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ABSTRACT 

This report describes the development and use of a semi-analytical dual-porosity 

simulator for unsaturated flow in fractured rock masses. Fluid flow between the frac

ture network and the matrix blocks is described by a nonlinear equation that relates the 

imbibition rate to the local difference in liquid-phase pressure between the fractures 

and the matrix blocks. This equation is a generalization of the Warren-Root equation, 

but is accurate in both early and late time regimes. The fracture/matrix interfiow equa- · 

tion has been incorporated into a computational mo~ule that acts as a source/sink term 

for fracture elements; this module is compatible with the unsaturated flow simulator 

TOUGH. Flow processes are then simulated using only fracture elements in the com

putational grid. This semi-analytical dual-porosity module has been tested with 

TOUGH on various problems involving transient flow in fractured/porous media, and 

compared with simulations performed using explicit discretization of the matrix blocks. 

The new semi-analytical dual-porosity model accurately simulates flow processes in 

unsaturated fractured rocks, and typically requires an order of magnitude less computa

tional time than do simulations using fully-discretized matrix blocks. 
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Introduction 

Yucca Mountain, Nevada is being studied by the U. S. Department of Energy as a 

potential site for an underground radioactive waste repository (U.S. DOE, 1986). The 

geologic setting at Yucca Mountain consists mainly of volcanic tuff, some units of 

which are highly-fractured. The potential repository horizon is about 300 meters 

below the surface, and about 300 meters above the current mean location of the water 

table. One part of the process of characterizing the geological and hydrological system 

at Yucca Mountain is the development of methods for modeling and predicting the 

unsaturated flow of water in fractured rock masses having low matrix permeability. 

Such models will also be useful in assessing the travel-times required for radionuclides 

from the repository to reach the saturated zone below the water table. 

For the analysis of certain aspects of the long-term hydrological behavior of 

Yucca Mountain, it is possible to treat the rock mass as a locally homogeneous porous 

medium. For quasi-steady-state behavior, the fractures and matrix blocks can be 

assumed to be in (local) equilibrium with each other, so that a single pressure (tem

perature, etc.) can be assigned to both the fractures and the matrix at each point in 

space. In order to study the highly transient flow processes that may occur after precip

itation events, however, it is necessary to account for the fact that the flow actually 

occurs in two intermingled networks of porosity: a relatively high-permeability, low

storativity fracture network, and low-permeability, high-storativity matrix blocks. This 

is due to the fact that in a transient process, the fractures and matrix blocks will not 

always be in local thermodynamic equilibrium with each other. Existing unsaturated

flow simulators, such as TOUGH (Pruess, 1987), are capable of treating such dual

porosity systems if both the fracture system and matrix blocks are discretized. Numer

ical simulations of fully-discretized systems require a large number of computational 

cells, and consequently a large amount of computer time. We have attempted to miti

gate these problems by developing a method in which flow between the fracture 

··~ 
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network and matrix blocks is modeled in a lumped-parameter manner, by an ordinary 

differential equation, eliminating the need to discretize the matrix blocks. This method 

has been incorporated into a computational module that is compatible with TOUGH, 

and which allows dual-porosity simulations to be performed in a much more computa

tionally efficient manner than would be possible using fully-discretized grids. This 

new method should therefore be useful in studying transient flow processes that may 

be expected to occur at Yucca Mountain. 

Dual-Porosity Models 

When modeling processes that occur on a sufficiently slow time scale, it is often 

assumed that a fractured rock mass can be treated . as an equivalent porous medium. 

Peters and Klavetter (1988) developed a numerical model for unsaturated flow at 

Yucca Mountain in which the fractured rock mass was treated as an equivalent porous 

medium. The conditions under which such an approximation would be acceptable 

were also studied by Pruess et al. (1988). The equivalent porous medium that would 

be used in a model such as that of Peters and Klavetter ( 1988) will have an effective 

permeability and an effective capillary pressure function that are some sort of appropri-· 

ate weighted averages of the corresponding properties for the fractures and the matrix 

blocks. This approach assumes that the matrix blocks are always in local thermo

dynamic equilibrium with their surrounding fractures, and is therefore only capable of 

simulating processes that occur slowly enough so that pressure equilibrium can be 

achieved between the fractures and matrix blocks. However, the time required for 

fracture/matrix equilibration is inversely related to the permeability of the matrix 

blocks, and is consequently large for a hydrologic system such as the. fractured tuffs at 

Yucca Mountain. Numerical simulations of imbibition into blocks of Topopah Spring 

tuff have shown (Zimmerman et al., 1990) that the equilibration time will be on the 

order of days to years, depending on the type of rock and the fracture spacing. A 
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more detailed discussion of this equilibration time, along with numerical examples for 

various of the geological units at Yucca Mountain, is given in Appendix C. For 

highly-transient processes, such as the infiltration that would occur after a precipitation 

event, the "dual-porosity" nature of the rock mass must therefore be accounted for. 

In a dual-porosity medium, the fractures provide most of the permeability, 

whereas most of the fluid st~rage takes place in the relatively low-permeability matrix 

blocks (Duguid and Lee, 1977; Douglas and Arbogast, 1990). The complex behavior 

of dual-porosity systems arises from the fact that there are different time scales 

corresponding to diffusion of water in the fracture network and in the matrix blocks. 

These time regimes have been defined and delineated by Nitao and Buscheck 

(1989,1991) in their analytical and numerical studies of infiltration into a system con

sisting of parallel, periodically-spaced fractures. In principle, one way to model flow 

in a fractured/porous rock mass would be to explicitly account for each fracture and 

each matrix block in the computational mesh. In practice, however, this is rarely pos

sible, due to the inordinately large number of gridblocks that would be needed. For 

example, assuming a fracture spacing of about 20cm (Wang and Narasimhan, 1985), 

·the total number of fractures in the vicinity of the potential repository at Yucca Moun

tain can readily be estimated to be on the order of 109• Another difficulty is that 

sufficient geological information concerning the locations, lengths, and other properties 

of the fractures would rarely be available on a large scale. On the other hand, 

laboratory-scale rock blocks whose lengths are on the order of 1 m may contain a 

manageable number of fractures, in which case explicit modeling of each fracture may 

be feasible. 

A commonly used conceptual model of a dual-porosity system assumes the 

existence of two overlapping continua, the fracture continuum and the matrix contin

uum. Flow is assumed to take place not only through the fractures, but also between 

the fractures and the matrix blocks. This type of model was originated by Barenblatt 
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et al. (1960) for saturated flow in aquifers, and by Warren and Root (1963) for single-

phase flow in oil reservoirs. Each point in space has associated with it a pair of pres-

sures, representing the local fluid pressure in the fractures, and a mean fluid pressure in 

the matrix block. This is equivalent to treating the matrix block in a lumped

parameter manner. Barenblatt et al. (1960) and Warren and Root (1963) were origi-

nally interested in the development of analytical solutions to problems in dual-porosity 

reservoirs. Hence, in order to maintain the linearity of the equations, they assumed 

that the volumetric flow rate of fluid from the fractures into the matrix blocks, per unit 

volume of matrix block, was governed by the following linear expression, which is 

often referred to as the Warren-Root coupling equation: 

(1) 

where km is the permeability of the matrix block, with dimensions of [L2]; J..L is the 

viscosity of the fluid, with dimensions of [PT]; P1 is the local pressure in the frac

tures, with dimensions of [P]; jim is the mean pressure in the matrix block at a 

specified point in the fracture continuum, and also has dimensions of [P]; vm is the 

volume of the matrix block, with dimensions of [L3]; and a is a geometric factor with 

dimensions of [L-2]: The fiowrate q therefore has dimensions of [L3 T-1]. The rela

tionship between the numerical value of a and the size and shape of the matrix block 

is discussed by deSwaan (1990) and Zimmerman et al. (1993), and, for convenience, in 

Appendix D. (When giving the dimensions of variables, we will use M for mass, L 

for length, T for time, and P for pressure. Although pressure is not a fundamental 

dimension, but in fact has dimensions of [ML-2T-1], its frequent occurrence makes it 

convenient to use M, L, T, and P when expressing the dimensions of physical vari-

abies.) 
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The flow of fluid into the matrix block causes the fluid pressure in the block to 

increase. If the fluid is. a slightly-compressible liquid, this pressure increase is 

described by the following equation, within the context of a lumped-parameter 

approach: 

(2) 

where <l>m is the (dimensionless) porosity of the matrix block, and em, with dimensions 

of [P-1], is the combined compressibility of the pore fluid and the pore space of the 

matrix blocks. If eqs. (1) and (2) are combined, they yield the following equation that 

governs the fluid pressure in the matrix block: 

(3) 

The combination of terms km l<l>m JlCm is often referred to as the hydraulic diffusivity 

(Matthews and Russell, 1967). Since km has dimensions of [L2], c has dimensions of 

[P-1], J.1. has dimensions of [PT], and <1> is dimensionless, the diffusivity has dimensions 

of [L2 T-1]. We can re-write eq. (3) in terms of the diffusivity to•arrive at. 

(4) 

For .saturated flow into a matrix block, eq. (4) can be interpreted as representing 

the most-slowly-decaying Fourier mode in the exact solution for infiltration into a 

~· 



- 7 -

matrix block (see Zimmerman et al., 1993; also Appendix D). As such, it correctly 

predicts the relaxation time needed for the matrix block to equilibrate with the sur-

rounding fractures. However, as it does not contain any of the higher modes, it is not 

accurate at earlier stages of imbibition. Consider the case where a step-function 

increase in the fracture pressure occurs at t = 0. The imbibition rate will initially be 

proportional to t-112, where t is the elapsed time (Crank, 1975, p. 91). The Warren-

Root equation, however, predicts that the early-time imbibition rate is constant. The 

cause of this error can be explained as follows. The Warren-Root approach assumes 

that any fluid that enters the matrix block is instantaneously distributed uniformly 

throughout it. Therefore, at early times, after a small amount of fluid has entered the 

block, the average pressure Jim is still essentially unchanged. Hence, the right-hand 

side of eq. (1) remains nearly constant, and so the predicted flux rate is also nearly 

constant. More generally, regardless of how the fracture pressure varies with time, the 

matrix pressure predicted by the Warren-Root equation will be grossly incorrect at 

early times (see deSwaan, 1990; Zimmerman et al., 1993). When incorporated into a 

dual-porosity model, the Warren-Root equation leads to qualitatively incorrect behavior 

during the transition between fracture-dominated and effective-continuum flow regimes 

(Najurieta, 1980; Streltsova, 1983). 
' 

One way to improve upon the poor accuracy of a Warren-Root-type 

fracture/matrix coupling. equation would be to treat the internal flow in the matrix 

block numerically, by discretizing each matrix block into a nested series of gridblocks. 

This allows the pressure gradients inside the matrix block to be resolved on a finer 

scale. Since the pressure gradient at the outer boundary of the block is inversely pro

portional to the depth to which the pressure front has penetrated, discretization of the 

matrix allows the calculated penetration depth to increase with time, thereby correctly 

predicting that the imbibition rate decreases with t. One such dual-porosity model, in 

which the matrix is discretized into concentric shells, is known as the MINC method 
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(Multiple INteracting Continua; Pruess and Narasimhan, 1985). In practice, the com

putational fracture gridblocks are typically much larger than the typical matrix block. 

Hence, each fracture gridblock is associated with a hypothetical set of nested matrix 

blocks that do not have the same dimensions as the actual matrix blocks. However, 

the volumes, areas, and nodal point distances of the gridblocks can be scaled so as to 

accurately model flow in the actual matrix blocks. MINC-type simulations require 

many fewer computational cells than do discrete-fracture simulations that utilize 

actual-size matrix blocks, but still require large numbers of matrix gridblocks. For the 

types of problems discussed in this report, we have found that accurate treatment of 

· transient effects with the MINC method requires that the representative matrix block 

associated with each fracture gridblock must be broken up into about ten nested grid 

blocks. MINC simulations of tran~ient processes may therefore be expected to require 

about eleven times the number of computational cells needed for quasi-steady-state 

equivalent porous medium simulations having ·the same macroscopic resolution. Since 

the CPU time required by most numerical simulators grows at a rate at least directly 

proportional to the number of computational cells, MINC-type simulation of large

scale transient processes in fractured rocks can become computationally burdensome. 

Our intention has been to find a method of simulating unsaturated flow in frac

tured rocks that combines, in a sense, the computational efficiency of a Warren-Root

type model, in which the matrix blocks do not need to be discretized, with the accu

racy of the MINC method. In order to do this, the following steps had to be taken. 

First, it was necessary to find the unsaturated flow parameters that are analogous to the 

hydraulic diffusivity that appears in eq. (4). Secondly, it was necessary to find a way 

to modify eq. (4) so as to be applicable to all time regimes of the imbibition process. 

Finally, a method was needed to relate the parameter a to the geometric properties of 

the matrix blocks. These developments are discussed in the next section of this report. 

The final result of this analysis is a differential equation that predicts the rate of fluid 
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exchange between fractures and matrix blocks, and which can be used as a source/sink 

term for fracture elements in a numerical simulator. 

Several other dual-porosity models have been developed in recent years for unsa

turated flow, with the aim of eliminating the need for explicit fine-scale discretization 

of the matrix blocks. In each case, the fracture/matrix coupling equation was essen

tially taken to be of the Warren-Root form, in that the volumetric rate of flux depends 

linearly of the difference between the fracture potential and the mean potential in the 

matrix block. In the code DCM3D (Updegraff et al., 1991), the fracture network and 

matrix rock were assumed to behave as two interpenetrated continua, each governed by 

. a macroscopic pressure diffusion equation. The source/sink terms for the two continua 

were assumed to be equal in magnitude, but opposite in sign. The rate of 

fracture/matrix interflow was assumed to be proportional to the difference in potential 

between the fracture and matrix continua, as in eq. (1), with the nonlinearity of the 

unsaturated flow process accounted for by multiplying km by the relative permeability 

function of the matrix rock. Gerke and van Genuchten (1993) also modeled the 

fracture/matrix interflow with a Warren-Root-type differential equation, and allowed 

the effective diffusivity to vary from one timestep to the next, in response to changes 

in saturation, etc. Their model also allows for flow between matrix blocks, which is 

not currently included in our model. However, due to the inherent limitations of the 

Warren-Root approach, their predicted fracture/matrix fluxes are not accurate at all 

time scales (see their Fig. 2). 

A different approach to the problem of accounting for fracture/matrix leakage in a 

semi-analytical fashion was taken by Pruess and Wu (1993), who approximated the 

pressure profile in the matrix blocks by a polynomial that was damped by an exponen

tial term. The exponential damping factor was taken to have the form exp( -x /~4Dm t ), 

where x is the distance from the outer boundary of the block. The coefficients of the 

polynomial were found, at each timestep, by requiring the approximate pressure profile 
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to satisfy the governing equation in an integrated sense over the entire matrix block, 

and point-wise at the outer boundary. The calculation of the fracture/matrix interflow is 

thereby reduced to a small number of algebraic calculations at each timestep. Their 

approach has be~n used successfully for saturated flow and heat conduction, but has 

not yet been applied to unsaturated flow. 

Finally, we mention that, for mathematically linear processes such as saturated 

flow, the fracture/matrix interaction term can be found exactly by utiliZing a convolu

tion integral, as was done by Elsworth (1989). A drawback of this approach is that it 

at each timestep the convolution integral must be evaluated from t = 0 to the current 

time t. Consequently, all previous values of P m must be saved, in order to carry out 

the convolution integrals. These factors tend to be at variance with the goal of minim

izing the amount of. computational effort, and computer memory, required to simulate 

flow in a dual-porosity system. 

Fracture/Matrix Flow Interaction Equation 

In principle, fluid flow in a two-component air/water system would be governed 

by a pair of equations, representing conservation of mass for water and air, respec

tively (see Appendix E). However, it is common to assume that the low viscosity of 

the air renders it effectively "infinitely mobile". In this case the air pressure is 

always uniform (aside from gravitational gradients, which are small for air), and the 

two conservation equations decouple from each other. In this approach, only the 

water-balance equation is used. If Darcy's law, modified by a relative permeability 

function, is used in conjunction with the conservation of mass equation, we arrive at 

the Richards equation (Richards, 1931; Hillel, 1980, p. 203): 

~ [ kkr ('If) d'lf(X, t) l = Q> dS (X, t) . 
dx Jl dx dt 

(5) 
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In eq. (5), 'V represents the "capillary potential" or "matric potential" of the water in 

the matrix block, which has dimensions of [P]. This potential is measured relative to 

the pressure in the air phase, i.e., 'V = \jlw- 'Va, where the subscripts w and a denote 

water and air, respectively. In regions of full liquid saturation \jl is positive, but in 

regions of partial saturation it is negative (see Hillel, 1980, p. 141). The saturation S, 

which is dimensionless, represents the fraction of pore space that is filled with water. 

S and 'V are related through the capillary pressure relation, the precise form of which 

depends on rock type; forms of this function that have been used to describe the 

behavior of volcanic tuffs are described below. The parameter k, which has dimen

sions of [L2], is the permeability of the rock matrix under fully-saturated conditions; Jl, 

with dimensions of [PT], is the viscosity of the pore water; and cj), which is dimension

less, is the porosity of the rock matrix. kr ('V) is the dimensionless relative permeabil

ity function, which quantifies the decrease in the permeability to water due to the fact 

that some of the pores are occupied by air; it is typically a strongly increasing function 

of S. 

Aside from assumption that the air phase is always at uniform pressure, there are 

various other assumptions and simplifications used in eq. (5). The porosity is assumed 

to be independent of the potential, which is equivalent to ignoring the compressibility 

of the rock matrix. For tuffs in the unsaturated zone, this assumption is acceptable 

(see Peters and Klavetter, 1988), since the capacitance associated with the change in 

saturation is much larger than that associated with expansion of the pore space. Most 

rocks and soils are hysteretic with regards to capillary pressure, which means that the 

S ('V) relationship depends on whether drainage or imbibition is occurring, and on the 

past saturation history of the rock (see Niemi and Bodvarsson, 1988). For many of the 

processes of interest with regards to the hydrological behavior of Yucca Mountain, the 

saturation varies monotonically, and so hysteresis can be ignored. Hence, we assume 

that S is a single-valued function of \jf, with no dependence on past values. Eq. (5) 
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also assumes that as the liquid water imbibes into the matrix, it is not impeded by the 

air that is initially in place. This assumption is known to be correct for flow into an 

unbounded medium, since the air can escape ahead of the advancing liquid front. For 

flow that is assumed to be entering a finite-sized matrix block, it has been thought that 

air might be trapped in a pocket at the center of the block, thus impeding the imbibi

tion of water. Studies of this and related air-impedance effects have been conducted 

by Wilson and Luthin (1963), Youngs and Peck (1964), Adrian and Franzini (1966), 

Phuc and Morel-Seytoux (1972), Touma and Vauclin (1986), and Constantz et al. 

(1988). This issue is addressed to some extent in Appendix E. 

Eq. (5) also neglects gravity, which otherwise would cause an additional potential 

term pgz to be added to the pressure potential 'I'· Roughly speaking, gravity can be 

neglected if the matrix block sizes are smaller than the so-called "sorptive length" of 

the rock material. If this condition holds, then the gravitational gradient will be negli

gible compared to the capillary pressure gradient. To understand this criterion, con

sider a matrix block whose characteristic length is L . The potential difference 

between the matrix block and the adjacent fractures will be on the order of 'I' a, which 

is the characteristic potential that appears in the capillary pressure function, and so the 

magnitude of the pressure gradient will be on the order of I'Jia ilL. The gravitational 

gradient is always pg, where p is the density of the liquid, and g is the gravitational 

acceleration. Hence, the criterion for the gravitational gradient to be negligible is 

pg « I'Jia ilL, which can be written as 

I'Jfa I 
L «-- =L. pg s 

(6) 

The term I 'I' a ilpg is defined as the sorptive length, and denoted by Ls. Using hydro

logical parameters believed to be appropriate for the Topopah Spring welded tuffs at 

.-
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Yucca Mountain, and a more precise definition of sorptive length due to Philip (1987), 

Zimmerman et al. (1990) found a sorptive length of about 8 m. This means that grav-

ity can be ignored in any matrix block whose diameter is much less than 8 m. Since 

fracture spacings in the Topopah Spring unit are thought to be on the order of tens of 

centimeters (Wang and Narasimhan, 1985), imbibition into matrix blocks will be dom

inated by capillary forces. Estimated sorptive lengths for some of the geological units 

at Yucca Mountain are given in Appendix B. 

Each rock has its own set of "characteristic functions" that describe the relation-

ships between S , 'I' and kr . Two sets of characteristic functions that are often used in 

modeling the hydraulic behavior of the volcanic tuffs at Yucca Mountain are those 

proposed by Brooks and Corey (1966), and Mualem (1976) and van Genuchten (1980). 

Al,though these two models use different equations for the two characteristic functions, 

the imbibition rates that result for the two cases are not very different, since imbibition 

rates are insensitive to the precise details of the characteristic curves. In Appendix F it 

is shown that if the parameters in the two models are chosen so as to have the S ('If) 

curves asymptotically coincide at low saturations, the resulting imbibition rates are 

nearly indistinguishable. Our dual-porosity model has therefore been developed under 

the assumption that the matrix blocks can be described by the van Genuchten charac

teristic curves, which are given by the following equations: 

(7) 

(8) 

where 'I' a is a characteristic potential that has dimensions of [P], and m and n are 
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dimensionless parameters that are related by m = 1 - lin . The characteristic potential 

'lfa is, in some rough sense, inversely proportional to the mean pore size of the rock. 

The parameter n is inversely related to the broadness of the pore-size distribution, in 

the sense that smaller values of n are associated with broader distributions, and vice 

versa. Although van Genuchten ( 1980) originally implied that n could in principle 

take on any value greater than 1, it has subsequently been argued on theoretical 

grounds by Fuentes et al: (1991) that n cannot be less than 2. Although soils often 

have values of n on the order of 6-12 (van Genuchten, 1980), the characteristic curves 

of Yucca Mountain tuffs tend to have very low values of n , in many cases 1 < n < 2 

(Rulon et al., 1986; Peters and Klavetter, 1988). This discrepancy can probably be 

explained by the fact that the experimental values of n are found from data taken at 

intermediate saturations, whereas the criterion n > 2 follows from considerations of the 

low saturation regime. Sr is the dimensionless residual water saturation, which is the 

value of S at which the liquid phase becomes immobile. Ss, which is usually very 

close to 1.0, is the saturation at which the matric potential goes to zero. Eqs. (7) and 

(8) express the saturation and the relative permeability as functions of the capillary 

potential. It is sometimes convenient to use the saturation as the independent variable, 

in which case the two characteristic functions would be written as 

'lf(S) = 'I' a (S-lim - 1)1tn , (9) 

(10) 

where S =(S -Sr)!(Ss -Sr) is the normalized saturation. Normalized characteristic 

curves for various values of n are shown in Figs. 1-3, using· different combinations of 

independent and dependent variables. The relative permeability in each case drops off 

.-
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monotonically with decreasing ·liquid saturation, although it does so more rapidly for 

larger values of n . The capillary pressure function varies rapidly at high and low 

saturations (i.e., near Ss and near S7 ), . and varies less drastically in the intermediate 

region. 

Eq. (5) is essentially a nonlinear diffusion equation (see Brutsaert, 1976), with the 

conductance and capacitance related to the characteristic functions k7 ('If) and S ('If). 

This can be seen by using the chain rule to relate a'l'tax to as tax ' and treating s as 

the independent variable, which leads to 

_E_[kk7 (S) ~ as(x,t)l = cp as(x,t) 
ax J.1 dS ax at . 

(11) 

This equation is now precisely in the form of a diffusion equation, with the combina

tion of terms kk7 (S)'If'(S)!Jlcp playing the role of a diffusion coefficient (see Hillel, 

1980, p. 205), i.e., 

(12) 

Since the diffusion coefficient varies with S, eq. (11) is typically very nonlinear, and 

in general cannot be solved in closed-form. 

The governing differential equation ( 11) must be augmented by the appropriate 

boundary conditions and initial conditions in order to constitute .a well-posed 

mathematical problem. Initially, the rock is at some partial saturation Si , which 

corresponds through eq. (9) to some potential 'l'i < 0. At time t = 0 the potential at the 

x =0 boundary of the block is raised to, say, 'lf=O. Mathematically, these conditions 

can be expressed as 
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'lf(X, t =0) = 'lfi , (13) 

'If( X = 0 , t > 0) = 0 , (14) 

lim 'If( X, t) = 'I'; . (15) 
x-+oo 

The final condition, (15), expresses the fact that at any fixed time, the saturation must 

approach Si infinitely far from the wetted boundary. In other words, the wetting front 

cannot travel infinitely far into the rock in a finite amount of time. In principle, eqs. 

(11-15) can be solved to find the potential profile ljf(x, t ). From this solution, the 

imbibition rate can be found by applying Darcy's law at the boundary: 

(16) 

As the dimensions of both k and A are [L2], the dimensions of J.1. are [PT], and the 

dimensions of d'lfldx are [PT-1], the fiowrate q has dimensions of [L3T-1]. 

Due to the mathematical structure of the governing equation (11), which contains 

one derivative with respect to t and two with respect to x, it can be shown (Bruce and 

Klute, 1956; Gardner and Mayhugh, 1958; see also Appendix A) that the imbibition 

rate at the boundary will always be proportional to t-112, regardless of the precise 

details of the hydraulic diffusivity function. This fact led Philip ( 1955) to define the 

sorptivity cr by 

A a 
q =, 2tl/2 ' 

. (17) 

.-
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where A is the wetted outer area of the block. The factor 2 is included so that the 

cumulative imbibition, which is obtained by integrating q with respect to t, is given 

by Q = Aat 112• The sorptivity has dimensions of [LT-112], which corresponds to the 

square root of the dimensions of the diffusivity. If the diffusivity were independent of 

saturation, the sorptivity would be given exactly by (see Kutilek and Valentova, 1986) 

(18) 

For the case where the diffusivity varies with saturation, eq. (18) can be used to define 

the effective diffusivity, i.e., 

(19) 

Various methods have been proposed to estimate the sorptivities of unsaturated 

media, based on their characteristic functions. Many of the more commonly used 

methods are discussed by Kutilek and Valentova (1986) and Lockington (1993). Zim

merman and Bodvarsson (1989) used the Pohlhausen integral method (see Macey, 

1959; Goodman, 1964) to find the following approximate expression for the sorptivity 

of a van Genuchten medium: 

(20) 

When compared ..yith numerical solutions using the hydrological properties of the 

Topopah Spring welded tuff, this expression was found (Zimmerman and Bodvarsson, 
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1989) to have reasonable accuracy. Eq. (20) is in fact asymptotically accurate for 

large values of n , and for high initial saturations (see Zimmerman and Bodvarsson, 

199lb), but it is not uniforri:Jly accurate over all ranges of possible conditions. Guided 

by the algebraic form of eq. (20), and utilizing numerical solutions of the Richards 

equation, it is possible to derive a much more accurate expression for the sorptivity. 

We start by rewriting eq. (20) in a more general form: 

(21) 

where F(m) is some function of m (or, equivalently, of n, since m = 1-1/n ), and ~is 

some parameter. These open functions/parameters can be found by fitting eq. (21) to 

numerically-computed sorptivities. The function F (m) is ·found by fitting the 

numerically-computed sorptivities for an initial saturation of si = sr. This procedure 

·leads to the choice F(m)= m 413• By finding the best-fitting value of~ at various 

values of m , and then performing a linear regression on the ~-m pairs, we have found 

~ = 0.62- 0.12m. Hence, we arrive at the following expression for the sorptivity: 

(22) 

The accuracy of eq. (22) can be tested by comparing its predictions to exact sorp

tivities found by direct integration of the Richards equation. This integration is per-
\ 

formed by first transforming the Richards equation into a second-order ordinary 

differential equation, which is then written as a pair of first-order equations. These 

two equations are then solved using a fourth-order Runge-Kutta algorithm (see Press et 

al., 1992, pp. 704-708). This procedure is described in more detail in Appendix A. In 



.. 

-. 

- 19-

Fig. 4, these numerical values are compared to the values given by eq. (22); the agree

ment is fairly close, for all ranges of n and S; . As n is theoretically restricted to 

values n > 2, and as the sorptivity curves are very insensitive to n when n > 10, Fig. 4 

essentially covers all relevant cases. 

As mentioned above, the Warren-Root-type model is not accurate at early stages 

of the imbibition process. Dykhuizen ( 1990, 1991) attempted to improve upon the per

formance of a Warren-Root "quasi-steady-state" coupling term by using a different 

ordinary differential equation in the early stages of imbibition, which would correctly 
' 

predict the t-112 dependence of the infiltration rate .. Zimmerman et al. (1993) used a 

similar approach which differs in that a single coupling equation is used, which in a 

sense contains Dykhuizen's two equations as special cases for small and large amounts 

of cumulative imbibition, respectively. This approach is based on an approximation to 

the pressure response of a spherical block subjected to a step-function increase in the 

pressure at its outer boundary, which was developed by Vermeulen (1953). This 

expression can be shown to satisfy the following ordinary differential equation: 

(23) 

where P; is the initial pressure in the matrix block, and a is the same shape factor that 

is used in the Warren-Root equation. When jim is close to P1 , which is to say that 

the matrix and fractures are nearly in equilibrium with each other, it can be shown that 

eq. (23) reduces to eq. (4). At early times, when the fracture pressure is varying 

rapidly, and the matrix pressure has not yet had sufficient time to respond, eq. (23) can 

be shown to approximate the actual transient pressure response of the block with rea

sonable accuracy (see Zimmerman et al., 1993). For example, Fig. 5 shows the mean 

pressure jim in a fully-saturated spherical matrix block whose outer boundary is 
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subjected to a step-change in the pressure from Pi to P0 , as predicted by eq. (23), by 

the Warren-Root equation (3), and by the exact solution (see Zimmerman et al., 1993). 

Eq. (23) predicts the mean pressure in the matrix block (which is equivalent to the 

cumulative flux into the block; see eq. (2)) very accurately, at both early and late 

times. 

Zimmerman et al. (1993) utilized eq. (23) in place of the Warren-Root equation 

(4) as part of a modification to the TOUGH simulator for the special case of single

phase flow, and verified its accuracy. In conjunction with certain modifications (dis

cussed below) to render the equation applicable to unsaturated flow, eq. (23) is the 

basiC form we have used for the fracture/matrix coupling term. The question of deter

mining the correct shape factor, a, to use in the fracture/matrix coupling equation is 

discussed in detail. in Appendix D. 

Dual-Porosity Simulator 

We have implemented a Vermeulen-type expression for fracture/matrix flow as 

part of a module of subroutines· that is compatible with the TOUGH code (Pruess, 

1987). TOUGH is an integral finite difference code that can simulate the flow of 

liquid water, water vapor and air in porous or fractured media. Before describing the 

coupling procedure, and the structure of the new module, we will briefly review the 

structure and capabilities of TOUGH. Further details concerning TOUGH, along with 

sample problems, etc., can be found in the TOUGH User's Guide (Pruess, 1987). 

TOUGH solves the equations that represent conservation of mass for water and 

for air, and conservation of energy, for water/air flow through porous media. The 

equations are solved using the "integral finite difference" approach (Edwards, 1972; 

Narasimhan and Witherspoon, 1976), in which the governing partial differential equa

tions are first integrated over each gridblock, leading to first-order differences in space. 

Time is also discretized as a (forward) first-order finite-difference. All thermodynamic 

.-
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variables that appear in the finite-difference equations therefore represent values that 

are averaged over the gridblock. The basic thermodynamic variables are usually taken 

to be temperature, pressure, and mass fraction of the air component. If the water is in 

a two-phase state, which would occur in regions of boiling near a waste canister, for 

example, the. pressure and temperature would not be independent, and the third 

independent variable would be taken to be the vapor saturation of the water com

ponent; see Pruess ( 1987) for further details. As there are two mass conservation 

equations and one energy conservation equation to be ·solved, there are always only 

three independent variables, which are referred to within TOUGH as the "primary 

variables" . 

In passing from the known conditions at timestep t to the unknown conditions at 

timestep t +Ill, all properties, such as internal energy, etc., are evaluated at the values 

of the primary variables that obtain at time t +Ill. This is a so-called implicit 

approach, the use of which is required in order to avoid the numerical instabilities that 

occur when using an explicit method, in which all properties are evaluated at time t 

(Richtmyer and Morton, 1967, pp. 7-16; Rossen, 1977). Use of an implicit method 

causes the equations for the new values of the three primary variables to be coupled to 

each other. If there are N gridblocks, there will be 3N primary variables, and 3N 

coupled equations. Since internal energy, relative permeability, etc., vary nonlinearly 

with the primary variables, the 3N coupled equations are nonlinear, and are solved by 

Newton-Raphson iteration, which is essentially an iterative sequence of linearizations. 

Typically, about three or four iterations of the Newton-Raphson procedure are needed 

to solve (to within a certain required accuracy) the nonlinear equations in order to find 

the new values of the primary variables. Hence, the major computational burden of 

the TOUGH code is the solution of a sequence of 3Nx 3N systems of linear algebraic 

equations. In the version of TOUGH that we have used, these equations are solved 

using direct solution procedures; newer versions of TOUGH have options of using 
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other methods, such as conjugate gradient methods, etc., that may be more efficient for 

certain problems (see Moridis et al., 1994). 

In order to demonstrate the computational approach used by TOUGH, without 

requiring the elaborate system of superscripts and subscripts that are needed for a com

plete formulation, for illustrative purposes we will consider the one-dimensional 

Richards equation, eq. (5). This is equivalent to ignoring the energy balance equation 

and the mass balance equation for air, as well as other factors such as diffusion of 

water vapor through the gaseous phase, etc., which are included in TOUGH. Consider 

three adjacent gridblocks in a one-dimensional system that is broken up into slab-like 

gridblocks of equal thickness, with their centroids located at points x -ax , x, and 

x+Llx, and which are labelled i-1,i,andi+l. The integrated form of the left-hand 

side of eq. (5) for gridblock i represents the net flux into that block, from the two 

adjacent blocks, and the integrated form of the right-hand side represents the change in 

the amount of water stored in that block. In integral finite difference format, this mass 

balance takes the form 

(24) 

where A is the cross-sectional area perpendicular to the flow, p is the fluid density, 

and q, with dimensions of [L3! 1], is a source/sink volumetric flux that is assumed to 

be instantaneously distributed throughout the gridblock. The terms with overbars 

represent some appropriate average transmissivity across the interface between adjacent 

blocks, the determination of which is discussed in the TOUGH User's Guide (Pruess, 

1987). Eq. (21) can formally be solved for Si (t+&), which is the saturation in 
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gridblock i at time t + llt. However, since the three potentials that appear on the left 

side of eq. (21) depend on the saturations at time t +llt, the equation for the new 

value of S; is coupled to those for S;_1 and S;+l· In this way, the implicit method 

leads to a system of coupled nonlinear equations. 

The TOUGH code utilizes the discretization method outlined above to derive a 

mass balance (water and air) equation, and an energy balance equation, for each grid

block. In each case, the sum of all the fluxes into a gridblock should exactly equal the 

change in the accumulation term. The difference between the flux and storage terms is 

known as the residual, which will vanish if the equatigns are satisfied. This set of 

equations is solved by Newton-Raphson iteration, which entails linearizing the equa

tions about the current values of the primary variables, leading to a set of linear alge

braic equations that can be solved by any number of standard methods. The Newton

Raphson method is iterated until all residuals are less than some specified accuracy. If 

this iterative process converges within fewer than a prescribed number of steps, usually 

taken to be four, llt is doubled for the next timestep. This procedure allows the 

timesteps to grow rapidly and become large, which is desirable for diffusive-type 

processes, the rates of which usually decrease with time. However, the procedure of 

doubling the timestep does not account for the increase in the truncation error that is 

associated with approximating the time derivatives with first-order differences. 

The TOUGH code contains provisions for sources/sinks of mass and heat, which 

are calculated in the subroutine QU. The sources/sinks are typically used 'to account 

for fluid that is injected or withdrawn from a borehole that penetrates one of the grid

blocks. We have modified this subroutine so as to include a new type of source/sink, 

which represents liquid water flowing into (or out of) the fracture gridblock from the 

matrix blocks that are contained in a given fracture gridblock. The magnitude of the 

fracture/matrix flux for each fracture gridblock is computed using the following equa

tion, which is found by combining eqs. (2,12,23): 
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(25) 

This ''generation'' term represents the average flux q into a given fracture gridblock, 

over ilie time interval [t, t + & ]. The volume V m represents the total volume of 

matrix rock contained within the fracture gridblock; it is therefore related to the 

volume of the fracture gridblock by Vm =(1-<!>1 )V1 , where <1>1 «1 is the fracture 

porosity. The relative permeability function kr in eq. (25) refers to the relative permea

bility of the matrix block. As the imbibition rate is primarily controlled by the 

hydraulic conductivity of the matrix block at the wetted boundary, kr is evaluated at 

the capillary pressure that exists at the outer boundary of the matrix block, which is to 

say at 'If 1 , using eq. (8). 

In order to make the calculation fully implicit, the flux is computed using the 

values of the variables at time t + & . The new value of Vm that exists in the matrix 

block at time t + & must be consistent with the new average saturation. From a mass 

balance in the matrix block, the new average saturation at time t + & is given by 

(26) 

The mean saturation Sm and the mean capillary pressure \jl m are related to each other 

through eq. (7), using parameters appropriate for the matrix. At each TOUGH iteration, 

eqs. (7,25,26) are iterated (for each fracture element) to find a consistent set of values 

of {\jlm,Sm,and q }. Once this is done, it is also necessary to calculate additional con

tributions to the Jacobian matrix, whose components are the partial derivatives of the 

energy, water and air residuals with respect to changes in the primary variables. For 

unsaturated flow, the primary variables are the liquid saturation, the gas · phase 

·' 
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pressure, and the temperature. In our fonnulation, the possible presence of any dis

solved air in the water that flows between the fracture elements and their associated 

matrix blocks is neglected. However, we do include the latent heat that is transported 

with the liquid, which is calculated by multiplying the mass flux given by eq. (25) by 

the liquid phase enthalpy. 

Horizontal Flow Along a Single Leaky Fracture 

One basic problem which has much relevance to understanding the behavior of 

the hydrological system at Yucca Mountain is that of water flowing along a fracture, 

with leakage into the adjacent matrix. This is also one of the simplest transient prob

lems that involves flow in both fractures and matrix rock. If we consider a single, iso

lated fracture, the matrix must be modeled as being semi-infinite in extent, in each 

direction. The solution to this problem, and its relevance to the hydrological behavior 

of Yucca Mountain, has been discussed by Travis et al. (1984), Martinez (1987), and 

Nitao and Buscheck (1991). A schematic diagram of this problem is shown in Fig. 6. 

Flow into the fracture is driven by the imposed potential at they =0 boundary. Water 

flows along the fracture, while at the same time slowly leaking off laterally into the 

matrix rock. Due to the symmetry of the problem, only one of the two matrix regions 

needs to be included in the computational grid. 

For the matrix blocks, we use the hydrological parameters that have been 

estimated for the Topopah Spring Member of the Paintbrush Tuff (Miocene) at Yucca 

Mountain (Rulon et al., 1986), which are k=3.9xl0-18 m2, 'lfa=-0.8718x10SPa, 

<1>=0.14, Ss =0.984, Sr =0.318, and n =3.04. More recently-measured values are given 

by Flint and Flint (1994); however, as our present purpose is merely to compare the 

semi-analytical simulation method to MINC-type simulations, it is only necessary that 

the numerical values of the parameters be roughly similar to those for the rocks at 

Yucca Mountain. Very little experimental data exists for detennining the appropriate 
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characteristic curves for single fractures, at Yucca Mountain or elsewhere. In the stu

dies conducted by Martinez (1987) and Nitao and Buscheck (1991), the fracture was 

assumed to be bounded by two smooth, parallel walls that are separated by a distance 

b . The absolute permeability for this type of fracture can be exactly calculated to be 

b 2/12 (Bear, 1972, p. 164). The capillary pressure function S ('If) and the relative per

meability function for a smooth-walled fracture of aperture b are represented by unit

step functions located at some value 'l'c (see Martinez, 1987, Fig. 3). The value of 'lfc 

is related to b and to the surface tension properties of the rock/water/air system 

through the equation (Martinez, 1987, p. 15) 

_ -2ycose 
'l'c - b ' (27) 

where y, which has dimensions of [MT-2 = PL], is the surface tension between water 

and air, and 8 is the (dimensionless) contact angle of the water/rock interface. At 

room temperature, y :: 0.076 N/m. 

The experimental evidence that currently exists seems to indicate that fractures 

can be described by the same type of characteristic functions that are used to model 

three-dimensional porous media (Persoff and Pruess, 1993; Reitsma and Kueper, 

1994). For the fracture, we will use the characteristic curves that were derived by 

Pruess et al. (1988) using a mathematical model of a fracture as a rough-walled chan

nel. Although these curves are not based on direct measurements, the parameters in 

the model were to some extent conditioned by data from Yucca Mountain. The values 

of the hydrological parameters for the fracture are taken to be k =5.5 x 10-11 m3 (per 

fracture), Ss=l.O, Sr=O.O, '1'a=-1.65x103 Pa, and n=2.89. If the permeability 

b 2112 of a smooth-walled channel is modified to account for fracture roughness and 

contact area (see Kumar et al., 1991; Zimmerman et al., 1991c,1992), this single-
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fracture permeability is seen to be consistent with a fracture whose aperture is on the 

order of 100 fJ.IIl. The volumes of the fracture elements were chosen to correspond to 

an aperture of 800 Jlm, however. This relatively large aperture was chosen so as to 

accentuate the early-time regime of the solution, in which matrix imbibition is not yet 

of much consequence, so as to clearly verify whether or not the new method is capable 

of capturing the transition between the two regimes (see below). 

In our simulations, the fracture was discretized into 45 elements, with the length 

of the n-th element given by Ln =(l.2)n-l m; i.e., the element lengths were 1.0 m, 1.2 

m, 1.44 m, etc. Relatively small fracture gridblocks are needed near the surface in 

order to accurate model the diffusive front, particularly at small times. The tempera

ture was taken to be 20°C, and the initial capillary pressure was taken to be 

-1.013 x 105 Pa. This capillary pressure c~rresponds, through the capillary pressure 

functions, to an initial matrix saturation of 0.6765, and an initial fracture saturation of 

0.0004. For the fractures and matrix blocks to be in equilibrium at the start of the pro

cess, their capillary pressures must be equal. In general, this will lead to different 

saturations in the fractures and matrix. Since the average fracture aperture is typically 

much larger than the average pore diameter in the matrix block (Nitao and Buscheck, 

1989), the magnitude of the van Genuchten capillary scaling parameter 'l'a will be 

much larger in the matrix than in the fracture. For equal capillary pressures, the 

matrix will have a much smaller value of \jll\jl a , and therefore a higher saturation. A 

capillary suction that is sufficient to almost completely dry out the fracture will conse

quently cause only moderate drying of the matrix. 

We have solved this problem using TOUGH with the new dual-porosity module 

to perform the fracture/matrix interaction calculations, and also using TOUGH without 

the source/sink expressions, but with explicit discretization of the matrix rock adjacent 

to the fracture. When solving the problem with explicit discretization of the fracture 

and matrix regions, the matrix elements must be extended sufficiently far into the the 
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formation so as to effectively simulate a semi-infinite region. This distance will 

depend on the total elapsed time of the simulation. In the example simulation, which 

covered an elapsed time of 108 s (about 3 years), the matrix elements were extended 

about 20m away from the fracture. This was achieved using 20 matrix gridblocks in 

the direction transverse to the fracture, with the thickness of the n-th gridblock given 

by Ln = (2.0)n xl0-5 m. The total length of matrix gridblocks in the direction normal to 

the fracture was therefore equal to 21.97 m. Note that very small matrix gridblocks 

are needed near the fracture in order to accurately resolve the saturation fronts in the 

matrix at small times. 

The instantaneous flowrate of liquid into the fracture at the y = 0 inlet, as a func

tion of time, is shown in Fig. 7. At early times, no appreciable leakage has taken 

place into the relatively impermeable matrix, and the flow field is essentially that of 

diffusive flow along the fracture. In this regime, the flux into the fracture at the inlet 

decays as t-112• As time progresses, the wetted interface area between the fracture and 

the matrix rock increases, and the effect of leakage becomes more important. The 

overall flowrate into the fracture gradually changes from a t-112 variation to a t-114 

variation, as was predicted theoretically by Nitao and Buscheck (1991). The saturation 

profiles in the fracture are plotted in Fig. 8, at elapsed times of 104 s, 106 s, and 108 s. 

At each time, there is very close agreement between the saturation profile predicted by 

the semi-analytical method, and that predicted using a discretized matrix. 

The amounts of CPU time needed for the simulations, performed on a Solbourne 

(Series 5) computer, are shown in Table 1. In each case the simulation was carried 

out to 108 s, starting with an initial timestep of 0.01 s, and with no restrictions placed 

on the timestep growth. The semi-analytical solution required about 70% fewer 

timesteps than did the fully-discretized solution, which is to say it allowed, on the 

average, timesteps that were about 3.38 times larger. The total number of Newton

Raphson iterations needed by the fully-discretized simulation was about 3.04 times 

.-- \ 
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greater than that needed by the semi-analytical method. The savings in CPU time for 

the semi-analytical method was about 96%, which corresponds to a 25-fold increase in 

speed. This reflects both an increased speed per iteration, and a need for a fewer total 

number of iterations to reach the desired total simulation time of 108 s. 
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Table 1. CPU times for the problem of horizontal infiltration into a sirigle fracture 

located in a permeable formation. Both simulations were conducted with TOUGH 

running on a Solbourne (Series 5) computer. 

Fully-Discretized Semi-Analytical 

# fracture elements 45 45 

# matrix elements 45><20=900 0 

Total# elements* 946 46 

Timesteps 624 185 

Iterations 3205 1053 

CPU time (s) 20901 823 

* Includes one boundary element 

.-



- 31 -

Vertical Infiltration into a Formation Containing Parallel Fractures 

Another idealized hydrological problem that is relevant to the site characterization 

process at Yucca Mountain is that of infiltration of liquid water into a formation con

taining an array of parallel fractures, under the influence of both capillary and gravita

tional forces (see Fig. 9). Such infiltration can occur under conditions of either con

stant pressure at the surface, or constant flux. We will consider infiltration that occurs 

under constant pressure conditions; in particular, we will consider the ''barely

ponded'' case, in which there is a very small positive potential at the surface, caused 

by a small depth of standing water. The effect of a positive potential of magnitude 'l's 

at the surface will have a negligible effect on imbibition compared to the capillary 

forces, as long as l'l's I« l'l'a I. Since a ponded head of depth h causes a surface 

potential of magnitude pgh, the effect of ponding will be negligible as long as 

h «'Valpg = Ls, where Ls is the sorptive length of the fracture (see Appendix B). For 

the parameters used in this example, the sorptive length is 0.17 m, or 17 em, so the 

case of negligible ponded head is physically realistic. Therefore, in order to simplify 

the interpretation of the results, we take the ponded head to be zero. The type of 

infiltration m~deled in this problem would occur, for example, after a brief but intense 

rainfall event. Assuming uniform properties in the horizontal plane, the imbibition can 

be modeled as a one-dimensional problem, similar to the leaky-fracture problem dis

cussed in the previous section. The only differences in the simulations are the inclu

sion of a gravitational gradient, and the use of a finite size for the matrix blocks. 

TOUGH allows for the gravitational gradient to be set equal to zero, or to its actual 

value of 9.81 m/s2, or to any other value, as specified in the input file. 

For this problem the fracture continuum was discretized into 50 elements, with 

the length of the n-th element given by Ln =(1.2)n-l m. This is a similar gridding 

scheme as was used for the horizontal flow problem, except that five additional grid

blocks were needed to insure that the front did not reach the end of the grid within 
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108 s. Fourteen matrix gridblocks w'"ere''piaced norm~ to each fracture gridblock, with 

their lengths given by Ln = (2.0)n x10-5 m. These matrix gridblocks therefore extend a 

total distance of 0.3277 m away from the fracture, which corresponds to a spacing 

between fractures of· 2L = 0.6554 m. This spacing is in the range that was reported by 

Wang and Narasimhan (1985). The matrix· blocks in this problem are therefore slabs 

of length 2L . The proper shape factor for a slab of thickness 2L, which is needed for 

the semi-analytical simulation, is given by a=7t2/(2L)2=22.98 (see Appendix D). The 

equivalent-continuum fracture permeability was taken to be 3.357 X 10-14 m2, and the 

fracture gridblock volumes were again chosen to correspond to an aperture of 800 J.Lm. 

Fig. 10 shows the saturation profiles in the fractures, as a function of depth below 

the surface, after elapsed infiltration times of 106 s, 10 7 s, and 108 s. Gravity causes 

the liquid front to extend much farther down into the formation than would have been 

the case under the influence of capillarity alone (compare Figs. 10 and 7). The agree

ment between the fully-discretized TOUGH solution and the solution obtained with our· 

new source/sink method is again quite close. Fig. 11 shows the infiltration rate into 

the formation as a function of time. The initial downward-sloping region that exists 

for t < 103 s reflects the influence of capillarity, which is important only at small times. 

After the effect of capillarity diminishes, the volumetric flux tends towards the value 

q = pgk1 IJl, which would be the infiltration rate into the fractured formation of per

meability k1 , if the matrix blocks were impermeable. In this problem, 

pgk1 IJ.L=3.29x w-7 m/s. Eventually, at times that are sufficiently large that the matrix 

blocks near the surface are full, the infiltration rate re-stabilizes at q = pgk1 IJl. How

ever, as predicted analytically by Nitao and Buscheck (1989,1991), there is an inter

mediate regime, during which the the matrix blocks near the surface are in the process 

of being filled, when the infiltration rate rises somewhat above pgk1 IJl. The 

infiltration rate calculated using the semi-analytical approach displays this qualitative 

feature, whereas the fully-discretized solution in fact shows a slight decrease below 
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this infiltration rate. Although these effects are relatively small (the two infiltration 

rates never differ by more than 20% ), and do no not seem to have any simple physical 

explanation, it nevertheless seems that the semi-analytical method can more readily 

discern this subtle aspect of the solution; presumably, a finer gridding, of the matrix 

blocks would enable the fully-discretized solution to predict this effect. 

Table 2 shows the computational details of the two simulations. The number of 

time steps needed to reach 108 s was about 27% less for the semi-analytical simulation 

than for the fully-discretized case. The ratio of CPU times between the two simula

tions was about 6: 1. Note that in the case of horizontal infiltration, the fiowrate into 

·the first fracture element continually decreases, whereas for vertical infiltration, the flux 

is more or less constant in time. Recall that TOUGH will allow the timestep to grow 

if the Newton-Raphson iterations converge within, say, four iterations. Our simula

tions have generally shown that one of the factors that controls the ease of conver

gence is that the total volumetric flux through any given gridblock in one timestep can

not exceed about 104 pore volumes. If the flowrate decreases, the maximum allowable 

timestep will grow at a rate such that qAt = 1 04( <l> V)min· Hence the timestep can grow 

continually in the vertical flow problem, but will not grow beyond some fixed value 

during vertical flow. This accounts for the fact that both methods required less 

timesteps for the horizontal flow problem as for the vertical problem. In either case, 

the maximum timestep will be controlled by the size of the smallest gridblock. In the 

fully-discretized horizontal flow problem, the smallest gridblock was a matrix element 

adjacent to the first fracture element; the elimination of this element in the grid that 

was used in the semi-analytical simulation had the effect of allowing larger timesteps 

to be taken. This is an additional advantage afforded by the new method. 
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Table 2. CPU times for the problem of vertical infiltration into a formation consisting 

of a set of parallel, equally-spaced fractures. Both simulations utilize TOUGH running 

on a Solbourne (Series 5) computer. 

Fully-Discretized Semi-Analytical 

# fracture elements 50 50 

# matrix elements 50x14=700 0 

Total# elements* 946 46 

Time steps 970 705 

Iterations 5082 4785 

CPU time (s) 20508 3431 

* Includes one boundary element 
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Conclusions 

This report has described a new semi-analytical dual-porosity model for unsa

turated flow in fractured/porous media. The model is based on a lumped-parameter 

formulation, in which the mean liquid potential in each matrix block is represented by 

a single value. Fluid flow from the fracture network into the matrix blocks is modeled 

by a nonlinear equation, with an effective transmissivity that depends on the hydrologi

cal properties of the matrix rock, the geometry of the matrix blocks, as well as on the 

mean saturation of the matrix blocks. This expression for fracture/matrix flow has 

been incorporated into a module that is compatible with the TOUGH simulator to act 

as a source/sink term for the fracture elements. The modified code has been tested on 

the problem of flow along a single horizontal fracture, as well as vertical infiltration 

into a fractured formation under constant-head boundary conditions. In both cases the 

new method gives very close agreement with ·simulations carried out by explicitly 

discretizing the matrix blocks, while yielding a substantial savings in CPU time. Since 

the new method permits an order of magnitude decrease in the number of computa

tional cells, the process of creating the grid and the input file for the TOUGH simula

tions is greatly simplified. Both of these factors will allow for much more efficient 

simulation of unsaturated flow processes in fractured/porous formations, such as, in 

particular, the unsaturated zone at Yucca Mountain, Nevada. The new dual-porosity 

module described in this report is currently being used, in conjunction with the three

dimensional site-scale model of the unsaturated zone at Yucca Mountain that has been 

developed by scientists at Lawrence Berkeley Laboratory and the U. S. Geological 

Survey (Wittwer et al., 1994), to conduct transient simulations of infiltration processes 

at Yucca Mountain. 
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Fig. 1. Normalized capillary pressure curves of Mualem - van Genuchten media, as 
functions of normalized saturation. The parameters n and m are related by 
n = 11(1-m ). The equation of the curves, and the definition of normalized 
saturation, are given by eq. (9), and the adjoining text. 
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Fig. 2. Relative permeability curves of Mualem - van Genuchten media, as functions 
of normalized saturation. The parameters n and m are related by 
n = 11(1- m ). The equation of the curves, and the definition of normalized 
saturation, are given in eq. (10), and the adjoining text. 
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Fig. 3. Relative permeability curves of Mualem - van Genuchten media, as functions 
of normalized capillary potential. The parameters n and m are related by 
n = 11( 1-m). The equation of the curves is given by eq. (8). 
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Fig. 4. Normalized sorpt1v1ty cr* =cr[JJ.(Ss -Sr)lk<Phl'a 1] 112 of a van Genuchten 
medium, as calculated exactly by numerical integration of eq. (5), and from 
the approximate expression (22). 
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Fig. 7. Instantaneous flux into the fracture, per unit depth perpendicular to the page in 
Fig. 6, for the horizontal fracture flow problem. 
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Appendix A: Numerical Solution of the Richards Equation 

The Richards equation is a second-order, nonlinear partial differential equation in 

two variables, x and t. However, because of its mathematical form, which contains 

two derivatives with respect to x and one derivative with respect to t, a Boltzmann 

"similarity" transformation can be used (see Hillel, 1980, p. 208) to transform it into 

a second-order ordinary differential equation. This second-order ordinary differential 

equation can then be written as a pair of first-order differential equations, which can 

then be solved numerically using standard methods. This approach is more efficient 

and more accurate than a numerical solution of the original partial differential equa-

tion, due to the reduction in the number of independent variables from two to one. 

For a van Genuchten medium, the Richards equation (without gravity) takes the 

form (see eq. (4)) 

'~[kkr('lf) d'lf(X,t)]- dS(x,t) 
dX J.L<j> dX - dt ' 

(Al) 

where the characteristic functions are given by 

(A2) 

(A3) 

The boundary and initial conditions for the problem are 

'If( X, t = 0) = 'If; , (A4) 
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'If( X = 0 , t > 0) = 0 , (AS) 

lim 'lf(x, t) = 'If; • (A6) 
x--+>c> 

Guided by the approximate solution developed by Zimmennan and Bodvarsson 

(1989a), we define the dimensionless potential v by 

v=l, 
'I' a 

(A7) 

the normalized saturation by 

,.. S -Sr 
S = S -S ' 

s r 
(AS) 

and the dimensionless similarity variable by 

(A9) 

As 'If will be negative in the unsaturated zone, and 'If a < 0, the normalized capillary 

potential V will be positive. In terms of these dimensionless variables, the Richards 

equation is transformed into 

(AlO) 
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where the normalized characteristic functions are given by 

(All) 

(A12) 

and the symbol ' denotes differentiation. The three boundary/initial conditions, eqs. 

(A4-6), collapse into the following two boundary conditions: 

~(0) = 0, (A13) 

(A14) 

Eqs. (Al0-14) form a second-order ordinary differential equation two-point 

boundary-value problem. To solve these equations numerically, we first transform eq. 

(AlO) into a pair of first-order differential equations. This is done by defining two 

independent variables 

A A 

'1'1 = "'' 
(A15) 

(A16) 

Using the product rule to expand out the derivative of the bracketed term, eq. (AlO) 
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can be written as a pair of first-order equations: 

(A17) 

(AlB) 

where, as before, the symbol ' denotes differentiation. The two boundary conditions 

(A13,14) now apply to the dependent variable VI· The derivative~ k/(W) and S'(V) are 

found by differentiating eqs. (A11,12). 

After the potential profile v('rl) is found, the volumetric flux into the medium can 

be found from Darcy's law (eq. (13)), as follows: 

(A19) 

Comparing this expression with the definition of sorptivity, eq. (14), we see that 

(A20) 
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If we define the normalized sorptivity <1 as in Fig. 4, we have 

<1 = [~] 
d11 11=0. 

(A21) 

The normalized sorptivity is therefore equal to the value of v2 at 11 =0. 

The initial condition for v is always taken to be 0. The relationship shown in eq. 

(A21) shows that if we take the sorptivity to be known, we could integrate eqs. 

(A15,16) to solve for the potential at infinity, which is Vi; this is equivalent to solving 

for the initial saturation si . This integration could be performed using any standard 

integration technique for a system of ordinary differential equations, such as a Runge

Kutta algorithm, or a simple first-order· Euler algorithm (see Press et al., 1992, pp. 

702-708). The integration would begin at 11 = 0, and end when V2 has essentially 

reached zero, and v1 has leveled off to some asymptotic value Vi. For the purposes 

of generating a plot of the sorptivity as a function of the initial saturation, as in Fig. 4, 

this procedure would be sufficient. 

If, on the other hand, it was desired to find the sorptivity for a given value of Vi, 
the following iterative approach could be used. The sorptivity could be guessed, 

thereby supplying a value for v2 at 11 = 0, and the integration carried out to yield some 

value Vi· This value vi will essentially be a function of <1. Conversely, <1 will be a 

function of vi. although instead of being given as an explicit function, the functional 

relationship is a result of the numerical integration. Aside from this seeming compli

cation, the problem has been reduced to a one-variable root-finding problem, i.e., 

(A22) 

-~..-· 
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where \V; is the initial capillary potential, and \Vi is the value found as a result of 

numerical integration using a certain value ~ for the potential gradient at 11 =0 (see eq. 

A21). Hence any standard iterative method, such as bisection or Newton-Raphson 

iteration (see Press et al., 1992, pp. 355-360) could be used to converge to the value of 

~ that yields the correct value of \Vi. 

. As an example of the use of the ~imilarity transformation for solving the one

dimensional Richards equation without gravity, consider the problem of horizontal 

imbibition into a slab of Topopah Spring tuff whose initial liquid saturation is 0.65, 

from a saturated boundary that is held at zero capillary pressure. The physical param-
) 

eters for this rock are taken from Rulon et al. (1986), and are listed in Table AI. 

This problem was solved using the Boltzmann transformation method outlined above, 

and also using TOUGH. In the TOUGH simulations, the potential at the inlet is held 

constant by means of a very large boundary block that is connected to the first grid

block (see Fig. A2). This "source" gridblock has the same characteristic functions as 

the slab, but a volume of 1050 m3• Initially, this source block is at a pressure of 105 Pa, 

and has a liquid saturation of 0.984. At this saturation, the capillary pressure is zero 

(see Table AI), so the liquid phase pressure is also 105 Pa. As the liquid in the slab of 

tuff is initially at a saturation of 0.65, its capillary pressure is -1.062x 105 Pa, its air 

phase pressure is and so the liquid 
) 
phase pressure is 

'Jiz ='lfv +'lfc = l.Ox I0S-I.062x 105 =-0.062x 105Pa. Hence, there is a pressure gra

dient in the liquid phase that drives water into the slab from the source block. The 

volume of the source block is sufficiently large that the loss of fluid into the slab will 

not cause any noticeable drop in its pressure. 

In order to mimic the physical situation modeled by the Richards equation, the air 

phase is allowed to "short-circuit" out of the block. This is accomplished (see Pruess, 

1987) by connecting each tuff gridblock to a large "sink" block, also of volume 

1050 m3. The characteristic functions of this sink block are chosen so that there is no 
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capillary pressure effect, which implies that the air and liquid in the sink block are 

always at the same pressure. The sink block is initially fully saturated with air at a 

pressure of 105 Pa. As there is no capillary pressure effect, the water potential in the 

sink block is also at 105 Pa, which is higher than that of the water in the slab; hence, 

water will not enter the sink block from the slab of tuff. As water enters the slab from 

the source block, it slightly compresses the air ahead of it, raising itS pressure above 

105 Pa, thereby driving air into the sink block. 

In one TOUGH simulation the mesh consisted of 20 gridblocks, each of 0.05 m 

thickness, and in the other there were 100 gridblocks, each of 0.01 m thickness. For 

comparison with the TOUGH results, the similarity solution can be expressed in terms 

of the distance from the inlet, x, and the elapsed time, t, by using eq. (A9). The 

results of the three simulations, after an elapsed time of 10 7 s, are shown in Figs. A3 

and A4. The TOUGH simulations show a certain amount of broadening of the wetting 

front, due· to numerical dispersion (see Moridis and Pruess, 1992, pp. 4-8). Since the 

discretization error in the integral finite difference method is proportional to the square 

of the gridblock thickness (Moridis and Pruess, 1992, pp. 81-82), the fine-grid simula

tion is more accurate than the coarse-grid results. The numerical dispersion, which is 

an artifact of the solution method, can also be limited by using midpoint-weighting 

instead of upstream weighting for the inter-block transmissivities. The saturation 

profile and liquid potential profile computed with the fine grid lie very close to those 

computed using the Boltzmann transformation. Since TOUGH has already been vali

dated for one-dimensional imbibition problems (see Pruess, 1987, pp. 50-52}, this 

example serves in a sense to validate the solution method described in this appendix. 
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Table Al. Physical properties and parameters used in solution of one-dimensional 

imbibition problem into a slab of Topopah Spring welded tuff. Rock property values 

are taken from Rulon et al. ( 1986). 

Property Symbol Value Units 

Porosity <I> 0.14 -
( 

Permeability k 3.9x w-IS [m2] 

Air-entry pressure 'Va -8.72x 104 [Pa] 

v~ Genuchten parameter n 3.04 -

Viscosity* Jl 0.001 [Pas] 

Satiated saturation ss 0.984 -

Residual saturation sr 0.318 -

Initial saturation s. 0.650 -I 

* This value is used in the similarity solution; TOUGH uses pressure-dependent values 

computed from equations of state. At the simulation temperature of 293 °K, there is 

very little difference between the pressure-dependent values and the value 0.001 Pas. 
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Fig. AI. Schematic diagram of solution procedure for Richards equation. The initial 

slope dWidll at 11 =0 is equal to the normalized sorptivity, 0". Different choices of 0" 

will lead to different asymptotic values of Woo· Only one choice of 0" will lead to the 

·correct asymptotic potential, woo= W; . 
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Air- Sink Block SL = 0.0 Pv = 1xHP Pa 
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Fig. A2. Schematic diagram of the computational grid used in the TOUGH simula

tions. The 1m long slab is broken up into either 20 or 100 equally-sized gridblocks, 

each with a cross-sectional area of 1 m3. The large boundary gridblock at the left 

· serves as a source of liquid water at 1 x 105 Pa pressure, and zero capillary pressure, 

while the large sink block serves as a sink for air, as described in the text. 
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Fig. A3. Potential profiles computed for one-dimensional absorption of water into a 

slab of Topopah Spring welded tuff. Properties and parameters are listed in Table Al. 

The elapsed time is 10 7 s. 
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Fig. A4. Saturation profiles computed for one-dimensional absorption of water into a 

slab of Topopah Spring welded tuff. Properties and parameters are listed in Table Al. 

The elapsed time is 107 s. 
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Appendix B: Sorptive Lengths of Yucca Mountain Tuffs 

The sorptive length Ls is a characteristic length in an unsaturated porous media at 

which the capillary and gravitational forces are of roughly the same magnitude. For 

lengths scales much less than Ls , capillary forces will dominate gravitational forces, 

whereas for length scales much larger than Ls , gravity will be the dominant force. If 

the diameter om of a matrix block is much less than the sorptive length for that block, 

the gravitational term in the Richards equation can be ignored, and imbibition into the 

block can be assumed to be governed by capillary forces alone. The sorptive length is 

also of importance in other processes in which there is a combined influence of capil

lary suction and gravity. For example, consider the phenomenon of fingering, in 

which an initially uniform downward-moving imbibition front breaks up into one or 

more narrow fingers that travel at a much faster rate. This is an instability 

phenomenon which is caused when gravitational forces overtake capillary forces. The 

diameter of these finger-like flow perturbations can be shown to be, aside from a 

dimensionless multiplicative co.nstant, equal to the sorptive length (Selker et al., 1992). 

Hence, if a matrix block is sufficiently small (i.e., om « Ls) so that gravity can be 

neglected in the Richards equation, the possibility of fingering within that block can 

also be ignored. 

To derive a simple expression for the sorptive length, consider the full Richards 

equation for one-dimensional flow in the downward vertical direction, including both 

the capillary and gravitational gradients in the term for the flux (Hillel, 1980): 

l_[kkr('lf) d [ ( t)- )J] = dS(z,t) 
~ "' ~ 'I' z, pgz ~ 
~ ~~ oz · ot 

(Bl) 

where p is the density of the pore water, g is the gravitational acceleration, and the 

coordinate z points in the downward direction. The gradient that drives the flux of 

--
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water consists of two terms, the capillary pressure gradient, d\jlldz , and the gravita-

, tional gradient, d(pgz )ldz. The order of magnitude of the capillary gradient within the 

matrix block can be estimated as I 'If a IlL, where 'I' a is the characteristic potential that 

appears in the van Genuchten functions, and L is a characteristic length of the matrix 

block (in the vertical direction). The gravitational gradient is uniform throughout the 

block, and is equal to pg. Equating the magnitudes of these two gradients leads to eq. 

(5), which states that 

Iva I 
L =-

s pg 
(B2) 

According to this analysis, the sorptive length will depend on the hydrological proper-

ties of the rock, but not on the initial saturation. 

A more careful analysis given by Philip (1987), which accounts for the variation 

of the capillary pressure gradient with saturation, yields the following expression for 

the sorptive length: 

- (B3) 

By this definition, the sorptive length depends on the initial saturation of the medium, 

through 'If;. Division of both terms in eq. (B3) by 'I'; shows that eq. (B3) generalizes 

eq. (B2) by replacing '!fa by the ratio of the average value of k7 over the range from 0 

to 'If; to the mean slope of k7 over this range of potentials. In the special case where 

k7 =exp(-'lf/'lfa), the sorptive length given by eq. (B3) would agree with the simpler 

approximation given by eq. (B2). For a van Genuchten medium, Philip's expression 

takes the form 
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This expression can be simplified slightly by utilizing the normalized capillary pres

sure, as defined in Appendix A, 

v= ..Y_, 
'If a 

(B5) 

in which case eq. (B4) can be written as 

(B6) 

-

The integral appearing in eq. (B6) can be evaluated numerically for various values of 

Vi, each of which correspond to a particular value of the initial saturation, through the 

capillary pressure equation, eq. (6). Note that Ls does not depend on the absolute per

meability, the porosity, or the viscosity of the pore fluid. 

Table B 1 shows the computed sorptive lengths of various Yucca Mountain tuffs, 
. I 

along with their characteristic capillary pressures, 'If a (taken from Rulon et al., 1986). 

The sorptive lengths were calculated by evaluating eq. (B6) numerically at two 

different saturations, and also by using the simpler expression (B2). In these calcula

tions, the pore fluid density is taken to be 1000 kg/m3, and the gravitational aceleration 

is g =9.81 m/s2. For the three Yucca Mountain tuffs discussed in Table B1, Eqs. (B2) 

and (B3) give reasonably close values for Ls in the range of saturations that is prob

ably of most interest at Yucca Mountain. Fig. B 1 shows the sorptive length as a func

tion of initial saturation, for various values of the van Genuchten n parameter, 

.. 
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normalized with respect to the approximate value I 'I' a i!pg; the curves therefore reflect 

the discrepancy between eqs. (B3) and (B6). For a broad range of initial saturations 

from about 0.30-0.90, the two methods give the same order-of-magnitude estimate for 

Ls, with the discrepancy increasing at very high or very low initial saturations. How

ever, the purpose of calculating the sorptive length is to decide whether or not the 

gravitational term in the Richards equation can be neglected during matrix block imbi

bition. As the gravitational term can be ignored if Bm « Ls , a precise value for Ls is 

not needed. It therefore can be concluded from Table B 1 and Fig. B 1 that gravita

tional forces are negligible in any matrix block at Yucca Mountain which has a diame

ter less than about one meter. 
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Table B 1. Sorptive lengths of various Yucca Mountain tuffs, at two different initial 

saturations. The van Genuchten parameters are taken from Rulon et al. (1986). The 

sorptive lengths at the two different initial saturations are calculated by evaluating eq. 

(B5) numerically. The last column contains the approximate sorptive length, computed 

from eq. (B 1), which is independent of the initial saturation. 

Rock type -:-'If a (Pa) n si =0.6 si =0.8 eq. (B1) 

Paintbrush nonwelded 2.74x 104 2.250 2.61 m 1.96 m 2.80 m 

Topopah Spring welded 8.72x 104 3.040 8.27 m 5.74 m 8.89 m 

Calico Hills vitric 7.30x 104 2.345 8.96 m 7.74m 7.44 m 
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1~~--------------------------------------~ 

n=2.0 

n =3.0 ............ 
n=4.0 -···-···-
n = 10.0 ---

10
1

~------~------~------~------~~----~ 
0.0 0.2 0.4 0.6 0.8 1.0 

NORMALIZED INITIAL SATURATION, (Si-Sr)/(Ss-Sr) 

Fig. B 1. Sorptive length of a; van Genuchten medium, as a function of the initial 

saturation and the van Genuchten n parameter, normalized with respect to the approxi

mate value l\j/0 ltpg. The curves are found from numerical integration of eq. (B6). 
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Appendix C: Matrix Equilibration Times for Yucca Mountain Tuffs 

The main criterion for deciding if a fractured rock mass can be treated as an 

equivalent porous medium is whether or not the times scales of interest are long or 
y 

short compared to the characteristic time scale of matrix imbibition. If the time scales 

of interest are long, then the matrix blocks will have sufficient time to equilibrate with 

their surrounding fractures, and the rock formation will behave as an equivalent porous 

medium. For shorter time scales, the pressures in the fractures and matrix blocks will 

not be equal, and transient interftow will be taking place. For these situations, dual

porosity simulations would be needed. In order to decide which of these two cases 

obtains, it is necessary to know the characteristic matrix equilibration times. 

Zimmerman et al. (1990) derived approximate expressions for the time needed for 

sheet-like, cylindrical and spherical matrix blocks ~o fully saturate with water, under 

conditions where the boundary potential abruptly increases from 'Vi to 0. A scaling 

law was then proposed to extend this result to irregularly-shaped blocks. This scaling 

law involved a characteristic length scale of the matrix block, which was defined to be 

the ratio of the volume of the block V to its outer surface area A . For three-

dimensional blocks, they found that the time needed for the matrix block to (essen

tially) achieve full saturation is given by (Zimmerman et al., 1990, eqs. 38-42, Fig. 7) 

(Cl) 

where the subscript e denotes the "equilibration" time, and the roc~ properties are 

those of the matrix block, not of the fractures. 

As it will suffice to know merely the correct order of magnitude of the equilibra

tion time, this expression can be simplified. First note that as it is generally the case 

that Ss:::: 1 and Sr ::::Q, and n >2. the term (Ss -Sr)11n can be ignored. Furthermore, 
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since m = 1-1/n, the term m lin will always be close to unity, and so it too can be 

ignored. This is also true for the ratio nl(n+1). Finally, as long asS; is not too close 

toSs (which is true almost by definition in the unsaturated zone), the term (Ss -S;)m 

will also be of order one, which leaves 

t :: 4J.lcp(V lA )2 

e l'lfa lk 
(C2) 

Eq. (C2) shows that the equilibration time is proportional to the porosity of the rock 

and the viscosity of the pore fluid, although this latter parameter will not vary substan

tially. It is inversely proportional to the permeability of the matrix rock, and inversely 

proportional to 'I' a, which measures the strength of the capillary suction. The equili

bration time is proportional to the square of the characteristic size of the matrix block, 

VIA. 

Another simple way to derive an expression for the matrix block equilibration 
" 

time is to utili,ze a Warren-Root type equation for matrix imbibition. The admissibility 

of this procedure re_sts on the fact that although the Warren-Root equation is not accu-

rate at early stages of imbibition, it does correctly predict the time eventually needed 

for the matrix block to equilibrate with the fractures (see Zimmerman et al., 1993). 

For unsaturated flow into a spherical matrix block of radius a, the Warren-Root equa

tion (3) can be written as 

(C3) 

where we use the fact that \jl 1 = 0 in the fractures that surround the matrix block. The 

unsaturated hydraulic diffusivity of the matrix can be related to the sorptivity as in eq. 
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(16): 

(C4). 

and the sorptivity can be estimated from eq. (19) as 

(C5) 

The initial condition for imbibition is that 'I'm ='I'; when t = 0, so the solution to eq. 

(C3) is 

(C6) 

where D is given through eqs. (C4,5). The time needed for the potential to decay to 

about 1% of its initial value can be found by setting the argument of the exponential to 

4.6, since e - 4·6 ::: 0.0 1. This procedure gives 

te = 
9.2~<j>a 2(Ss _ S; )0.76+0.24m (Ss _ S, )2.24-0.24m 

(C7) 

Again eliminating parameter-dependent terms that are of order one, we can simplify 

this to 

t ::: e 

9.2J.L<j>a 2(Ss _ S; )0.76+0.24m 

1t
3k I 'I' a I 

(C8) 
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We can generalize this result to non-spherical blocks by recognizing that VIA =a/3, 

and th~m replacing a 2 with 9(V /A )2. Ignoring the resulting numerical constant, which 

is 82.8/1t3 :: 1, we find 

Jlci>(V /A )2(Ss _ S; )0.76+0.24m 
t :: ----------
e l'lfa lk 

(C9) 

Finally, we again assume that S; is not too close to Ss, in which the saturation

dependent term can also be ignored, leaving 

t :: Jlcj>(V lA )2 

e l'lfa lk 
(ClO) 

Except for the factor 4, this expression agrees with that given in eq. (C2). For a con

servative estimate of the equilibration time, eq. (C2) can be used. 

Although the spherical matrix block is a useful mathematical idealization that 

allows the imbibition equation to be reduced to one variable, a cube is actually a more 

realistic model of a matrix block. If the spacing between successive fractures is L, 

then the matrix block volume would be L 3, the outer surface area would be 6L 2, and 

so (VIA)2=L 2!36. In this case eq. (C2) can be written as 

(Cll) 

As the pore fluid viscosity Jl does not depend on the properties of the matrix rock, and 

cj> will usually be equal to 0.10, to within at most one order of magnitude, we see that 

the parameters that have the greatest effect on the matrix equilibration time are fracture 
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spacing, permeability, and the characteristic capillary pressure 'If a • 

The fact that both methods of estimating te led to nearly the same expression pro

vides some evidence that the results are reasonable. Eq. (Cll) can also be derived 

using dimensional analysis and simple physical arguments. We start by listing the 

dimensioned variables that are involved in the problem, and their dimensions in an 

[MPLT] system, in which mass, pressure, length and time are the basic dimensions: te 

[T]; J.L [PT]; L [L]; k [L2]; and 'l'a [P]. Since there are five variables and three 

dimensions (P, L, and T; M does not appear), the Buckingham pi theorem (Collins, 

1990, p. 240) shows that two independent dimensionless "pi-groups" can be formed. 

Using the standard procedure, we find 

(Cl2) 

(C13) 

Hence there exists some functional relationship of the form II 1 = f (I12), or 

tel'lfal 2 
--=f(L lk). 

J.l 
· (C14) 

We now note that since the Richards equation is invariant under the transformation 

{t ~ et, k ~ e-1k}, for any constant e (as can be verified by direct substitution), te 

must depend inversely on k. [To prove this, consider that te is a function of k, i.e., 

te = f (k ). Now let t ~ et and k ~ e-1k, which leaves solution to the imbibition prob

lem unaltered, in which case te ~ete, and ete =f(e-1k). Since this holds for any 
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value of c, we can pick c = k, in which case we get kte = f (1 ). But f (1) is by 

definition a single constant, hence kte =constant.] The relationship between the two 

dimensionless groups in eq. (Cl4) must therefore be a linear relationship, i.e., 

(C15) 

where C is some dimensionless constant. Finally, we note that, all other parameters 

being constant, the equilibration time should be proportional to the porosity. This can 

be proven, starting from eq. (5), by using reasoning similar to that used above t,o show 

that te = llk. This implies C = Ccp, in which case we can solve eq. (CIS) to find 

(C16) 

The preceding arguments give the same form forte as did the more detailed quantita

tive analyses, except that the value of the dimensionless constant C is not specified. 

The estimated matrix block equilibration times for several Yucca Mountain tuffs 

are listed in Table Cl, as calculated from eq. (Cll). The pore fluid viscosity is taken 

to be 0.001 Pas, which corresponds to a temperature of 20°C. Fracture spacings of 

0.1 m and l.Om are chosen for the calculations. The fracture spacings estimated by 

Wang and Narasimhan (1985) were about 0.2m, which would lead to equilibration 

times four times larger than those calculated for L = 0.1 m. 
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Table Cl. Matrix equilibration times (te) for various Yucca Mountain tuffs, calculated 

from eq. (Cll), for different fracture spacings. The hydrological parameters are taken 

from Rulon et al. (1986). For ease of interpretation, times are not given in SI units 

(i.e., seconds), but in the unit most closely corresponding to the magnitude of te. 

Rock type <I> k (m2) -'l'a (Pa) L=0.1m L=1m 

Paintbrush nonwelded 0.46 LOx 10-15 2.74x 104 5.2 hours 21.6 days 

Topopah Spring welded 0.14 3.9x 10-18 8.72x 104 5.3 days 1.45 years 

Calico Hills vitric 0.37 5.0x 10-16 7.30x 104 3.1 hours 13.0 days 

.. 
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Appendix D: Matrix Block Shape Factors 

The general forms of both the Warren-Root and Vermeulen equations contain a 

parameter a that has dimensions of [L - 2]. It is therefore inversely proportional to the 

square of some suitably-defined characteristic length scale of the matrix block. Even 

for the case of a constant diffusion coefficient, which has received the most study, the 

proper choice of this parameter has been the source of controversy. Barenblatt et al. 

(1960), Warren and Root (1963), and Moench (1984) suggested leaving a as an open 

parameter whose value is found by fitting field data to the predictions of the dual

porosity model. One difficulty with this approach is that, if the matrix blocks are dis

tributed over different sizes and shape classes, the overall behavior of a formation will 

not be characterizable by a single value of a (Hayot and Lafolie, 1993). It would 

therefore be useful to be able to determine the correct values of a corresponding to 

matrix blocks having specific sizes and shapes. 

For cubical matrix blocks of length L, Warren and Root (1963) proposed the 

value a=60/L 2• Their derivation was somewhat ad hoc, however, and cannot be gen

eralized to other shapes. A more extensive discussion of the relationship between a 

and block geometry was given by deSwaan ( 1990). He suggested choosing the value 

of a so that the Warren-Root equation correctly predicts the time at which the imbibi

tion process is 50% complete. In other words, the exact solution and the Warren-Root 

solution were forced to agree at one, arbitrarily chosen, point in time. This approach 

has the effect of making the Warren-Root method relatively accurate for some inter

mediate time regime, for the particular case of a step-function change in the fracture 

pressure. The ·asymptotic quasi-steady-state flux will, however, be off by some multi

plicative constant 

One simple and reasonable criterion that can be imposed on the choice of a is 

that the appropriate value of a should lead to the correct imbibition rate in the long

time. quasi-steady-state regime. This approach was proposed by van Genuchten and 
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Dalton (1986); see also Barker (1985). They found the long-time asymptotic behavior 

for flow into spherical, cylindrical, and sheet-like matrix blocks by examining the 

behavior of the step-function response in Laplace-space, for small values of the 

Laplace parameter s . The relationship between the large-time behavior of a function 

and the behavior of its Laplace transform for small values of s is discussed by Latta 

(1974, p. 639) and Chen and Stone (1993). The relationship between a. and matrix 

block geometry can be analyzed in the time domain, rather than the Laplace domain, 

as follows. Start with the pressure-diffusion equation in the form 

V2'1f(X t) = ..!..k 
' D CJt' 

(Dl) 

where x is the position vector of a generic point in the block, and D is the diffusivity. 

To make this problem tractable, we assume that the diffusion coefficient is constant. 

This should cause no loss in generality, as the shape factor a. is a geometric property 

of the matrix block, and does not depend on the hydrological properties of the rock. 

The boundary and initial conditions are 

'Jf(X, t =0) = 'lfi , (D2) 

'If( X E r, t > 0) = 0, (D3) 

where r denotes the outer boundary of the block. Using the method of separation of 

variables, we search for solutions to eq. (Dl) that have the form 'lf(X,t)=F(x)G(t). 

The standard procedure (see Dettman, 1962, pp. 108-116) then leads to 

.r 
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V
2
F(x) = _!_ G'(t) =-A., 

· F(x) D G(t) 
(D4) 

where A. must be a constant that does not depend on x or t. The functions F (x) must 

therefore satisfy the equation 

) 
(D5) 

along with the boundary condition 

F (x) = 0 for all X E r. (D6) 

The values of A. are therefore the eigenvalues of the Laplacian operator for the region 

interior to r, with Dirichlet-type boundary conditions. Only for geometrically simple 

shapes can the eigenvalues be found explicitly. Nevertheless, there will always be an 

infinite set of eigenvalues An, each corresponding to one or more eigenfunctions Fn (x). 

For a finite-sized body, the eigenvalues will be discrete . and positive, and can be 

labeled as A.1 < A.2 < · · · (see Dettman, 1962, pp. 11 0). In certain cases an eigenvalue 

can have more than one independent eigenfunction associated with it. This possibility 

is of no importance in finding the a. parameter, so we ignore it. From eq. (D4) the 

functions Gn(t) can be found to be exp(-A.nDt). Hence the general solution to eq. 

(D 1) can be written as 

(D7) 

where the en are constants. The en are found from the initial conditions, although 
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their precise values are not relevant to the deterrirination of a.. 

The important point is that, for large times, the term involving AI will dominate 

the series, since the other terms, corresponding to higher eigenvalues, will be exponen

tially smaller. The long-time behavior of the matrix block is therefore dominated by 

the smallest eigenvalue, AI= Awn· Comparison of eq. (07) with eqs. (3) and (C3) 

shows that, in order to give the correct long-time behavior, the parameter a. should be 

chosen to equal Annn· These minimum eigenvalues can be found for various simple 

shapes from the solutions compiled by Crank (1975) and Carslaw and Jaeger (1959). 

For example, a.= rc2/a 2 for a sphere of radius a; a.= rc2/L 2 for a thin sheet of thick

ness L; a.= 3rc2/ L 2 for a cubical block of length L; and a.= z f I a 2 for a long cylinder 

of radius a , where z 1 = 2.405 is the first positive root of the Bessel function J 0 (z ). 

For more general shapes, for which the minimum eigenvalue Anun cannot be 

found explicitly, it would be useful to have an approximate rule-of-thumb for estimat

ing a.. Zimmerman et al. (1990) suggested the following procedure. For a spherical 

block of radius a, the volume/area ratio V /A is equal to a /3. Hence so a = 3 V /A, and 

the parameter a.=rc2/a 2 can be written as 

(D8) 

Eq. (D8) can be used for arbitrarily-shaped blocks, provided the appropriate value of 

V lA is used. It is of course necessary to examine the extent to which this approxima

tion holds for realistically-shaped blocks. Whereas soils, for example, may contain 

very irregularly-shaped microporous aggregate particles which play the role of matrix 

blocks (van Genuchten and Dalton, 1986), the matrix blocks at Yucca Mountain are 

most likely three-dimensional polygons (see Wang and Narasimhan, 1985). Although 

we cannot test this approximation for arbitrarily-shaped polygons, we can test it for 

.Y. 
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blocks that are shaped like rectangular parallelepipeds. which will be the case ·if the 

fracture sets are orthogonal. In this case we can compare the proposed approximation 

(08) to the exact known result (Carslaw and Jaeger. 1959. p. 187): 

(J.exact = Axrun = 1t2 
-2 + -i + -2 • 

[ 
1 1 1 ] 

Ll L2 L3 
(09) 

where L 1• L 2• and L 3 are the lengths of the three sides of the matrix block. The 

volume of the matrix block is L 1L2L3• and its outer surface area is 

a. = 41t2 [-1- + _1_ + _1_] 2 

~pn 9 Ll L2 L3 
(010) 

The ratio of the approximate value of a. to the exact value is 

(011) 

The ratio in eq. (011) takes on maximum or minimum values when the ratios of the 

three lengths take on their limiting values. i.e., L 1 =L 2»L3• etc. Table 01 summar

izes these extreme cases, along with one arbitrarily chosen example. The table shows 

that the approximation (08) is reasonably accurate; in particular. in no case does it 

grossly underpredict or overpredict the value of a.. Since these cases cover a large 

range of aspect ratios of the matrix block~, from sheets to cubes to long prisms. it 

seems reasonable to use expression (08) in the general case, when the fracture sets 
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might not be orthogonal. 

Another possible method of estimating a. would be to utilize certain upper and 

lower bounds that have been established for "-min· These bounds are expressed in 

terms of geometric parameters such as the block volume, the radius of the largest 

sphere that can be inscribed within the block, etc. Knowledge of the value of the 

outer surface area A cannot be used to calculate bounds on "-min· as "-min is not greatly 

affected by A . This can be explained as follows. The amount of surface area is very 

sensitive to roughness of the fracture surfaces, whereas the volume of the matrix block 

will not be affected by roughness. In fractal models, for example, a block that has a 

finite volume may in fact have an infinite surface area (Korvin, 1992). But the equili

bration time for a matrix block should depend on its gross geometry, and not on its 

superficial roughness (see Fig. D1). Hence, A is not a parameter that can appear in 

rigorous bounds on "-min· Two potentially useful bounds on "-min are the following 

(Garabedian, 1964, Chapter 11): 

(D12) 

where rin is the radius of the. largest sphere that can be inscribed within the block (see 

Fig. D2), and req is the radius of the sphere that has the same volume as the block, 

i.e., 

[ l
l/3 

req = !~ (D13) 

It is also true that rc2/r 1-x provides a lower bound to "-min• where rex is the smallest 

sphere that can be superscribed around the block (see Fig. D2). However, as rex 
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cannot be less than req, this lower bound is not as restrictive as the one given in eq. 

(El2), and is therefore not as useful. 

As an example of the use of the bounds given in eq. (D12), consider a cube of 

length L . The volume of the cube is L 3, and the largest sphere that can be inscribed 

in the cube has radius L/2, so eqs. (Dl2,13) yield 

(D14) 

In this case, the bounds are reasonably close. In fact, the arithmetic mean of the two 

bounds would narrow down the estimate of Anun to 

1t2 
Auun = (3.30 ± 0.70)2, 

L 
(D15) 

which is a maximum possible error (assuming that the correct value was unknown) of 

only 26%. The actual error incurred by 'using the arithmetic mean of the bounds, how

ever, is only 10% in this case. Unfortunately, these bounds become very far apart for 

sheet-like or prismatic blocks, for instance. Consider a long cylindrical block of radius 

a and length L, where L ~ oo. The largest sphere than can be inscribed inside the 

cylinder would also have radius a . As L ~ oo, the volume of the block becomes 

infinite, and subsequently req would become infinite; eq. (D12) would then give 

(D16) 

where, as mentioned above, 2.405 is the first positive root of the Bessel function 10 (z ). 
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The upper bound overestimates Awn by 71%, whereas the lower bound is trivial and 

contains no information. The scaling law described by eq. (D8), however, yields an 

estimate of 4.39/a 2, which is only 24% less than the actual value. We conclude from 

this and similar examples that whereas eq. (D8) is not a rigorous approximation in any 

strict sense, it will generally yield reasonably accurate estimates of Annn· 

.... 
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Table D 1. Relationship between geometry of the matrix block and the value of the a 

parameter. The matrix blocks are parallelepipeds with sides of length L 1, L 2, and L 3• 

The exact value of a is computed from eq. (D9), and the approximate value is com

puted from eq. (DIO). The approximate expression is always within ab?ut a factor of 

two of the exact value. 

Fracture spacing Block shape a( exact) a(approx) aapplaexa 

Ll =Lz=L3 cube 
31t2 41t2 

4/3 -- --
Lf Lf 

Ll =Lz»L3 sheet 
1t2 41t2 

4/9 - --
Lf 9Lf 

Ll »Lz=L3 long prism 
21t2 167t2 

8/9 -- --
Lf 9Lf 

L1 =2L2=3L 3 arbitrary example 147t2 161t2 
817 -,- --

9L} 9L} 
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ES0-9404-0002 

Fig. D 1. The two blocks shown above have the same volume, and have essentially the 

same macroscopic shape. It can be proven, using the bounding methods described in 

the text and in Fig. D2, that their shape factors will be nearly equal. However, block 

(b) has a much larger surface area, if measured on a micro-scale. Hence, when using 

approximations such as eq. (D8) to estimate shape factors, a "smoothed-out" surface 

area should be used; this is equivalent to replacing block (b) with block (a) before cal

culating the surface area. If the surface area estimates are based on measured dis

tances between fractures, this problem will not arise. 
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ESD-9404-0003 

Fig. D2. An arbitrarily-shaped matrix block, along with the largest sphere that can be 

inscribed within it, and the smallest sphere that can be superscribed around it. The 

radii of these two spheres, rin and rex• can be used to provide bounds on the shape 

factor for the matrix block: n21ri;, <a< n2/r }x. 
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Appendix E: Effect of Air on Imbibition of Water 

The question of whether or not air will impede the imbibition of water into an 

initially unsaturated rock has been the subject of much study ( cf., Adrian and Franzini, 

1966; Phuc and Morel-Seytoux, 1972; Constantz et al., 1988). Before attempting to 

answer this question, it is necessary to formulate it more precisely. Physically, those 

portions of the void space of a rock or soil lying above the water table that are not 

occupied by water will be occupied by air. It is the existence of the two components, 

water and air, along with the interface between them, that gives rise to the capillary 

pressure phenomena, the negative pressure in the water phase, and thus the driving 

force needed in order for water to be imbibed by suction into the rock. Furthennore, 

those portions of the void space that are initially filled with air provide the space to 

accommodate the water as it imbibes into the rock. As this occurs, of course, the air 

must somehow flow out of these regions of the pore space. Nevertheless, it is clear 

that the entire process of water imbibition into a matrix block cannot occur without the 

presence of the air component. 

In order to ask whether or not air impedes the imbibition process, one must 

specify an alternative process to be used for comparison. Since, almost by definition, 

imbibition in the unsaturated zone does not occur in the absence of air, in a certain 

sense the question is not physically meaningful. However, it is meaningful in the fol

lowing mathematical sense. As mentioned in the main text, and in Appendix A, the 

flow of water is usually modeled by assuming that the air phase is infinitely mobile, 

and at a uniform pressure. This leads to the Richards equation as the governing equa

tion for the saturation and pressure of the water component. The question can then be 

raised as to whether or not solutions to the Richards equation will accurately reflect the 

imbibition process. Alternatively, the question can be raised as to the relation between 

the solutions to the Richards equation and the solutions to the full pair of coupled 

equations describing the motion of the water and air components. This is what is 
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-
actually meant by the question of whether or not air impedes the imbibition of water 

into a matrix block. 

Simultaneous flow of water and air in a porous medium is usually thought to be 

described by the following equations: 

(E1) 

(E2) 

where the subscript l denotes the liquid phase (water), and the subscript v denotes the 

vapor phase (air). These equations are coupled through the relations (see de Marsily, 

1986, p. 215) 

S1 + Sv = 1, (E3) 

which reflects the fact that no other components are assumed to be present, and 

'1'1 - 'l'v = 'l'c (S[) • (E4) 

in which the capillary pressure function 'I' c (S1) is described by an equation such as 

that of van Genuchten ( 1980), Brooks and Corey (1966), etc. If the air pressure is 

assumed to be constant, then d'lf1/dx = d'lfcldx, and eq. (E1) will be equivalent to eq. 

(5). In this approximation, the mass balance equation for the air, (E2), is not quite 

satisfied, since the term d'lfvldx will be zero, whereas the term asvldt will be nonzero. 
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However, it is customary to ignore eq. (E2) in this approximation. The TOUGH simu

lator (Pruess, 1987). in effect solves both eq. (E1) and eq. (E2), since they represent 

conservation of mass for the two components. TOUGH also solves an energy balance 

equation, although this equation is essentially superfluous in isothermal flow problems. 

This is because, since internal energy depends strongly on temperature, but only 

weakly on pressure, extremely small temperature changes are needed to balance out 

the changes in energy that accompany the variations in pressure. 

Although the Richards model is widely used, different physical interpretations 

have been given for the approximations embodied in it. The common explanation is 

that the air is infinitely mobile, and will flow instantaneously in response to the smal

lest of pressure gradients (McWhorter, 1971; Touma and Vauclin, 1986). de Marsily 

(1986), on the other hand, interprets the Richards model as assuming that the air phase 

is immobile, in which case eq. (E2) is automatically satisfied. This is in some ways a 

more consistent interpretation for our purposes, as we assume that no air from the 

matrix enters the fracture network, and the fracture/matrix interfiow consists only of 

water. In order to use this interpretation, however, we must ignore the fact that an 

immobile gas, when forced into a smaller volume, will undergo a pressure increase, 

thus invalidating the assumption of constant pressure in the air phase. Hence it seems 

that no interpretation is free from inconsistencies. Moreover, the existing experimental 

and theoretical evidence concerning the air-impedance effect seems to be contradictory 

and inconclusive. 

In order to test whether or not eqs. (E4) can be ignored during an imbibition pro

cess, we have used TOUGH to run a pair of imbibition simulations for a matrix block 

comprised of Topopah Spring welded tuff. One of the outer boundaries of the matrix 

block is connected to a very large source block that initially has an air-phase pressure 

of 1.0 x 105 Pa, and a capillary presssure of zero. The other boundary is impermeable, 

which models the effect of a no-flow symmetry boundary in a finite-sized matrix 
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block. The gridblocks that represent the slab of tuff are .initially at an air phase pres

sure of l.Ox 105 Pa, but at a liquid saturation of 0.65. This saturation corresponds, 

through the capillary pressure function, to a capillary pressure of - 1.062 x 105 Pa, 

which implies a liquid phase pressure of l.0-1.062=-0.062x 105 Pa. Hence, there is 

a pressure gradient in the liquid phase that drives water into the slab from the source 

block. In one of the simulations, each gridblock is connected to a very large sink grid

block that has an initial air-phase pressure of 1 x 105 Pa, a liquid saturation of 0.0, and 

has a value of 'l'a =0, i.e., no capillary pressure effect. Hence, the potential of water 

in the sink block would be 1.0 x 105 Pa, in which case water will not flow from the 

slab into the sink block. The air-phase pressure gradient, however, will be such that 

air will flow from each slab gridblock into the sink block. This has the effect of 

short-circuiting the air flow out of the slab, and maintaining the air at a uniform pres

sure. This case essentially corresponds to solving the Richards equation. Comparison 

of the imbibition rates in the two cases described above ·provides an estimate of the 

extent to which the air "impedes" the flow of water. 

The parameters used in the simulations are listed in Table AI. They are taken 

from Rulon et al. (1986), and represent a welded tuff from the Topopah Spring unit at 

Yucca Mountain. The computed pressure profiles for the water and air components 

are shown in Figs. E1 and E2. The liquid phase pressure profiles are similar, although 

they diverge somC?what as time progresses. In the simulation in which the air is 

"short-circuited" out of the slab, the air phase pressure is nearly uniform at 

1.0 x 105 Pa. In the other simulation, the air is compressed slightly ahead of the liquid 

imbibition front, creating a gradient that drives some air into the slab, and some air out 

of the slab in a counter-flow direction to the liquid. The induced air-phase pressures 

are relatively small, since, due to the low viscosity of air, only a small gradient is 

needed drive the air out of the block. The computed liquid imbibition rates are shown 

in Fig. E3, which shows that the air has only a slightly inhibiting effect on liquid 
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imbibition. These results, which should not depend in any qualititave way on on the 

geometry of the matrix block, seem to show that as long as the flow process is 

governed by the usual continuum field equations, and as long as the liquid-phase pres

sure is not greater than the air-phase pressure, the use of the Richards equation will 

not lead to appreciable errors in the predicted imbibition rates. 

---

.· 
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Fig. El. Pressure profile in the liquid phase, during one-dimensional horizontal imbi

bition into a slab of Topopah Spring welded tuff. The parameters, initial conditions, 

etc., are shown in Table Al. There is a no-flow boundary at x = l.Om, which models 

simultaneous imbibition from both faces into a 2.0 m-thick slab. The individual grid

blocks are each of width 5 em., In one simulation the air-phase pressure is maintained 

at 1.0 x 105 Pa, as described in the text. 
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Fig. E2. Pressure profile in the air phase, for same problem as shown in Fig. El. For 

the case in which the air is allowed to escape from each gridblock, the air phase pres

sure is essentially constant at LOx 105 Pa. Note that the air phase pressure reaches its 

maximum value at a point slightly ahead of the location of the wetting front (compare 

Figs. El and E2). 
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Fig. E3. Imbibition rates of liquid into the slab, for the two cases described in text 

and Figs. El and E2. At early times, the imbibition rate are proportional to r-112, as 

described in Appendix G. At later times, as the block fills with water, the imbibition 

rate declines to zero. Except at very large times, the presence of air has a minimal 

effect on the liquid imbibition rate. 
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Appendix F: Comparison of van Genuchten and Brooks-Corey Sorptivities 

The sorptivity is defined by eq. (17) as a measure of the rate of imbibition into a 

one-dimensional unsaturated porous medium. The medium is assumed to be initially 

at a uniform saturation, and is then abruptly subjected to a capillary potential of zero 

at its outer boundary. The governing differential equation and the boundary conditions 

for this problem are given by eqs. (11-15). These equations must be supplemented by 

specific algebraic forms for the capillary pressure and relative permeability functions, 

in order to find an actual solution. As the imbibition rate will be proportionalto t-112, 

and to the wetted surface area A, the sorptivity cr is defined by eq. (17), which is 

repeated here for convenience: 

Acr 
q = 2r112 . (F1) 

Two commonly used forms for the characteristic functions of an unsaturated 

medium are those that have been proposed by Brooks and Corey ( 1966), and by 

Mualem (1976) and van Genuchten (1980). They differ mainly in that the Brooks-

Corey capillary pressure curve exhibits a finite air-entry pressure, whereas the van · 

Genuchten capillary pressure curve gives the capillary pressure as a continuous func

tion of saturation. According to the van Genuchten model, any negative suction will 

allow a certain amount of air to enter the rock, causing the liquid saturation to fall 

below 100%. According to the Brooks-Corey functions, air cannot enter the rock until 

the suction reaches a certain threshold value, known as the air-entry pressure, 'l'ae. If 

we adhere to the convention that \jl < 0 in the unsaturated region, then \jl ae will also be 

negative. The van Genuchten functions are giyen by eqs. (7 ,8), which are repeated 

here for convenience: 
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(F2) 

(F3) 

where the normalized saturation is given by S =(S -Sr)I(Ss -Sr). The Brooks-Corey 

functions can be written as (see Brooks and Corey, 1966; Zimmerman and Bodvarsson, 

1991a) 

S(V) = l· 1 
('I' IV ae r"' 

(F4) 
if (V/'1' ae) > 1 • 

if (V/'1' ae)::;; 1 
(F5) 

if (V/'1' ae) > 1 . 

Although the capillary pressure curves predicted by the two models differ qualita

tively in the region of low capillary pressures, they both predict a power-law relation 

between S and 'I' at very large capillary pressures. This makes it possible to match 

the two models in the low saturation region, as shown by Wang (1992). First consider 

the van Genuchten capillary pressure function in the limit of large negative values of 

(F6) 
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where we use the fact that m = 1 - lin in the van Genuchten model. Comparison of 

eqs. (F4) and (F6) shows that the two models agree if we set 

'l'ae = 'l'a ' (Fl) 

A= n-1. (F8) 

Note that although the parameter 'l'a in the van Genuchten model does not have the 

same physical interpretation as does the air-entry pressure 'lfae in the Brooks-Corey 

model, they both play a similar role as scaling factors for the capillary pressure. Also, 

if the parameters of the functions are found by fitting the curves to water retention 

data, it seems reasonable that the resulting parameters would satisfy conditions (F7) 

and (F8). We will therefore assume that these relations hold, and will write the 

Brooks-Corey functions in terms of 'I' a and n. Note also that although relations (F7,8) 

cause the capillary pressure curves to agree at low saturations, the relative permeability 

curves do not quite coincide. Figs. Fl and F2 show comparisons between the charac

teristic curves of the two models, assuming that eqs. (F7,8) hold. 

The sorptivities associated with the Brooks-Corey and van Genuchten models can 

be found by numerically integrating the Richards equation, as described in Appendix 

A. The results are shown in normalized form in Fig. F3, for the case n = 3, A= 2. For 

simplicity, we assume that Ss = 1 and Sr =0 in this example. The normalized sorp

tivity cr* is defined by 

(F9) 



- 95.-

as in eq. (A20). As might be expected, the qualitatively different forms of the two 

capillary pressure curves in the high-saturation region causes the two sorptivity curves 

to behave differently near Si = 1. However, this is difficult to see in Fig. F3, since the 

different behavior is highly localized near Si = 1. Approximate analytical methods (see 

Parlange et al., 1991,1992; Zimmerman and Bodvarsson, 1991a,1991b) tend to show 

that the Brooks-Corey sorptivity varies as (1- Si )112 in the high-saturation region, 

whereas the Van Genuchten sorpti~ity varies as (1-Si) 112 + 112n. The exponents agree 

as n ~ oo, but differ somewhat at the lower values of n that are typical of Yucca 

Mountain tuffs (see Wang, 1992). However, this range of high initial saturations does 

not seem to be of much importance for the unsaturated zone at Yucca Mountain, 

where initial matrix block saturations are probably in the range of 0.4- 0.8 (Wittwer et 

al., 1993). 

The interesting aspect of the results plotted in Fig. F3 is that ~t intermediate and 

lower initial saturations, the Brooks-Corey and van Genuchten sorptivities converge. 

From this, we conclude that although the two models yield different predictions for the 

characteristic curves, they will yield very similar predictions for the sorptivity, which 

is the parameter that most closely controls the rate of fluid exchange between the frac

tures and the matrix blocks. This is particularly true in the range of initial saturations 

that are of most interest at Yucca Mountain. 
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Fig. Fl. Normalized capillary pressure curves of the van Genuchten and Brooks-Corey 

type. The Brooks-Corey curves exhibit an abrupt air-entry pressure at \jf='lfa, whereas 

the van Genuchten curves are continuous functions of 'I'· If the van Genuchten n 

parameter and the Brooks-Corey A. parameter are related by A.=n -1, the curves will 

coincide asymptotically at low saturations. 
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The choice A.= n - 1, which causes the capillary pressure curves to agree at low satura

tions, does not cause the relative permeability curves to coalesce. 
' 
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saturations, where the sorptivities are very low, the two curves have different power

law behaviors. 
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Nomenclature 

Roman letters 

a 

A 

b 

c 

c 
c 
en 

D 

De 

F 

Fn 

g 

h 

k 

kr 

kr/ 

krv 

L 

Ls 

m 

n 

p 

pf 

Pm 

q 

Q 

rin 

req 

rex 

radius of cylinder or sphere, half-thickness of slab [m] 

surface area of block; gridblock interface area [m2] 

fracture aperture [ m] 

compressibility [Pa - 1] 

dimensionless constant in expression for equilibration time (Appendix C) 

dimensionless constant in expression for equilibration time (Appendix C) 

constants in solution to diffusion equation [Pa] (Appendix D) 

diffusivity [m2 s-1] 

effective diffusivity of unsaturated rock [m2 s-1] 

function of m appearing in sorptivity expression 

eigenfunction of Laplacian operator (Appendix D) 

gravitational acceleration [m s-2] 

ponding depth [m] 

absolute permeability [m2] 

relative permeability to liquid phase 

relative permeability to liquid phase (Appendix E) 

relative permeability to vapor phase (Appendix E) 

characteristic vertical dimension of block; fracture spacing [m] 

sorptive length [m] (Appendix A) 

van Genuchten parameter,= 1-1/n 

van Genuchten parameter 

pressure [Pa] 

pressure in fracture [Pa] 

mean pressure in matrix block [Pa] 

instantaneous liquid flux [ms-1] 

cumulative liquid flux [m3] 

radius of largest sphere inscribed within matrix block [m] (Appendix D) 

radius of sphere with same volume as matrix block [m] (Appendix D) 

radius of smallest sphere superscribed about matrix block [m] (Appendix D) 



S liquid saturation 

S; initial liquid saturation 

S1 liquid saturation (Appendix E) 

S r residual liquid saturation 

S s liquid saturation at zero potential 

Sv vapor/air saturation (Appendix E) 

- 100-

S normalized liquid saturation, =(S -S7 )1(Ss -S7 ) 

t time since start of process [s] 

te time for matrix block to equilibrate with fractures [s] 

V volume of block [m3] 

X horizontal COOrdinate (m] 

x vector of generic location within matrix block [m] (Appendix D) 

y horizontal coordinate along fracture [m] 

z vertical coordinate [m] 

Greek letters 

a. matrix block shape factor in fracture/matrix interfiow equations [m-2] 

~ saturation exponent in sorptivity equation 

am diameter (or characteristic length) of matrix block [m] 

11 Boltzmann similarity variable (Appendix A) 

y surface tension at the rock/water interface [kg s-2] 

r boundary of matrix block (Appendix· D) 

A. Brooks-Corey parameter (Appendix F) 

A. eigenvalue of Laplacian operator [m-2] (Appendix D) 

"-nun smallest eigenvalue of Laplacian operator [m-2] (Appendix D) 

Jl viscosity of pore water [Pa s] 

p density of water [kg m-3] 

<1> porosity 

<l>t fracture porosity 

<l>m matrix porosity 

II dimensionless pi group (Appendix C) 

'I' potential [Pa] 

'l'a scaling factor in van Genuchten function [Pa] 

... -
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Brooks-Corey air-entry pressure [Pa] (Appendix F) 

capillary potential, ='1ft - 'lfv [Pa] (Appendix E) 

initial potential [Pa] 

potential in liquid phase [Pa] (Appendices A,E) 

mean potential in matrix block [Pa] 

potential at surface of block [i>a] 

potential in vapor phase [Pa] (Appendices A,E) 

dimensionless potential, = \jll\jl a 

same as \II (Appendix A) 

derivative of \11, =d\jlldll (Appendix A) 

sorptivity, = QIA vt [ms-112] 

dimensionless sorptivity, = [2l'lfa l<j>k(Ss -Sr)IJJ.r112a {Appendix F) 

contact angle of water-rock interface 
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