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Abstract 

We discuss the appearance of 6.1 = 2 staggering effects in the gamma-ray en
ergies of some superdeformed bands as due to the mixing of a series of K-bands. 
These bands are described by the rotational Hamiltonian of a symmetric top having 
a four-fold symmetry axis. Using the known properties of SD bands we have found 
limits to the possible values of the~ model parameters by the analysis of effective 
moments of inertia, deviations from the I(I + 1) rigid-rotor behavior and B(E2) 
values. Our results indicate that the value of :13 , the moment of inertia due to the 
Y44 deformation, is close to that expected for a rigid ellipsoid. 

PACS numbers: 21.10Re,21.60Ev 
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Very recently, a !:ll = 2 staggering was observed in the gamma-ray energies of the yrast 

superdeformed (SD) band1 in 149Gd and in the SD bands2 in 194Hg. It has been suggested 

that such perturbations in the level energies could arise from }'44 deformations of the 

nuclear shape3 •4 • In fact, in Ref. 3, Hamamoto and Mottelson have shown that staggering 

can occur as a result of tunneling between the four minima in angular momentum space 

generated by a potential related to the 1'44 deformation. In this work we will present a 

somewhat different approach to describe this phenomenon, namely one that involves the 

mixing of multiple K-bands. We will also attempt to limit the model parameters using 

the known properties of SD bands. While implicit in the tunneling picture, our derivation 

explicitly shows the appearance of the K-bands, thus providing a familiar framework to 

introduce effective coupling terms in the Hamiltonian. As will be shown our Hamiltonian 

is indeed equivalent to that in Ref. 3) and therefore our results are relevant to the two 

descriptions. 

We start with the rotational Hamiltonian: 

(1) 

where the coefficients A; are related to the moments of inertia, A; = n? /2:1;. For a 

nucleus which has a }'44 deformation around the 3-axis (an axis of four-fold symmetry C4 ) 

then A 1 = A 2 = A and ( 1) becomes: 

(2) 

which is the general Hamiltonian des~ribing the motion of a symmetric top. From our 

current understanding of the rotational properties of superdeformed nuclei we expect that 

the motion will be strongly determined by the large value of the quadrupole deformation 

(Y20 ). A priori this implies5 A3 >> 1, resulting in a small component of rotational angular 

momentum along the 4-fold symmetry axis. 

The Hamiltonian (2) describes a series of different rotational bands labeled by the 

quantum number I<. The C4 symmetry restricts6 the possible values of I< due to the 

invariance of the total wave function for a rotation R 3 ( 1r /2) around the 3-axis. If <P 
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represents an intrinsic state with eigenvalue n for the J3 operator, then 

-iJ31r/2,;..eih1r/2D1 _ e21ri(I<-n)/4,;..DI 
e '+' KM - '+' KM 

implies I< = n, n ± 4, n ± 8, ... etc. 

Therefore, for an intrinsic configuration relevant to the ground state of an even-even 

nucleus (0 = 0) the possible values of I< are ]{ = 0, 4, 8, ... etc., giving rise to a sequence 

of rotational bands that differ by ~K=4. Without mixing, the yrast states will be those 

of the K=O band, and as a consequence of eq. (2) there will be no staggering. Mixing 

between these bands has to involve to lowest order It and I~ to provide a ~K=4 change. 

We thus introduce the simplest effective coupling of fourth order in the angular momentum 

operators that includes both a non-diagonal (h4 ••• ) and a diagonal term (h0 ••. ): 

He = h4(1! +I~)+ h~(I~t:_ + f!.I~ + I+LLI+ + hLI+L + ... ) 

= h4(1! +I~)+ ho(I~t:_ + f!.I~ + 4(12
- !{

2
)

2
), 

The total Hamiltonian H + He was diagonalized in the basis: . . 

III<M >= { I: even 

I<= 0. 

The relevant matrix elements are given by 

<II< +4IHeiiK >=< IKIHeiiJ< +4 >= 

= h4Ju- /{- 3)(I- I<- 2)(1- I<- 1)(I- K) 
yl2 K=O 

xJ(I +K + 1)(1+ J{ +2)(1 + J{ +3)(1 + J{ +4) x { 

1 I<> 0 

and 

< I I<IHcii K > = ho[(I- K- 1)(1- K)(I + K + 1)(1 +I<+ 2) 
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+(I-]{+ I)(I- ]{ + 2)(1 + ]{ -I)(I + K) 

+4(1(1 +I)- K 2?] 
~ 6ho(12 - !{2)2' 

with the approximation valid for I > > 1. In the basis introduced above the rotational 

·wave function takes the form, 

'I!rM = LCrrdiKM >. 
/{ 

It is interesting to note that the Hamiltonian matrix increases its dimension every four 

units of spin due to the existence of bands differing by l:!.f{ = 4. The inclusion of an 

aditional state for I = 4, 8, I2, ... etc. provides an important ingredient for the appearance 

of staggering effects. 

It can be shown by rearranging the terms in Eq. (3) that He can be written as in Ref. 

3, that is: 

with B 1 = 4h4 and B 2 ~ 2(3h0 - h4 ). To make our discussion consistent with Ref. 3, the 

results of our calculations will be presented using the parameters B 1 and B2 rather than 

h4 and ho. Let us take A3 = 90 and B 1 = I (used in Ref. 3)) and let B2 vary. In Fig. 

1 we show the level energies of the yrast states divided by I(I +I) as a function of B2 , 

with the different curves corresponding to different spins. Only for values ofB2 ~ 0 does 

the system behave like a rigid rotor but with a renormalized moment of inertia which, for 

this particular case, is ~ 20 times smaller than the initial :J. 

We conclude from this result that these parameters need to be interpreted in relation 

to the value of A = fi 2/2.7, which gives the (dominant) I 2 dependence in the rotational 

energy. The authors of Ref. 3) have not considered this renormalization in their analysis. 

From the known properties of SD bands we will try to limit the parameter space. 

We know that in SD bands deviations from I(I + I) are not large; for example in the 

Hg region a.n expansion E(I) = o:I(I +I)+ (J[I(I + I)j2 gives f3/a ~ 10-4
• As seen in 

Fig. 1 one needs B2 ~ 0 (h0 ~ h4 /3), as otherwise the I4 term gives rise to considerable 
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deviations from I (I + 1). This conclusion applies only if we restrict ourselves to the 

effective coupling (3). It can be argued that it is possible to add a I< -independent 14 

term that compensates the effects introduced by the B2 term; however that scenario will 

then require a very specific cancellation of the two 14 coefficients. 

We also know that for SD bands both the kinematic moment of inertia .:J(l) and the 

quadrupole moment Q0 are reasonably well described by rigid-body values. Assuming 

only a contribution from Q20 we have calculated reduced transition probabilities, B(E2), 

for the mixed bands using the expression, 

B(E2)/ B(E2)o = CL. Cu<C(I-2)K <I I<20II- 2I< > )2 
/ < 102011-20 >2

, 
]{ 

referred to the value B(E2)0 when the coupling term, He, is zero. We found that for 

A3 ~ 90 and B1 = 1 the B(E2) values show a reduction of 20% while .:J<1l, as mentioned 

earlier, changes by a factor of~ 20, not consistent with the experimental findings. In order 

to overcome this inconsistency we need to reduce the value of A3 , which then reduces the 

effect on the renormalized moment of inertia. The set of parameters A3 ~ 2 and B1 = 0.01 

results in a reduction of 20% both in B(E2) and .:J(l). These are not entirely consistent 

with rigid-body values, but we think that the discrepancy is probably acceptable if we 

remember that effects like pairing and alignments are left out in the present description. 

Again, for these parameters we require that B2 ~ 0 in order to avoid deviations from the 

I (I+ 1) dependence. 

This value of A3 is not as large as we expected (from a presumably small }44 deforma

tion) and corresponds to a ratio .:13 / .:1~ 1/2, which can be compared with that calculated 

for a rigid ellipsoid of semi-axes c and a; .:13 /.:1= 2/(1 +(c/a)2
) = 2/5 for a 2:1 axes ratio. 

The rather small value of A3 raises an important question related to the behavior of the 

excited bands. In fig. 2 the energies of the yrast and first excited band (yrare), obtained 

after diagonalization, are given as a function of I (I+ 1 ). The "rigid-rotor" -like behavior 

is immediately seen, with effective inertia parameters ( Aeff = E(I)/ 1(1 + 1)) of 1.2 and 

1. 7, respectively, for these two bands. Using these results we can estimate that, for exam

ple, in the Hg region the first excited band will lie around 3.5 MeV above the yrast line 
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at spins around 40, probably too high in excitation energy to be populated with enough 

intensity to be observed experimentally. 

The /{-components of the wave functions, C]K, of these two bands (Fig. 3) give us 

some insight into a classical picture of the nuclear motion. On the one hand the yrast 

band has a /{-distribution peaked at ]{ = 4 and extending to high-/{ values for high 

angular momentum; the ratio < ]{ > I I ::::::: 114 implies a constant tilting angle of the 

rotation axis of only 15° with respect to the perpendicular to- the symmetry axis. On 

the other hand, in the yrare band the ]{-distribution peaks at ]{ ::::::: I and < f{ > I I ::::::: 

213, thus corresponding more to a rotation around the C4 symmetry axis. For such a 

motion the staggering effects are extremely pronounced due to the flf{ = 4 "jumps". 

and are "propagated" to the yrast band through the ]{ mixing (Fig. 4). The important 

renormalization factor in the moment of inertia, described earlier, can be explained by the 

broad distribution in /{'""values of the wave functions \II IM. Since the average rotational 

energy can be written as < H >= I(J + 1) + (A3 - 1) < /{2 > + < He >, the larger 

the value of A3 the more important the contribution of the A3 < I(2 > term (which is 

proportional to I 2 ) to the rotational energy and therefore the larger the renormalization. 

Calculated values of B(E2) for the two band.s are presented in Fig. 5. The yrast 

band shows a rather smooth behavior with a value around 80% of the uncoupled case; 

the perturbations seen at low spins are perhaps too small to be detected experimentally. 

The pronounced staggering in E..y and B(E2) in the yrare band makes the finding of these 

peculiar bands an attractive experimental challenge. Following the argument about the 

relatively high excitation energy given earlier this ma.y not be possible in the SD regime; 

however tentative evidence7 for !:li = 2 staggering in the ground state bands in 238 Pu 

and 236
•
238U at around spin 14 suggests that these systems could be ideal cases to look 

for those bands, expected to be at an excitation energy of::::::: 600 keV. 

In conclusion, we have studied the effect of a Y44 deformation on the rotational mo

tion of nuclei, with emphasis on SD bands. Complementary to Ref. 3 we discuss the 

appearance of staggering effects through the mixing of J{ -bands described by the Hamil

tonian (2). The existence of bands differing by /:l]{ = 4, imposed by the C4 symmetry, 
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is a necessary ingredient for the staggering since the Hamiltonian matrix increases its 

dimension every four units of spin. Although it is still too early to attempt a "fit" of the 

parameters with experimental data., we ha.ve shown tha.t special attention ha.s to be given 

to the renormalization effects caused by the coupling terms. In fa.ct, without resorting 

to an extra term in the Hamiltonian that will cancel the renormalization of the moment 

of inertia we believe that the experimental values of B(E2) and .:J(I) rule out A3 >> 1, 

contrary to our initial premise and that of Ref. 3) 

Therefore, the result .:J 3 :::::::: .:J rigid would seem to imply a rather large value of the 

}44 deformation if this is a collective motion. However, perhaps we can interpret A3 as 

an effective inertia generated by the alignment of single particle angular momentum8
. It 

appears to be difficult to obtain values of B1 :::::::: 0.01 from microscopic models; current 

calculations based on the Tilted Axis Cranking model8 give values about 10 times smaller. 
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Figure Captions 

Fig.1 Energy levels, normalized to I (I+ 1), obtained by dia.gonalization of the total Hamil

tonian H +He as a function of the parameter B2 for increasing values of I. The 

other parameters are A3 = 90 and B1 = 1. The dotted lines- represent the deviation 

expected at spin 40 for a value of /3/ a :::::::: 10-4 (see text). Note that quantities in . 

both axes are "in units of A". 

Fig.2 Energy ("in units of A") of the yrast and yra.re bands as a function of I(I + 1) for 

A3 = 1.9 and B1 = 0.01. The slopes of these lines define Aeff (see text). 

Fig.3 Three-dimensional plot of the amplitudes squared, CJK, of the wave functions for 

the yrast and yrare bands given in Fig. 2 

Fig.4 Staggering plot for the yrast and yra.re bands discussed in fig.2. This is the second 

derivative of E-y with respect to I. Note that gamma ray energies are also given in 

"units of A". 

Fig.5 Reduced transition probabilities B(E2) for the yra.st and yra.re bands relative to 

the value B(£2)0 when the coupling term, He, is zero. This case corresponds to the 

example of Fig. 2. 
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