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Introduction 

Transition state theory (TST) [1-3] has historically been the most important and 

widely used theoretical approach for describing the rates of chemical reactions, and for 

qualitative pictures and order-of-magnitude estimates one does not expect this situation to 

change. However a rigorous, quantitative treatment of chemical reaction rates must go 

beyond TST, A rigorous description, for example, must be based on a quantum 

mechanical description of the molecular system, but the fundamental assumption [2,3] on 

which TST is based - namely that the molecular dynamics is "direct", i.e., that no 

trajectories re-cross a dividing surface which separates reactants and products (vide infra) 

-is couched inherently in the language of classical mechanics. There is no unambiguous. 

way to quantize TST, for the various ways of trying to do so invariably require one to 

introduce additional assumptions about the reaction dynamics. As one tries to eliminate. 

these "additional assumptions"· one is driven ultimately to an exact quantum treatment of the 

reaction dynamics which is then no longer a transition state theory (i.e., approximation) but 

simply an exact formulation. It is such exact approaches, those without inherent 

approximations, that are the subject of this chapter. 

One way to determine the rate constant rigorously is to solve the complete state-to

state reactive scattering Schrodinger equation (with appropriate scattering boundary. 

conditions) to obta~n the S-matrix { Snp,nr (E,J)} as a function of total energy E and total 

angular momentum J (where nr<n~ label the reactant (product) quantum states), from 

which all the state-to-state scattering cross sections can be obtained. Several other chapters 

in this volume do indeed focus on this state-to-state description of reactive scattering. 

Averaging these cross sections over the proper distribution of initial quantum states, and 

summing over all final quantum states, produces the rate constant, but this is in a sense 
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"wasteful" if one seeks only the rate constant itself. Thus we seek not only a rigorous, 

i.e., correct, approach for determining a rate constant, but also one (like TST) that is direct, 

i.e., that avoids having to solve the complete state-to-state reactive scattering problem. The

approaches described below are those both correct and direct, and they will in fact be seen 

to have qualitative features and interpretations that are reminiscent ofTST. 

The presentation below first reviews the description of rate constants within the 

framework of classical mechanics and shows how the transition state approximation arises. 

The difficulties of quantizing TST are discussed and then fully rigorous quantum 

approaches presented. Recent applications of these latter to several reactions of interest are 

presented. 

Classical Rate Theory 

Figure 1 shows a schematic depiction of the potential energy surface for a generic 

bimolecular reaction. Within the realm of classical mechanics the thermal, or equilibrium 

(i.e., reactants in a Boltzmann distribution) rate constant is given by [1,3,5] 

k(T) = Q,(Tt1 (21tllrF f dp f dq e-~H(p.q} F(p,q) x,(p,q), (I) 

where~= (kT)·l, Qr is the reactant partition function (per unit volume), His the classical 

Hamiltonian for the complete molecular system, F is a flux factor, and Xr is the 

characteristic function for reaction. The flux factor is defined in terms of a dividing 

surface, defined by the equation 

f(q) = 0' (2) 

which separates reactants (for which f(q)<O) and products (for which f(q)>O); the flux is 

then 
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F(p,q) = ~ h[f(q)], (3) 

where h is the usual Heaviside function 

!: f 1, ~>0 ) h(-,) = . 
\0, ~< 0 

(4) 

Assuming for simplicity that the coordinates and momenta (q;p) are Cartesian- so that 

the Hamiltonian is of the form 

p2 
H(p,q) =2m V(p,q) , (5) 

Eq. (3) for the flux becomes. 

af 
F(p,q) = 8[f(q)]- • p/m, 

aq 
(6) 

where we here used the fact that h' (~) = 8(~), the Dirac delta function. 

Xr can be defined in several ways,3 but the one that most naturally generalizes to the 

quantum mechanical case is 

Xr(p,q) = lim h[f(q(t)] 
t-+oo 

(7) 

where q(t) = q(t;p,q) is the classical trajectory determined by the initial conditions (p,q) at 

time t = 0; thus, Xr (p,q) = 1 if the trajectory with initial conditions (p,q) is on the product 

side of the dividing surface as t --7 oo, and is 0 otherwise. All of the dynamics of the 

reaction is thus contained in the characterization function Xr· 

It is useful for some purposes to defme the microcanonical rate constant k(E), 

k(E) = [21thpr(E)]-l N(E) , (8) 

where Pr is the density of reactant states (per unit energy), and N(E) is the cumulative 

reaction probability, 

N(E) =21th (21tl>rF f dp f dq S[E-H(p,q)] F(p,q) X,(p,q), (9) 
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where F and Xr are as above. Since 

J~ dE e-~E O[E-H(p,q)] = e-~H(p,q), (10) 

it is easy to see that the thermal rate k(T), Eq. (1), can be expressed in terms of N(E), Eq. 

(9), as 

k(T) = [21ri>Q,(T)r1 I~ dE e-~E N(E) _ 
(11) 

For most of this paper, therefore, N(E) will be focused on as the primary object of interest, 

and the canonical (i.e., thermal) and microcanonical rates are given in terms of it by Eqs. 

(11) and (8), respectively. The last section of the chapter, however, discusses an approach 

for the "direct" determines of the canonical rate k(T) itself. 

The calculation implied by Eq. (9) for N(E) (or Eq. (1) for k(T)) is therefore to 

integrate over phase space (p,q) - in practice usually with Monte Carlo sampling methods 

-where each phase point (p,q) serves as the initial conditions for a trajectory that must be 

run (i.e., numerically integrated) to determine whether Xr is 1 or 0, i.e., whether or not this 

phase point contributes to the integral. Because the flux, Eq. (6), contains the factor 

O[f(q)], all trajectories begin on the dividing surface f(q) = 0 . 

. Fii:lally, we note that the rate is independent of the choice of the dividing surface (by 

virtue of Liouville's theorem) but that a sensible choice for it greatly simplifies the 

calculation [6]. Referring to Fig. 1, it is intuitively clear that using dividing surface S1 will 

require trajectories to be run for a much longer time to determine whether they will wind up 

on the product side as t ~ oo than if dividing surface S2 is used. 

Transition State Theory 
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The fundamental assumption of transition state theory is that of direct dynamics, i.e., 

that all trajectories which cross the dividing surface do so only once [1,3,5]. If this is true 

then a trajectory will be on the product side of the dividing surface at t-7o0 only if it begins 

at t = 0 (on the dividing surface) headed in the product direction, i.e., with positive 

momentum normal to the dividing surface, 

{
af(q) J XTST(p,q) = -- • p/m , 
o(q) 

(12) 

which may also be thought of as a short time approximation to the dynamics. The resulting 

phase space integral for N(E) which then follows from Eq. (9) is particularly simple if one 

chooses a planar dividing surface; if qF is the coordinate normal to the dividing plane, then 

f(q) = qF (13) 

-i.e., qF = 0 defmes the dividing surface- and Eq. (9) then reads 

NTST(E) = 21th (21thtF J dq J dp 8 [E-V (q) i;] 8 ( 'lf~ h(pF) . ( 14) 

The two delta functions in the integrand allow the integrals over qF and pF to be carried out, 

giving 

NTST(E) = (21tht<F-IJ J dp' J dq' h[E-H;(p',q)] , (15) 

where (p',q') = (pk,qk), k = 1, ... , F-1 are the coordinates and momenta for motion on the 

dividing surface defined by qF = 0, and 
F-1 2 

H*(p',q') = L i~ + V(q',qF=O) , 
k=l 

(16) 

is the Hamiltonian in this reduced space. In words, Eq. (15) says that the cumulative 

reaction probability is the volume of phase space of the "activated complex" (the (F-1) 
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dimensional system for motion on the dividing surface) with energy less than or equal to E. 

With Eq. (11), the TST expression for the thermal rate then takes its standard form, 

_ kT Q~(T) 
kTST(T) - h Qr(T) , 

where Q~ is the partition function of the activated complex, 

Ql(f) = (211hr(F-l) f dp' f dq' e-PHl(p',q'). 

(17) 

(18) 

An important feature of classical transition state theory is that it is an upper bmmd to 

the correct result for any choice of the dividing surface. I.e., since all reactive trajectories 

must cross the dividing surface, but all trajectories that cross it are not necessarily reactive 

(because they might re-cross it at a later time and be non-reactive), any error in the TST 

approximation, Eq. (12), is to count some non-reactive trajectories as reactive. Thus, 

while the exact rate expression does not depend on the choice of the dividing surface, the 

TST rate does, and by virtue of this bounding property the best choice of the dividing 

surface is the one which makes krsT a minimum. This is the variational aspect of TST: any 

parameters which specify the shape or location of the dividing surface are best chosen to 

minimize the TST rate [7]. 

Transition state theory is often a very good approximation for the classical rate of a 

chemical reaction. Pechukas et al. [8], in fact, have shown that TST is exact at sufficiently 

low energy. Figs. 2 and 3 show a numerical illustration [9] of this for the standard test 

reaction H+H2 -7 H2+H, for the collinear version of the reaction (Fig. 2) and also in three

dimensional space (Fig. 3). In both cases TST is essentially exact up to -0.3 eV above the 

potential energy barrier, but for higher energies it begins to be increasingly larger than the 

correct result. I.e., as the energy increases there is an increasingly larger fraction of 

trajectories which "rebound" back across the dividing surface and invalidate the transition 

6 



state assumption that no trajectories re-cross it. One also sees that this fraction ofTST-

violating trajectories is much smaller in three-dimension space than in one-dimension. 

Quantum Transition State Theory 

The dynamics of molecular motion must be treated quantum mechanically if one is to 

have a quantitative description of chemical reactions. Since transition state theory is such a 

good approximation in classical mechanics - particularly at the lower energies that are 

most important for determining the thermally averaged rate k(T) - one would like to 

quantize it. Unfortunately there does not seem to be a way to quantize the basic transition 

state idea without also introducing other approximations. The heuristic argument goes as 

follows. 

The most naive approach to quantizing the TST expression for N(E), Eq. (15), is as 

follows: the phase space average becomes a quantum mechanical trace, 

N~~T(E) = tr[h(E-H:l)] , 

= L h(E-E~)' 
n 

(19) 

where Ht is the Hamiltonian operator in the (F-1) dimensional space on the dividing 

surface, artd {En*l are the eigenvalues (i.e., energy levels) for this bounded motion. The 

thermal rate constant which results is easily shown from Eq. (11) to be 

k~O) - (T) = kT Q*(T) 
~\.1MTST h Q-(T) ' 

but where here Qt(T) is the quantum partition function 

Q*(T) = L e-~E~ ' 
n 
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which corresponds to the classical one in Eq. (18). 

This zeroth order approach, however, neglects any quantum mechanical aspect of the 

reaction coordinate motion (the Fth degree of freedom). If one assumes that the reaction 

coordinate is separable for the (F-1) degrees of freedom on the dividing surface, then the 

Heaviside function in Eq. (19) is replaced by a one dimensional tunneling probability, 

(1) ""' ... NQMTST(E) = .t..J PF(E-E~) , (22) 
n 

where PF(~) is the tunneling probability for a one dimensional barrier along the reaction 

coordinate, as a function of the energy EF = E-E; in this one degree of freedom. It is easy 

to show from Eq. (11) that the thermal rate constant corresponding to Eq. (22) is 

kQ) (T) = K(T) kT Q*(T) (22 I ) 

~"'QMTST h Q.(f) , 

where K, the tunneling correction factor, 

(21) 

results as a multiplicative correction. 

The reaction coordinate, however, is clearly not separable from the (F-1) degrees of 

freedom on the dividing surface, and at low temperature and for the dynamics of light 

particles (e.g., hydrogen atoms) the errors resulting from this assumption can be sizeable. 

A multidimensional tunneling correction [10], one that takes account of coupling between 

the reaction coordinate and the other degrees of freedom, is thus needed in such cases, and 

there are a variety of such approximate treatments [11,7] (based primarily on what was 

learned from semiclassical tunneling calculations [12]). Though many of these are very 

useful, the only correct multidimensional tunneling correction is to solve the full 

dimensional Schrodinger equation, but this is then no longer a "theory" but rather simply 

the exact quantum result. Unlike classical mechanics, therefore, there is no "1igorous" 
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quantum version of TST - i.e., one that does not make some approximations between 

couplings of the various degrees of freedom - other than the exact quantum dynamical 

result. 

Before proceeding to consider such rigorous quantum treatments, though, it is useful 

to note that there does exist a "rigorous" semiclassical version of TST. 

Semiclassical Transition State Theory 

The starting point [13] for semiclassical TST is to note that the classical Hamiltonian 

can in general be expressed in terms of a set of locally conserved ("good") action variables 

associated with the transition state (i.e., saddle point) region of the potential energy 

surface. The first step in SCTST is thus to determine the classical Hamiltonian Hci(I) = 
HcPl , ... ,IF) in terms of the Factions {lk}. Within a second order perturbative treatment 

[14] of the anharmonicity, for example, Hc1 has the form 
F F 

Hci(I) = Vo + :2, roklk + :2, xk,k'Ikik· , (23) 

k= 1 l.c;;k'= 1 

where {Cl\;} are the normal mode frequencies and {xk.k'} anharmonic constants that are 

determined by the cubic and quartic force constants of the potential energy surface. If one 

were· considering vibrational motion about a minimum on a potential surface, then these 

actions would be quantized in the usual semiclassical (Bohr-Sommerfeld) fashion, 

Ik = (nk+})h , (24) 

nk = 0,1, ... , and Eq. (23) would then yield the vibrational energy levels. For a saddle 

point Hcl has the same form as Eq. (23) (within the perturbative approximation), the only 

difference being that ~· the normal mode frequency associated with the reaction 

coordinate, is pure imaginary. (Also, of course, one is not thinking of vibrational energy 
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·levels in connection with a saddle point, but rather the reaction rate through it.) The (F-1) 

actions associated with the bounded degrees of freedom are quantized in the usual 

semiclassical fashion, i.e., via Eq. (24), and the action IF- the one associated with the 

reaction coordinate - is pure imaginary and defmes the generalized barrier penetration 

integral e, 
(25) 

e· is determined as a function of total energy E and the (F-1) quantum numbers of the 

activated complex by energy conservation, 

Hci[Ik = (nk+})h, IF= ih9/1t] = E ; (26) 

i.e., for n = {nk}, k=l, ... ,F-1, flXed, one must invert the E-9 relation defined by Eq. (26) 

to obtain 8(E,n). Since the dynamics is integrable in terms of the "good" actions, the 

transmission probability for state n and energy E has the same form as in one dimension, 

i.e., (l+e2B)-l, so the CRP is given by [15] 

NscTsT(E) = L [1 +e28(E.n)J"
1 

. (27) 
n 

The SCTST expression for the thermal rate- which results from Eq. (11) with Eq. 

(27) for the CRP- can be put in an even more useful form [16], one that avoids_having to 

invert the E-8 relation in Eq. (26). Thus Eqs. (11) and (27) give the thermal rate as 

, kscrsT(T) = (2rthQ.)"1 L {
00 

dEe-~E {1+e28(E,n))-
1 

, 

n }Eo 
(28) 

where E0 is the reaction threshold and where we have interchanged the order of summation 

and integration~ Since one must integrate over all E in Eq. (28), it is equivalent to change 

the integration variables from E to e and integrate over all 9, 

f. oo dE e-~E ( 1 +e28(n.E))-l =f...,., d8 (JE~~,8) e-~E(n.9) ( 1 +e28 )-1 
Eo . oo 
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(29) 

where the last line results from an integration by parts. (The surface terms vanish because 

E(S~oo) = E0, the reaction threshold, and E(8~-oo) = oo.) Use of Eq. (29) in Eq. (28) 

then gives 

kscTsTCT) = (27tf2Q.Pr1 100 

d8 ~sech2(8) ~ e·~E<n+.e), 
-oo n+ 

where we have again changed the order of summation and integration. Noting that 

(2rrh~)-1 = kT/h, Eq. (30) takes the form of the traditional TST, 

kT Q+(T) 
kscsTS(T) = h Q.(T) , 

(30) 

(31a) 

by defining the reactive partition function of the activated complex (including the tunneling 

correction factor which is not separable from it) as an average of the fixed 8 partition 

function Q+(T,8) with the· weight function lsech2(8), 
2 

(31b) 

where 

Q+(T,8) = L e-~E(n,9) . 
n 

(31c) 

Applications16 have demonstrated the usefulness of this formulation of the k(T) calculation. 

These SCTST expressions, in both the rnicrocanonical [Eq. (27)] and canonical [Eq. 

(31)] forms, include coupling between all the degrees of freedom in a uniform manner. 

E.g., even at the perturbative level, Eq. (23), there is anharmonic coupling between modes 

of the activated complex (xk.k,, k and k' :::;F-1} and between the reaction coordinate and 

modes of the activated complex (xk,P ~F-1 ). This is not a dynamically exact theory, 

however, because these actions variables are in general only locally "good". For energies 

too far above or below the barrier V 0 they may fail to exist. . This semiclassical theory is 
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thus still a transition state "theory" (i.e., dynamical approximation). 

Rigorous Quantum Rate Theory 

The completely rigorous equilibrium rate constant can also be written in the form of 

Eq. (11), where for a bimolecular reaction the rigorous expression for the cumulative 

reaction probability is [17] 

(32) 

where nr<n~ denote all the quantum numbers of the reactants (products), and the square 

moduli of the S-matrix elements are the reaction probabilities for the nr --7 nP (state-to-state) 

transition. It is Eq. (32), in fact, which suggests the term "cumulative reaction probability" 

for N(E): i.e., the total reaction probability from initial reactant state nr is given by 

P0 r(E) = ~ 1Snp,n/E)I
2 

, (33a) 
Op 

and if one idealized matters by assuming that some initial states are completely reactive and 

others completely non-reactive, i.e., Pnr = 0 or}, then clearly N(E), 

N(E) = L Pnr<E). 
nr (33b) 

would be the number of reactive states. This interpretation as the "number of reactive 

states" also comes from transition state theory, cf. Eq. (19), where there N is the number 

of states of the activated complex that lie below total energy E, i.e., which have positive 

kinetic energy in the reaction coordinate at the transition state. In reality, of course, 

reaction probabilities can take on any values between 0 and 1, but the interpretation of N(E) 

.as the effective number of quantum states which react is still qualitatively usefuL 

Though Eq. (32) provides a rigorous quantum definition of the cumulative reaction 

probability, is not helpful in a practical sense because a complete state-to-state reactive 

scattering calculation is required to obtain the·s-matrix. We seek a more direct (and thus 
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presumably more efficient) route to N(E), but without approximation, to which 

approximations can be incorporated later as needed in specific applications. 

A formally exact (and 'direct') expression for N(E) can be obtained by quantizing the 

dynamically exact classical expression, Eq. (9) [with Eq. (7)]; the classical phase space 

average becomes a quantum trace, and classical functions become operators: 

..................... 
N(E) = 2rctz tr[8(E-H) F Xrl , (34) 

where 

Xr = lim h[f(q(t))] , 
t-:7oo 

and we note that quantum mechanical time evolution is expressed as 

Xr = .tim eiHtlh h[f(q)] e-iHt/h . (35) 
t-:7oo 

cir is a projection operator that projects onto all state that are on the product side of the 

dividing ~urface in the infmite future.) The long time limit can also be written as the 

integral of the time derivative, 

.tim h[f(q(t))] = 100 

dt dd h[f(q(t))] 
t-:7oo 0 t 

1
00 . 

....... ....... ....... 

= o dt eiHtlh F e-iHt/h , 

....... 
where F is the flux operator, 

(36) 

(37) 

Interchanging the order of the trace and the time integral, and noting that the (real part of 

the) integrand is even, then gives 

....... 

But the operator e-iHtlh can be replaced by the scalar e-iEtlh since this operator sits next to 
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8(E-H) (with a cyclic permutation inside the trace), and with the identity 

~~ dt ei(H-E)tlh = 21tlz0(E-fl) , 

one obtains the following result [18] 

N(E) = t (21th)2 tr(FO(E-fi) F8(E-H)] .. (38) 

Equation (38) is quite a beguiling expression. E.g., in the classical expression for 

N(E), Eq. (9), there is a statistical factor 8(E-H), the flux factor F, and a dynamical factor 

X· A similar structure exist in the quantum expression, Eq. (34), where the 

dynamical factor is the projection operator Xr· The manipulations following Eq. (35), 

however, lead to the result, Eq. (38), which appears to have no dynamical information; 

i.e., only the statistical operator 8(E-H) and flux operatorF are involved in Eq. (38). 

This is an example of the fact that dynamics and statistics are inseparably intertwined in 

quantum mechanics; e.g., a wavefunction describes the dynamical motion of the particles 

and also their statistics. Finally, note that one cannot convert Eq. (38) directly into a 

corresponding classical expression by replacing the trace by a phase space average and the 

operators by the corresponding functions (as one can do for Eq. (34)). If one tries, the 

result is 

N(E) = t (21tlz)2 (21thrF f dp f dq 8(E-H(p,q))
2 

F(p,q)2 , (39) 

which appears to be infmite (because of the squares of the delta functions); the factor tz2 

(which doesn't divide out in normalization) is 0 in the classical limit, however, so Eq. (39) 

is simply indetermiriant. 

The difficult part ofEq. (38) to evaluate is the microcanonical density operator, 

8(E-H), which is usually [19] expressed in terms of the outgoing wave Green's function 
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(actually an operator), 

(40a) 

where 
""'+ ..... -1 
G (E) = lim (E+ie-H) . ( 40b) 

E--70 
e is a positive constant which imposes the outgoing wave boundary condition on the 

Green's function (hence the"+" designation), or it may be thought of as a convergence 

factor in the expression for G+ in terms of the time evolution operator e-iHt/h 

iJ+(E) = (itlr1 ~.- dt ei(E+iE)<Ihe-iiltih ; 

the factor exp( -et/h) in the integrand makes the time integral well-behaved in the long time 

( t --?oo) limit. 

The parameter e in Eq. (40b) usually plays a purely formal role in quantum scattering 

theory, but it has recently4a been pointed out that one may think of it as the absorbing 

potential that a number of persons [20] have used in numerical wavepacket propagation 

calculations to prevent reflections at the edge of the coordinate space grid. In this latter 

approach one adds a negative imaginary potential to the true potential energy function, 

V(q) --7 V(q)- ie(q) , (4la) 

but this is clearly equivalent to adding the positive (operator) e toE in E-H, 

..... "' ..... 
E-H --7E + ie(q)- H. (41b) 

Allowing e to be a (positive) function of coordinates, i.e., a potential energy operator, is 

better than taking it to be a constant, because it can be chosen to be zero in the physically 

relevant region of space and only "turned on" at the edges of this region to impose the 

outgoing wave boundary condition. Absorbing flux in this manner, and thus not allowing 

it to return to the interaction region, is analogous in a classical calculation to terminating 
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trajectories when they exit the interaction region. 

Figure 4 shows a sketch of the potential energy surface for the generic reaction H+H2 

~ H
2
+H, with the absorbing potential £(q) indicated by dashed contours. c.(q) is zero in 

the transition state region, where the reaction dynamics (i.e., tunneling, re-crossing 

dynamics, etc.) takes place, and is turned on outside this region. In practice one chooses 

the interaction region (that between the absorbing potentials) to be as small as possible, so 

that as small a basis set as possible can be used to represent the operators and evaluate the 

trace. Choosing it too small, though, will cause the absorbing potentials to interfere with 

reaction dynamics one is attempting to describe. 

With the microcanonical density operator given by Eq. (40) (with some choice for£), 

straightforward algebraic manipulations (also using Eq. (37)) lead to the following even 

simpler form for the cumulative reaction probability [4b], 
,.-.+ ,.... .,-..+ A 

N(E) = 4 tr [G (E)* £p G (E)Er] , (42a) 

where £r(£P) is the part of the adsorbing potential in the reactant (product) valley, and£= £r 

+ c.P. This expression may be evaluated in any convenient basis set which spans the 

interaction region and also extends some ways into the absorbing region. The explicit 

matrix expression is then 

N(E) = 4 tr [(E-ic.-H)-1 • £P • (E+i£-H)-1 • c.r] , (42b) 

with 

£ = £r + £p. 

It is interesting to note that in Eq. (42) all reference to a specific dividing surface has 

vanished; it is implicit that a dividing surface lies somewhere between the reactant and 

product "absorbing strips" (cf. Fig. 4), but there is no dependence on its specific choice. 

This is consistent with the earlier discussion that in classical mechanics N(E) is independent 
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of the choice of the dividing surface provided that one actually determines the exact 

dynamics (cf. Liouville's theorem), as is being done here quantum mechanically. 

Cumulative Reaction Probability as an Eigenvalue Problem 

In recent work [21] it has been shown that the most efficient way to evaluate the trace 

in Eq. (42) is first to symmetrize the operand of the trace, 

N(E) = tr(I>(E)] , (43a) 

where 

P(E) = ~Er 112G(E) *E'pG(E)Er 112 
. (43b) 

• 
P(E) is seen to be a Hermitian operator (or matrix), so that its eigenvalues { PkCE)} are 

are all real, and from Eq. ( 44a) the CRP is their sum, 

N(E) = L Pk(E). 
k 

(44) 

It is also easy to see that P(E) is a positive operator (since it has the form L tL), so that its 

eigenvalues are all positive. It is not as obvious- but can be readily shown- that P(E) 

is also bounded by the identity operator 
.,.... 
P(E)::; 1 , (45a) 

from which it follows that 

(45b) 

The eigenvalues {pk} can thus be thought of as probabilities, and then Eq. (44) bears an 

interesting relation to the simple transition state expression, Eq. (22), in which N(E) is 

given (approximately) as a sum of one-dimensional tunneling (or transmission) 

probabilities over all states of the activated complex. The exact N(E) is given in Eq. (44) 

as the sum of the "eigen reaction probabilities" { pd, the eigenvalues of the operator P 
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defined by Eq. (43b). 

Eq. (42)-(44) provides the first practical scheme for determining the rate constant for 

a chemical reaction absolutely correctly, but directly, i.e., without having to solve the 

complete reactive scattering problem. This is not a transition state "theory" since 

calculation of the Green's function, the matrix inverse of (E+iE-H), is equivalent to solving 

the Schrodinger equation, i.e., it generates the complete quantum dynamics. Since this is 

required only in the transition state region (between the reactant and product absorbing 

strips), one may think of this quantum mechanical calculation as the analog of a classical 

trajectory calculation which begins trajectories on a dividing surface in the transition state 
• 

region and follows them for a short time to see which ones are reactive. 

Some Recent Applications 

In recent applications [4,21,22,23] it has proved useful to employ a set of grid points 

in coordinate space as the basis set in which to evaluate Eq. (42b) or (43)-(44). These 

discrete variable [24], pseudo-spectral [25], or collocation methods [26] are proving quite 

useful for a variety of molecular quantum mechanical calculations. The primary advantages 
I 

of such approaches are that (1) no integrals are required in order to construct the 

Hamiltonian 'matrix (e.g., the potential energy matrix is diagonal, the diagonal values being 

the values of the potential energy function at the grid points), and (2) the Hamiltonian 

matrix is extremely sparse (so that large systems of linear equations can be solved 

efficiently). 

Figure 4c shows the set of grid points and the absorbing potentials which yield 

accurate results for the standard test problem, the collinear H+H2 --7 Hi+-H reaction. The 

important feature to see here is how to close the absorbing potentials can be brought in and 
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how localized the grid can be taken about the transition state region. This is the region in 

which it is necessary to determine the quantum dynamics in order to obtain the correct 

result for N(E) (and thus k(T)). No information about reactant and product quantum states 

is involved in the calculation. 

Figure 5a shows the cumulative reaction probability so obtained [ 4a] for the collinear 

H+H2 reaction. Apart from noting that it is correct (by comparison with any number of 

earlier scattering calculations using Eq. (32)), it is interesting to observe that at the higher 

energies N(E) is not a monotonically increasing function of energy. This is a signature 

[27] of transition state theory-violating dynamics, i.e., re-crossing trajectories in a classical 

• 
picture, and the result of a short-lived collision complex that causes resonances in a 

quantum description. 

For the H+H2 reaction in three dimensional space one needs to add in the bending 

degree of freedom in the transition state region and also allow the three-atom system to 

rotate. Fig. 5b shows the cumulative reaction probability obtained [4b] for zero total 

angular momen~m (J=O), and again it is in complete agreement with results [28] obtained 

from Eq. (32) via full scattering calculations. Even though collision complexes also form 

in the three-dimensional version of the H+H2 reaction, N(E) in Fig. 5b appears (to the eye, 

at least) to increase monotonically with energy in transition state-like fashion. This is the 

quantum mechanical analog of the phenomenon seen above classically [9], where the 

dynamics behaves more transition state-like the higher the physical dimension of the 

system. 

A more challenging application [22] is to the reaction 

(46) 

which is one of the most important reactions for modeling the combustion of 
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hydrocarbons. Fig. 6 shows a schematic of the potential surface, and one sees why this is 

a more complicated reaction to deal with: the deep well (-2 e V) in the interaction region 

leads to the formation of a moderately long-lived collision complex, strongly violating the 

· transition state assumption of "direct dynamics". The rigorous quantum methodology 

described above, however, is nevertheless applicable: absorbing potentials are introduced 

just outside the interaction region where all the reaction dynamics (tunneling, re-crossings, 

etc.) is determined, and the grid points cover the region in between. Figure 7 shows the 

cumulative reaction probability for this reaction (for 1=0 total angular momentum), and 

structure resulting from the collision complex is readily observable. Figure 8 shows the 

thermal rate constant obtained by Boltzmann averaging N(E) via Eq. (11), and in it one· 

sees that all remnants of the resonance structure has vanished. There is excellent agreement 

with the latest experimental results of Du and Hessler [29]. 

Full (six) dimensional calculations for the CRP of the reaction [23] 

H2+0H --7 H+H20 

\ 

(47) 

have also been carried out and are shown in Fig. 9 (for total angular momentum J=O), the 

first such calculation of the CRP for a four atom reaction. This reaction is very "transition 

state-like" because there is a simple saddle point separating reactants and products. One 

qualitative feature that one notes, compared for example to the CRP for the three

dimensional H+H2 reaction in Fig. 5b, is that the "stair case structure" that is a hold-over· 

from the classical sum of step functions (Eq. (19)) is absent in Fig. 9. This is readily 

understood by looking at the individual eigenreaction probabilities { pk(E)} in Fig. 10; the 

higher density of states for the four atom system results in the "overlap" of the various 

threshold structures. 

Finally, calculations for the CRJ:> have been carried out [30] for the isomerization of 
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ketene, 

H2C = C' = 0 H 0 = C = C'H~ , (48) 

where C and C' indicate carbon isotopes I2C and 13C (so that reactants and products are 

distinguishable). Figure 11 shows a one-dimensional sketch along the reaction path for 

this reaction, and its most important feature is the existence of a metastable region about the 

oxirene geometry 
H H 
'c = c·"' 'o / - . (49) 

The reaction thus takes place by the two H atoms and the 0 atom running around, changing 

ends of the C = C moity, passing through the oxirene geometry. This is a 

multidimensional version of tunneling through a double-barrier potential, with the 

possibility of resonance structure in the energy dependence due to weak quantization of the 

metastable oxirene species. Recent experiments by Lovejoy and Moore [31] have clearly 

revealed these resonance features. 

Figure 12 shows preliminary results that have been obtained for the microcanonical 

rate k(E) (Eq. (8)) as a function of energy E, compared to the experimental values. 

Though individual features do not match up one-for-one- which is quite beyond the 

accuracy of the present potential energy surface- the density and widths of the resonance 

features are in 9uite good agreement with each other. The calculations defmitely lend 

credence to the validity of the experimental results and their interpretation as metastable 

resonance structure. 

Direct Calculation of k(T) 

Most of the above discussion has concentrated on calculation of the cumulative 

reaction probability. N(E), from which one obtains the microcanonical rate k(E) via Eq. (8) 
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or the canonical rate k(T) by averaging over total energy as in Eq. (11 ). If one is primarily 

interested in the thermal rate, however, it would clearly be desirable to be able to calculate it 

"directly" for a given temperature T and ~ot have to calculate N(E) at many values of E. 

This is possible in precisely the same fashion as above for N(E). Thus just as Eq. 

·· (34) is the rigorous quantum expression for N(E) that corresponds to the classical 

expression Eq. (9), the following expression for k(T) is the quantum version which 

corresponds to the classical expression, Eq. (1), for k(T) 

k(T) = Q.cn·t.tim tr[e-~lip eiHtth h e-iHtth] . (50) 
t~oo 

Since h2 = h, this expression can be symmetrized as 

k(T) = Q.(T)-1 .tim tr PCt) , 
t~oo 

(51 a) 

where 

(51 b) 

...... 
P( t) is a manifestly hermitian operator and is also of low rank, so the trace in Eq. (51 a) can 

be conveniently evaluated by the same tricks used in Eqs. (43)-(45). 

This approach is currently under active development [32] and shoUld be of most 

interest for the case of bimolecular reactions, where one is usually interested in obtaining 

the thermal rate constant k(T). 

Concluding Remarks 

Considerable progress has thus been made in the ability to compute a chemical 

reaction rate directly, without having to solve the complete state-to-state reactive scattering 

problem, but also correctly, i.e., without inherent approximation. One does not avoid 

having to solve the Schrodinger equation, but must only solve it locally, in the transition 

state region between reactants and products. In this sense the rigorous theory retains a 
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flavor of transition state theory. More specifically, the cumulative reaction probability is 

most efficiently calculated by determining the eigenreaction probabilities {pk} (Eq. (44)), 

which are the rigorous analog of the TST transmission probabilities (Eq. (22)). 

Even with this progress, though, rigorous calculations of the type described above 

for H+02 and OH+~ are feasible only for relatively small molecular systems (though 

"small" is somewhat larger than it used to be!). To deal with more complex systems one 

would like to be able to combine rigorous quantum treatments such as these for the few 

degrees of freedom most strongly involved in the chemical reaction with an approximate 

treatment of the (perhaps many) remaining degrees of freedom that are not so intimately 

involved. One would ideally like this "approximate treatment" to be based on classical 

mechanics, perhaps in a semiclassical framework, so that classical trajectory simulation 

methodology can be brought to bear. Various ideas of this type exist [33,34], and one 

expects to see progress along these lines. 
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Figure Captions 

1. (a) Schematic depiction of the contours of a potential energy surface with two possible 

choices of the dividing surface (actually a line in this two dimensional ca.Se), sl in 

the reactant region and S2 through the transition state region. 

(b) Same as (a), but indicating a region of some width about the dividing surface S2. 

2. Reaction probability for the collinear H+H2 reaction on the Porter-Karplus potential 

surface from a microcanonical classical trajectory calculation (CLDYN) and · 

microcanonical classical transition-state theory (CLTST), as a function of total energy 

above the barrier height (1 eV = 23.06 kcal/mole). 

3. Same as Figure 2, except that cr(E) is the microcanonical reactive cross section for the 

three-dimensional H+~ reaction. 

4. Solid lines are contours of the potential energy surface for the H+H2 -7 H2+H 

reaction. Broken lines are contours of the absorbing potential (which is zero in the 

central part of the interaction region and "turned on" at the edge), for three possible 

choices of it. The points are the grid points which constitute the "basis set" for the 

evaluation of the quantum trace, Eq. (42). 

5. Cumulativ~ reaction probability for the H+H2 -7 H2+H reaction, (a) for collinear 

geometry (ref. 4a), (b) three dimensional space for total angular momentum 1=0 (ref. 

4b). 

6. Energetics (in e V) of the H-0-0 potential energy surface. 

7. The cumulative reaction,probability, for the H+02 -7 OH+O reaction as a function of 

total energy, for total angular momentum J=O. 

8. Thermal rate constant for the H+02 -7 OH+O reaction; the solid line is the present 

theoretical result obtained by Boltzmann averaging N(E) (of Fig. 7) via Eq. (11), and 
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the dashed line is the experimental result of ref. 29. 

9. The cumulative reaction probability for the H2+0H -7 ~O+H reaction as a function of 

total energy, for total angular momentum J=O; (a) logarithmic scale, (b) linear scale. 

10. Eigenreaction probabilities {J\(E)} for the~+ OH -7 H20+H reaction, as a function 

of total energy. 

11. A one dimensional sketch of the potential energy surface for the isomerization of 

Ketene, H2C=C'=O -7 0=C=C'H2. 

12. Microcanonical rate constant, k(E), obtained theoretically (solid line) compare to the 

experimental results of ref. 31. 
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