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Abstract 

The vector fields of the quantum Lie algebra are described for the 

quantum groups GLg(N), SLg(N) and SOg(N) as pseudodifferential 

operators on the linear quantum spaces covariant under the corre

sponding quantum group. Their expressions are simple and compact. 

It is pointed out that these vector fields satisfy certain characteris

tic polynomial identities. The real forms SUg(N) and SOq(N, R) are 

discussed in detail. 
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1 Vector Fields for Quantum Groups 

A quantum group can be described[!] in terms of matrices A with noncom

muting elements satisfying the equation 

(1) 

with the R matrix appropriate to the particular quantum group. The matrix 

elements generate the algebra of functions on the group. Here we have used 

a well known standard notation: for instance, Eq.(l) written explicitly, takes 

the form 

(2)· 

The vector fields on the quantum group can be described [2, 3, 4, 5] by the 

matrix elements of a matrix y satisfying the commutation relation 

(3) 

which corresponds to the Lie algebra relations in the classical case. The 

action of the vector fields on the group is then given by the commutation 

relation 

(4) 

The quantum group matrices can coact on a quantum space, for instance 

by right multiplication. A point of coordinates Xoi will be transformed into 

Xi = XojA{ or, more compactly, 

x = xoA. (5) 

Keeping the original point x0 fixed, the action of a vector field on the quantum 

group induces an action on the quantum space 

A A 

Yix2 = x2R12Y2R12, (6) 

I.e. 

Y i RAimynRA lr 
j Xk = Xm In r jk· (7) 
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We shall consider the case when a differential calculus covariant with 

respect to the coaction of the quantum group exists on the quantum space. 

In this case it is natural to ask whether it is possible to realize the vector 

fields Y as pseudodifferential operators satisfying Eqs.(3) and (6). We shall 

show that this can be done for the quantum groups GLq(N), SLq(N) and 

SOq(N). Their real forms are also considered. 

The calculus for the quantum plane covariant under GLq(N) is well known[6]. 

The coordinates Xi in the plane satisfy the commutation relations 

(8) 

and the derivatives fJi satisfy 

(9) 

and 

(10) 

All indices run from 1 toN and R is the GLq(N) matrix, which satisfies the 

characteristic equation 

A 2 A 1 
R = 1 + )..R, ).. = q - q- . (11) 

Using Eq.(ll) and the above commutation relations, it is easy to verify that 

the differential operator 

(12) 

satisfies Eq.(6), which we repeat here, 

(13) 
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as well as 

(14) 

Combining these two, one finds that the matrix Y satisfies also Eq.(3). 

The quantum subgroup SLq(N) can be obtained from GLq(N) as follows[4]. 

For the quantum matrices one uses the standard quantum determinant detqA 

and defines a new matrix · 

(15) 

having quantum determinant equal to one. For the vector fields, one defines 

an appropriate determinant DetY and defines a new matrix of vector fields[4, 

5] 
Z = (DetYtl/Ny (16) 

having determinant one. The number of independent elements of the matrix 

Z is N 2 -1, as in the classical case. For the particular representation Eq.(12) 

of the Y matrix, it is possible to show that 

DetY = p,, (17) 

where p, is the rescaling operator in the plane 

(18) 

which satisfies 
II. q2x £:Jill. __ q2~~.£:Ji. ,-Xi = iP,, u ,- ,-u (19) 

Thus here 

(20) 

realizes the SLq(N) vector fields as pseudodifferential operators in the quan

tum plane. Note that p, commutes with the elements of Y. 
It is very easy to verify that the matrix given by Eq.(12) satisfies the 

identity 

(Y- p,)(Y- q-2
) = 0, (21) 
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where matrix multiplication is implied. This is a special example of polyno

mial characteristic equations satisfied by quantum vector fields[7]. In general 

these equations are of higher order but for the realization Eq.(12) we see that 

the polynomial is quadratic in Y. We intend to come back to a general treat

ment of these characteristic equations in a forthcoming publication. 

The invariant quantum trace of the k-th power of the matrix Y is defined 

as 

(22) 

where D is the diagonal matrix (1, q2, ... , q 2(N-l)). The tk commute with 

the matrix elements of Y. In general only the first r ( k = 1, 2, ... , r) are 

independent, where r is the rank of the group[1], a fact which is related 

to the existence of the characteristic polynomial equations for Y mentioned 

above. For Y given by Eq.(12) all tk are simply functions of 11· For instance, 

etc., where 

t2 = q-2tl - /-lq-2N + /12' 

t3 = q-2t2 _/12q-2N + /13, 

[N) = 1 + q-2 + q-4 + ... + q-2(N-l)_ 

(23) 

(24) 

(25) 

(26) 

If lql = 1 the calculus given by Eqs.(8-10) for the quantum plane can be 

given a reality structure[6, 8] by requiring Xi to be real 

and by defining conjugate derivatives as 

-8 . 2i'ai 
t = -q ' 

where we have introduced the notation 

·I N 1 . z = + - z, 
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i = 1,2, ... ,N. 

(27) 

(28) 

(29) 
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,f 

Here we consider instead the case when q is real and the complex conjugates 

of Xi and of [Ji are new independent variables. It will be convenient to give 

them new names, i.e. we set 

(30) 

and 

(31) 

The commutation relations of these new variables can be obtained imme

diately from Eqs.(S-10) by complex conjugation (remember that this is an 

involution which inverts the order of factors in a product). Using the sym

metry property 

we see that 

and 

A ij A kl 
Rkz=R·· 1J ' 

X2X1 = q-1 R12X2X1' 

xi tJi = -81 + qR{ktJzxk 

(32) 

(33) 

(34) 

(35) 

Eq.(34) can be written in a form more analogous to Eq.(9) if one introduces 

the matrix 
wi.r = (fl-l)r~ 2(j-r) = (fl-1)ri.q2(i-s) 

JS SJq SJ l 

which satisfies 

and 

It takes the form 

where i' is given by Eq.(29). 
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To complete the algebra of the complex calculus, we must now give com

mutation relations between the variables Xi, ()i and their conjugate xi, fk A 

consistent set is given by 

xixi = q(R-1 )~7xkx 1 , (41) 

ai A j - ( fl-1 )ji A k fi x - q lkx ' (42) 
A -1 A kl A 

OiXj = q RijXkOI (43) 

and 
aifj. - q-1 flikfJ az 

J- jl k . (44) 

Consistency can be checked by verifying that all these relations braid cor

rectly with each other. 

Having the complex calculus we can now ask how the vector field real

ization of Eq.(12) acts on the conjugate variables. It is not hard to verify 

that 

( 45) 

and 

( 46) 

On the other hand, by complex conjugation, Eqs.(6),(14), (45) and (46) give 

and 
t A -1 t A 82Y;. = R 12 Y; R1282, 

where yt is the hermitian conjugate of the matrix Y 
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( 47) 

(48) 

(49) 

(50) 

(51) 
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which satisfies the equation conjugate of Eq.(3) 

(52) 

as well as the commutation relation with Y 

(53) 

Until now, we have considered two GLq(N) groups complex conjugate of 

each other, i.e. a truly complex GLq(N)[9, 10, 11]. The quantum group can 

be restricted to Uq(N) by imposing on its matrices the unitarity condition 

(54) 

and to SUq(N) by further normalizing the matrices as in Eq.(15) so that 

they have quantum determinant equal to one. 

The vector fields of the Uq(N) subgroup can be defined as the elements 

of the Hermitian matrix 
u = yyt_ (55) 

Indeed, it is very easy to check that U commutes with the Hermitian length 

(56) 

(Y and yt separately do not), i.e. the U vector fields leave C invariant. U 
is a perfectly good matrix of vector fields and satisfies equations similar to 

Eq.(3) and Eq.(6) 

and 

R12U2R12u2 = u2R12u2R12, 

U1x2 = x2R12U2R12 

x2U1 = R12U2R12x2, 

as a consequence of equations for Y and yt given above. Notice that 
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which will be useful to us later. 

Finally we observe that, if we want to reduce the vector fields to the 

number appropriate to SUg(N), we must normalize U, i.e., take the matrix 

(61) 

In addition to commuting withY/, the rescaling operator J1 in Eq.(18) corn

mutes with xi, fJi and therefore with (Yt)} and 

p, = 1- q>.fJixi. (62) 

On the other hand P, commutes with (Yt)~, Xi,[Ji, Yji and satisfies 

p,xi = q-2xi p,, fJip, = q-2 p,fJi. ( 63) 

Clearly 11"fi commutes with £, therefore so does Z zt. Z and zt satisfy 

equations analogous to Eq.(3),(52),(53). Using this fact one can show that 

Detzzt = (DetZ)(Detzt) = 1. (64) 

Notice that the vector field matrix zzt is Hermitian, which is the natural 

reality condition for SUg(N). 

3 SOq(N) and SOq(N, R) 

\Ve shall call T the quantum matrices of SOq(N), instead of A. In addition 

to 

Rt2T1T2 = TtT2R12, 

they satisfies the orthogonality relations[!] 

TtgT = g, Tg-1Tt = g-1' 

(65) 

(66) 

where the' numerical quantum metric matrices g = 9ii and g-1 = gii can be 

chosen to be equal 9ii = gii. The S 0 q ( N) R matrix satisfies also orthogo

nality conditions 

(R~ -1 )ij imR~ jn R~ mi nj 
kl = 9 mk9nl = 9km In 9 ' (67) 
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as well as the usual symmetry relations 

The SOq(N) vector field matrix, which we shall call Z, satisfies 

(68) 

(69) 

(70) 

as well as an orthogonality .constraint in one of the two equivalent forms[3, 5] 

(z RA z )ij 1-N 
9ij 2 12 2 kl = q 9k/, 

(z RA z )ij kl 1-N ij 
2 12 2 k/9 = q 9 . 

(71) 

(12) 

Eq.(71) or (72) reduces the number of independent vector fields from N 2 to 

N ( N - 1) /2 as in the classical case. 

The projector decomposition of the R matrix for SOq(N) is 

(73) 

Here p+ is the traceless part of the symmetriser, p- is the antisymmetriser 

and P 0 is the trace operator. It is related to the metric by 

(po)ij _ ij 
kl - v9 9kl, (74) 

The coordinates Xi of the quantum Euclidean space satisfy the commutation 

relations 

(75) 

or equivalently 
A kl 

XkXZRij = qxiXj- Aa(x · x)9ij, (76) 

where x • x = XkXz9kl = XkXk and 

1 
a----:-:--- 1+qN-2. (77) 
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As a consequence the length 

L = o:x. X (78) 

commutes with all the coordinates, Lx; = x;L. 

A calculus on quantum Euclidean space can be obtained by introducing 

derivatives f)i which satisfy 

(79) 

and 

(80) 

The Laplacian 

(81) 

commutes with all derivatives, f18i = ai !:1. One can define a rescaling oper

ator 

(82) 

which satisfies 

A 2 A 8;A = q2A8i. Xi= q X; , (83) 

A useful relation is 

(84) 

The action of the vector fields Z on SOq(N) induces in the standard way 

an action on Euclidean space analogous to ( 6) 

(85) 

For q real, the quantum Euclidean space can be endowed with a reality 

structure as follows. For the coordinates one imposes the reality condition 

- iJ. i 
X;= 9 Xj =X. (86) 
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Let us now define derivatives ai in terms of the conjugate derivatives by 

A A. N-
a. - g· ·83 - -q ai t- tJ - • (87) 

The complex conjugate of Eq.(79) can be transformed to the form 

(88) 

The relation between the derivatives 8i and their complex conjugates or the 

ai can be written[12] in the nonlinear form 

(89) 

which can be shown to satisfy Eq.(88). Using Eq.(89), one can show that 

(90) 

We wish to find a realization for the vector fields Z of SOq(N, R) as pseu

dodifferential operators on Euclidean space. One way to find the appropriate 

expression is to proceed in analogy with Eq.(60) by writing similar terms but 

adjusting the coefficients so that all relations required of Z are satisfied. It 

turns out that the correct formula is 

(91) 

Using the relations given above for the calculus on Euclidean space, one can 

verify that Zj satisfies Eq.(85) as well as 

. aizj = flji zm flznar 
k lm n kr ' (92) 

and 
fJi zj = flji zm flln fJr 

k lm n kr · (93) 

Combining Eqs.(85), (92) and (93), one finds that Z satisfies also Eq.(69). 

It is remarkable that Z, as given by Eq.(91) satisfies even the orthogonality 

relations Eqs.(71) and (72), without need for any further normalization as was 
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necessary in Eqs.(20) and (61 ). This can be verified by direct computation 

and is due, apparently, to the fact that the SOq(N) R matrix already satisfies 

orthogonality relations. 

Finally we may ask whether Z, as given by Eq.(91) satisfies the natural 

reality condition for SOq(N, R) which is 

zt = z. (94) 

It is very easy to see that this is indeed the case if one observes that Eq.(91) 

can be written in the ·more symmetric form 

(95) 

using Eq.(84). 

On the other hand, if one does not impose Eq.(86) and doesn't identify 

iJi, as given in Eq.(89), with the complex conjugate derivative f)i by Eq.(87), 

then (94) will not be true. However, Eq.(91) would still give a realization of 

vector fields for the complex quantum group SOq(N) on Euclidean space. 

In the differential calculus on a quantum space, one naturally introduces 

the differentials of the coordinates 

For quantum Euclidean space, they satisfy the commutation relations 

A kl 
Xi~j = q~kXIRij, 

0i~j = q-1(_k-1)~7~kf)I. 

(96) 

(97) 

(98) 

(99) 

According to Eq.(86) it is natural to introduce variables ii related to ~i by 

(100) 
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The complex conjugate of Eq.(98) can be written as 

(101) 

It was shown[12] that the ti can be related to ei by a (nonlinear) transforma

tion which was given explicitly there. It turns out that that transformation 

can be written very compactly as 

(102) 

where A is given by Eq.(82). In this form one can easily verify that t sat

isfies all desired relations. For instance Eq.(101) follows immediately from 

Eqs.(83), (85) and (98). The requirement that complex conjugation be an 

involution restricts a to be a phase, lal = 1. Vice versa, if one knows the 

correct expression for ti, one can infer from it the formula for Zf. 

4 Conclusion 

All above equations are" covariant". This means thay they go into themselves 

by coaction transformations. For instance, for all equations for GLq(N) from 

Eq.(1) to (14), it is easy to see that the transformation 

(103) 

(104) 

leaves them invariant. Here the matrix elements of B are taken to commute 

with everything (which is the reason for using the word coaction) but B is 

itself a quantum matrix, satisfying the analogue of Eq.(1). It holds similarly 

for the complex conjugate sector of GLq(N), 
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(the relation (Bt)-1 = (B-1 )tis used). Analogous transformation laws leave 

invariant the SLq(N), SOq(N) equations as well as their respective real forms. 

The realization of vector fields for GLq(N) and SLq(N) given in section . 

2 is equivalent to that given earlier[13]. The formulas given here are simpler 

because of a more convenient choice of notations and definitions. For in

stances, we use a right coaction and a corresponding more convenient lower 

index for the coordinates Xi and upper index for the derivatives fi. The same 

applies to a comparsion between the formulas written above for SOq(N) and 

earlier ones[12]. The reader should have no difficulty in establishing the 

correspondence between the conventions of these different references. 

A realization of vector fields for the orthogonal group in terms of pseudod

ifferential operators on quantum Euclidean space has been given by Gaetano 

Fiore[14]. He uses the explicit description of the quantum Lie algebra by 

Drinfeld and Jimbo, instead of Eqs.(69), (71) and (72) and gives explicit re

alizations for the vector fields in that basis. Ours is an alternative solution of 

the same problem which has perhaps the advantage of being more symmetric 

and also covariant, as explained above. 
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