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Abstract: 

A thermodynamic framework is developed for calculating wax precipitation in 

petroleum mixtures over a wide temperature range. The framework uses 1he 

experimentally-supported assumption that precipitated wax consists of several 

solid phases; each solid phase is described as a pure component or 

pseudocomponent that does not mix with other solid phases. Liquid-phase 

properties are obtained from an equation of state. Calculated wax-precipitation 

data are in excellent agreement with experimental results for binary and 

multicomponent hydrocarbon mixtures, including petroleum. 
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Introduction 

The broad volatility and melting-point range of hydrocarbon components found in 

petroleum causes formation of vapor, liquid and solid phases in response to 

changes in pressure, temperature or composition. When the temperature falls, 

heavy hydrocarbon components in the liquid and vapor may precipitate as wax 

crystals. In the petroleum industry, wax precipitation is undesirable because it 

may cause plugging of pipelines and process equipment. Wax precipitation is an 

old problem (Fagin, 1945; Goldman and Nathan, 1957; Ford et al. 1965) but only 

recently have attempts been made to develop a thermodynamic description. 

Published methods for describing wax precipitation are often in poor agreement 

with experimental data; they tend to overestimate the amount of wax at 

temperatures below the cloud-point temperature, which is the temperature where 

wax first begins to precipitate. Computational tools based on regular-solution 

theory of mixtures as well as on equations-of-state have been proposed to 

model wax precipitation (cf. Won, 1986, 1989; Hansen et al. 1988; K.S. 

Pedersen et al. 1991; Pedersen, 1993; Erickson et al. 1993). All of these 

methods assume that all the compounds that precipitate from the liquid or vapor 

form a solid-solution. However, recent spectroscopic and calorimetric studies by 

Snyder et al. (1992, 1993, 1994) and W.B. Pedersen et al. (1991) suggest that 

large hydrocarbons are mutually insoluble in the solid state. 

To illustrate previous work, Fig. 1 shows the essential thermodynamic equations 

f9r a three-phase flash calculation for a waxy crude oil mixture assuming that 

only one solid phase is present; that phase is assumed to be a solid solution. At 
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fixed temperature and pressure, a liquid phase (1) may coexist in equilibrium 

with a vapor phase (v) and a solid phase (s ). At equilibrium, it is necessary that, 

for every component i 

f y =t! =f.s 
l l l ' 

i = l,2, .... N (1) 

where f is the fugacity and N is the number of components. An equation-of

state (EOS) can be used to describe the vapor phase. The liquid phase can 

either be described by an activity-coefficient model or by an EOS. The solid 

solution is often described by an activity-coefficient model (Prausnitz et al. 1986). 

For vapor-liquid equilibria, it is common practice to use K factors, where 

Kivr = Yi I xf; yi is the mole fraction in the vapor phase and xf is the mole fraction 

in the liquid phase. It can readily be shown that K;vr = <p: 1 <p;, where <p is the 

fugacity coefficient as found from an EOS. 

For solid-liquid equilibria, there is an analogous K-factor: K;1 = x; 1 xf. It can 

readily be shown that 

I (fl) K~I = 'Yi _ 
l - s s 

'Yi J pure i 
(2) 

where y is the activity coefficient. At any temperature and pressure, the ratio 

(lt fs) . can be calculated from the melting temperature, the melting 
piiTe& 

enthalpy and the heat capacities and densities of pure liquid i and pure solid i, as 
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discussed elsewhere (Prausnitz et al. 1986). The effect of pressure is usually 

negligible, unless the pressure is very high and/or the temperature very low. 

As suggested in Figure t, there is an alternate method for calculating K:'. If the 
/ 

fugacity coefficient in the liquid mixture is found from an EOS, while the solid 

phase is described by an activity coefficient model, then K:' = <p: Ply: l; .. rei• 

where 1;,ei and cp! are evaluated at the temperature and pressure of the mixture. 

Won (1986) used two thermodynamic models for describing the properties of the 

liquid phase. He used an EOS for computing <p: for vapor-liquid equilibria and a 

modified regular-solution model to estimate the nonidealities of the liquid and 

solid solutions, Y! and y~ respectively for calculating liquid-solid equilibria. He 

neglected the effect of the heat-capacity difference of the solid and liquid, IJ.Cpi 

on the ratio (I' I Is) .. 
pure• 

In 1989, Won used his method to calculate the solubilities of n-C28 and n-C36 

solids in n-Cs and n-C12 at atmospheric pressure. He modified his earlier m~del 

by: 1) incorporating an extended regular-solution expression for activity

coefficients in the liquid phase, 2) assuming a pure-solid phase for the heavier 

hydrocarbon component, and 3) including the heat-capacity effect on the ratio 

(I' 1 Is) .. The heat-capacity contribution improved prediction of the solubilities 
pure• 

of the heavier n-alkanes in the liquid phase. 

In 1988, Hansen et al. observed that Wan's model (1986) was not satisfactory 

for calculation of the cloud-point temperature of 17 oil mixtures. They reasoned 

that since Wan's model gives activity coefficients close to unity for the wax-
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forming components, the K;1-factor of Eq. 2 essentially depends only on the ratio 

of t;urei to t;urei· These authors proposed to use the polymer-solution theory of 

Flory (1953) for describing nonidealities in the liquid phase, and assumed r: = 1. 

Three adjustable parameters in the proposed model were estimated from 

measured cloud-point data. Using parameters from these data, agreement 

between calculated and experimental cloud points was good. 

Extensive data on cloud-point temperature and amount of wax deposition 

became available in 1991. K.S. Pedersen et al. (1991) evaluated the 

performance of Won's (1986) and Hansen et al. (1988) procedures with the data; 

these models significantly overestimated the amount of wax deposition and 

cloud point temperature. To obtain an improved representation, K.S. Pedersen 

et al. (1991) proposed to modify Won's model by: 1) using solubility parameters 

B! and B; with one adjustable-parameter for each of the solid and liquid phases; 

2) incorporating the paraffinic/naphthenic/aromatic (PNA) split for each 

pseudocomponent of the C7+-fraction, and 3) modifying the melting-enthalpies 

of the P-, N- and A-pseudocomponents by means of one adjustable parameter, 

and 4) incorporating the effect of the heat-capacity difference, ~Cp; on the 

computation of (/1 1 fs) . with two-adjustable parameters. The five regression pure ' 
parameters were obtained by matching data and model results. This procedure 

revealed that; 1) the solid solution is highly non ideal, and 2) the heat capacities 

strongly influence the solid deposition. While this model provided an improved 

representation of wax precipitation over previous procedures, it requires 

abundant experimental data for determining various model parameters. 
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To overcome the overestimation of wax deposition by available models, 

Pedersen (1993) recently suggested assigning high fugacity coefficients to 

selected components (pseudocomponents) of the crude oil. Based on an 

empirical relationship with constants estimated from experimental deposition 

data, Pedersen proposed that only a portion of the heptanes-plus fraction of an 

oil may coexist in solid-liquid equilibrium. Pedersen used the SRK-EOS (Soave, 

1972) to describe gas and liquid phases and assumed the wax to be an ideal 

solid solution. Fig. 2 illustrates the performance of Pedersen's latest model for 

two oil mixtures (the compositions to be provided later). 

In this work, we present a thermodynamic method for wax precipitation with the 

assumption that wax deposition is a multisolid-phase process. Each solid phase 

is a pure-component (or pseudocomponent); its existence or non existence is 

determined by phase-stability considerations. An EOS is used to describe 

properties of the gas and of the liquid. Calculated results are compared with 

experimental deposition data for binary model systems and for petroleum 

mixtures. 

Multisolid-Phase Model 

Recent reports in the literature describe the physics of solidification of crude-oil 

constituents below the cloud-point temperature. Solid-phase transitions and 

spontaneous demixing are parts of the wax-precipitation process. Differential

scanning-calorimetry studies by W.B. Pedersen et al. (1991) on a number of 

North-Sea crude oils show phase transitions below the cloud-point temperature 

of various petroleum mixtures. Similarly, recent spectroscopic studies of Snyder 

et al. (1992, 1993, 1994) on the kinetics of microphase demixing of binary 
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hydrocarbon mixtures show that the phase behavior below the cloud-point 

temperature of these systems follows an initial (unstable) solid-solution state 

where the components are temporarily miscible in all proportions. However, after 

a characteristic time, spontaneous demixing of the solid solution leads to the 
j 

final stable state. Snyder et al. found that the final stable phases consist 

predominantly of pure components. 

These experimental studies suggest that wax precipitation in multicomponent oil 

systems produces a solid mass that contains mutually immiscible precipitating 

components. Since the solubility of each precipitating species is a strong 

function of the temperature, it is expected that, as cooling proceeds, only a 

selected number of precipitating components will coexist in solid-liquid 

equilibrium. On the contrary, by assuming that all the crude oil components can 

coexist in the solid state, the solid-solution model of Fig. 1 overestimate the 

amount of precipitated wax. A more realistic thermodynamic procedure for 

calculating wax precipitation should be based on the following: a) the 

precipitated species from the crude oil consist essentially of pure-(pseudo) 

components that do not mix with other solid phases after precipitation, b) the 

number and identity of (pseudo) components which precipitate as pure solids are 

determined through phase-stability analysis. 

Fig. 3 shows a schematic separation vessel for a petroleum mixture that flashes 

into a vapor, a liquid and several immiscible solid phases of pure components. 

The multisolid-phase model shown in Fig. 3, is best illustrated by a plot of wax 

precipitated vs. temperature, shown in Fig. 4. Below the cloud-point temperature, 

the precipitation of wax constitutes a consecutive deposition process that 

precipitates several pure solids, each completely immiscible with the others in 
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the solid state. At a given temperature, the total amount of precipitated wax is 

the sum of the contributions of all solid phases that exist in equilibrium with the 

liquid at that temperature. 

From stability considerations, it follows that {pseudo) component i may exist as a 

pure solid if 

f. (P,T,z) - fs .(P,T) ;;:: 0, z - pure z (i = 1,2, ... N) (3) 

where /; (P,T,~) is the fugacity of component i with feed composition ~· The 

above stability criterion is easily derived from Eq. 5 of Michelsen {1982). The 

mixture components that fulfill the above expression will precipitate, while those 

which do not, will only be present in the liquid and vapor states. The Peng

Robinson EOS (Peng and Robinson, 1976) in the form described by Robinson et 

al. (1985) is used for calculating fugacities for components in the fluid phases. 

EOS-Modeling 

At fixed temperature and pressure, for every component i, the multisolid-phase 

model must satisfy; 

f
v _

1
z_

1
s 

i - i - pure i 

JY = t.Z 
l l 

(i = N -(Ns -l), ... N) 

(i = 1,2, ... N-Ns) 

(4) 

(5) 

where Ns is the number of solid phases determined from Eq. 3. Coupling 

material balance with Eqs. 4 and 5, there will be a set of Ns +2N -1 simultaneous 
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equations with Ns + 2N -1 unknowns (see Appendix). If no vapor phase is 

present, the model reduces to Ns + N -1 variables. This multiphase-flash 

problem can be solved by Newton's method. 

As required for Eqs. 4 and 5, the fugacities in the vapor and liquid phases are 

evaluated through the EOS. The solid-phase fugacities of the pure components, 

t;,.,ei can be evaluated from the ratio (r I / 1)p .. u j. Neglecting the effect of 

pressure, this ratio is obtained from pure-component data for component i as 

shown elsewhere (Prausnitz et al. 1986): 

(fsJ ilhf( T J 1 TtilCp. 1 Tf In- =--1
- 1-- +-J; 1 di--f; ilCp.di 

1 z RT rl R r r R r l 
pure i l (6) 

where superscript f refers to fusion. The liquid-phase fugacity is obtained from 

t;,.,ei = <p~urei(P,T) P, where the fugacity coefficient, <p~wei is obtained from the 

EOS. In Eq. 6, T/, is the fusion (melting) temperature; M( is the enthalpy of 

fusion and flCp; = cp: - Cp;, where Cp; is the heat capacity of pure i at constant 

pressure. For hydrocarbons and petroleum mixtures, a simple cubic-EOS such 

as the PR-EOS describes the liquid and gas phases well (away from the gas

liquid critical region, cf. Firoozabadi, 1988). 

The flash calculation proceeds as follows: a) Characterize the plus-fraction of a 
. 

given petroleum mixture using, say 7 to 12 pseudocomponents. Assign critical 

properties and acentric factors to all the pseudocomponents using available 

correlations. In this work, we used the correlations proposed by Cavett (1964) 

but other similar methods (Twu, _1984; Riazi and Daubert 1980) may be used. 

9 



b) For hydrocarbon pairs, use the component critical volumes, vc; to compute the 

values of binary interaction parameters for the EOS, kff0 s, from the correlation of 

Chueh and Prausnitz (1967): 

(7) 

Eq. 7 is used to find the cross-parameter aii in the EOS: aii = ( aia)112 [1- kff0s 1. 

The critical volumes in Eq. 7 are estimated from the expression 

uc, = RT;, (0.290-0.085ro). where ro, is the component acentric factor, as 
~ 

estimated from the Edmister formula (Edmister, 1958). 

c) Perform stability analysis (Eq. 3) for the feed at system temperature and 

pressure. Stability analysis gives the number and identities of the precipitating 

pure components (pseudocomponents) that form solid phases. 

d) Solve the system of equations described in the Appendix. For liquid-multisolid 

equilibria, the unknowns are Ns solid-to-feed molar fractions, Si 1 F, and (N -1} 

compositions in the liquid phase, x: . For vapor-liquid-multisolid systems, the 

unknowns are 2(N -1) compositions for the vapor and liquid phases, yj, x:. 
respectively, Ns solid-to-f~ed molar phase fractions, (Si I F). and the fraction of 

feed that exists as vapor, (VI F). 
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Correlations for Calculating Fugacities of Pure Solids 

As shown by Eq. 6, the fugacity of solid-component i depends upon the melting 

properties of component i: the melting-point temperature, T/, the melting-point 

enthalpy, llh( and the heat-capacity difference, ACP;· In previous work, these 

quantities have been evaluated using different procedures. Unless stated 

otherwise, in this work the melting-point properties of the components were 

evaluated as follows: 

Melting-Point Temperature, T/: Won (1986) has given a correlation for the 

melting points of pure n-alkanes: 

r! =374.5+0.02617/. -20172/1. 
l l l 

(8) 

where T is in degrees Kelvin and I; is molecular weight in grams per mole. To 

replace Eq. 8, we used experimental melting-point data of normal paraffinic (C6-

C3o). naphthenic (C6-C30 alkylcycloalkanes) and aromatic (C6-C30 

alkylbenzenes) hydrocarbons (Research Project 44, API 1964) to derive the 

following correlation (temperature in K) 

Iff =333A6-419.01exp (-Q.008546/i) (9) 

In the above equation as the molecular weight increases, the calculated melting 

points of petroleum fractions gradually lose the paraffinic contribution. The 

asymptotic temperature relation of Eq. 9 corresponds to the average melting-
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temperature of heavy naphthenic and aromatic hydrocarbons with carbon 

numbers above 30. Fig. 5 shows Eq. 9 along with experimental data. 

Melting-Point Enthalpy, l:lh(. Won (1986) developed a correlation for 

calculating the melting-point enthalpies of paraffinic hydrocarbons using the 

molecular-weight of the paraffin as a characterization variable. The correlation 

has the form, 

Mzf = 0.1426/. r! 
l l l 

(1 0) 

The constant (0.1426), represents the average slope when the melting-entropy, 

(~ h( IT/) is plotted against the molecular weight of paraffinic hydrocarbons. 

K.S. Pedersen et al. (1991) argued that the melting enthalpies of different 

hydrocarbon species found in a petroleum fluid have a broad range of values for 

the same molecular weight, and therefore Eq. 1 0 overestimates the wax amount 

below the cloud-point temperature. These authors concluded that Eq. 10 should 

not be applied to petroleum mixtures. 

Fig. 6 shows experimental data (Research Project 44, API, 1964) for the melting

entropy of various P-, N-and A- hydrocarbons as a function of ·molecular weight. 

The melting entropies of n-paraffins are ind~ed higher than those of N- and A

hydrocarbons with the same molecular weight. However, when the slope of the 

entropy-of-fusion -vs.- molecular-weight line for normal paraffins given by Eq. 11 

is decreased by a factor between 2 and 3, the resulting melting entropies tend to 

deviate from the purely paraffinic-behavior to a more "multiensemble" 

hydrocarbon environment, which may correspond more closely to the wax . 

precipitation context. Since the presence of paraffinic components decreases as 
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the carbon-number increases, smaller melting enthalpies than those proposed 

by Eq. 10 may be more representative for wax precipitation. A similar reduction 

process of the melting enthalpies of hydrocarbons was used by K.S. Pedersen et 

al. (1991) and by Erickson et al. (1993). We suggest the following expression for 

the melting enthalpy, 

Mzf =0.05276/. rl 
l l l 

(11) 

where llh{ is in calories/mole. 

Heat-Capacity of Fusion llCp; Toward including the heat-capacity data, K.S. 

Pedersen et al. (1991) analyzed the trend of the experimental heat-capacity data 

with molecular weight for various n-alkanes and found that the data could be 

represented by the expression 

ll.Cp. =a/. +J31. T 
l l l 

(12) 

where llCp; is in calories/mole-K. Correlation coefficients a (0.3033 cal/g-K) and 

p (-4.635x1 o-4 cal/g-K2) were determined by K.S. Pedersen et al. by tuning their 

model with experimental precipitation data for 17 North-Sea crude oils. 

Here, we correlate heat-capacity data of heavy n-alkanes (Finke et al. 1954; 

Spaght et al. 1932) with molecular weight and temperature using the function 

given by Eq. 12. For the liquid phase below the melting point temperature, the 

heat capacity is assigned the value at the melting point. For the solid phase 

above the melting point temperature, the heat capacity at the melting point is 
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assigned. By using this procedure, we found that the values of the correlation 

coefficients a and f3 in Eq. 12 are close to those found by K.S. Pedersen et al. , 

(1991 ). We thus use their correlation coefficients. We also assume that 

hydrocarbon species other than n-alkanes follow Eq. 12 with the same 

coefficients. In order to test the validity of this assumption, thermal data of 

selected high-molecular-weight hydrocarbons other than n-alkanes (Parks et'al., 

1949; 1934; Fischl et al., 1945) were compared with predictions from Eq. 12. 

Ths predicted heat-capacity differences were 1 0 to 20 percent higher than the 

heat capacity data of heavy naphthenic and aromatic hydrocarbons. Therefore, 

the heat capacity correlation given by Eq. 12 appears to provide a reasonable 

estimate for the thermal effects on the fugacity of solid-forming component in 

petroleum mixtures. 

Results 

Binary Systems 

Madsen and Boistelle (1976, 1979) measured binary solid solubilities of six n

alkane mixtures (nC32 in nCs and nC7; nC28 in nC7 and nC12; and nC36 in 

nCs and nC6)· For normal paraffins, we used the n-alkane-based correlations for 

estimating the melting-point temperature and melting-point enthalpy given by 

Won (Eqs. 8 and 1 0). Figs. 7 and 8 show calculated and experimental results. 

Fig. 7 shows that the calculated solubilities are predicted very well for all 

systems. The effect of the heat-capacity data on calculated results is illustrated 

in Fig. 8 for systems nC25-nC7 and nC32-nCs. Including the 6Cp;-term provides 

a significant improvement. A similar effect was observed for other binary sytems. 

The results shown in Figs. 7 and 8 are predicted without any parameter 

adjustment. 
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Crude-Oil Systems 

Table 1 shows compositions, component molecular weights and plus-fraction 

specific gravities of eight petroleum mixtures. W.B. Pedersen et al. (1991) have 

provided extensive data on wax formation behavior of these crude oils. The 

mixtur~,numbers are the same as those used by these authors. 

The types of crude oils shown in Table 1 cover a variety of oil mixtures. Mixtures 

1 0, 12 and 15 originate from light petroleum systems of the gas-condensate 

type. Mixtures 8 and 11 originate from heavy oils. For calculation purposes, the 

plus-fractions in all mixtures require a systematic characterization procedure. For 
\ 

each oil, we used the experimental molecular weight, mole fraction and specific-

gravity data of the plus-fraction to generate a number of pseudocomponents that 

preserve the measured characterization properties of the heavy fraction. The 

carbon-number distribution of petroleum waxes has recently been studied by 

some investigators. Ronningsen et al. (1991) reported wax composition of a 

given crude from carbon number C16 to much higher carbon numbers. They 

estimated C40+ content of a particular wax to be around 50 percent (volume). 

They also cautioned that the wax that they analyzed inevitably'contained some 

trapped oil which affects the lower carbon number. In 1994, Bishop and Philp, 

using a high-temperature gas chromatographic technique have shown .that the 

spectrum of hydrocarbon components found in petroleum waxes begin at 

approximately C20-25· but, unlike Ronningsen et al. (1991 ), Bishop and Philp 

analyzed the fraction of hydrocarbon components beyond C40+• and found that 

the carbon-number distribution extends to C90-1 00· From these two studies, it 

is evident that for precipitation calculations, a pseudocomponent slate with 
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components whose molecular weights exceed 1 000 is desirable. The two

parameter gamma distribution function (Johnson and Katz 1970; Whitson, 1983) 

was used for generating the molar distributions for the plus fractions of each of 

the 8 petroleum mixtures of Table 1. Fig. 9 shows the shape of the molar 

distributions for all mixtures and Table 2 shows the distribution-function 

parameters for each fraction. Table 3 shows the resulting characterization 

parameters for the heptanes-plus fraction of Oil 1. 

Figs. 1 0 and 11 show results using our multisolid-phase model. These figures 

indicate that the multisolid-phase assumption appears to represent the wax

formation process in real petroleum mixtures. For all mixtures, the predicted 

trend for the solid amount with temperature is in good agreement with 

experiment. At a given temperature, the wax weight percent that precipitates 

from crude oil is calculated for one mol of feed from the relation 

Total precipitated mass 
Wax weight % = x 100 

Mass of feed oil 

Predictions for Oils 10, 12 and 15, which originate from gas-condensate 

mixtures, are as good as those for Oils 8 and 11, which originate from heavy 

petroleum systems. 

Eq. 3 provides a useful criterion for determining those components which 

precipitate. Application of the stability test for all the mixtures revealed that, for 

temperatures in excess of 230 K, hydrocarbon components with molecular 

weights less than, say, 400, are unlikelyto participate in the solid wax. For Oil1, 

up to four different solid phases characterize the predicted wax weight percent 
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along the indicated temperature range. These four solids consist of 

pseudocomponents with average molecular weights 750, 800, 950 and 1350, 

respectively (see Table 3). Similar molecular weights characterize the solid 

phases for the other systems. The model proposed in this work suggests that, in 

typical real systems, the "carrying" capacity of the light fraction of the oil ke'eps 

hydrocarbons with molecular weights ranging from 100 (C7) to around 400 (C25) 

dissolved in the liquid phase (oil), which is agreement with the wax analysis by 

Bishop and Philp (1994). The solid-solution models predict the presence of light 

hydrocarbons in the solid was (Wong, 1989). 
r 

Fig. 12 shows the solid-phase-appearance history of Oil 1. As cooling proceeds, 

the multisolid-phase model predicts the appearance of solid phases along the 

experimental temperature range in a consecutive manner, as illustrated in Fig. 4. 

From our experience, the more discontinuous the experimental precipitation 

curve of a particular oil (as occurs for Oils 2, and 15), the more the number of 

precipitated phases predicted by the model (8 and 12 solid phases, 

respectively). On the other hand, for fluid systems showing an abrupt jump in the 

experimental precipitation-versus-temperature curve (i.e. Oils 5 and 11), a small 

number of precipitated solid phases provides a good representation of the data. 

As it can be seen, the characterization·techniques employed for·wax calculations 

differs from the conventional characterization schemes for hydrocarbons in that 

the number of pseudocomponents could be regarded as a model parameter. 

There is an optimum number of pseudocomponents that will yield the best 

representation of the experimental data. This approach contrasts with other 

characterization schemes in the sense that increasing the number of 

• pseudocomponents is only expected to improve the ·accuracy of the 

representation. 
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Table 4 shows a comparison between experimental and calculated cloud-point 

temperatures for all mixtures. From the equations given in the Appendix, the 

cloud-point temperature of a given petroleum mixture is that temperature where 

the molar ratio of the first precipitating component of the system, (S1 1 F) is 

greater than zero but smaller than a small positive value (i.e. 1 o..;B). The 

calculated cloud-point temperatures compare well with the data for all mixtures. 

We·did not adjust any parameter in the calculation of wax precipitation. Unlike 

other methods, the method discussed here reproduces the experimentally 

observed discontinuous deposition behavior of real petroleum systems. 

CONCLUSIONS 

An EOS-based thermodynamic method for calculating wax precipitation in 

petroleum mixtures has been developed and tested with experimental data; The 

method is based on the experimentally-supported assumption that wax 

precipitation is a multisolid-phase precipitation process. The number and identity 

of the potential precipitated phases can be determined by a simple stability test. 

Application of this method to several petroleum mixtures suggests that the 

precipitated waxy material consists of high-molecular-weight hydrocarbons with 

average carbon-atom numbers above 25. Calculated results of the new method 

reproduce experimental liquid-wax equilibria for several oil mixtures, indicating 

that the proposed method is both simple and accurate, requiring no adjustable 
--

mixture parameters. 
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Notation 

Cp = heat capacity 

F = moles of feed phase 

f =fugacity 

h =enthalpy 

I = Molecular weight 

k = interaction parameter 

K = partition coefficient 

L = moles of liquid phase 

N =total number of components 

Ns =total number of solid phases or number of components that form a solid. 

P =pressure 

R = gas constant 

S = moles of solid phase 

T = temperature 

19 



v = molar volume 

V = moles of vapor phase 

x =liquid or solid composition, depending on superscript 

y = vapor composition 

z = overall (feed) mole fraction 

~.~.1. =composition vectors 

Greek Letters 

a, f3 = constants in heat capacity correlation, Eq. 12 

'Y = activity coefficient 

cp = fugacity coefficient 

p =density 

11 = difference operator 

~ = sum operator 

Superscripts 

EOS = equation-of-state quantity 

I , v ,s = liquid, vapor and solid phase index 

f =fusion-point index 

Subscripts 

c = property at the critical point 

i = component index 
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Appendix: Model Formulation. 

Consider a system of N s precipitating species, and N components. The 

equations of phase equilibrium are: 

N vapor-liquid isofugacity equations 

f{ (P,T,y1 ,y2 , ... yN-l )- f/(P,T,x1 ,x2 , ... xN-l) = 0 (i = l, ... N) (A1) 

. N s liquid-solid isofugacity equations 

N -1 material-balance equations 

a) for the non-precipitating components: 

z · - x! [1-f S . IF - ~] - K~1 x! ~ = . 0 z z i 1 F z zp (i=l, .. (N-N )) . s 
(A3) 

b) for precipitating components, where all solid phases are pure: 

z. - x![l-~ S ./ F _Y._] - S./ F z z j 1 F , (i = (N -Ns)+l, ... N -1) 

(/'!s > 1) (A4) 
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Oil No. Initial Mean Variance 

Moi.Wt. 

1 413.0 624.0 24194.5 
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No. Mole% Mol. Wt. Tc/K Pc I bar (l) Vc/cm3/mol 
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Oil No. Exp., K Calcd., K Exp.-Calcd.,K 
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