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Abstract 

Small changes in container shape or in con
tact angle can give rise to large shifts of liquid 
in a microgravity environment. These shifts can 
be used as a basis for accurate determination of 
contact angle. We describe container shapes, de
signed for a for:thcoming USML-2 experiment, in 
the form of a circular cylinder with two diamet
rically opposed "canonical proboscis" protrusions. 
Computational studies indicate that these contain
ers can be designed to have the desirable properties 
that sufficient liquid will participate in the shift to 
permit easy observation, but th.at the change will 
be abrupt enough to allow precise contact angle 
determination. 

Introduction 

When planning space-based operations, it is 
important to be able to predict the locations and 
configurations that fluids will assume in contain
ers under low-gravity conditions. For example, one 
could be in serious difficulty if one did not know in 
advance where the fuel is to be found in a space
craft's partially filled fuel tank. Currently available 
mathematical theory applies completely, however, 
to only a few particular configurations, such as the 
partially filled right circular cylindrical container 
with the fluid simply covering the base. For such a 
configuration, behavior in space is not dramatically 
different from what is familiar from common experi
ence in a terrestrial environment. For more general 
containers, however, fluids in reduced gravity can 
behave in striking, unexpected ways. 

The classical theory, according to the Young-
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Laplace-Gauss formulation, characterizes fluid loca
tions as equilibrium configurations for the surface
plus-gravitational mechanical energy. Using this 
point of view in a mathematical study, we have 
shown that for a cylindrical container of general 
cross-section in zero gravity the surface change aris
ing from small changes in geometry or contact 
angle can be discontinuous or "nearly discontinu
ous" , leading to large shifts of the liquid mass. This 
behavior can be exploited as a means for accurate 
determination of contact angle. 

The principal mathematical result underlying 
the behavior is that for particular cylindrical sec
tions a discontinuous kind of change can be realized 
as the contact angle 'Y crosses a critical value 'Yo in
trinsic to the container. When 'Y is larger than 'Yo 
there exists an equilibrium configuration of liquid 
that covers the base of the cylindrical container sim
ply, while for contact angles smaller than 'Yo no such 
equilibrium configuration is possible. In the latter 
case fluid moves to the walls and can rise arbitrarily 
high along a part of the wall, uncovering a portion 
of the base if the container is tall enough. By sim
ple observation of bulk behavior of the fluid, one 
can thereby determine whether the contact angle is 
larger than or smaller than the critical value for the 
container. A practical challenge in this connection 
is to design cross-sections for which a large enough 
portion of the fluid will rise up the walls for easy 
observation as the critical value of contact angle is 
crossed, without the containers being unrealistically 
tall, and so that the change will be abrupt enough 
to make the contact angle determination precise. 

By using two or more containers corresponding 
to appropriately chosen values of 'Yo, differing, say, 
by the accuracy desired for a contact angle evalu
ation, one can determine the value of the contact 
angle to lie within a particular interval. In some 
cases, geometries can be "combined" into a single 
container for determining such an interval. For our 
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Figure 1. Partly filled cylindriCal container 
with base fl. 

planned Interface Configuration Experiment (ICE) 
on the second Unites States Microgravity Labora
tory flight (USML-2), in collaboration with Mark 
Weislogel of NASA Lewis Research Center, we con
join these two approaches. 

Governing equations 

Consider a cylindrical container of general 
cross-section partly filled with liquid, as indicated in 
Fig. 1. According to the classical theory, an equilib
rium interface in the absence of gravity between the 
liquid and gas (or between two immiscible liquids) 
is determined by the equations 

. 1 
d1v Tu = Ry in fl, (1) 

v · Tu = cosr on :E, (2) 

where 
\lu 

Tu = -.j-;=i=+=:l::=\l:=u~lz' 
see, e. g., Chap. 1 of Ref. 1. In these equations fl is 
the cross section (base) of the cylindrical container, 
:E is the boundary of fl, vis the exterior unit normal 
on :E, and 

(3) 
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where lfll and I:EI denote respectively the area 
and length of fl and :E; u(x,y) denotes the height 
(single-valued) of the interface S above a reference 
plane parallel to the base, and r is the contact 
angle between the interface and the container wall, 
determined by the material properties. The volume 
V of liquid in contact with the base is assumed 
to be sufficient to cover the base entirely, and, for 
the mathematical results, the cylinder is assumed 
implicitly to be arbitrarily tall so that questions of 
behavior at a top do not arise. We restrict discussion 
here to the case of a wetting liquid 0 ::; r < 1r /2 
(the complementary non-wetting case can be easily 
transformed into this one). For r = 1r /2, the 
solution surface is a horizontal plane for any cross
section. 

Wedge container 

For a cylindrical container whose section fl 
contains a protruding corner with opening angle 2a, 
as in Fig. 2, the critical value of contact angle is 
ro = ~ -a. For ~ > r 2: ro (and for fluid vol
ume sufficient to cover the base) the height u can 
be given in closed form as the portion of the lower 
hemisphere with center at 0 meeting the walls with 
the prescribed contact angle r. Thus the height is 
bounded uniformly in r throughout this range. For 
0 ::; r < ro, however, the fluid will necessarily move 
to the corner and rise arbitrarily high at the vertex, 
uncovering the base regardless of fluid volume. The 
behavior for the wedge domain is thus discontinu
ous at r = rO· Background details and historical 
discussion of this behavior are given in Refs. 1, 2, 
3, and references cited there. Procedures for deter
mining contact angle based on the phenomenon can 
give very good accuracy for larger values of r (closer 
to 1r /2) but may be subject to experimental inac
curacy when r is closer to zero, as the "singular" 

Figure 2. Wedge container section. 
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part of the section over which the fluid accumulates 
when the critical angle 'Yo is crossed then becomes 
very small and may be difficult to observe. 

Canonical proboscis container 

As a way to overcome the experimental dif
ficulty, "canonical proboscis" sections were intro
duced in Ref. 4. These domains consist of a circular 
arc attached symmetrically to a (symmetric) pair of 
curves described by 

x+C = J Ro 2 
- y 2 + Rosin 'Yo 

J Ro 2 
- y2 cos 'Yo - y sin 'Yo · ln _ __::_____::._....:::....._--;::::::"====---

R0 + y cos /O + J Ro 2 
- y2 sin /o 

(4) 

and meeting at a point P on the x-axis, see Fig. 3. 
Here Ro, as well as the particular points of attach
ment, may be chosen arbitrarily. The (continuum 
of) circular arcs ro, of which three are depicted by 
the dashed curves in Fig. 3, are all horizontal trans
lates of one such arc, of radius Ro and with center 
on the x-axis, and the curves (4) have the prop
erty that they meet all the arcs r o in the constant 
angle /O· If the radius p of the circular boundary 
arc can be chosen in such a way that Ro is the 
value of R-y from (3) for the value 1 = /o, then the 
arcs fo become extremals for a "subsidiary" varia
tional problem5 (see also Ref. 1, Chap. 6 and Ref. 
2) determined by the functional 

<I>= ifl-l~*lcosl+ ID*I/R-r (5) 

defined over piecewise smooth arcs r, where~* and 
Q* are the portions cut off from ~ and n by the 
arcs. In the case of the section of Fig. 3, ~* and 
Q* lie to the right of the indicated arcs. It can be 
shown5' 1 that every extremal for <I> is a subarc of 
a semicircle of radius Ro, with center on the side 

\ 

~ ',Y, 'Y P\ ~~~\ \~ \;o 
~ -- ~ --~- ~ --. --:;;;__. --. J..___.-----+-. 

} } } p 
ro/ / ' 
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Figure 3. Proboscis container section showing 
three members of the continuum of extremal arcs. 
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of r exterior to Q*' and that it meets ~ in angles 
2: 'Yo on the side of r within Q*' and 2:: 1f - 'Yo on 
the other side of r (and thus in angle 'Yo within Q* 
whenever the intersection point is a smooth point of 
~). It is remarkable that whenever (3) holds, <I> = 0 
for every Q* that is cut off in the proboscis by one 
of the arcs r 0 ; see Ref. 4 and the references cited 
there. 

In Ref. 4, a value for p was obtained empirically 
from (3) in a range of configurations, and it was con
jectured that the angle 'Yo on which the construction 
is based would be critical for the geomAtry. That 
is, a solution of (1), (2), (3) should exist"!~ n if and 
only if 1 > /O· Additionally, the fluid height should 
rise unboundedly as 1 decreases to 'Yo, precisely in 
the region swept out by the arcs fo (the entire pro
boscis region to the right of the leftmost arc r 0 

shown in Fig. 3). For these conjectures, which form 
the basis of our proposed procedure and for which 
the mathematical underpinnings were proved only 
partially in Ref. 4, complete mathematical proofs 
have been carried out. 6 Specifically, it has been es
tablished that a unique value of p can be obtained 
for any specified proboscis length and that the con
jectured behavior of the fluid rise is the only one 
possible. 

In Ref. 7 numerical solutions of (1), (2), (3) 
are depicted for some canonical proboscis contain
ers. Although the fluid rise in the corner is not 
discontinuous as occurs for a planar wedge, it can 
be "nearly discontinuous" in that the rise height in 
the proboscis is relatively modest until 1 decreases 
to values close to /o, and then becomes very rapid 
at 1 = /O· Furthermore, since the proboscis can 
be made relatively as large a portion of the sec
tion as desired, the shift can be easily observed for 
a broad range of 'Yo· Through proper choice of the 
domain parameters for the cases considered, an ef
fective balance can be obtained between conflicting 
requirements of a sharp near discontinuity (for ac
curate measurement) and a sizable volume of fluid 
rise (for ease of observation). 

Double proboscis container 

For the USML-2 experiment, double proboscis 
containers will be used. These containers are similar 
to the single proboscis one of Fig. 3, except that 
there is a second proboscis diametrically opposite 
to the first, in effect combining two containers into 
one. The values of 'Yo in ( 4) generally differ for 
the left and right proboscides, whose values of 'Yo 
we denote by /L and /R, respectively. Similarly, 
we denote the values of R0 for the left and right 



proboscides by RL and RR. In order for (3) to be 
satisfied for both proboscides, there holds 

RR cos IR = RL cos IL· 

Specifying the desired points of attachment and 
choosing p, the radius of the circular portion of 
the section, so that (3) is satisfied then yields the 
container section. (Such a p can be chosen for 
the cases considered here, but a proof that such a 
choice is possible for any proboscis lengths has not 
yet been carried out for the double proboscis case.) 
The critical value for the container is the larger of 
IL and IR· For the containers considered here, we 
shall take IR > -YL, so that the critical contact angle 
lo for the container is equal to IR· 

The upper half of the sections for -the experi
ment, superimposed on one another, are shown in 
Fig. 4. The sections have been scaled so that the 
circular' portions all have radius unity. The meeting 
points of the vertices with the x-axis are, respec
tively, a distance 1.5 and 1.6 from the circle center. 
For the sections depicted in Fig. 4 the values of IL 
and IR are respectively 20° and 26° for the upper
most section, 30° and 34° for the middle section, 
and 38° and 44° for the lowest section. 

For these containers the explicit behavior has 
not yet been determined mathematically in complete 
detail, as it has for the single proboscis containers. 
However, numerical computations discussed below 
and the known behavior of the single proboscis 
solution surfaces suggest that the behavior will be 
as follows: For contact angles 1 2: lo, as 1 decreases. 
to 1o the fluid will rise higher in the right than in the 
left proboscis, with the rise becoming unbounded 
~in the right proboscis at /O· For contact angles 
between IL and IR the fluid will rise arbitrarily 
high in the right proboscis, but the height in the left 
will still be bounded. For smaller contact angles the 

. fluid will rise up both proboscides arbitrarily high. 
By observing the liquid shift, one can then bracket 
the contact angle relative to the values of IL and 
IR· For a practical situation in which the container 
is of finite height with a lid on the top, the fluid will 
rise to the lid along one or both of the proboscides 
in the manner described above (providing the fluid 
volume is adequate). 

The selected values of IL and IR for the three 
containers are based on the value of approximately 
32° measured in a terrestrial environment for the 
contact angle between the experiment fluid and 
the acrylic plastic material of the container. The 
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Figure 4. Three superimposed double proboscis 
container sections. From uppermost to lowest, the 
pair of values of lo for the left and right proboscides 
of each section are 20°/26°, 30°/34°, and 38° j 44°. 

spread of values of contact angle covered by the 
three containers is intended to allow observation of 
possible effects of contact angle hysteresis, which is 
not included in the classical theory. 

Numerical results 

Eqs. (1), (2), (3) were solved numerically for 
the three double proboscis container sections de
picted in Fig. 4, for a range of contact angles 1, 
to obtain details of the anticipated fluid behavior. 
The adaptive-grid finite-element software package 
PLTMG8 was used for computing the numerical solu
tion. As input to the package, which accepts linear 
or circular-arc boundary segments, the proboscis 
portions of the boundary were approximated by 
piecewise-linear segments. The circular-arc portions 
could be r~presented as such. 

To speed the computation, only the upper half 
domains shown in Fig. 4 were input to PLTMG, with 
reflective symmetry boundary condition v · 'Vu = 0 
in place of (2) along the symmetry line. Solutions 
were normalized by taking u = 0 at the center of 
the unit circle portion of the domain boundary. 

The numerically calculated solution surface 
u(x, y) for (the upper half of) the 30°/34° do
main is shown in Fig. 5 for four values of contact 
angle, 60°, 50°, 40°, and 35°. (The critical value 
for the domain is lo = 34 °.) The three-dimensional 
views of the surface are color-shaded by PLTMG to 
indicate contour levels, grayscale versions of which 
are shown in the figure. The viewpoint for each 
surface is the same. Generally, the computations in
dicate that as 1 decreases toward the critical contact 
angle, fluid moves toward and up the two proboscis 
walls, with the local maximum heights, as calcu
lated by the program, at the proboscis tips. The 
heights at the right are higher than the correspond
ing ones at the left. The surfaces for the 20°/26° 
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Figure 5. Equilibrium interface for the 30° /34~ (upper-half) double proboscis section for contact angles 
60°, 50°, 40°, and 35°. 'Yo = 34°. 
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and 36°/44° proboscis domains behave similarly. 
The apparent jump discontinuity in the solu

tion height at the reentrant corners occurs in the 
computed solutions for contact angles smaller than 
a certain value, depending on the domain. (For 
the solutions depicted in Fig. 5 compare the sur
face for 60° with the others.) Such discontinuous 
behavior for solutions of (1), (2), (3) at reentrant 
corners has been characterized mathematically for 
certain domains in a recent study. 9 The effect of 
this behavior on the numerical computations in 
PLTMG was evidenced in the adaptive mesh re
finement. Higher levels of refinement concentrated 
nodes in the neighborhood of the reentrant corners. 
Thus with the approximately 6000 nodes to which 
we limited the computation, relatively fewer nodes 
were distributed elsewhere in the domain than was 
the case when the discontinuities were not present. 
The estimate of the £ 2 norm of the error given by 
PLTMG was, nonetheless, the order of 10-2 or less 
in all cases. Based on comparison of numerical solu
tions for problems with the number of interior mesh 
nodes varying from 2000 to 6000 and the number of 
piecewise-linear segments approximating each pro
boscis varying from 20 to 30, we estimate that the 
errors in the values of the maximum heights and 
volumes in Fig. 5 to be less than about 3%. 

The heights at the proboscis tips are shown as 
a function of 1 for the three domains by the solid. 
curves in the left of Fig. 6. The volume of the liquid 
rising above the minimum point of the surface is 
depicted on the right. The calculated data, which 
are denoted by "+" for the right proboscis and 
"0" for the left, are connected by interpolating 
linear segments. For each container, the leftmost 
calculated point is for a value of 1 that is 1/2 degree 
greater than the critical value. At the critical values 
1 = "Yo (26°, 34°, and 44° respectively), denoted by 
the arrows, the right tip heights and the volumes 
would become infinite. Four of the calculated points 
for the 30°/34° domain are the ones corresponding 
to the surfaces shown in Fig. 5. 

For comparison, the dashed curves in the left 
of Fig. 6 show the rise height at the boundary for a 
circular domain with no protrusions, for which the 
solution is the lower spherical cap 

which has its minimum at the origin and maximum 
(sec 1 - tan 1) at the boundary. 
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One sees that the rise heights in the containers 
are modest until 1 gets close to the critical value. 
Fig. 6 indicates that by using a container of height 5, 
say, one could distinguish between the critical value 
"Yo for the container (fluid in right proboscis rises 
to the lid) and a contact angle value one degree 
greater (fluid rise height < 5). By using taller 
containers one might determine critical values with 
even greater precision. 

ICE experiment 

In addition to the three double proboscis con
tainers depicted in Fig. 4, the USML-2 ICE exper
iment has also a wedge container. This container 
is constructed to allow the interior wedge angle 2a 
(see Fig. 2) to be varied, so as to permit observation 
of the wedge phenomenon for both the advancing 
and receding cases. It is anticipated that the exper
iment will indicate to what extent mathematically 
predicted behavior can be observed in practice, and 
also that it will shed light on effects not included in 
the classical theory, such as those associated with 
contact-line resistance forces. 
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