
LBL-36680
UC-405

Lawrence Berkeley Laboratory
UNIVERSITY OF CALIFORNIA

Information and Computing
Sciences Division
Presented at the NASA Mass Storage Conference,
Greenbelt, MD, March 28, 1995, and to be published
in the Proceedings

A Distributed Parallel Storage Architecture
and its Potential Application Within EOSDIS

W.E. Johnston, B. Tierney, J. Feuquay, and T. Butzer
----------------------------------~

January 1995
U. C. lawrence Berkeley laboratory

library, Berkeley

FOR REFERENCE
Not to be taken from this room

Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098

Ill
0.---
10

t1l
lSI

r-.....
c- () , 0
Ill "C , '<
'< . 1-'

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

A Distributed Parallel Storage Architecture and its Potential
Application Within EOSDIS

Abstract

William E. Johnston and Brian Tierney

Lawrence Berkeley Laboratory1

University of California
Berkeley, CA, 94720

Jay Feuquay and Tony Butzer
EROS DataCenter I Hughes STX

Mundt Federal Building, Sioux Falls, SD, 57198

We describe the architecture, implementation, use, and potential use of a scalable,
high-performance, distributed-parallel data storage system developed in the ARPA funded

MAGIC gigabit testbed 1. A collection of wide area distributed disk servers operate in par
allel to provide logical block level access to large data sets. Operated primarily as a net
work-based cache, the architecture supports cooperation among independently owned
resources to provide fast, large-scale, on-demand storage to support data handling, simula
tion, and computation.

1.0 Introduction

We have designed and implemented a wide area network-based, distributed-parallel stor
age system ("DPSS") as part of an ARPA funded collaboration known as the MAGIC
gigabit testbed [1], and as part of DOE's high speed distributed computing program. This
technology has been quite successful in the MAGIC environment, and it has the potential
for enhancing data rich environments like EOSDIS (see [2] and Figure 7). The DPSS pro
vides an economical, high performance, widely distributed, and highly scalable architec
ture for caching large amounts of data that can potentially be used by many different users
and processes within EOS:PIS. Our current implementation of the DPSS technology is
called the Image Server System ("ISS"), and is optimized for providing access to large,
image-like, read-mostly data sets such as those found in the environment of the EROS
Data Center (EDC) as the Land Processes Distributed Active Archive Center (DAAC). In
the MAGIC testbed the ISS is distributed across several sites separated by more than 1000
Km of high speed network that uses IP over ATM as the transport protocol ,and stores
very high resolution images of several geographic areas. The "Terra Vision" terrain visual-

1. The work described in this paper is supported by ARPA, Computer Systems Technology Office
(http://ftp.arpa.mil/ResearchAreas.html) and the U. S. Dept. of Energy, Office of Energy Research, Office of
Scientific Computing (http://www.er.doe.gov/production/osc/), under contract DE-AC03-76SF00098 with
the University of California. Authors: wejohnston@lbl.gov (Lawrence Berkeley Laboratory, mail stop:
BSOB-2239, Berkeley, CA, 94720, ph: 510-486-5014, fax: 510-486-6363, http://www-itg.Ibl.gov), tier
ney@ george.lbl.gov, feuquay@sunh.cr.usgs.gov. Report no. LBL-36680.

ization application uses the ISS to let a user explore I navigate a "real" landscape repre
sented in 3D by ortho-corrected, one meter images and digital elevation models (see [3]).
Terra Vision requests from the ISS, in real-time, the sub-images ("tiles") needed to pro
duce a view of the landscape. Typical use requires aggregated data streams of from 100
Mbits/sec to 400 Mbits/sec that are supplied from several servers on the network. Even in
the current prototype system the ISS is easily able to supply these data rates.

The ISS architecture is that of multiple network disk servers that are based on Unix work
stations. The system coordinates multiple servers to aggregate high-bandwidth data
streams to a network-based client application (e.g. TerraVision). Alternatively, many
lower data rate streams can be supplied to many applications simultaneously (in a "video
server" style of operation). The DPSS implementation uses an open systems, plat
form-independent, software approach. High performance is achieved in two ways: First,
the functionality of the disk servers has been kept very simple - they are essentially
"block" servers (a block being a fixed size unit of data, such as an image tile). Second,
image data sets are easily partitioned over network distributed servers in a way that
ensures parallel operation of many independent servers in order to supply a high band
width data stream to an application.

The DPSS technology potentially fits into the EOSDIS environment in various ways.
First, there are several uses that supplement EOSDIS, and that do not require direct inte
gration into existing EOSDIS systems: For example, the DPSS might be used for buffer
ing data coming into DAACs (data archive sites) prior to archiving, and it might be used
as a large scale query results cache to support SCFs (data analysis sites). Second, DPSS
technology also has potential use within the EOSDIS system itself: It could provide a
mechanism at several points in the EOSDIS architecture for rapid reorganization of large
volumes of data, and it might be used as a cache for high speed in-line processing opera
tions.

We will describe the implementation, performance, and uses of the current prototype
DPSS, including the operation of the ISS in the MAGIC testbed and its use in a regional
medical imaging experiment.

2.0 · Background

Current workstation disk technology delivers about four Mbytes/s (32 Mbits/s) per drive,
a rate that has improved at about 7% each year since 1980 [4], and there is reason to
believe that it will be some time before a single disk is capable of delivering streams at the
rates needed for the applications mentioned. While RAID [4] and other parallel disk array
technologies can deliver higher throughput, they are still relatively expensive, and do not
scale well economically, especially in an environment of multiple network based users
where we assume that the sources of data, as well as the multiple users, will be widely dis
tributed. Asynchronous Transfer Mode (ATM) networking technology, due to the architec
ture of the SO NET infrastructure that underlies large-scale, wide area ATM networks, will
provide the bandwidth that will enable the approach of using network-based distributed,
parallel data servers to provide high-speed, scalable storage systems. Data transport is pro
vided by IP datagram services (UDP and RTP) and high performance versions ofTCP (see
[5]).

2

The approach described here differs in many ways from RAID, and should not be con
fused with it. RAID is a particular data strategy used to secure reliable data storage and
parallel disk operation. Our approach, while using parallel disks and servers, deliberately
imposes no particular layout strategy (which is free to be optimized on an application or
data structure basis), and is implemented entirely in software (though the data redundancy
idea of RAID might be usefully applied across servers to provide reliability in the face of
network problems).

3.0 System Architecture Overview

The Image Server System (ISS) is an implementation of a distributed-parallel data storage
architecture. It is essentially a "block" server that is distributed across a wide area network
and used to supply data to applications located anywhere in the network. Figure 1 illus
trates the architecture. There is no inherent organization to the blocks; however, layout

block requests

ISS disk server

N~~
image se ents

single
high

bandwidth

AlM network sink (or
,...---, (interleaved cell streams source)

representing multiple ,...----,
virtual circuits)

c: .sa
co
.::!
c.

data g.
logical data

;:
requests .~ ------t~ 0 name structure

translation server

ISS Master

Figure 1 Distributed-Parallel Server System Architecture

strategies that maximize parallelism are clearly desirable. The data organization is deter
mined by the application as a function of data structures and access patterns, and is imple
mented during a data load process. When data structures and access patterns are well
understood then specific placement algorithms can be designed to optimize data place
ment for maximum parallelism (e.g. see [6]). In other cases blocks can be scattered ran
domly across the disks and servers (a strategy that can work surprisingly well). The usual

3

goal of the data organization is that data is declustered (dispersed in such a way that as
many system elements as possible can operate simultaneously to satisfy a given request)
across both disks and servers. This strategy allows a large collection of disks to seek in
parallel, and all servers to send the resulting data to the application in parallel, enabling
the ISS to perform as a high-speed image server.

The functional design strategy is to provide a high-speed "block" server, where a block is
a unit of data request and storage. The ISS essentially provides only one function·- it
responds to requests for blocks. However, for greater efficiency and increased usability,
we have attempted to identify a limited set of functions that extend the core ISS function
ality while allowing support for a range of applications. First, the blocks are "named." In
other words, the view from an application is that of a logical block server. Second, block
requests are in the form of lists that are taken by the ISS to be in priority order. Therefore
the ISS attempts (but does not guarantee) to return the higher priority blocks first. Third,
the application interface to the ISS provides the ability to ascertain certain configuration
parameters (e.g., disk server names, performance, disk configuration, etc.) in order to per
mit parameterization of block placement strategy algorithms (for example, see [6]). Addi
tionally, the ISS is instrumented to permit monitoring of almost every aspect of its
functioning during operation. This monitoring functionality is designed to facilitate per
formance tuning and network performance research. However, the information about indi
vidual server performance characteristics provided as part of this monitoring can be used

. by a client's data layout algorithm. Such performance information can facilitate a distribu
tion of the data that better accounts for the differences between individual servers' demon
strated capabilities regardless of the cause: disk hardware, OS, location in the network,
etc. Asymmetric server performance is accounted for in the image-tile placement algo
rithm used to support the Terra Vision application in MAGIC.

At the present ·state of development and experience, the ISS that we describe here is used
primarily as a large, fast, wide area network distributed "cache". Reliability with respect
to data corruption is provided only by the usual OS and disk mechanisms, and data deliv
ery reliability of the overall system is a function of user-level strategies of data replication
and/or re-request and retransmission.

The data of interest (tens to hundreds of GBytes) is typically loaded onto the ISS from
archival tertiary storage, or written into the system from live data sources. Data layout
strategy is used when the organization of the data and the application use patterns are well
understood (as with images). In the case of writing from live data sources some variation
of a "round-robin" scheme optimizes the speed of writing to the ISS.

Client Use

The client-side (application) use of the ISS is provided through a library-based API that
handles initialization (for example, an "open" of a data set requires discovering all of the
disk servers with which the application will have to communicate), and the basic block
request I receive interface. It is the responsibility of the client (or, more typically, its agent)
to maintain information about any higher-level organization of the data blocks, to main
tain sufficient local buffering so that "smooth playout" requirements may be met locally,
and to run predictor algorithms that will pre-request blocks so that application response

4

time requirements can be met. The prediction algorithm enables pipelining the operation
of the disk servers, with the goal of overcoming the inherent latency of the disks. (See [7]
and [8]). None of this has to be explicitly visible to the user-level application, but some
agent in the client environment must deal with these issues because the ISS always oper
ates on a best-effort basis: if it did not deliver a requested block in the expected time or
order, it was because it was not possible to do so. In fact, a typical mode of operation is
that pending block requests are flushed from the server read queues when they age more
than a few hundred milliseconds. The application routinely re-requests some fraction of
the data. This deliberate "overloading" of the disk servers ensures that they will be kept
busy looking for relevant blocks. This behavior is one aspect of the pipelining strategy on
the servers.

Name Server Functions

The primary function of the name server is to translate the logical block names used by the
applications into physical block names. Typical operation involves the application making
an initial request of the name server for a particular data set and getting back a list of serv
ers that will be supplying data. After the "open" operation, priority ordered logical block
request lists are sent to the name server, which translates requests to physical block loca
tio~s (disk server address, disk number, and disk block). The data is returned via the cli
ent's direct connections to individual servers. The name server ("ISS Master") also does
housekeeping and monitoring functions, and these are described in [8]. One of the design
decisions was that the name server only do logical block name translation. All other
higher level information about the structure of the data (e.g., what list of blocks comprises
a file) are relegated to a "structure server" mechanism that can maintain as complex a view
of the data as is needed by the application (or even different views of the same data). We
have not attempted to standardize the structure server (different applications can have very
different ways of viewing their data), but several functions are provided by the name sev
ers to assist the structure server.

Use of the DPSS approach for management of large data archives will be facilitated by the
ability to rapidly reconfigure the scope and organization of the storage. The extent of a
"unit of storage" (a logically associated collection of DPSS disk blocks) is only a function
of the name server. Multiple name servers of storage will, in the future, share, request, or
relinquish servers via cooperation among the name servers operated by different organiza
tions. No reorganization of the disk servers (internally or externally) is necessary. This
ability will facilitate "just-in-time" configuration of cache storage for a large data set
resulting from a query that, for example, extends across several DAACs, or in buffering
large incoming data sets resulting from, for example, several sources turning on at the
same time.

Implementation

In our prototype implementations, the typical ISS consists of several (four- five) UNIX
workstations (e.g. Sun SPARCStation, DEC Alpha, SGI Indigo, etc.), each with several
(four- six) fast-SCSI disks on multiple (two- three) SCSI host adaptors. Each workstation
is also equipped with an ATM network interface. An ISS configuration such as this can
deliver an aggregated data stream to an application at about 400 Mbits/s (50 Mbytes/s)

5

using these relatively low-cost, "off the shelf' components by exploiting the parallelism
provided by approximately five servers, twenty disks, ten SCSI host adaptors, and five
network interfaces.

The software implementation is based on Unix interprocess communication mechanisms
and a POSIX threads programming paradigm (see [9] and [10]). The three primary operat
ing systems (Sun's Solaris, DEC's OSF, and SGI's IRIX) all have slightly different imple
mentations of threads, but they are close enough that maintaining a single source is not too
difficult.

The implementation supports a number of transport strategies, including TCPIIP and
UDPIIP. UDP does not guarantee reliable data delivery, and never retransmits. Lost data
are handled at the application level. This approach is appropriate when data has an age
determined value. That is, data not received by a certain time is no longer useful, and
therefore should not be retransmitted, as is true in certain visualization scenarios.

Prototypes of the ISS have been built and operated in the MAGIC network testbed. Other
papers on the ISS are [11], which focus on the major implementation issues, [7], which
focuses on the architecture and approach, as well as optimization strategies, and [12],
which focuses on ISS applications and ISS performance issues.

Performance

Scalability of capacity and performance are inherent in the architecture: the individual
servers are effectively completely independent of each other. The time spent locating
blocks is minimal, and in principle (and frequently in fact), many servers can be sending
blocks simultaneously to the application. In other words, the performance limits are typi
cally at the client application. This architecture means that capacity and performance scale
by simply adding more disk servers anywhere in the network. (Obviously some limits
exist: network bandwidth will limit the aggregate throughput, if the number of servers
exceeds the number _of blocks in a file then adding servers will not increase the through
put, etc.). The strategy of a centralized name server seems to add very little overhead com
pared to the time required to request and deliver blocks.

TABLE 1. ISS Disk Server Performance

MaxATMLAN
System ttcp ttcp wl disk read Max ISS speed

Sun SSl0-51 70 Mbits/sec 60 Mbits/sec 55 Mbits/sec

Sun SS1000 (2 proc) 75 Mbits/sec 65 Mbits/sec 60 Mbits/sec

SGI Challenge L 82 Mbits/sec 72 Mbits/sec 65 Mbits/sec

Dec Alpha 3000/600 127 Mbits/sec 95 Mbits/sec 88 Mbits/sec

The current implementation of the servers is memory bandwidth limited, a situation com
mon to almost all current workstation hardware architectures. Our implementation does no
user-space copies of the data, which means a total of three memory copies for most OS's:
disk to memory, and two copies to get to the network. The performance of the server then
is typically the memory copy speed divided by three (a metric that has held for all of the

6

six or eight platforms that we have tested. Table 1 showsperformance measurements for
several platforms. ("ttcp" is effectively a memory-to-network copy, and the ISS numbers
include the overhead for locating blocks and moving them from disk to network.)

For more speci:lic performance analysis of the current system, see [12].

4.0 Related Work

There are other research groups working on solving problems related to distributed stor
age and fast multimedia data retrieval. For example, Ghandeharizadeh and Ramos at USC
are working on declustering methods for multimedia data [13], and Rowe, et al., at UCB
are working on a continuous media player based on the MPEG standard [14]. Similar
problems are also being solved by the Massively-parallel And Real-time Storage (MARS)
project [15], which is similar to the ISS, but uses special purpose hardware such as RAID
disks and a custom ATM Port Interconnect Controller (APIC).

In some respects, the ISS resembles the Zebra network file system, developed by John H.
Hartman and John K. Ousterhout at the University of California, Berkeley [16]. However,
the ISS and the Zebra network file system differ in the fundamental nature of the tasks
they_ perform. Zebra is intended to provide traditional file system functionality, ensuring
the consistency and correctness of a file system whose contents are changing from
moment to moment. The ISS, on the other hand, tries to provide very high-speed,
high-throughput access to a relatively static set of data.

5.0 Applications

There are several target applications for the initial implementation of the ISS. These appli
cations fall into two categories: image servers and multimedia I video file servers.

Image Server

The initial use of the ISS is to provide data to a terrain visualization application in the
MAGIC testbed. This application, known as TerraVision [3], allows a user to navigate
through and over a high resolution landscape represented by digital aerial images and ele
vation models. TerraVision is of interest to the U.S. Army because of its ability to let a
commander "see" a battlefield environment. Terra Vision is very different from a typical
"flight simulator" -like program in that it uses high-resolution aerial imagery for the visual
ization instead of simulated terrain. Terra Vision requires large amounts of data, transferred
at both bursty and steady rates. The ISS is used to supply image data at hundreds of
Mbits/s rates to Terra Vision. No data compression is used with this application because
the bandwidth requirements are such that real-time decompression is not possible without
using special purpose hardware.

In the case of a large-image browsing application like Terra Vision, the strategy for using
the ISS is straightforward: the image is tiled (broken into smaller,.equal-sized pieces), and
the tiles are scattered across the disks and servers of the ISS. The order of tiles delivered to
the application is determined by the application predicting a "path" through the image
(landscape), and requesting the tiles needed to supply a view along the path. The actual
delivery order is a function of how quickly a given server can read the tiles from disk and

7

Tiled ortho
images of
landscape.

_____ _,..,_..,_ Tiles intersected by the path of travel:

~__,~:1":"':"''"7":"~oi-7~r-:"'1""7 74,64,63,53,52,42,32,33

~
Data placement algorithm results in mapping tiles

along path to several disks and servers.

tile ~ server and disk

------===============:: 74- SlDI 64- SlD2
63- S2Dl
53- SlDI
52- S2D2
42- SlD2
32- S2Dl

ISS server 2

Servers and disks operate in parallel to supply tiles to the application.

·Figure 2 ISS Parallel Data Access Strategy as Illustrated by the Terra Vision
Application

send them over the network. Tiles will be delivered in roughly the requested order, but
small variations from the requested order will occur. These variations must be accommo
dated by buffering, or other strategies, in the client application.

Figure 2 shows how image tiles needed by the Terra Vision application are declustered
across several disks and servers. More detail on this declustering is provided below.

Each ISS server is independently connected to the network, and each supplies an indepen
dent data stream into and through the network. These streams are formed into a single net
work flow by using ATM switches t~ combine the streams from multiple medium-speed
links onto a single high-speed link. This high-speed link is ultimately connected to a
high-speed interface on the visualization platform (client). On the client, data is gathered
from buffers and processed into the form needed to produce the user view of the land
scape.

This approach could supply data to any sort of large-image browsing application, includ
ing applications for displaying large aerial-photo landscapes, satellite images, X-ray
images, scanning microscope images, and so forth.

Figure 3 shows how the network is used to aggregate several medium-speed streams into
one high-speed stream for the image browsing application. For the MAGIC Terra Vision
application, the application host (an SGI Onyx) is using multiple OC-3 (155 Mbit/s) inter
faces to achieve the bandwidth requirements necessary. These multiple interfaces will be
replaced by a single OC-12 (622 Mbit/s) interface when it becomes available.

In the MAGIC testbed (see Figure 4), the ISS has been run in several ATM WAN configu
rations to drive several different applications, including Terra Vision. The configurations
include placing ISS servers in Sioux Falls, South Dakota (EROS Data Center), Kansas

8

Large Image Browsing Scenario (MAGIC Terra Vision application)

MAGIC
application

Figure 3 Use of the ISS for Single High-Bandwidth Application

EROS Data
Center,
USGS

ISS Load
(implements

data
placement)

," I I

Jl ; \
to other ISS servers

Ft. Leavenworth
US Army

application
(e.g. Terra Vision)

-""'"- --
Minnesota

Supercomputer Center

Sprint, Technology Integration
Center, Kansas City

Figure 4 MAGIC Testbed Application and Storage System Architecture

City, Kansas (Sprint), and Lawrence, Kansas (University of Kansas), and running the Ter-
'

9

raVision client at Fort Leavenworth, Kansas (U.S. Army's Battle Command Battle Lab).
The ISS disk server and the Terra Vision application are separated by several hundred kilo
meters, the longest single link being about 700 kilometers.

Video Server

Examples of video server applications include video players, video editors, and multime
dia document browsers. A video server :might contain several types of stream-like data,
including conventional video, compressed video, variable time base video, multimedia
hypertext, interactive video, and others. Several users would typically be accessing the
same video data at the same time, but would be viewing different streams, and different
frames in the same stream. In this case the ISS and the network are effectively being used
to "reorder" segments (see Figure 5). This reordering affects many factors in an image

Video File Server Scenario

Receiver

Receiver

Receiver

Receiver

Figure 5 Use of the ISS to Supply Many Low-Bandwidth Streams

server system, including the layout of the data on disks. Commercial concerns such as
Time Warner and U.S. West are building large-scale commercial video servers such as the
Time Warner I Silicon Graphics video server [17]. Because of the relatively low cost and
ease of scalability of our approach, it may address a wider scale, as well as a greater diver
sity, of data organization strategies so as to serve the needs of schools, research institu
tions, and hospitals for video-image servers in support of various educational and
research-oriented digital libraries.

Health Care Application2

An example of a medical application where we will be using this technology is the collec
tion and playback of angiography images. Procedures used to restore coronary blood flow,
though clinically effective, are expensive and have contributed significantly to the rising

2. This work is being done in conjunction with Dr. Joseph Terdiman, Kaiser Permanente Division of
Research, and Dr. Robert Lundstrom, San Francisco Kaiser Hospital Cardiac Catheterization Laboratory.
The implementation is being done with the support of a Pacific Bell CalREN grant (ATM network access),
and in collaboration with Sun Microsystems and Philips Palo Alto Research Laboratory. See
http://www-itg.lbl.gov/Kaiser/home-page.html

10

cost of medical care. To minimize the cost of such procedures, medical care providers are
beginning to concentrate these services in a few high-volume tertiary care centers. Patients
are usually referred to these centers by cardiologists at their home facilities; the centers
then must communicate the results back to the local cardiologists as -soon as possible after
the procedure.

The advantages of providing specialized services at distant tertiary centers are signifi
cantly reduced if the medical information obtained during the procedure is not delivered
rapidly and accurately to the treating physician in the patient's home facility. The delivery
systems currently used to transfer patient information between facilities include interoffice
mail, U.S. Mail, fax machine, telephone, and courier. Often these systems are inadequate
and potentially could introduce delays in patient care.

With an ATM network and a high-speed image file server, still image and video sequences
can be collected from the imaging systems. These images are sent through an ATM net
work to storage and analysis systems, as well as directly to the clinic sites. Thus, data can
be collected and stored for later use, data can be delivered live from the imaging device to
remote clinics in real-time, or these data flows can all be done simultaneously. Whether
the ISS servers are local or distributed around the network is entirely a function of the
optimal logistics. There are arguments in regional healthcare information systems for cen
tralized storage facilities, even though the architecture is that of a distributed system. See,
for example, [18].

EOS-DIS

There are several possible uses of the DPSS technology within the EOSDIS architecture
as a new element providing a shared, high speed cache (see Figure 5).

One use provides for a "community" cache supporting a single instance of a large data set
being used independently or collaboratively by several sites. This use is largely indepen
dent of the existing EOSDIS system, but would require an application to coordinate the
data transfer from one or more DAACs to the DPSS. This application could also provide
the data structure definition and resource allocation by communication with the DPSS
name server. One possible origin of large data sets that need to be available on-line as a
unit are those that result from queries to multiple databases (e.g. data from multiple
DAACs).

A second potential use is as a buffer for high speed data sources. As a data source turns on
and off, it could write data to the DPSS. Once on the DPSS servers, the data can be read
off at rates suitable to an application loading a database. During the read process the data
can easily be reorganized since the DPSS provides very fast random access to data bocks.
(The whole DPSS is optimized as a random-access block server.) Similarly, the DPSS
could provide a high-speed, random-access cache for reorganizing and moving data
among DAACs.

6.0 Glossary

EOSDIS: Earth Observing System, Data and Information System

DAAC: Distributed Active Archive Center (ofEOSDIS)

11

DPSSName

~
query whose

Data

DPSSs acting as a
multi-user,

multi-source cache

DPSSs used for
inter-DAAC

transfers

Figure 6 Possible Uses of DPSS Within the EOSDIS Architecture

EDOS: EOS Data and Operations System

SCF: Science Computing Facility (of EOSDIS - both NASA and user facility)

TDRSS: Tracking and Data Relay System

7.0 References

[1] MAGIC (Multidimensional Applications and Gigabit Internetwork Consortium) is a
gigabit network testbed that was established in June 1992 by the U.S. Government's
Advanced Research Projects Agency (ARPA)[19]. The testbed is a collaboration
between Mitre, LBL, Minnesota Supercomputer Center, SRI, Univ. of Kansas,
Lawrence, KS, USGS- EROS Data Center, Sprint, Northern Telecom, U.S. West,
Southwest Bell, and Splitrock Telecom. More information about MAGIC may be
found on the WWW home page at: http://www.magic.net/ .

12

TDRSS
(relay satellites)

QC SCFs
(data quality

control)

·~
EDOS User SCFs

EOS Instruments (processing and

~ /
(research and

backup) , analysis)

I EOS Satellites EOSDAACs

~
(data

management)
White Sands

Complex
(ground station)

Figure 7 EOS DIS Architecture (from [2])

[2] See any of several NASA documents on EOSDIS. For example: EOS Data and
Infonnation System (EOSDIS), NASA; May, 1992, available from ESSO Document
Resource Facility via NASA Headquarters, Earth Science and Applications Division
(Code SE), Washington, D. C. 20546. Also see
http://harp.gsfc.nasa.gov: 1729/eosdis_documents/eosdis_homt:.html .

[3] Lau, S., Leclerc, Y. "TerraVision: a Terrain Tisualization Tystem,", Technical Note
540, SRI International, Menlo Park, CA, Mar. 1994. Also see:
http://www.ai.sri.com/-magic/terravision.html

[4] Patterson, D., Gibson, R., and Katz, R., "The Case for RAID: Redundant Arrays of
Inexpensive Disks", Proceedings ACM SIGMOD Conference, Chicago, IL, May,
1988 (pp. 106-113) (See http://cs-tr.cs.berkeley.edu/TR/Search! .)

[5] Jacobson, V., R. Braden, D. Borman, "TCP Extensions for High Performance,"
Internet Engineering Task Force, Request for Comments (RFC) 1323, May, 1992.
(Available from http://ds.internic.net/ds/dspglintdoc.html .)

[6] Chen L. T. and Rotem D., "Declustering Objects for Visualization", Proc. of the 19th
VLDB (Very Large Database) Conference, 1993.

[7] Tierney, B., Johnston, W., Chen, L.T., Herzog, H., Hoo, G., Jin, G., Lee, J., and
Rotem, D., "Distributed Parallel Data Storage Systems: A Scalable Approach to
High Speed Image Servers", Proceedings of ACM Multimedia '94, Oct. 1994,
LBL-35408. Also see http://george.lbl.gov/ISS/papers.html .

[8] The most current (and evolving) description of the DPSS I ISS technology is in the
report LBL-36002 at http://www-itg.lbl.gov/ISS/papers.html .

13

[9] Open Software Foundation, OSF DCE Applications Development Guide, Prentice
Hall, Englewood Cliffs, New Jersey, 1993. (Also see http://www.osf.org:8001/ .)

[10] Shirley, J., W. Hu, and D. Magid, Guide to Writing DCE Applications, 2ed.,
O'Reilly & Associates, Sebastopol, CA, 1994. (Also see http://www.ora.com/ .)

[11] Tierney, B., Johnston, W., Herzog, H., Hoo, G., Jin, G., and Lee, J., ''System Issues
in Implementing High Speed Distributed Parallel Storage Systems", Proceedings of
the USENIX Symposium on High Speed Networking, Aug. 1994, LBL-35775. Also
see http://george.lbl.gov/ISS/papers.html .)

[12] Tierney, B., Johnston, W., Chen, L.T., Herzog, H., Hoo, G., Jin, G., Lee, J., "Using
High Speed Networks to Enable Distributed Parallel Image Server Systems", Pro
ceedings of Supercomputing '94, Nov. 1994, LBL-35437. Available from
http://george.lbl.gov/ISS/papers.html .)

[13] Ghandeharizadeh, S. and Ramos, L, "Continuous Retrieval of Multimedia Data
Using Parallelism", IEEE Transactions on Knowledge and Data Engineering, Vol 5,
No 4, August 1993.

[14] Rowe, L. and Smith, B.C., "A Continuous Media Player", Proc. 3rd International
Workshop on Network and Operating System Support for Digital Audio and Video,
San Diego, CA, Nov. 1992. (See http://cs-tr.cs.berkeley.edu/TR/Search/ .)

[15] Buddhikot, M. M., Parulkar, G., and Cox, J., "Design of a Large Scale Multimedia
Storage Server", Proceedings of INET '94 I JENC5, 1994.

[16] Hartman, J. H. and Ousterhont, J. K., "Zebra: A Striped Network File System", Pro
ceedings of the USENIX Workshop on File Systems, May 1992. (See
http:/ /cs-tr.cs. berkeley.edu/TR/Search/ .)

[17] Langberg, M., "Silicon Graphics Lands Cable Deal with Time Warner Inc.", San
Jose Mercury News, June 8, 1993.

[18] Johnston, W., and Allen, A., M.D., "Regional Health Care Information Systems:
Motivation, Architecture, and Implementation", LBL report no. 34770, Lawrence
Berkeley Laboratory, Berkeley, CA, 94720.

[19] Richer, I. and Fuller, B.B., "An Overview of the MAGIC Project," M93B0000173,
The MITRE Corp., Bedford, MA, 1 Dec. 1993. (Available from
http://www.magic.net/MAGIC_Summary. ps .)

,.

14

LA~NCEBERKELEYLABORATORY
UNIVERSITY OF CALIFORNIA

TECHNICAL INFORMATION DEPARTMENT
BERKELEY, CALIFORNIA 94720

. -·

