 

resonance frequency becomes: 
1 

w == (3.7) 
.jLCTune 

The loop components are chosen so that this frequency corresponds to the res-

onance frequency of the main pr~be. Adding this coupled resonator to the probe 

circuit splits the resonance and can lower the Q significantly, depending on the value 

of resistor Rl and the coupling constant k. The use of a split inductor makes the 

effect of switching the PIN diode on the loop's frequency quite large; switching on 

the diode doubles the loop inductance. This causes a much greater effect on the 

loop's resonance than relying on the capacitance change of the diode. 

The actual design of the Q-spoiling loop is accomplished using an heuristic ap

proach. The loop geometry is chosen much the same way as an inductive feed would 
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be designed; the coupling constant of the tuned loop is relatively high. A one turn 

loop split into two halves was used for this design. When the diode is reverse bi

ased, the inductance of this loop is half of the value of when it is conducting. The 

capacitor Ctune is then selected to make the loop resonate at the probe's primary 

resonance frequency when the diode is on; (which corresponds to the loop inductor 

being joined into one conti:g.uous inductor). In this state, the resistor Rl is part of 

the circuit, lowering the Q of the loop, and hence the Q of the probe. If the loop 

Q is too low, its coupling to the main tank circuit is small, and it does not affect 

the probe Q strongly. If the Q is too high, the probe's resonance is split in two, but 

the Q is not decreased significantly. The resistor Rl can be selected to fall between 

these two extremes with the use of a variable resistor. 

When the PIN diode is back biased, the loop's inductance is halved, and the 

Q-spoiler's resonance frequency increases to a high value determined by the lower 

inductance and the stray capacitance of the loop. Unless the stray capacitance is 

on the order of the tuning capacitance (in which case the loop is too big), the loop 

resonance frequency will be far above the probe tuning frequency, and its effect on 

probe operation will be very small. 

The driver design is straightforward. The PIN diode requires 75mA to switch on, 

and it only draws this current for a few microseconds. However, it must be able to 

switch quickly while driving the capacitance of the probe loop and the lowpass filter, 

so when designing the driver the peak current requirements must also be considered. 

The resistor R2 is a current limiting resistor chosen small enough to fully forward 

bias the PIN diode into a low resistance state. To limit the transients caused by 

switching the diode on and off, the driver circuit for the diode was given a ""lJ.LS time 

constant to eliminate sharp transitions which could excite the main probe resonator. 

The addition of the Q-spoiling circuit caused no observable decrease in the Q 

of the probe (relative to the probe without the circuit installed) when the diode 

was reverse biased. When the Q-spoiler was forward biased, however, the unloaded 

Q dropped by a factor of 6.7. When the probe was installed in the system shown 

in Figure 3.10 (which includes a multiplexer, preamplifier, and receiver), the probe 

dead time could be decreased as shown without transmitter breakthrough. The 
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Figure 3.10: RF System Diagram. 

prediction of the system dead time with and without using the spoiler is not as 

simple as directly comparing the Q's of the two systems, however. The matching 

of the probe to its cable varies during the course of the probe ringdown as the PIN 

diode is switched and the blocking diodes in the receiver protection circuits turn 
; 

off, making predictions about ringdown based solely on Q values impossible. Also, 

when the probe is not matched to its cable, and the preamp can begin to recover 

from saturation before the probe ringdown is complete, since it is isolated from the 

full probe voltage, allowing parts of the system to recover in parallel rather than 

sequentially. 

Figure 3.11 shows the Q-spoiler in use in the stochastic experiment diagrammed 

in Figure 3;2. In both oscilloscope photographs, the top trace shows the RF pulse, 

and the bottom is the analog input to the spectrometer's digitizer. In both cases, 

there is a 24tts delay between the end of the RF pulse and the opening of the receiver 

gate. On the left, the Q-spoiler is not used and the preamplifier is still saturated 

during the sampling period; on the right, the Q-spoiler is on for 12pB. In these 

pictures, the analog receiver filter before the digitizer has been removed to show the 



(a) Q-spoiler off. The preamplifier is 
saturated from the transmitted pulse. 

(b) Q-spoiler on for l2JLS after end of 
RF. The preamplifier has fully recov
ered and is receiving normally. 

Figure 3.11: Demonstration of Q-spoiler. 
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output of the preamp more clearly. In both pictures, the experiment was run for 

65536 pulses, so the signals were summed on the film. 

The receiver dead time depends not only on the probe ringdown, but on the 

preamp saturation characteristics and the recovery time of the T /R multiplexer. 

This method of decreasing probe recovery time takes all of these factors into account. 

The inductively coupled design allows a high degree of decoupling between the driver 

circuit and the transmitter and receiver; the need to protect the driver from the 

transmitted pulse is greatly reduced over designs which.place the diode in the main 

probe circuit. Also, the transients arising from the switching of the diode circuit 

are only weakly coupled into the receiver circuitry, since very little of their energy 

is within the probe's bandwidth. Various other designs were tried, such as putting 

the PIN diode directly across the tuning or matching capacitors of the tank circuit 

of the probe. While these designs did give switchable Q values in low power testing, 

in actual circuits they exhibited decreased signal to noise and oscillating matching 

impedance. This is most likely due to nonideal behavior of the PIN diodes when 

exposed to the full RF voltage in the tank circuit. Under these conditions, the model 

of the PIN diode as an "RF resistor" is probably a poor approximation to its true 

behavior. The inductively coupled circuit does not exhibit these characteristics. 
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3.4 Calibrations 

3.4.1 K Space 'Trajectory 

Like echo planar imaging (EPI), stochastic NMR requires sampling in the pres

ence of a time varying gradient. As a result, phase shifts and delays in the gradient 

waveform affect the actual k-space location where sampling occurs. Ignoring this 

effect will have deleterious effects on image quality, as the the Fourier transform of 

the object density will be distorted, perhaps irrecoverably, if image reconstruction is 

performed using incorrect k locations. If, however, the k location is known through

out the imaging sequence, the k positions can be corrected during reconstruction, 

or precompensated during gradient generation. 

The k-trajectory calibration is performed using the·method described by Taka

hashi [29]. A large, well shimmed, spherical, undoped water sample on resonance is 

placed in the center of the magnet. The sample is excited by a 90° pulse, and a "self 

encode" gradient, Gse is applied along one axis, followed by the component along the 

phase encode direction of the gradient being mapped, Gm (see Figure 3.12). When

ever the time integral of the gradient waveform starting from the ~F pulse is zero, 

there will be an echo; therefore if the integral under the self encode pulse is known, 

the value of the integral of Gm at the echo time, which is the k-space position, is 

known. This is performed over a range of phase encode values, and for each time 

point in Gm the value of Gse producing the maximum echo amplitude is determined. 

The result is a measurement of the k-space position as a function of time. 

The gradient trajectory is mapped for each of the three Cartesian axes. Because 

a periodic waveform is employed for the experiments described, only a representative 

sample of the gradient waveform along each axis is required. This technique assumes 

that the gradient waveforms along the three axes are independent, and that the eddy 

currents reach steady state well before sampling ends, so that the later parts of the 

waveform represent the true steady state k trajectory. 

Measured phase shifts for sine wave gradients at 500Hz were approximately 4. 7, 

3.5, 9.2 degrees along x, y and z respectively. These phase shifts are enough to 
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Figure 3.12: k trajectory calibration pulse sequence 

cause significant image distortion if left uncorrected. Therefore, all gradient wave

forms used in the experiments described were precompensated during generation to 

eliminate phase shifts and distortions in the k-space trajectory. 

3.4.2 Receiver Filter Delay 

Another important calibration that must be performed is measurement and com

pensation for the group delay of the receiver filter. Most NMR spectrometers have 

an analog filter in the RF receiver used to limit the analog signal bandwidth going to 

the digitizer. This filter will introduce a delay in the analog signal being generated. 

This delay time depends oil the type of filter used, but can be quite significant, 

often on the order of a sampling period. In conventional imaging this filter delay 

will cause a phase roll in the received FID, which can be compensated for after the 

fact; however, in stochastic imaging, because the receiver gate is being switched 

throughout the experiment, the result of ignoring the filter delay may be that the 

digitizer samples during a time when there is little or no signal at its input. 

The solution to this is to modify the pulse program to delay the actual sampling 

time of the ADC from the end of the experiment cycle shown in Figure 3.2 by the 

amount of the receiver delay. This receiver delay can be measured directly by watch

ing the analog input to the digitizer while triggering off of the RF gate pulse and 

determining when the analog signal response is at a maximum. However, in many 

cases the receiver filter group delay is characterized by the manufacturer and included 
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(a) Sinusoidal gradient 

(b) Three component gradient 

Figure 3.13: One dimensional k trajectory maps of gradients generated by Equation 3.1. 
(a) imax = 1 (Sinusoidal gradient) (b) imax = 3 
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in the data sheet of the filter. Since this was the case with our spectrometer, the 

stochastic imaging experiment setup macro used for these experiments determines 

the filter delay after the experiment parameters have been set and automatically 

generates a pulse sequence which delays the sampling time to compensate. 
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Chapter 4 

Reconstruction Algorithm 

4.1 Introduction 

This chapter describes the algorithm used to reconstruct spectroscopic images 

from stochastic data sets. Previous image reconstruction methods have used a 

weighted crosscorrelation of the excitation sequence and the received signal, mod

ified by a phase demodulation kernel. Images are reconstructed voxel by voxel, 

with a different phase demodulation kernel for each voxel[17]. This is computa

tionally expensive, and the derivation of the phase demodulation kernel imposes 

rigid constraints on the gradient encoding waveforms that can be used if practical 

reconstruction times are to be obtained, even for encoding in two spatial dimensions. 

Section 4.2 provides a mathematical description of the stochastic experiment, 

and defines some cqncepts which will be used throughout the Chapter. The phase 

demodulation reconstruction method is described briefly in Section 4.3. Section 4.4 

describes and derives a new crosscorrelation reconstruction method based on inter

polation onto a grid in k,t-space, or "Fourier gridding", which provides a dramatic 

reduction in reconstruction time and removes most of the mathematical constraints 

that limit the choice of image encoding process, providing much greater flexibility 

in experiment design. The point spread function and noise characteristics of the re

construction are analyzed in Sections 4.5 and 4.6 respectively. Section 4. 7 discusses 

implementation issues. 
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4.2 Mathematical Description of the Experiment 

A typical stochastic NMR experiment is diagrammed in Figure 3.1. The RF 

excitation employed is a train oflow flip angle (on the order of one degree) broadband 

RF pulses of random phase and/or amplitude, as described in Section 3.2.2. The 

bandwidth of each individual RF pulse is great enough to excite all of the spins in 

the system even in the presence of gradients. After each RF pulse, one data sample 

is taken, and the next gradient value is asserted. There is no spatial preselection 

in the stochastic experiment; the entire region within the RF probe is excited. We 

impose the condition that the RF excitation be small enough that the response of 

the transverse magnetization to the excitation sequence is .linear. Then, following 

the analysis of Roos and Wong[17], the transverse magnetization mn(x, u) at time n 

arising from a stochastic RF excitation sequence in the presence of applied magnetic 

field gradients can be shown to be: 
00 

mn(X, u) = L p(x, u)e-i(q+l)uTRe-(q+l)TR/T2e-ix·kn,qSn-q, (4.1) 
q=O 

where p(x, u) is the spin density as a function of space and chemical shift, sn is the 

excitation sequence, T R is the sampling interval, and 

(4.2) 
p=n-q 

indicates the position in k-space (the spatial frequency domain[30]) at time nTR for 

the magnetization created at time (n - q)TR, after evolving in the presence of a 

magnetic field gradient GP. 1 is the gyromagnetic ratio of the nucleus being imaged. 

Throughout this derivation, constants of proportionality have been suppressed for 

clarity. 

Integrating the magnetization over space and chemical shift yields the received 

signal Yn: 

. Yn = 11 p(x, u) f e-i(q+l)uTRe-(q+l)TR/T2e-ix·kn,q Sn-q dx du. ( 4.3) 
CT X q=O 

In addition to linearity, we assume that the longitudinal magnetization is in 

steady state. These assumptions are made for convenience. A Bloch equation anal

ysis of the stochastic experiment after a brief interval for equilibration leads to 
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essentially the same result, with an added factor that accounts for T 1 saturation. 

The added factor indicates that the signal will be maximized by choosing the RMS 

flip angle 'to be the Ernst angle, as in a conventional experiment (note that in the 

conventional expression, aErnst is assumed to be constant rather than an RMS value). 

(4.4) 

4.3 Phase Demodulation Reconstruction 

One way to estimate the spin density from the received signal is to perform a 

weighted crosscorrelation of the received signal with the excitation sequence, using 

a phase demodulation kernel eix·kn,qw(n, q): 

N 
h( ) ~ ix·kn q ( ) * p x, q = L....t Yne · w n, q sn-q· 

· n=l 

(4.5) 

where N is the total number of samples in the received signal Yn, and w(n, q) is a 

weighting function. 

The demodulation kernel selects for magnetization having a particular phase evo

lution due to the gradients - i.e. the magnetization arising from a particular region 

in space. The weighting function w( n, q) compensates for the uneven sampling of 

k-space by the scanning trajectory. Each correlation lag q corresponds to a time 

point in the FID of the NMR signal (the Fourier transform of the spectrum). This 

method requires that we calculate a weighted summation of the entire received sig~ 

nal with the excitation sequence for each lag q for every voxel in the image, so the 

reconstruction scales in time as the product of the received signal length and the 

number of voxels reconstructed (and as n log( n) with the number of correlation lags 

reconstructed). This scaling makes three dimensional image reconstruction compu

tationally impractical. Reconstruction speed is improved if crosscorrelations calcu

lated with fast Fourier transforms can be used, but this requires that the weighting 

function w(n, q) must be expressible as a product of two functions w1(n)w2(n- q). 
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4.4 Fourier Gridding Reconstruction 

We denote the spin density as a function of x and CJ asp. We will use Pk to denote 

the Fourier transform of p with respect to x; pq to denote the Fourier transform of 

p with respect to CJ; and PK to denote the Fourier transform of p with respect to x 

and CJ. Therefore: 

which allows us to rewrite Equation 4.3 as: 

Yn = 111 Pk(k, CJ) f: e-i(q+l)uTRe-(q+l)TR/T2e-i(kn,q-k)·xsn-q dk dx dCJ.(4.7) 
u x k q=O _ 

Rearranging the integration and summation, and using the definition of PK, we see 

that 

Yn ( 4.8) 

00 

L e-(q+l)TR/T2Sn-qPK(kn,q, (q + l)TR)· (4.9) 
q=O 

For convenience in notation, from now on we will use the convention that PK(k, q) 

represents the function PK(k, rJ) evaluated at rJ = (q + l)TR· 

The received signal Yn is now cast in a new form, as a function of the excitation 

sequence and the Fourier transform of the spin density (or k-space representation) of 

the object. This leads to a new interpretation of the stochastic NMR signal. Each 

time sample of the received signal has contributions from an ensemble of signals 

arising from every RF pulse in the past. Each signal in the ensemble samples the 

four dimensional k-space representation of the object density, and each is weighted 

by the RF pulse that created it. The signal composition and reconstruction in the 

absence of gradients is illustrated in Figure 4.1. Using this fact and knowing that 

the excitation sequence is a white noise sequence, we can estimate the spin density 

p K (k, q) in a straightforward manner. 

To reconstruct an image from the input signal Yn we first form a rectilinear four 

dimensional array (three k-space axes and one lag axis) of PK(k, ry) which is an 
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Figure 4.1: Composition and reconstruction of the stochastic signal in the absence of gra
dients. The top of the diagram shows how the stochastic excitation produces a signal which 
is a composite of many individual F!Ds. Each time point of the received signal, Yn, is a 
summation of signals arising from magnetization created in ~he past. The magnetization 
from the RF pulse sn has evolved through one TR, the magnetization from pulse Sn-1 has 
evolved two periods, etc. Each component of the sum has initial phase. The lower sec
tion of the diagram on the shows how crosscorrelating the signal produced in this manner 
regenerates the FID of the spin system. 
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I 

estimate of the 4D Fourier transform of the object p(x, cr). To do this we will make 

use of the autocorrelation property of the white, random excitation, ( Sqs~,) = Dq,q' 

to separate the signal components that are summed together in each data sample. 

By way of example, consider the stochastic NMR signal in the absence of gradi-

ents, 
00 

Yn = L e-(q+l)TR(u+l/T2)Sn-q· (4.10) 
q=O 

The FID of a spin system can be estimated from a stochastic experiment by cross

correlating the received signal with the excitation sequence. 

N 

p(q) = L YnS~-q (4.11) 
n=l 

In this case, p(q) is the estimate of the spin density integrated over all space (the 

inverse Fourier transform of the spectrum). Each received signal point has contribu

tions from many RF excitations in the past; however, the crosscorrelation operation 

with the conjugate of the excitation sequence with a given delay acts as a matched 

filter which selects only for magnetization from the appropriate time lag in the past. 

In the presep.ce of gradients YnS~-q is now also a function of k. While samples are 

acquired with uniform spacing in time, the k location of the samples in k, q space 

are not the same for each q (see Figure 4.3), and are not uniformly spaced ink. To 

develop an extension of Equation 4.11, one approach is to interpolate these samples 

in the k dimension onto a rectilinear grid before computing the time crosscorrelation 

with the excitation. This crosscorrelation then yields one FID per k-space point. A 

four dimensional FFT then gives p(x, cr). 

The interpolation problem in the k domain is the same as that encountered 

in imaging with arbitrary k trajectories and deterministic excitation[18]. The re

construction operation is derived in two steps: first, a continuous function of k is 

constructed for each lag value q from the discrete data samples Yn; then an estimate 

analogous to Equation 4.11 is defined. 

To begin, multiply the scaled datum YnS~-q by a sampling function 83(k- kn,q) 

to form the function: 

(4.12) 
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! 

Figure 4.2: Diagram of the gridding reconstruction procedure. For all n: Step 1: multiply 
the received data point Yn with the conjugate of the excitation Sn-q· Step 2: subtract the 
initial k-space position from the current k-space position to determine the k location of the 
detected magnetization in the output grid. Step 3: add the product from step one into the 
grid position determined by the k location found in step two and the lag value q. 
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k trajectories for transverse magnetization created by each pulse 

Figure 4.3: The magnetization from each RF pulse follows its own k-space trajectory in 
the presence of gradients. Therefore each point in the received signal is made up of signals 
that in general have different initial phase and k-space position. 

Convolve M;·q (k) with a kernel C to produce a continuous function which will 

be resampled onto a Cartesian grid. Following Jackson, et al[19], we find that the 

convolved, weighted, discrete function (prior to resampling) is represented by: 

Mn,q(k) 
M;ac(k) = ;q(k) * C(k). 

where C(k) is the convolution kernel used in the sampling operation, and 

N N 

Wq(k) = L 1, b3(k- kn,q)C(k- k') dk' L C(k- kn,q) 
n=l k n=l 

is the "area density function" that accounts for the uneven sampling density. 

(4.13) 

(4.14) 

This interpolated version of YnS~-q can be summed over n to give an estimate of 

PK(k, q) similar to Equation 4.11. 

PK(k, q) = t M;·q(k) * C(k) 
n=l Wq(k) ' 

( 4.15) 

t 1 YnS~-q63 (k'- kn,q)C(k- k') dk' 
n=l k' Wq(k') 

( 4.16) 

( 4.17) 
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This function .can subsequently be evaluated at any k position; in particular, we 

can evaluate it bn the points of a Cartesian grid. We will use km to represent the 

continuous variable k evaluated on Cartesian grid points.· 

Using Yn from Equation 4.8, we find: 

~ (k ) _ ~ ~ -(q'+l)TRfT2 * PK(kn,q1
, q')C(k- kn,q) 

PK 'q - ~ ~ e sn-qSn-q' Wq(kn,q) 
n=l q'=O 

(4.18) 

The excitation sequence sn has a delta function autocorrelation, so that 

(4.19) 

Employing this relation, we see that 

( ~ (k )) = -(q+1)TR/T2 ~ PK(kn,q, q)C(k- kn,q) 
p K ' q e ~ Wq(k ) . 

n=l n~ 

(4.20) 

Evaluating Equation 4.20 at a grid point km; we find that 

( ~ (k )) _ -(q+1)TRfT2 ~ PK(kn,q, q)C(kni- kn,q) 
PK III, q - e ~ Wq(k ) · 

n=l n,q 
( 4.21) 

Thus the expectation of the spin density estimate is a smoothed version of the true 

density function with weighting dependent on the sampling density. 

The use of the convolution function C in the mtxk domain introduces a small, 

correctable "doming"in the spatial domain[19, 18). This can be approximately elim

inated by dividing the spin density estimate p by a periodic function c which is equal 

to the inverse Fourier transform of C over the reconstructed field of view in x. 

The function Wq(k) can be computed prior to or during the reconstruction if the 

sampling density is known analytically; however, for sufficiently smooth sampling 

densities it is well approximated by Wq(kn1). This function may be estimated at 

grid points in parallel with the reconstruction operation, using: 

N 

Wq(kni) = L C(kni- kn,q)· ( 4.22) 
n=l 

In this case the weighting function can be pulled out of the summation in Equation 

4.21, and the weighting applied after the gridding operation. Using a gridded version 

of the weighting function can speed reconstruction, but it introduces some artifacts 

into the image and should be avoided if possible. 
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4.5 Point Spread Function Analysis 

The point spread function is determined by the initial sampling function and the 

characteristics of the correction weighting function Wq. Any useful gradient trajec

tory used for a stochastic experiment will be designed to cover some region of k-space 

densely enough so as not to have major discontinuities or holes. The point-spread 

function will be primarily determined by the shape of this region. Over the sampled 

region, after correction by Wq, the sampling density will be uniform. In addition, 

the point spread function can be, tailored for different characteristics by multiplying 

the k-space spin density estimate by some filter function to enhance or deemphasize 

particular spatial frequencies. We will consider the case of uniform density over the 

sampled region for two useful three dimensional scanning trajectories. 

We represent the shape of the uniformly sampled region with a window function 

Bq(k): 

( ) 
_ { 1 \;/ k inside sampled region 

Bqk-
0 everywhere else 

( 4.23) 

If we perform the summation in Equation 4.15, and perform the inverse Fourier 

transform with respect to x, we see that the estimate of the spin density is given by 

the relation 

( 4.24) 

where bq, and c, are the inverse Fourier transforms of Bq, and C, respectively. 

After deconvolving or "undoming" by dividing out c: 

( 4.25) 

so the point spread function becomes 

( 4.26) 

Both of the scanning trajectories considered here are based on periodic oscillating 

gradients which are sums of sinusoids. Although the gradient trajectory is arbitrary, 

periodic gradients are easily generated and have the advantage of producing steady 

state eddy currents, which result only in a correctable phase shift of the gradient 

field (see Section 3.2.3). 
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4.5.1 One Dimensional Periodic Oscillating Gradients 

We start by considering a one dimensional oscillating gradient which is a trun

cated Fourier series of a square wave: 

G = ii: Gcos(2(2i -·l)7rfoPTR) 
p i=1 . ( -l)i(2i- 1) . 

( 4.27) 

We can rewrite the definition of kn,q in Equation 4.2 as 

kn,q = -"!TR [f: Gp- nf1 

Gpl· 
p=O p=O 

( 4.28) 

Substituting the definition of GP into Equation 4.28, 

im(u: -"!GT [ n n-q-1 ] 

kn,q = I: (- )i( . ~ ) I: cos (2(2i- l)1r foPTR)- I: cos (2(2i- l)1r foPTR) 
i=1 1 2z 1 p=O , . p=O 

(4.29) 

and using the fact that 

n-1 (n- l)y ny y I: cos(x + ky) = cos(x + 
2 

) sin(-) esc(-), · (4.30) 
k=O 2 2 

we find that 

k _ GT i~ sin ((2i- 1)7rfoTR(2n + 1))- sin ((2i -l)7rfoTR(2n- 2q -1)) 
n,q-"/ R{:r . (-l)i2(2i-l)sin((2i-l)7rfoTR) . 

( 4.31) 

For any given value of q, the phase between the lowest order (i = 1) sine functions 

in the difference term is ¢> = 2(q + l)1r foTR, which gives a maximum value for the 

difference term of: 

2 sin (¢/2) = 2 sin ((q + l)1r foTR), (4.32) 

yielding a maximum k value 

kq = GT i~~ sin ((q + 1)(2i- l)1r foTR) I; 
max 'Y R {:r (2i- 1) sin ((2i- l)7r foTR) 

(4.33) 

This function is maximized when the two sine functions are out of phase by an 

odd integral multiple of 1r. This gives an overall maximum k value 

kmax = 
in1a:c 1 

"/GTR ~ (2i- 1) sin ((2i- l)1r foTR)' 
(4.34) 

( q = [ 2f~TR - 1] , p = 1, 3, 5, .. ) . 
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Figure 4.4: Plot of kmax as a function of lag q for a typical stochastic 23 Na experiment. 
Gradients are generated using Equation 3.1, and kmax is calculated from Equation 4.33. "( 
is 11.24 MHzjT, G is 8 mTjm, TR is 75J.LS and fo is 548.00846Hz 

We see from this analysis that the one dimensional truncated square wave gra

dient samples a line in k-space which extends from -kmax to kmax, and that the 

magnitude of kmax depends on the correlation lag q. The window function is there

fore: 

B (k) = n(kq ) = - max 
{ 

1 lkl < kq 

q max 0 lkl > kinax 
( 4.35) 

yielding the one dimensional sine function point spread function 

hq( ) - -(q+l)TR/T2sin (21rkinaxx) 
x - e q 

21rkmaxX 
(4.36) 

4.5.2 Rotating Oscillating Gradients 

For fast three dimensional spectroscopic imaging, one possible gradient waveform 

is based on the trajectory proposed by Norton[31], an oscillating gradient which 

rotates with a direction vector en that sweeps out a spiral on the surface of a 

sphere. This gradient waveform samples a sphere in k-space for each time lag. The 

oscillation frequency of the gradients fo must be higher than the chemical shift 

bandwidth of the object under study to prevent aliasing in the spectral dimension. 

Norton's trajectory can be modified with the proper choice of the time depen

dence of the B and ¢ values of en so that k-space will be sampled uniformly over all 
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Figure 4.5: Sample point distributions obtained with Norton's original sampling {left) and 
with the new technique {right). The distribution on the left requires 54% more points to 
achieve similar density near the equator. 

solid angles, leaving only a radial dependence in the k-space sampling density[32], 

which is corrected by the weighting function Wq. This isotropic solid angle rotating, 

oscillating gradient is given parametrically by: 

(2n- N- 1)/N (4.37) 

Xn cos()foTRN7rsin-1 Zn)Vl- z~ 

Yn sin()foTRN7rsin-1 Zn)Vl- z~ 

where N is the total number of points in the experiment, and TR is the sampling 

period. 

A useful approximation is that the gradient oscillation frequency fo is much 

higher than the () and ¢ rotation frequencies of the direction vector, so that the 

direction vector is essentially constant over one period of the oscillation (en =e); 

experimental parameters can be selected so that this approximation holds extremely 

well. So assumingthat Gp = Gecos(27rfoPTR), and 1rj0 TR < 1rj2, we can assume 

that the radial and anguJar parts of the k-space density are separable. Since all solid 

angles are sampled isotropically by this sampling trajectory, the density correction 

will be spherically symmetric, and after it is applied, the sampled region of k-space 

will be a uniform sphere. 

If the sampling density correction is applied independently for each lag q, the 

resulting estimate of the spin density is convolved with a three dimensional window 
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Figure 4.6: Calculated point spread function for a single lag using the rotating oscillating 
gradient. The line is Or graph of equation 4.40 using the the gradient parameters for a 
typical 23 Na experiment described in Figure 4.4. The lag chosen is at the first maximum 
of kmax(q), lag11. kmax(ll) = 0.5237. 

function in the k domain: 

(4.38) 

which has the inverse Fourier transform 

b (x) = sin (2nkinax lxl) - 2nkinax lxl cos (2nkinax lxl) 
q 2 2kq 31 13 ' 7r max X 

(4.39) 

where kinax is a function of the lag q. 

Combining Equations 4.26, 4.39, and 4.33, we find that for a rotating oscillating 

gradient 

hq(x) = e-(q+l)TR/T2 [sin (2nkinax lxl) - 2nkinax lxl cos (21rkinax lxi)J. 
· 2n2k'lnax3 lxl3 (4.40) 

This function is plotted in Figure 4.6. The halfwidth of this function is 0.795/kinax' 

and the maximum sidelobe amplitude is 8.6%. 
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4.5.3 Incommensurate Frequency Oscillating Gradients 

Another way to extend the oscillating gradient to sample a three dimensional 

region in k-space is to employ 3 independent oscillating gradients along the three 

Cartesian axes which have frequencies chosen such that: 

if1 =/ j !2 =/ k!J { i, j, k E integers} (4.41) 

The resulting k-space trajectory is a three dimensional Lissajous pattern which never 

retraces its path. This trajectory (using sinusoidal oscillations) was initially proposed 

by Bliimich[16]. For any given time lag, the resulting sampling density over all data 

points samples a right rectangular prism in k-space, each side having a k$nax deter

mined by Equation 4.33. If the gradients are close in frequency and amplitude, this 

region will be approximately cubic, giving the same spatial resolution along all axes. 

The result of sampling over a rectilinear region and performing a density correction 

gives the familiar three dimensional sine shape to the point spread function: 

. sin ( 21rk;(max)x) sin ( 21rk~(max)Y) sin ( 21rk;(max)z) 
bq(x) = 8 3kq kq kq ' (4.42) 

7r x(max) y(max) z(max)XYZ 

Combining Equations 4.26, 4.42, and 4.33, we find that for a incommensurate 

frequency truncated square wave gradients 

-( l)T ;-r: sin ( 27rk;(max)x) sin ( 21rk~(max)Y) sin ( 21rk;(max)z) 
hq(x) = e q+ R 2 8 3kq kq kq . . (4.43) 

7r x(max) y(max) z(max)XYZ 

This function is plotted in Figure 4. 7. ·The halfwidth of this function is 0.603/ k$nax' 

and the maximum sidelobe amplitude is 21. 7%. 

4.5.4 Point Spread Functions For Spectroscopic Imaging 

The relations above describe the point spread function for a single reconstructed 

lag. If chemical shift information is not desired, then only one lag need be recon

structed; a value of the lag q can be chosen for maximum resolution by the criterion 

of Equation 4.35, with the value of p selected to give the desired T2 contrast. If 

.however, one wants to combine the information from various time lags, for example 
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Figure 4-7: Calculated point spread function for a single lag, incommensurate frequency 
sinusoidal oscillating gradients. The line is a graph of equation 4.40 using the the gradient 
parameters for a typical 23 Na experiment described in Figure 4-4· The lag chosen is at the 
first maximum of kmax(q), lag 11. kmax(ll) = 0.5237. 
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Figure 4.8: Calculated point spread function for a single lag, incommensurate frequency 
three component truncated square wave oscillating gradients. The line is a graph of equation 
4.40 using the the gradient parameters for a typical 23 Na experiment described in Figure 
4-4· The lag chosen is at the first maximum of kmax(q), lag 11. kmax(ll) = 0.6053. 
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to reconstruct a spectroscopic data set, we have to consider the k-space sampling 

density of the entire experiment, rather than for a single lag, to determine the point 

spread function. Note that any combination of lags can be used depending on the 

information desired in the reconstructed image; different combination weights can be 

used to tailor spatial sideband amplitudes and main lobe width in the point spread 

function, or to change the spectrallineshape. For simplicity, we will only consider 

the cases of a single lag and the case of all lags from 0 to some maximum lag Q - 1. 

The overall point spread function of the experiment is derived by considering how 

the k-space densities from each time lag combine to form an overall k-space sam

pling density for the chemical shift reconstruction. As can be seen from Equation 

4.33, graphed in Figure 4.4, the maximum extent of the region sampled in k-space 

oscillates with twice the frequency of the oscillating gradient fo· Because the oscil

lating gradient frequency is chosen to exceed the chemical shift bandwidth of the 

spin system, the fourth k-space dimension, the lag dimension, is sampled adequately 

to reconstruct a spectroscopic image with the full three dimensional resolution indi

cated by the kmax of the experiment given in Equation 4.35 if the proper weighting 

is applied. 

As described above, t~e reconstructed spin density for each lag has been corrected 

to have unit sampling density over the volume in k-space that is sampled for that 

time lag. To generate a chemical shift image from the lag data, the data are Fourier 

transformed along the lag dimension (to go from the time to the frequency domain). 

Because the oscillating gradient makes the reconstructed spectral dimension periodic, 

only the baseband is considered. In performing the Fourier transform, data from all 

of the reconstructed lags contribute to each of the k-space positions in the object. 

It is easily seen that the overall sampling density in k-space for the rotating, 

oscillating gradient experiment, summed over the lag dimension, is: 

Q-1 

B(k) = L n(k~ax) ( 4.44) 
q=O 

The point spread function of the spectral data set reconstructed from lags 0 to Q- 1 
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Figure 4-9: Overall point spread function for the rotating oscillating gradient experiment, 
1024 lags; this is the spatial point spread function for the chemical shift reconstruction of 
the same experiment as in Figure 4.6; the overall kmax is 0.523813 

is therefore: 

h(x) = ~ e-(q+l)TRJT2 [sin (27rk'fnax lxl) - 27rk'fnax lxl COS (27rk'fnax lxi)J 
q=O 27r2k<Jnax 

3 jxj3 (4.45) 

The halfwidth of this function is 0.898/kmax, and the maximum sidelobe amplitude 

is 4.5%. This function is plotted in Figure 4.9. 

Similarly, the point spread function of the spectral data set reconstructed from 

lags 0 to Q - 1 for the incommensurate gradient experiment is: 

Q -( l)T /T- sin (21rk;(max)x) sin (27rk:(max)Y) sin (21rk;(max)z) 
h(x) = L e q+ R 2 (4.46) 

q=O 87r3k;(max)k:(max)k;(max)XYZ 

The shape of the function k'fnax depends on the number of components used in 

the gradient, so the shape of the overall point spread function will also vary with 

the number of gradient components. For the sinusoidal case, the halfwidth of this 

function is 0.674/kmax, and the maximum sidelobe amplitude is 16.1%. This function 

is plotted in Figure 4.10. When three component TSW gradients are employed, the 

halfwidth of the point spread function is 0.613/kmax, and the maximum sidelobe 

amplitude is 12.9%. This function is plotted in Figure 4.11. 
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Figure 4.10: Overall point spread function for the incommensurate frequency sinusoidal 
oscillating gradient experiment, 1024 lags; this is the spatial point spread function for the 
chemical shift reconstruction of the same experiment as in figure 4. 7; the overall kmax zs 
0.523813 
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Figure 4.11: Overall point spread function for the incommensurate frequency oscillating 
gradient experiment (imax = 3), 1024 lags; this is the spatial point spread function for the 
chemical shift reconstruction of the same experiment as in figure 4.8; the overall kmax zs 
0.602898 
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4.6 Noise Analysis 

The initial sampling of k-space in the experiment is non-uniform, which means 
< 

that a different degree of averaging occurs for different spatial frequency measure-

ments. Therefore, there is a variation in the signal to noise ratio of the different 

spatial frequencies in the reconstructed image. In a real stochastic NMR experi

ment, there will be additive white measurement noise introduced into the received 

signal arising from Johnson noise in the probe and preamplifier which is indepen

dent of the gradient and RF waveforms. To determine the signal to noise ratio in 

the reconstructed image as a function of spatial frequency, we will consider the re

construction of a band-limited white noise signal Yn of variance ~2 , to determine the 

power spectral density of noise in the reconstructed image[33]. 

This noise analysis will only treat the noise power in the reconstructed image due 

to measurement noise. There is also systematic noise in the reconstruction, which 

arises from the random nature of the excitation[34]. 

4.6.1 Single Lag Noise Analysis 

We perform the reconstruction on the noise signal Yn for a given lag q to generate 

the noise image pq(x, q). The noise power spectral density of such a reconstructed 

image is defined as: 

(4.47) 

This is the ensemble average from the reconstructions of many images with different 

Yn with identical signal statistics. The Fourier transforms inside the angle brackets 

can be identified as the definition of p K (k, q). 

(4.48) 
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Using the definition of PK(k, q) from Equation 4.17, and remembering that sn and 

Yn have -delta function autocorrelations, we see that: 

( 4.49) 

( 4.50) 

(4.51) 

In the usual case, the reconstruction employs a real, symmetric convolution func

tion c, so its Fourier transform C, and consequently Wq, are real. 

(4.52) 

The noise characteristics for any choice of sampling trajectory and convolution 

function can be calculated numerically using Equation 4.52. To evaluate the general 

characteristics of the two sampling trajectories presented analytically, we need an 

explicit form for the convolution kernel C(k). 

We have made two assumptions throughout this derivation; the first is that the 

sampling pattern covers a contiguous region in k-space adequately and the true 

density function is smooth enough that we can perform the convolution gridding 

operation; i.e., that we have approximated the true k-space estimate of the object 

density well enough that we can resample the density onto a Cartesian grid of a cer

tain granularity. The second is that the extent of the convolution function in k-space 

is small compared to the extent of the object density PK (so that the convolution 

function does not alter the shape of the reconstructed density too much). 

To make the derivation clear, we will use the case of nearest neighbor interpola

tion, where all of the energy of a particular YnSn-q is gridded into the nearest grid 

point in an oversampled version of the k-space density estimate PK(k, q). Nearest 
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neighbor interpolation produces greater aliasing artifacts than using other convolu

tion kernels, such as the Kaiser-Bessel function, however the effect on the shape of 

the noise distribution in small, so it is useful for demonstration purposes. 

The nearest neighbor convolution function is: 

C(k) = n(t:) = -{ 
1 Jkl < t:/2 

0 lkl > t:/2 
(4.53) 

where c is the spacing between points on the oversampled Cartesian grid. If c is 

sufficiently small and W is sufficiently smooth that W is approximately constant 

over t:, C can be treated like a delta function, and the weighting factor can be pulled 

out of the summation. Therefore: 

N I n(k _ k ) 1
2 

( ) 2 N ( ) 
2 

N 
<;"2 I; Wq(kn,:,)q ~ Wq(~n,q) I; n(k- kn,q)2 = W~(k) I; n(k- kn,q) 

(4.54) 

The term inside the last summation is just the definition of the weighting function 

W. Therefore, the noise estimate is found to be (to good approximation): 

(4.55) 

One dimensional Monte Carlo simulations of noise reconstruction have verified 

that this approximation holds quite well for imaging experiments with typical pa

rameters. These simulations are shown in Section 5.6. 

To determine the noise power spectral density we must express Wq(k) explicitly. 

4.6.2 One Dimensional Oscillating Gradient 

For a one dimensional sinusoidal gradient (i = 1), it can be seen from inspection 

of Equation 4.31 that the k trajectory for any lag q is sinusoidal with an amplitude 

k'fnax· The k-space density along the gradient is proportional to the reciprocal of the 

velocity of the traversal of k-space ~~~~- 1 . The sampling density as a function of k 

(normalized over the range -kmax :::; k :::; kmax) is therefore (if the discrete nature of 
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the sampling is ignored): 

N wq ( k) = ---'--r====== 

[_ill_] 2 
1- k'fnax 

(4.56) 
1rk:fnax 

This gives a noise power spectral density of: 

[ k ]
2 

1--
k:fnax 

(4.57) 

4.6.3 Rotating Oscillating Gradients 

As mentioned previously, the trajectory of the direction vector of the oscillating 

gradient has been designed to sample all solid angles uniformly, so we need only 

consider the variation in sampling density along the radial direction. The effect of 

extending the imaging technique to multiple dimensions by rotating the gradient 

direction vector is to add a factor that accounts for the constant distribution of 

samples over 21r radians for two dimensions, or 47r steradians for three dimensions. 

This factor is 1/lkl for two dimensions, and 1/lkl2 for three dimensions, giving a 

normalized three dimensional sampling density of: 

Wq(k) = N . 

27r2k:fnaxlki2V1- [kl~J 2 (4.58) 

The noise power spectral density then becomes: 

1- [J;L]2 
kmax 

(4.59) 

This noise density is shown in Figure 4.12. 
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Figure 4.12: Square root of the single lag noise power spectral density for the three
dimensional stochastic experiment using rotating oscillating gradients as a function' of 
k/kmax· The figure on the left shows a line through the origin of k-space; the figure on the 
right shows two k-space dimensions. 

4.6.4 Incommensurate Frequency Oscillating Gradients 

Because the gradients used in the incommensurate frequency experiment are not 

harmonically related, the weighting function is simply the product of the individual 

sampling densities along each axis. 

N 

3kq kq kq 
7r x(max) y(max) z(max) 

The noise power spectral density for one lag then becomes: 

Sq(k) = 

. (2 7r3 k!(max)k~(max)k;(max) 
N 

This noise density is shown in Figure 4.13. 

4.6.5 Multi-lag Noise Characteristics 

( 4.60) 

(4.61) 

The analysis of the overall noise characteristics of the reconstructed signal is 

somewhat more complicated, since there may be cross terms between the noise 
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Root noise power(arb. units) 

Figure 4.13: Square root of the single lag noise power spectral density for· the three
dimensional stochastic experiment using incommensurate frequency sinusoidal oscillating 
gradients as a function of k/kmax· The figure on the left shows a line through the origin 
of k-space; the figure on the right shows two k-space dimensions. 

contribution of various reconstructed lags. However, these are seen to be eliminated 

by the autocorrelation properties of the excitation sequence. Closely following the 

single lag derivation, the reconstructed noise for the full reconstruction is: 

S(k, CT) = (I: ei(q+l)uTR PK(k, q) I: e-i(q'+l)uTR p'f<(k, q')) 
q=O q'=O 

( 4.62) 

Q-1Q-1 
L L ei(q-q')uTR (PK(k, q)p'f<(k, q')) ( 4.63) 
q=O q'=O 

I: I: ei(q-q')uTR t t (YnY:n) ( Sm-q'S~-q) C(k- kn,q)C*(k- km,q') 

q=O q'=O n=1 m=1 Wq(kn,q)(Wq' (km,q') )* 

(4.64) 

2 ~1 ~1 ei(q-q')uTR ~ ( Sn-q'S~-q) C(k- kn,q)C*(k- kn-q+q',q' )(4.65) 
<;" LJ LJ LJ Wq(k )(Wq'(k I t))* q=O q'=O n=1 n,q n-q+q ,q 

<;"2 I:1 t C(k- kn,q)C*(k- kn,q) (4.66) 
q=O n=1 Wq(kn,q)(Wq(kn,q))* 

Q-1 
2:Sq(k) (4.67) 
q=O 

Therefore, the multilag noise power is simply the sum of the individual lag noise 

powers. The multi-lag noise powers are shown for the rotating oscillating gradient 

experiment and the incommensurate gradient experiment in Figures 4.14 and 4.15 

respectively. 
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Figure 4.14: Square root of the overall noise power spectral density for the three
dimensional stochastic experiment using rotating oscillating gradients as a function of 
k I kmax. The figure on the left shows a line through the origin of k-space; the figure on the 
right shows two k-space dimensions. 
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Figure 4.15: Square root of the overall noise power spectral density for the three
dimensional stochastic experiment using incommensurate frequency sinusoidal oscillating 
gradients as a function of k I kmax. The figure on the left shows a line through the origin 
of k-space; the figure on the right shows two k-space dimensions. 
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4. 7 Implementation 

This reconstruction technique has been implemented in ANSI C to run on a 

variety of platforms, and the specific implementation details have been tuned to 

efficiently use the resources of a scientific workstation. The order of various steps 

in the procedure can be interchanged for more efficient computation at the cost of 

requiring more memory or mass storage. 

The first step in the reconstruction is to calculate and store the integral of the 

gradients and the conjugate of the excitation signal for every time point recorded 

in the experiment. The image reconstruction is then treated one correlation lag 

at a time; for a given lag q the k-space position of each data point is determined 

from the difference of the gradient integral at the time the signal was recorded and 

q lags in the past when it was created. The signal is multiplied by the conjugate 

of the excitation q lags in the past, and convolved with the spreading function C. 

The resulting continuous function is sampled into an oversampled three dimensional 

k-space array. Two arrays are maintained; the sampled function values are summed 

into a weight array that keeps an estimate of the sampling density, and the function 

values, multiplied by the complex conjugate of the excitation, are summed into an 

array that stores the FT of the spin density estimate. After all the points have been 

gridded, the k-space array is divided by the weight array for all non-zero locations 

in the weight array to density correct the k-space estimate. An inverse Fourier 

transform and downsampling into the spatial domain is performed, and the doming 

effect of the spreading function Cis removed. The result is a spatial reconstruction 

for one time lag. 

When reconstructing spectra, the array for each lag is multiplied by an exponen

tial weighting factor to perform apodization, if desired, and the resulting weighted 

array is multiplied by the appropriate Fourier phase rotations to transform it to the 

spectral domain and summed into the estimate of the chemical shift reconstruction. 

The set of operations is repeated until all the lags have been calculated. 

For time domain (FID) reconstructions, the data array for each lag is also mul

tiplied by an apodization function, and then the data are interpolated and down-
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sampled into the destination time array. The time point spacing in the destination 

array is the reciprocal of the lowest gradient frequency. This ensures that every k 

position in k,t-space is critically sampled in time. As with spectral reconstructions, 

this operation is repeated for all time lags. 

Although it is more computationally efficient (and straightforward) to perform 

the Fourier transform into the spectral domain after all of the lags have been cal

culated, the memory requirements of this technique make that impractical on most 

workstations. As an example, to perform a 32x32x32 chemical shift reconstruction, 

oversampled by a factor of 2 (which is sufficient to remove any obvious artifacts of 

the gridding process) requires 32K complex data points per lag (256KB assuming 4 

byte floating point representation). Generally at least 1024 time lags are used in cal

culating a spectral data set, which would require at least 256MB of storage to keep 

the entire k-space array available, which requires disk storage of the k-space array. 

This estimate neglects the storage needed for the input data, gradient integral, and 

excitation signals, which can be quite large (lO's of megabytes), and must be kept in 

memory for efficient computation. The time savings from keeping the k-space array 

in memory and performing the spectral Fourier transform at the end are more than 

offset by having to go to disk to read and write the lag data. 

Pseudocode for the reconstruction algorithm is shown in the appendix. 

4.8 Discussion 

There are three major advantages of the Fourier gridding reconstruction tech

nique over weighted crosscorrelation in the spatial domain. First, it is much faster 

than latter method for large problems. Second, because the k-space sampling density 

is estimated explicitly, the compensation for uneven k-space sampling can be per

formed almost exactly. Third, the derivation of this reconstruction is not dependent 

on the k-space scanning trajectory, and the scanning trajectory can be chosen with

out concern for the mathematical tractability of deriving an appropriate weighting 

function. 

The gradient trajectories analyzed here have very different noise characteristics, 
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arising from their very different sampling densities. The noise characteristics can 

be further shaped by modifying the density weighting correction, which also allows 

the point spread function to be tailored. There have recently been suggestions 

that preferential weighing of the low-frequency regions of k-space (as in the rotating 

oscillating gradient experiment) is desirable for chemical shift imaging [35, 36, 37]. 

As an example of the time savings that this new algorithm affords, consider 

the reconstruction of a 32x32x32 voxel chemical shift image with 1024 correlation 

lags for each voxel from a stochastic data set of 4,194,304 data points (a typical 

experiment length using the old reconstruction algorithm). On a Silicon Graphics 

Crimson Elan workstation, using the old algorithm, the reconstruction would take 

approximately 192 secondsjvoxel, or 1748 hours; the same reconstruction using the 

Fourier gridding technique takes approximately 26 seconds per correlation lag, or 7.4 

hours, an improvement of greater than two orders of magnitude. Using a repeating 

k-space trajectory (described in Section 5.5.1) allows for further speed improvements; 

a 323 voxel experiment with 6,745,200 data points can be reconstructed in about 4 

hours. 

It should also be noted that since each correlation lag can be calculated inde

pendently, the new reconstruction method has a high degree of parallelism which is 

not currently being exploited. Performing the reconstruction on a machine with a 

parallel architecture (or many machines) will lead to further speed improvements. 
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Chapter 5 

Simulations 

5.1 Introduction 

This chapter will present the results of Bloch equation simulations of the stochas

tic experiment. The experiment simulations were used for three major purposes. 

The first was to validate the theoretical predictions of the experimental and recon

structed image parameters, such as the bandwidth of the experiment with different 

gradient trajectories (Section 5.3), the point spread function for various gradient tra

jectories (discussed in Section 5.4), and the predictions of how measurement noise 

propagates from the received signal to the reconstructed image (Section 5.6). The 

second purpose of simulations, treated in Section 5.5, was to examine how experi

ment and reconstruction parameters affect the systematic noise in the reconstructed 

image due to the stochastic excitation. This is a very difficult area to treat analyti

cally; simulations gave a simple way to test various ideas for reducing the systematic 

noise without the complication of additional real measurement noise which would· 

have accompanied actual experiments. Finally, simulations provided a method for 

performing validity checks during development of the reconstruction software. 
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5.2 Simulation Program 

Simulations have been very important for developing and testing the parameters 

of the stochastic experiment. This has been especially true since the development of 

the stochastic imaging experiment has required major modifications to the spectrom

eter used for the experiments; simulation has helped diagnose hardware problems in 

addition to finding optimum parameters for the experiments and evaluating theo

retical predictions of performance. 

All simulations shown were performed using a simulation program 'which inte

grates the Bloch equations for an arbitrary number of spins with adjustable T1 , T2 , 

chemical shift, amplitude, and position. Flip angle, RF pulse duration and measure

ment noise level are adjustable, as are excitation noise type and gradient trajectory. 

Simulated data sets have been used to check theoretical predictions of point spread 

function, noise power spectral density, and systematic noise. The simulation pro

gram generates data files in the same format as the spectrometer, which can be 

processed as if they were actual data. As a result, the simulated data sets can be 

used to test all of the reconstruction software. 

5.3 Experiment Bandwidth 

The signal bandwidths of the sinusoidal oscillating gradient stochastic experiment 

and the amplitude modulated sinusoidal gradient experiment are easily calculated 

using Carson's rule (Equation 3.5). Unfortunately, due to the nonlinear modulation 

process, a general derivation of the bandwidth of the multiple component truncated 

square wave .gradient is not practical. However, it is easily demonstrated with sim

ulations that the experiment bandwidth is quite similar to the sinusoidal case; close 

enough that Carson's rule is an appropriate approximation. This observation was 

made repeatedly during experiments and simulations. 

As a demonstration of the relative signal bandwidths arising from the differ

ent gradient trajectories, a one dimensional experiment was simulated on a uniform 

density one dimensional object of known extent. The sampling frequency was delib-
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Figure 5.1: Power spectrum, one dimensional sinusoidal gradient experiment. Overall 
experimental bandwidth is 13334Hz. The bandwidth predicted by Equation 3. 5 for the 
simulated object is 5590Hz (shown by the vertical bars). The 1% contour is the dashed 
horizontal line. TR = 75J.LS, r"'ax = 2.5cm, G =:::: 8.0mT/m, "f = 11.24MHz/T, fo = 
546.008Hz. 

erately chosen to far exceed the signal bandwidth arising from the object, so that 

a good representation of the signal power spectrum could be obtained. The power 

spectra of the simulated NMR signals were calculated and are presented in Figures 

5.1, 5.2, and 5.3. 

The simulation was of a one dimensional sodium experiment, Ta = 75J.Ls, G = 

8.0mT/m, "f = 11.24MHz/T, fo = 546.008Hz. The overall experimental bandwidth 

is 13334Hz. A uniform object which extended from -2.5cm to 2.5cm was simulated 

with various gradients. Carson's rule predicted that all significant sidebands would 

be contained within 5590Hz. The resulting power spectra are compared to the 

predicted bandwidth. In all cases, Carson's rule accurately predicted the bandwidth 

which includes all sidebands with amplitudes greater than or equal to 1% of the 

amplitude of the fundamental. 
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Power Spectrum 

Figure 5.2: Power spectrum, amplitude modulated one dimensional sinusoidal gradient ex
periment. Overall experimental bandwidth is 13334Hz. The bandwidth predicted by Equa
tion 3.5 for the simulated object is 5590Hz (shown by the vertical bars). The 1% contour is 
the dashed horizontal line. TR = 75J.Ls, rmax = 2.5cm, G = 8.0mTjm, 'Y = Il.24MHz/T, 
fo = 546.008Hz. 

Power Spectrum 

Figure 5.3: Power spectrum, one dimensional three component truncated square wave gra
dient experiment. Overall experimental bandwidth is 13334Hz. The bandwidth predicted 
by Equation 3.5 for the simulated object is 5590Hz (shown by the vertical bars}. The 
1% contour is the dashed horizontal line. TR = 75J.Ls, rmax = 2.5cm, G = 8.0mTjm, 
'Y = Il.24MHzjT, fo = 546.008Hz. 
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5.4 Point Spread Function 

A set of simulations was performed to validate the theoretical expressions for the 
/ 

point spread functions derived in Subsection 4.5. Figures 4.6, 4.9, 4.7 4.10, 4.8 and 

4.11 show the theoretical PSF's for the rotating oscillating gradient and incommen

surate frequency oscillating gradient experiments with typical imaging param~ters. 

For validation, simulations were performed of one spin at the origin with the exper

imental parameters used in the theoretical expressions. 

In most cases the agreement between theoretical expressions and the simulations 

was excellent, indicating both that the analysis was correct and that the reconstruc

tion program was functioning properly. In some of the chemical shift reconstructions, 

however, the first sidelobe amplitude was attenuated. This is because the maximum 

extent of the sampled region in k-space for any lag is discretized in the gridding 

and density correction process, and is always an integral number of k-space pixels. 

Therefore, when many lags are combined, the resulting PSF is a sum of rect func

tions with a discrete rather than continuous set of sizes. The degree of divergence 

of the point spread function can be reduced by increasing the oversampling factor. 

Figures 5.4 and 5.5 show the single lag and multilag point spread functions for 

a three dimensional experiment with rotating oscillating gradients. The theoretical 

expressions for the PSF's are shown on the same plot. Figures 5.6 and 5.7 show the 

single lag and multilag PSF's for the incommensurate frequency sinusoidally oscil

lating gradient experiment. Figures 5.8 and 5.9 show the single lag and multilag 

PSF's for the incommensurate frequency three component oscillating gradient ex

periment. Figures 5.10 and 5.11 show the single lag and multilag PSF's for the three 

dimensional amplitude modulated incommensurate frequency sinusoidally oscillating 

gradient experiment. 

5.5 Systematic Noise Reduction 

One consequence of using stochastic excitation is that it introduces systematic 

noise into the reconstructed image arising from the excitation and reconstruction 
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Figure 5.4: Normalized point spread function for a single lag using the rotating oscillating 
gradient; points are from the reconstruction of a simulated stochastic experiment with the 
experimental parameters given in Figure 4.4a. This is the reconstruction at the first max
imum of kmax(q), lag 11. kmax(ll) = 0.5237; the line is a graph of equation 4.40 with the 
same parameters. 
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Figure 5.5: Overall point spread function for the rotating oscillating gradient experiment, 
1024 lags; this is from the chemical shift reconstruction of the same data set as in figure 
4.6; the overall kmax is 0.523813 
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Figure 5.6: Normalized point spread function for a single lag, incommensurate frequency 
sinusoidal gradients (imax = 1}; points are from the reconstruction of a simulated stochastic 
experiment with the experimental parameters given in Figure 4.4a. This is the reconstruc
tion at the first maximum-of kmax(q), lag 11. kmax(ll) = 0.5237; the line is a graph of 
equation 4-43 with the same parameters. 
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Figure 5. 7: Overall point spread function for the incommensurate frequency sinusoidally 
oscillating gradient experiment (imax = 1 ), 1024 lags; this is from the chemical shift re
construction of the same data set as in figure 4. 7; the overall kmax is 0.523813 
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Figure 5.8: Normalized point spread function for a single lag, incommensurate frequency 
three component TSW gradients (imax = 3); points are from the reconstruction of a sim
ulated stochastic experiment with the experimental parameters given in Figure 4.4b. This 
is the reconstruction at the first maximum of kmax ( q), lag 11. kmax (11) = 0.5237; the line 
is a graph of equation 4.43 with the same parameters. 
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Figure 5.9: Overall point spread function for the incommensurate frequency three compo
nent TSW oscillating gradient experiment (imax = 3), 1024 lags; this is from the chemical 
shift reconstruction of the same data set as in figure 4.8; the overall kmax is 0.523813 
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Figure 5.10: Normalized point spread function for a single lag, amplitude modulated incom
mensurate frequency sinusoidal gradient experiment; points are from the reconstruction of 
a simulated stochastic experiment with the experimental parameters given in Figure 4.4a. 
This is the reconstruction at the first maximum of kmax(q), lag 11. kmax(ll) = 0.5237; 
the line is a graph of equation 4.43 with the same parameters. 
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Figure 5.11: Overall point spread function for the amplitude modulated incommensurate 
frequency oscillating gradient experiment, 1024 lags; this is from the chemical shift recon
struction of the same data set as in figure 4.1; the overall kmax is 0.523813 
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process, in addition to the random thermal noise present in any physical measure

ment. This systematic noise comes from the variance in the estimate of the object 

density in each position ink-space. There are many factors which affect the magni

tude of the variance of the estimate; these include the total length of the excitation 

sequence, the sampling density in k-space, higher order correlations in the noise 

sequence, and object dependent cross-terms between the object density and the ex

citation sequence. This is an extremely complicated subject to treat analytically, 

and such a treatment will be avoided here. For a detailed examination of the subject 

see Wong[14]. There are some general statements which can be made regarding the 

factors that affect systematic noise, however. 

The most important consideration in reducing the systematic noise in the recon

structed image is the number of samples at any point in k-space. The variance in 

the estimate of the object density is inversely proportional to the number of samples 

at that point. There is theref9re an intimate relationship between gradient trajecto

ries and systematic noise, since the sampling density is determined by the gradient 

trajectory used. 

5.5.1 Repeating versus Nonrepeating k Trajectories 

One of the most useful (and surprising) results derived from experimental simu

lations was the discovery that repetitious sampling in k-space leads to a larger than 

expected reduction in the amount of systematic noise in the reconstructed image 

arising from a stochastic experiment for experiments based on incommensurate fre

quency gradients. Initially, care was taken to keep the sample rate of the experiment 

unrelated to the oscillation frequencies of the gradients, based on the assumption 

that the artifact introduced by gridding would be smallest if the k-space sampling 

along each axis before gridding was very fine. However, this strategy introduces 

two difficulties. The first is that when the gradient frequencies along each axis are 

completely unrelated, the three dimensional sampling density is very hard to char

acterize. While the sampling density will converge to the expression in Equation 

4.60 as the number of data points goes to infinity, it is very difficult to know a priori 
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what the overall sampling density in any three dimensional k-space position is for an 

experiment of finite length. The density can be tabulated for any experiment, but 

there is no simple relationship that will predict the actual number of sample points 

that will land in any particular voxel in k-space for arbitrary gradient frequencies. 

When the gradient frequencies are chosen solely to be incommensurate with each 

other and the sample frequency for experiments of finite length, there are holes in 

the three dimensional sampling density, which can mean that the object density is 

undersampled. This leads to artifacts in the reconstructed image. 

The second consideration is that this variation in sampling density means that the 

degree of cancellation of the excitation sequence at every voxel in k-space can vary 

· quite a bit. As a result, the assumption of Equation 4.19, that the autocorrelation 

of the excitation sequence is a delta function, is not a very good one for many voxels 

in the image. This in turn introduces systematic object dependent noise into the 

image. 

Simulations revealed that both of these considerations can have an effect on final 

image quality. The first task was to investigate the effect of the choice of gradient 

frequency directly on sampling density. Simulations were performed of three dimen

sional experiments with numerous choices of incommensurate gradient frequencies, 

and the sampling density was tabulated for each experiment. In each case, there 

were a number of holes in the sampling distribution, which sampling distribution, 

indicating that k-space was not adequately sampled. No obvious relationship was 

found that predicted how many holes there were or the deviation of the sampling 

density from the average value from the gradient frequencies. 

To examine the effect 'of noise sequence cancellation on systematic noise, two sets 

of simulations were performed. In the first set three dimensional experiment ~ 8 

million points long was simulated and reconstructed. The gradient frequencies had 

been determined from the previous simulations to have very few holes in the k-space 

sampling density even for relatively short ( ~ 1 million points) experiments. Then 8 

experiments were simulated and reconstructed which covered the first 1/8th of the k

space trajectory of the long experiment, and the resulting images were added. Each 

of these simulations were started with different seeds in the noise sequence. The two 
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images had the same total number of samples, and both fully sampled k-space. The 

second image using the multiple noise seeds had significantly lower systematic noise 

than the single long experiment, indicating that sampling the exact same locations 

in k-space times resulted in observably better images than sampling for the same 

total amount of time with the same average distribution of k-space sample positions. 

Because the total experiment time and average sampling density are the same, the 

measurement noise variance in the image (as distinct from the systematic noise) is 

the same. 

A technique which addresses both of these issues is to choose gradient frequencies 

such that the gradient along each axis repeats in an integral number of samples. By 

properly choosing the number of samples in which each gradient repeats (denoted 

a, b, and c), a k-space trajectory can be chosen which: 

1. Adequately samples three dimensional Cartesian k-space at a chosen resolution 

for all lags in a known number of data points. 

2. Revisits the same locations in k-'space repeatedly as experiment time increases 

with different parts of the excitation sequence to better estimate the object 

density. 

To guarantee that k-space is adequately sampled, the repeat times along the three 

axes must be chosen to satisfy certain conditions. The first is that the three integers 

a, b and c should share no common prime factors. This is a slight relaxation of the 

requirement in Equation 4.41; because a, band care integers, the three gradients will 

return to the same relative phase every N = ax b x c points, but will not do so before 

that. If an experiment runs for N points, it will have exactly one sample in each 

of N positions in a right rectangular prism in k-space. If the gradient frequencies 

and amplitudes are kept close, this region will be approximately cubical. This first 

condition can be met by choosing a, band c to be consecutive odd integers. 

The second condition is the sampling density must be sufficient so that when the 

k-space samples are interpolated onto a Cartesian grid, there will be no holes in the 

sampled distribution. This can be assured if the greatest distance between samples 



82 

on each axis is less than or equal to the spacing of points on the Cartesian grid. 

Of the gradient waveforms proposed, the sinusoidal gradient has the most uneven 

sample spacing. A sinusoidal gradient which repeats after an odd number of points 

a will sample a locations along an axis in k-space. The greatest distance between 

sample points will be: 
flk :=:::: 27rkmax. (5.1) 

a 

Therefore, for a sinusoidal gradient to adequately sample p points on a Cartesian 

grid extending from - kmax to kmax, 

7rp 
a>-. - 2 (5.2) 

The spectroscopic reconstructions considered here are usually on the order of' 

32x32x32, which requires repeat times of greater than 51 points, or a minimum 

repeat time of 51 x 53 x 55= 148665 points. If the repeat time of the noise sequence 

is not equal to the gradient repeat time, running the experiment for an integral 

number of full gradient cycles will be equivalent to running the experiment with 

· multiple noise seeds, as described above. 

As an additional benefit, the use of repeating gradients speeds up reconstruction 

time severalfold by allowing the use of pretabulated k-space positions so that the 

gridding operation becomes a. table lookup. It also decreases memory access since 

several points end up in the same k-space position and can be processed simulta

neously. The combined speedup from these two factors is approximately a factor 

of three relative to nonrepeating gradient trajectories for reconstruction of normal 
' 

spectroscopic data sets of 5 to 10 million points in the current implementation of 

the reconstruction program. 

5.5.2 Analytic versus Empirical Sampling Density Correc

tion 

Another issue which affects image quality in a systematic way is the sampling 

density correction scheme used. As discussed in Chapter 4, sampling density cor

rection can be performed either with empirically calculated sampling patterns or 
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the analytically derived expressions (as shown in 4.6) or with the tabulated sam

pling density at each time lag. Simulations with sinusoidal oscillating gradients 

showed that" analytic density correction was preferable in terms of image quality. 

This is because the analytic density correction is applied before the k-space position' 

is discretized and is correct for every data point dropped into the k,t-space object es

timate, whereas the empirical sampling density correction is applied afterwards, and 

makes no distinction between points within a discrete bin in k-space. For sharply 

peaked sampling densities such as that of the sinusoidal gradient, there can be sig

nificant density variation across a k-space voxel. For certain sampling trajectories, 

such as the TSW gradients, the analytic sampling density is difficult to calculate 

analytically; in all TSW gradient experiments and simulations, empirical sampling 

density was employed out of necessity. 

5.6 Monte Carlo Simulations of Noise Variance 

Because the sampling density in stochastic experiment is non-uniform for most 

of the proposed trajectories, the measurement noise in the experiment will lead to 

colored noise in the reconstructed image. The propagation of noise through the 

reconstruction is analyzed theoretically in section 4.6. This analysis was validated 

for single lag reconstruction using Monte Carlo analysis. 

A one dimensional oscillating gradient experiment was simulated for the noise 

analysis. The one dimensional results serve to validate the derivation of the basic 

expression for noise propagation, and the relationship between sampling density and 

noise power spectral density. By comparing the one dimensional simulation results 

to equation 4.55, the accuracy of the expression can be shown, and the validity of 

4.55 is inferred. Due to the reconstruction time, it was impractical to simulate the 

three dimensional experiments repeatedly. 

The noise power was estimated by generating and reconstructing data sets con

sisting solely of measurement noise. The experiment parameters were chosen to 

reflect typical values which would be employed in a 23Na imaging experiment. The 

noise-only experiment was performed 2048 times and the mean power spectral den-
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Figure 5.12: Single lag noise power spectral density in one dimension, sinusoidal oscillating 
gradients. The mean power spectral density of 2048 reconstructions of lag 12 of 128Kpoint 
data sets containing only measurement noise is shown as points. The line is a plot of 
Equation 4.57 with the same parameters. 'Y is 11.24 MHz/T, G is 8 mT/m, TR is 75J.Ls 
fo is 546.977Hz. 

sity of the reconstructed k-space object density was calculated. The resulting power 

spectral densities are shown with the noise power distributions predicted by equa

tion 4.55. In all cases the agreement is excellent. Note that for the three component 

square wave gradient, the sampling density used in the calculated noise power was 

derived numerically by tabulating the k-space positions sampled in the experiment. 
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Figure 5.13: Single lag noise power spectral density in one dimension, three component 
truncated square wave oscillating gradients. The mean power spectral density of 2048 
reconstructions of lag 12 of 128Kpoint data sets containing only measurement noise is 
shown as points. The line is a plot of Equation 4.55 using the tabulated sampling density 
for the experiment. 1 is 11.24 MHz/T, G is 8 mT/m, TR is 75J.Ls fo is 546.977Hz. 
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Figure 5.14: Single lag noise power spectral density in one dimension, modulated sinusoidal 
oscillating gradients. The mean power spectral density of 2048 reconstructions of lag 12 of 
128Kpoint data sets containing only measurement noise is shown as points. The sampling 
density of the modulated gradient is designed to be fiat over the sampled region, so the noise 
PSD should also be fiat. 1 is 11.24 MHzjT, G is 8 mT/m, TR is 75J.Ls fo is 546.977Hz. 
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Chapter 6 

Experimental Studies 

6.1 Introduction 

This chapter will present the results of stochastic NMR experiments on phantoms 

to demonstrate the performance of various aspects of the technique. The first set of 

phantom experiments, described in Section 6.2, demonstrates spectroscopic imaging 

on a 1 H phantom. The second set of experiments, shown in Section 6.3 shows 

the performance of the stochastic relaxometric imaging experiment over a range of 

relaxation rates in a 23Na phantom. 

6.2 Spectroscopic Imaging 

6.2.1 1H Phantom Construction 

To demonstrate spectroscopic stochastic NMR imaging, a 1 H phantom with 

two chemical shift species was constructed. The outer flood field contains a 4% 

weight/weight agarose gel, which gives a water signal, and the tubes contain peanut 

oil, which gives a lipid signal. The resonances are separated by 380Hz at 2.35T 

(3.8ppm). The flood field is used to show variation in image intensity across the 

field of view, and the small tubes demonstrate the spatial resolution of the tech

nique. The phantom is diagrammed in Figure 6.1. 
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Figure 6.1: 1 H chemical shift phantom 

6.2.2 Images 

4% w/w 
agarose 
in water 

87 

The 1 H phantom was imaged using a stochastic imaging sequence with incom

mensurate frequency oscillating gradients. Both sinusoidal and three component 

truncated square wave (TSW) gradient experiments are shown. The water and lipid 

images shown are integrated in the spectral dimension over the water and lipid lines, 

starting from a spectroscopic image reconstructed on a 64x64x32 grid. The spectra 

from the central z plane of a 32x'32x32 reconstruction are also shown. 

The first set of images shows an experiment employing sinusoidal incommensu

rate frequency gradients. The gradient oscillation frequencies were 547.945, 533.333, 

and 519.480Hz along x, y and z respectively, with repeat times of 73, 75, and 

77 points. The gradient amplitudes along x, y, and z were G = 4.00, 3.89, and 

3.79mT fm respectively, giving a point spread function halfwidth of 0.68cm along. 

each axis. The voxel volume resulting from the PSF halfwidth is 0.314cm3 . The RF 

sequence employed quadrature phase modulation, with the phase selected by two 19 

bit MLS's, and the TR for the experiment was 50tts. The 421,575 point k trajectory 

was repeated 16 times, for a total of 6,745,200 data points. The total imaging time 

was 337.26 seconds. 
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The spectral field of view (FOV) equals the lowest gradient frequency, 519.48Hz. 

1024 lags were reconstructed, giving a spectral resolution of 19.6Hz. The water 

and lipid images are shown in Figure 6.2, reconstructed on a 64x64x32 grid (FOV 

= 8.68cm in x and y, and 13.13cm in z). The spectra of the central z plane of a 

32x32x32 reconstruction (FOV = 4.92cm in x, y, and z) are shown in Figure 6.3. 

The second set of images is of the same phantom, using incommensurate fre

quency three component TSW gradients .. The same gradient oscillation frequencies 

were used, 547.945, 533.333, and 519.480Hz along x, y and z respectively, with re

peat times of 73, 75, and 77 points. G = 4.00, 3.89, and 3.79mT jm along x, y, and 

z. The point spread function halfwidth using the TSW gradients is 0.54cin along 

each axis, giving a voxel volume of 0.155cm3 . The same RF sequence and TR were 

used. The 421,575 point k trajectory was repeated 8 times, for a total of 3,372,600 

data points. The total imaging time was 168.63 seconds. 

The reconstruction parameters were the same as in the first experiment. The 

spectral field of view is 519.48Hz, 1024 lags were reconstructed, and the spectral 

resolution is 19.6Hz. The water and lipid images (64x64x32 voxels, (FOV = 8.68cm 

in x andy, and 13.13cm in z) are shown in Figure 6.4, and the spectra of the central 

z plane are shown in Figure 6.5 (32x32x32, FOV = 4.92cm along each axis). 

The difference in subjective image appearance between the two sets of 1 H images 

arises from differences in both the gradient trajectories employed and in experimen-
' 

tal conditions. As seen in Section 5.6, the noise characteristics of the two experi

ments are quite different; the sinusoidal gradient experiment has measurement and 

systematic noise concentrated in the low spatial frequencies compared to the TSW 

experiment, which has a much flatter noise spectrum. No spatial filtering or overall 

sampling density correction was performed on these images, so the differences in 

·noise power distribution are apparent. 

In addition, the second experiment (using TSW gradients) was performed after 

an enhanced shimming method was developed for our spectrometer based on spec

troscopic imaging. The differences in the quality of the shimming in the outer voxels 

can be seen by comparing the spectral plots of the two images. Intravoxel dephasing 

in the outer voxels is likely to be responsible for some of the inhomogeneity in the si-
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(a) _Images integrated over the water line 

(b) Images integrated over the lipid line 

Figure 6.2: Spectroscopic images of the 1 H tube phantom using sinusoidal gradients. The 
8 central planes in z are shown left to right, top to bottom of the water (top) and lipid 
(bottom) lines from the phantom. The field of view is 8.68cm in x and y. The voxel 
halfwidth is 0. 68cm. 
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Figure 6.3: Spectroscopic image of the central z plane of the 1 H tube phantom using sinu
soidal incommensurate frequency oscillating gradients. The data are presented as a 32 by 
32 grid of spectra. FOV = 4-92cm in x and y. 
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(a) Images integrated over the water line 

(b) Images integrated over the lipid line 

Figure 6.4: Spectroscopic images of the 1H tube phantom using three component TSW 
gradients. The central 8 slices in z are shown left to right, top to bottom of the water (top) 
and lipid (bottom) lines from the phantom. The field of view is 8.68cm in x and y. The 
voxel halfwidth is 0.54cm. 
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Figure 6_ 5: Spectroscopic image of the central z plane of the 1 H tube phantom using three 
component TSW gradients- The data are presented as a 32 by 32 grid of spectra_ FOV = 
4. 92cm in x, y and z_ 
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Figure 6.6: 23 Na T2 phantom. The phantom is cylindrically symmetric along the z axis. 
Tubes 1-5 contain 100mM NaCl in 86%,77%,61%,45%, and 0% glycerol vjv in water· 
respectively. 

nusoidal gradient image. However it is important to note that for the same gradient 

amplitude, the voxel size. of the TSW experiment is approximately half that of the 

similar sinusoidal gradient experiment, so the TSW experiment is less susceptible to 

intravoxel dephasing a-priori. 

6.3 T 2 Sensitivity 

6.3.1 23Na T 2 Phantom Construction 

A 23Na phantom was constructed to determine the performance of the stochastic 

experiment sensitivity over a range of relaxatiop. rates. The cylindrical phantom 

consists of 5 1.7cm diameter tubes arranged in a pentagonal formation, separated 

by 2.3cm, each containing lOOmM NaCl with different T 2 values. The flood stage 

was filled with water to reduce susceptibility artifacts. The phantom is diagrammed, 

in Figure 6.6. 

The solvent in each tube is a volume/volume mixture of glycerol and water. In-
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Percentage glycerol (v /v) Tube T1(ms) T 2 (ms) 
0% 5 60.6 59.3 

45% 4 11.3 11.2 
61% 3 4.4 4.4 
77% 2 1.2 1.3 
86% 1 0.60 0.64 

Table 6.1: 23 Na T 1 and T2 relaxation times of lOOmM NaCl in glycerol/water solutions 
at 2.35T. 

creasing the concentration of glycerol increases the viscosity of the medium, and 

decreases the T2 of the 23 Na in the solution. The sodium spectrum of all the so

lutions used is in the extreme narrowing limit, which means that the T2 relaxation 

is monoexponential. The five solutions were formulated to span a wide range of T 2 

values. The T 2 values of the solutions was measured using a spin-echo experiment 

(90x-7-180y-7-acq). Subsequent acquisitions employ different 7 values to map out 

the FID. The T1 was measured using an inversion recovery experiment (180x-7-90x

acq), again ranging over various 7 values, and both curves were fit to obtain the T 1 

and T 2 • 

The results of these measurements are presented in Table 6.1. As expected for 
23 Na in the extreme narrowing limit, the T1 and T2 values are identical for all of 

the solutions. Due to finite pulse lengths and delays in the receiver system, the 

measurement technique breaks down at very short T 1 and T 2 values, leading in 

some cases to measured T1 values that are shorter than T2 . The five tubes in the 

phantom cover two orders of magnitude in T1 and T 2 . The relaxation times are 

likely to be somewhat shorter in vivo. 

The stochastic imaging experiment measures T2 rather than T 2 . Because the T 2 

values of 23 N a are rather short to ~egin with, and the gyromagnetic ratio is not very 

high, the difference between T 2 and T2 is not very significant at many of the T 2 rates 

observed in vivo. T2 values of a 4cm diameter spherical sample of the glycerol water 

solutions were obtained by fitting the FIDs obtained using a stochastic spectroscopy 

experiment. The reconstructed FIDs are shown in Figure 6.7, and the T2 values are 

presented in Table 6.2. 
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Percentage glycerol ( v /v) T;(ms) 
0% 49.6 

45% 10.5 
61% 4.3 
77% 1.2 
86% 0.67 

Table 6.2: 23 Na T2 relaxation rates of lOOmM NaCl in glycerol/water solutions in a 4cm 
spherical sample at 2.35T measured using sto~hastic spectroscopy. 

.. 

1 

0.8 0% Glycerol 

0.6 

0.4 

Glycerol 
0.2 

20 40 50 

86% Glycerol 
77% Glycerol 

Figure 6. 7: 23 Na T2 relaxation rates of lOOmM NaCl in glycerol/water solutions in a 
4cm spherical sample at 2.35T. These F!Ds were obtained using a stochastic spectroscopy 
experiment. TR = 75f.J,s, 524,287 points were recorded. Time axis is in milliseconds. The 
FID amplitudes are scaled separately for clarity. 
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6.3.2 Images 

The T 2 phantom was imaged using a stochastic image sequence with incommen

surate frequency oscillating gradients. Again, both sinusoidal and three component 

truncated square wave (TSW) gradient experiments are shown. All reconstructions 

were done on a 32x32x32 grid, and the data are reconstructed in the time domain 

as FIDs rather than spectra. 

The first set of 23Na images shows an experiment employing sinusoidal incom

mensurate frequency gradients. The gradient oscillation frequencies were 547.945, 

533.333, and ,519.481Hz along x, y and z respectively, with repeat times of 73, 75, 

and 77 points. The gradient amplitudes along x, ·y, and z were G = 8.00, 7.79, and 

7.59mT /m respectively, giving a point spread function halfwidth of 1.28cm along 

each axis. The voxel volume resulting from the PSF halfwidth is 2.11cm3 . The RF 

sequence employed quadrature phase modulation, with the phase selected by two 

19 bit MLS's, a = 5°, and the TR for the experiment was 75J-lS. The 421,575 point 

k trajectory was repeated 16 times, for a total of 6,745,200 data points. The total 

imaging time was 505.89 seconds. 

Two reconstructions were performed. Figure 6.8 shows spatial images of the 

central z plane of the phantom at sequential time points of the FID. 1046 time lags 

were reconstructed, with a time resolution of 1.82ms. The first time point is centered 

at 912J-ls. The total field of view along the time axis is 77.35ms. 32x32x32 spatial 

voxels were reconstructed, with a field of view of 6.19cm along each axis. Figure 

6.9 shows the FIDs of the central z plane of 32x32x32 voxels. 523 time lags were 

reconstructed, with a time resolution of 912J-ls. The total field of view along the 

time axis is 38.68ms. The first time point is centered at 456J-lS. The spatial field of 

view is again 6.19cm along each axis. 

The same experiment was performed with incommensurate TSW gradients. Iden

tical gradient frequencies and G values were used. The voxel halfwidth was l.llcm, 

giving a voxel volume of 1.39cm3. The 421,575 point k trajectory was repeated 12 

times, for a total of 5,058,900 data points. The total imaging time was 379:42 sec

onds. Identical reconstruction parameters were used. The resulting FID time point 
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Figure 6.8: Images of the central z plane of the 23 Na T2 phantom using incommensurate 
frequency sinusoidally oscillating gradients. The images show different time points of the 
FIDs, presented as images, left to right, top to bottom. The first image is of the time point 
centered at 912J..Ls. The time spacing between succeeding images is of 1.825ms. FOV = 
6.19cm along each axis. 
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Figure 6.9: FID image of the central z plane of the 23 Na T2 phantom using incommensurate 
frequency sinusoidally oscillating gradients. The data are presented as a 32 by 32 grid of 
F!Ds. The first time point is at 456J.Ls, and the spacing between time points is 912J.Ls. The 
spatial FO V = 6.19cm along each axis. 
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£igure 6.10: Images of the central z plane of the 23 N a T 2 phantom- using incommensurate 
frequency three component truncated square wave gradients. The images show different 
time points of the F!Ds, presented as images, left to right, top to bottom. The first image 
is of the time point centered at g12J.Ls. The time spacing between succeeding images is of 
1.825ms. FOV = 6.19cm along each axis. 

images are shown in Figure 6.10, and the array of FIDs is shown in Figure 6.11. 

A large fraction of the overall intensity variation of the tubes in the image is 

due to T 1 contrast (since this is a spectroscopic image method, the T 2 contrast can 

be determined a postiori). As shown in Equation 4.4, the overall system response 

depends on T1 , TR, and the RMS flip angle a. The T1 values in the phantom span a 

wide range. a was chosen to optimize the experiment for a T 1 in the middle of this 

range. Tubes 3 and 4, which have intermediate T 1 values are therefore the brightest. 

Another source of apparent intensity variation is the decrease in intensity for very 

short T 2 speCies. This is an image artifact; all of the signal from the very short 

T 2 nuclei is captured by the stochastic experiment; however the density correction 
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Figure 6.11: FID image of the central z plane of the 23 Na T 2 phantom using incommensu
rate frequency three component TSW oscillating gradients. The data are presented as a 32 
by 32 grid of FIDs. The first time point is at 456JLS, and the spacing between time points 
is 912J.Ls. The spatial FOV = 6.19cm along each axzs. 
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Percentage T2(ms) from T2(ms) from 
glycerol ( v /v) stochastic spectroscopy stochastic imaging 

0% 49.6 22.0 
45% 10.5 7.6 
61% 4.3 3.1 
77% 1.2 1.1 
86% 0.67 0.68 

Table 6.3: Comparison of the 23 Na T2 relaxation rates of 100mM NaCl in glycerol/water 
solutions at 2.35T measured using stochastic spectroscopy and measured from the stochastic 
image in Figure 6. 9. 

algorithm employed for these images has a tendency to underemphasize the data 

from the center of k-space, which is where the signal energy from nuclei with T2 

shorter than one half of a gradient period is concentrated. 

These uncorrected effects make it difficult to perform proper quantitative relax

ometry. However, a "quick look" T 2 fit to the data indicates the promise of the 

technique. The FID from the central voxel of each of the tubes was selected from 

the data set shown in Figure 6.9, and fit to determine the T2 values. The results are 

shown in Table 6.3. The anomalously low value of the 0% glycerol T2 may be due 

to shimming. 
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Chapter 7 

Summary 

This dissertation presents a fast three dimensional spectroscopic NMR imaging 

experiment which provides spatially resolved information on 23Na relaxation param

eters. This technique may prove useful for medical investigations of brain function. 

An experiment based on stochastic RF excitation and employing oscillating gradi

ents provides both the fast encoding time necessary to make high resolution in vivo 

spectroscopic images and the sensitivity to the wide range of T 2 values exhibited by 
23Na in vivo. 

Stochastic NMR is not a new technique; it was originally proposed in 1970, 

and has been developed over the years by a number of researchers. However, th~ 

development of spectroscopic imaging with oscillating gradients by Roos and Wong 

opened the door to its use in biological imaging. My contribution in this thesis has 

been to address the issues necessary to adapt the technique to imaging of short T 2 

nuclei. 

The important theoretical contribution of this thesis is the development of the 

fast reconstruction algorithm which makes three dimensional imaging practical. The 

speed increase of the Fourier interpolation stochastic reconstruction algorithm re

duces the reconstruction time for typical spectroscopic data sets to reasonable val

ues, a few hours on a general purpose scientific workstation. Further optimization 

of the reconstruction code, or the use of faster or more specialized processors can be 

expected to provide further speed increases. 
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Another benefit of the new reconstruction algorithm is that it has greatly sim

plified the analysis of sampling density and noise propagation in the stochastic ex

periment. This led to the development of the new gradient trajectories described 

in Chapter 3.2.3, the truncated square wave gradients and the amplitude modu

lated sinusoidal gradients. These gradient trajectories provide more uniform k-space 

sampling densities than those afforded by ordinary sinusoidal gradients, while still 

preserving the advantages of steady state eddy currents. The AMS gradients have 

uses beyond stochastic NMR; echo planar trajectories based on sinusoidal readout 

gradients can employ the AMS modulation function to gain a uniform k-space sam

pling density without resorting to nonlinear time sampling. 

The reduced reconstruction time afforded by the new reconstruction algorithm 

permitted extensive simulation of the experiment, which in turn led to the explo

ration factors that affect image quality; and discoveries such as the improvement 

in reconstructed image quality through the use of repeating versus non-repeating 

k-space trajectories, and the use of analytic instead of empirical sampling density 

correction. 

Implementing the stochastic experiment for short T 2 nuclei led to the develop

ment of a novel Q-spoiler circuit. The probe Q-spoiler can be used in any type of 

NMR experiment where dead time caused by probe ringdown time needs to be min

imized. Unlike previously designed PIN diode circuits for Q-spoiling, the inductive 

coupled design can be added to any existing probe with a minimum of modification. 

Also, in the non-energized state, the circuit causes no significant changes to the 

probe performance. Previous designs required active high voltage back-biasing of 

the PIN diode to keep the probe in the high Q state, which injects unwanted noise 

into the probe. Q-spoilers of the design described in this thesis are already in use in 

other non-stochastic short T 2 experiments being done in our lab. 

In the course of implementing the experiment, other important practical lessons 

were learned, such a.s the necessity of measuring and compensating for gradient phase 

shifts and receiver delay times, factors which can usually be ignored for conventional 

imaging experiments, but which can significantly degrade stochastic images if left 

uncorrected. 
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The imaging method developed here combines short encoding time, on the order 

of 20 to 30 seconds, with sensitivity to a wide range of T 2 values. These qualities 

make it a promising method for imaging 23Na in vivo.· The gradient, RF, and 

sampling frequency requirements are within the capabilities of modern clinical echo

planar imaging systems. 

As an example of the requirements of a clinical experiment, consider the problem 

of making a three dimensional spectroscopic sodium image of the human head at 

with lcm3 voxels. If we design an incommensurate frequency truncated square wave 

gradient experiment (which. is very close .to a trapezoidal gradient, available on 

many echo-planar machines) using 1kHz gradient frequencies, we require a gradient 

amplitude of G = 14.7mT/m. To provide a field of view of 24cm requires a sampling 

frequency of 41, 700Hz. Because of the high sampling rate, extremely small RF pulses 

(less than 1 °) can be employed. These hardware requirements are not unreasonable 

for a clinical EPl machine. Whether or not the software requirements for RF and 

gradient waveform generation can be met depend on the flexibility of the control 

console. If necessary, the waveforms could be generated and fed in from an external 

processor. 

There are a number of ways in which the stochastic experiment can be further 

improved. Image reconstruction could be improved by modifying the density cor

rection algorithm that is applied to the gridded data, as mentioned in Section 5.5.2. 

First, I have not yet found a computationally efficient way to calculate a general 

analytic expression for the sampling density of the truncated square wave gradients 

for anything other than the imax = 1 (sinuspidal gradients) case. The empirical sam

pling density correction introduces artifacts into the single lag point spread function. 

Finding an analytic expression for the sampling density would improve the resulting 

image quality. 

Perhaps more important is the fact that the current reconstruction technique 

applies density correction in the spatial domain alone. Because different time lags in 

the reconstruction cover different extents in k-space, there are different numbers of 

time samples taken at different k-space locations. Because the gradients are periodic, 

and k,t-space is critically sampled in time, this results primarily in a change in the 
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spatial point spread function (discussed in Section 4.5.4). However, it also tends 

to deemphasize the first lags in the reconstruction, which may affect the overall 

signal intensity of very short T2 nuclei, especially for the first point of the FID. 

This effect must be taken into account for accurate relaxometry. Performing the 

time-space density correction requires development of an analytic function for the 

overall time-space density, a task which has so far eluded me. 

Accurate, quantitative analysis of concentrations and relaxation parameters in a 

voxel will require a method for calibrating RF flip angle throughout the image, so 

that the effect of T 1 contrast can be considered. In a sampl.e where there is a wide 

range of T1 , as was the case in the 23Na tube phantom, the intensity variation can 

be large, and must be taken into account. 

There are also of ways the implementation of the experiment can be improved. 

Paff has shown for spectroscopy that oversampling in the time domain (i.e. having 

a TR much smaller than that required by the spectral bandwidth of the system) 

can be used to reduce the systematic noise in stochastic spectra while leaving the 

measurement noise unchanged by improving the cancellation of the excitation noise 

sequence[43]. This technique can also be applied to stochastic imaging, and would be 

expected to greatly improve image quality, at the cost of additional reconstruction 

time. 

Finally, a promising approach is to develop a hybrid technique which takes many 

data samples for each RF pulse. If capturing extremely short T 2 signals is not crucial, 

spacing the excitation pulses farther apart would allow for extremely fast sampling, 

since there is no need to wait for probe relaxation between each sample. This would 

allow finer sampling of k-space. It would also allow the use of excitation sequences 

with much shorter repetition cycles, since there would be fewer RF pulses within 

5T 1 (see Section 3.2.2). As a result, it may be possible to use a full length excitation 

sequence at each point in k-space. Wong showed[l4] that this causes a significant 

decrease in the amount of systematic noise (on the order of 20dB) in the resulting 

spin density estimate, a result which has been demonstrated in stochasticimaging 

with constant gradients (Wong, personal communication). Also, the reconstruction 

for such images should be much faster than for "conventional" stochastic imaging, 
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because many of the calculations could be done in parallel. This could result in a 

significantly enhanced fast spectroscopic imaging method. 

I. 
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Appendix A 

Reconstruction Pseudocode 

read signal s[n] into memory 
generate and store y[n] I* excitation sequence *I 
generate and store kx[n] I* integral of the x gradient *I 
generate and store ky[n] I* integral of the y gradient *I 
generate and store kz[n] I* integral of the z gradient *I 
initialize rhok[x] [y] [z] [q] I* object kspace estimate *I 
initialize densit~[x] [y] [z] I* number of samples at each 
position in rhok *I 
for each lag q 

{ 

for each time point n 
{ 

I* rotate data value by the phase of the excitation pulse 
q lags in the past *I 

gridval = conjugate(y[n- q]) * s[n]; 

I* find the current position in k-space for magnetization 
from time n - q *I 

kxpos = kx[n] - kx[n - q]; 
kypos = ~y[n] - ky[n - q]; 
kzpos = kz[n] - kz[n - q]; 
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I* convolve each sample with the spreading function to find 
it's contribution to neighboring points in k-space *I 

for all x,y,z in the neighborhood of kxpos,kypos,kzpos 
{ 

contrib = C((x,y,z) - (kxpos,kypos,kzpos)); 

.. 



'} 

if(densitycorrection == empirical) 
{ 

density[x] [y] [z] += contrib; 
rhok[x] [y] [z] [q] += gridval * contrib; 

} 

if(densitycorrection == analytic) 
{ 

rhok [x] [y] [z] [q] += 
gridval * contriblanalyticdensity[x] [y] [z]; 

} 

} 

} 

I* correct for the sampling density if doing empirical 
density correction *I 

{ 

} 

if(densitycorrection == empirical) 

for all x,y,z 
{ 

if density [x] [y] [z] ! = 0 
{ 

} 

rhok[x] [y] [z] [q] I= density[x] [y] [z]; 
} 

reinitialize density[x] [y] [z]; 

I* transform rho estimate to the spatial domain *I 
rhok[x] [y] [z] [q] = 3DIFT(rhok[x] [y] [z] [q], w.r.t x,y,z); 
} 

I* transform rho estimate to spectral domain *I 
for all x,y,z 

} 

{ 

rhok[x] [y] [z] [q] = FT(rhok[x] [y] [z] [q], w.r.t q); 
} 

store rho estimate 
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