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Abstract 

Over the past couple of decades, the Standard Model of high energy 

particle physics has clearly established itself as an invaluable tool in the 

analysis of high energy particle phenomenon. However, from a field the

orists point of view, there are many dissatisfying aspects to the model. 

One of these, is the large number of free parameters in the theory arising 

from the Yukawa couplings of the Higgs doublet. 

In this thesis, we examine various issues relating to the Yukawa cou

pling structure of high energy particle field theories. We begin by exam-
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ining extensions to the Standard Model of particle physics which contain 

additional scalar fields. By appealing to the flavor structure observed in 

the fermion mass and Kobayashi-Maskawa matrices, we propose a rea

sonable phenomenological parameterization of the new Yukawa couplings 

based on the concept of approximate flavor symmetries. It is shown that 

such a parameterization eliminates the need for discrete symmetries which 

limit the allowed couplings of the new scalars. New scalar particles which 

can mediate exotic flavor changing reactions can have masses as low as 

the weak scale. 

Next, we turn to the issue of neutrino mass matrices, where we ex

amine a particular texture which leads to matter independent neutrino 

oscillation results for solar neutrinos. Using a nonstandard basis for our 

parameterization, we argue that such a mass matrix has a far larger al

lowed parameter space than the standard see-saw mass matrices. We 

propose a model which gives rise to such a matrix, finding that approx

imate flavor symmetries are an important tool in its construction. The 

experimental consequences of this model are discussed in detail. 

We, then, examine the basis for extremely strict limits placed on fla

vor changing interactions which also break lepton- and/ or baryon-number. 

These limits are derived from cosmological considerations. Such interac

tions, when in equilibrium simultaneously with electroweak instantons, 

can destroy an existing asymmetry in baryon number. We find that it 

is a simple matter to avoid these limits entirely, and that one need not 

impose a symmetry which has a baryon number component in order to 

do so. 

Finally, we embark on an extended analysis of proton decay in super

symmetric SO(lO) grand unified theories. In such theories, the dominant 

decay diagrams involve the Yukawa couplings of a heavy triplet superfield. 

We argue that past calculations of proton decay which were based on the 

minimal supersymmetric SU(5) model require reexamination because the 

Yukawa couplings of that theory are known to be wrong. By analyzing 

the flavor structure of a class of SO(lO) theories which do not suffer form 

this problem , we determine that proton decay branching ratios and dom

inant diagrams can differ substantially from previous expectations. We 

discuss, in some generality, the circumstances in which charged lepton 

decay modes have large branching ratios and in which gluin.o diagrams 
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become dominant. We find that both possibilities are more likely for the 

models we analyze. In addition, we examine some commonly made as

sumptions concerning squark mass matrices and discuss how the possible 

changes arising from very high energy radiative effects and nonminimal 

boundary conditions can effect proton decay. 
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Chapter 1 

Introduction 

The Standard Model of particle interactions is a triumph of theoretical 

physics. It has enjoyed amazing success in describing the vast majority of high 

energy particle phenomenon. However, it leaves many fundamental questions unan

swered. For example, is there a way of reducing the large number of free parameters 

in the Standard Model (SM), and can we explain their origin? What decides the 

particle content of the universe and the gauge charges for these particles? How can 

we account for the large particle mass hierarchies? For years, theorists have sought 

additional insight beyond the physics in the SM to help answer these questions. 

The task has proven to be a difficult one. The fundamental explanation may rest 

in superstring theories, at energies which we have little or no hope of reaching. 

For phenomenologists, additional symmetries have been the tool of choice 

for addressing these issues. The gauge group of the SM has been enlarged to account 

for the particle content and charge structure. Supersymmetry has been added to 

solve the hierarchy problem. New global symmetries which govern the flavor struc

ture of the theory have been imposed to help relate the 13 free parameters in the 

Kobayashi-Maskawa matrix and the fermion mass matrices. These additional sym

metries give rise to new and interesting phenomenon, absent in the SM. In some 

instances, experiments bolster hopes of possible new ph:>:sics, such as the observed 

deficit in solar neutrinos. In others, experiments are probing the limits of expected 

new phenomenon. Such is the case in recent and planned nucleon decay experi-
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ments, where minimal supersymmetric grand unified theories are being challenged. 

In this thesis, we will examine various effects and constraints that arise 

from the quest for a more fundamental understanding of the structure of the SM. 

The issue of broken symmetries is a consistent theme throughout. In particular, 

many of the chapters deal directly with flavor symmetries, which govern the inter

actions between different generations of fermions. These symmetries and the degree 

to which they may be broken are the natural language with which to deal with 

unknown Yukawa couplings in a theory. In Chapters 2 and 3, we use a phenomeno

logical parametrization of flavor symmetry breaking parameters to gain, insight into 

new Yukawa interactions. In Chapter 5, we employ an explicit flavor symmetry 

scheme to help in understanding proton decay in realistic supersymmetric Grand 

Unified Theories. Chapter 4 examines stringent bounds on flavor breaking interac

tions which also break baryon- and/or lepton-number. 

We begin by re-examining the experimental constraints imposed on new 

scalar particles and their interactions. By using approximate flavor symmetries 

to parameterize the Yukawa couplings of these new scalars, we find that present 

experimental bounds allow them to have masses on the order of the weak scale. The 

use of discrete symmetries, in a wide array of models, to insure small flavor changing 

effects is rendered unnecessary.· We discuss the resulting exotic flavor changing 

phenomenon which provide powerful probes for these new scalar interactions. 

Chapter 3 proposes a solution to the. solar neutrino deficit. An observed 

deficit in the flux of electron neutrinos coming from the sun has been a persistent 

and ever more'convincing puzzle to physicists over the past few years as more groups 

independently confirm the results of the Homestake experiment [1]. Although the 

extremely low neutrino rate count and the high precision and huge scale of these 

experiments leave much doubt as to the reliability of the reported results, many 

believe that a deficit exists. Mikheyev, Smirnov, and Wolfenstein have proposed 

a popular and ingenious mechanism by which small mixing between two different 

neutrino flavor eigenstates can account for a large deficit [2]. Their theory relies 

on a subtle effect relating to the propagation of neutrinos through matter. Matter 

effects, however, are relevant only for a very constrained set of the free parameters in 

.. 
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the theory. In Chapter 3, we propose a model which gives a "matter independent" 

exp~anation for a dramatic deficit in solar electron neutrinos. The neutrino mass 

matrix we employ requires a reverse hierarchy between its diagonal and off~diagonal 

elements. We modify a model first proposed by Zee [3] by including the effects 

of approximate flavor symmetries. This allows us to naturally achieve the desired 

neutrino mass matrix. 

In Chapter 4, we examine some of the cosmological constraints on baryon

and lepton-number violating interactions. Specifically, we analyze the circumstances 

in which the violation of these symmetries leads to a destruction of a .cosmological 

baryon asymmetry produced at an extremely high temperature in the big bang. 

Stringent bounds on baryon- and lepton-number-violating interactions have been 

derived from the requirement that such interactions, together with electroweak in

stantons, preserve such an asymmetry. These bounds require coupling constants 

which are much smaller than are dictated by our previous flavor symmetry consid

erations. However, while these bounds apply in specific models, we find that they 

are generically evaded. In particular, the only requirement for a theory to avoid 

these bounds is that it contain charged particles which, during a certain cosmologi

cal epoch, carry a non-zero hypercharge asymmetry. Hypercharge neutrality of the 

universe then dictates .that the remaining particles must carry a compensating hy

percharge density, which is necessarily shared amongst them so as to give a baryon 

asymmetry. Hence the generation of a hypercharge density in a sector of the theory 

forces the universe to have a baryon asymmetry. 

In Chapter 5, we look at an assortment of issues concerning proton decay in 

supersymmetric grand unified theories. We examine a specific class of models which 

provide an understanding of the mass and :flavor structures of the SM particles. 

These models offer a concrete example of the mechanics of high energy flavor physics 

which govern the Yukawa couplings of a theory. We use the models as a guide in 

discussing the implications of flavor physics for proton decay in theories based on the 

gauge group 50(10). We find that the neglect of these issues in previous proton 

decay calculations can be a grave error. In particular, proton decay calculations 

based on the minimal supersymmetric SU(5) theory are reevaluated and found to 
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be incorrect in many circumstances. 

It is well known that the minimal supersymmetric SU(5) model fails to 

give correct fermion masses. In the theories which we analyze, solving this prob

lem inevitably effects the commonly used symmetry relations between the Yukawa 

couplings which give fermions mass and those which govern the branching struc

ture of nucleon decay. The new relations allow for interesting deviations from the 

standard nucleon decay predictions. Entire classes of diagrams, previously ignored, 

are likely to be dominant in many cases. For example, diagrams which involve the 

exchange of virtual gluinos are no longer negligible under the same .assumptions 

about supersymmetric particle masses. In addition, the relative branching ratio of 

charged lepton decay modes to neutrino decay modes can be considerably larger 

than previously expected. Some models even predict that charged lepton modes 

are likely to be discovered at the same time as neutrino modes. We also discuss 

how high energy flavor symmetries can dramatically effect squark mass matrices 

and how these effects may further alter standard proton decay expectations. 



Chapter 2 

Flavor Symmetries and Flavor 

Changing Scalar Interactions 

2.1 Introduction 

5 

As more and more tests of the standard model confirm its predictions to 

ever higher accuracy, it becomes tempting to believe that new physics, especially 

if it involves flavor changing neutral currents, can only occur at energy scales very 

much larger than the weak scale. For example, D..S = 2 four fermion operators with 

coefficients 1/A2 give a I<L- I<s mass difference D..mK/mK ~UK/A? implying 

that A 2: 1000 TeV. The purpose of this chapter is to show that it is perfectly 

natural for physics involving new heavy scalars to occur at scales as low as the 

weak scale, 250 Ge V, and to show that rare leptonic B meson decays will provide 

an excellent probe of this new physics. 

In this chapter, we introduce a specific form for the way that approximate 

flavor symmetries act on quarks and leptons. We then use this as a guide to infer 

the expected size of couplings between the known fermions and hypothetical, heavy 

scalar particles. The scalar mass M is then the only unknown parameter in the 

coefficient of the four fermion interactions induced by the exchange of this scalar. 

We derive the experimental limits on M from a variety of rare processes. The most 

powerful of these limits are of order the weak scale, giving hope to the possibility 
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that we may discover physics at the weak scale to be much richer than in the minimal 

standard model. There are two important advantages of our general approach. The 

scalar mass limits depend only on symmetry arguments and not on any specific 

modeL Secondly, we can identify the most promising processes for discovering new 

physics in the next few years. In particular, we find that rare leptonic B decays are . 

a very powerful probe of these new scalar interactions. For the case of leptoquarks, 

these B decays will probe masses far above the present experimental limits. 

An important application of our results is to flavor changing effects in mod

els with many Higgs doublets[5). We find that the approximate flavor symmetries, 

which we already know must be a part of any successful model of particle physics, 

are sufficient to make it natural to have any number of Higgs doublets coupling to 

up and down type quarks. In other words it is completely unnecessary to introduce 

discrete symmetries which act on Higgs doublets, as is so frequently done. 

2.2 Approximate Flavor Symmetries 

In the standard model, the gauge interactions of the fermions: 

Co = iQl/JQ + iUl!JU + iDl/JD + iLl/JL + iEJ)E (2.1) 

have a global symmetry U(3)Q x U(3)u x U(3)D x U(3)L x U(3)E , where Qi and 

Li are SU(2) doublet quarks and leptons while Ui , Di and Ei are SU(2) singlets 

and i = 1, 2, 3 is a generation label. 

The Yukawa couplings: 

u- if D- H E- H 
C =Co+ (\jQiUi -/2 + \jQiDi .J2 + >..ijLiEi yl2 + h.c.) (2.2) 

break the symmetry by varying degrees down to U(1)e x U(1)J.t x U(1)r x ·U(1)B· 

We parameterize the approximate flavor symmetries by a set of small parameters 

{ c}, one for each of the above chiral fermion fields, which describes the breaking 

of phase rotation invariance on each fermion. Thus >..~ is suppressed by both EQ; 

and cui . The idea is that the pattern of fermion masses and mixing angles can be 
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described by the set { t}. However, this is not a precise numerical theory for fermion 

masses; equations of the form A~ ~ tQ; tui are only meant to be order of magnitude 

relations. 

The Yukawa matrices Au, AD, AL contain a great deal of i~formation about 

the form of the breaking of flavor symmetry. Unfortunately, we cannot recon

struct these matrices from the information which can be obtained from experi

ments, namely from the fermion masses (i.e. the Yuk~wa matrix eigenvalues) and 

the Kobayashi-Maskawa (KM) matrix. This information is insufficient to derive the 

form of the approximate flavor symmetries which the underlying theor1 must have. 

Nevertheless it provides a strong guideline for giving a simple predictive ansatz for 

the symmetry breaking parameters. 

The lightness of the ·up quark tells us that flavor symmetries strongly 

suppress the C:hU1 operator. However, the mass eigenvalue does not allow us to 

infer whether this is because the approximate flavor symmetry is acting only on 

Qb only on U1 , or on both. However, we need to know whether the coefficient 

·of a scalar coupling to Q1X (where X is any fermion other than U1 ) is strongly 

suppressed because the up quark is very light. 

We now argue that the approximate symmetries act both 0n left- and 

right-handed fields: 

• The flavor symmetries do not act just on the right-handed fields because 

otherwise u3 ~ iR couples to (a:Qf + f3Q2 + ,Q3) = tL and D3 ~ bR couples 

to (a'Qf + f3'Q2 + 1'Q3) = bL where a,f3,/,a',f3',!' are arbitrary mixing 

angles of order one, so that iL and bL would have no reason to be very nearly 

in the same SU(2)L doublet. 

• The flavor symmetries do not act just on the left-handed fields because in this 

case the approximate flavor symmetries make no distinction between Au and 

AD. A large mt/mb ratio could be due to a large ratio of vevs v2fv1 in a two 

Higgs theory, but this would lead to an unacceptably large mu/ md ratio. In 

addition the KM angles are given by linear mass relations such as Be ~ md/ms 

rather than the more successful square root form Be~ Jmd/ms 
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Therefore we conclude that the underlying theory must have approximate 

flavor symmetries that act on both left- and. right-handed fields . 

The approximate flavor symmetries and the associated set of small symme

try breaking parameters { €} are defined on flavor eigenstates. In practice it is much 

more useful to know what suppression factors are induced on the mass eigenstates. 

Consider the up-type quarks. Assume that EQ, ~ EQ1 and Eu, ~ Eu1 for i < j, as 

suggested by mu, ~ mu1 . Then the mass matrix is diagonalized by unitary rota

tions on the Qi by a matrix with elements IViil ~ EQ./EQ1 (i < j) and on the Ui by 

a matrix with elements 1\tifl ~ cuJcu1 (i < j). Relations between fla~or and mass 

eigenstates (QD are of the form: Q~ = Q1 + 0(EQ1 /EQJQ2 + 0(EQ1 /EQ3 )Q3 . This 

shows the important result that the flavor breaking parameters { €} apply to mass 

eigenstates as well as to flavor eigenstates. For example, the three flavor eigenstate 

contributions to Q~ all carry the same approximate flavor symmetry suppression 

factor of EQ 1 • 

The actual structure of the approximate low energy flavor symmetries is 

likely to involve many parameters: the fermion masses and mixing angles have 

very few obvious regularities. A simple predictive ansatz is shown in Table 2.1. 

It involves both left- and right-handed fermions and is predictive because it only 

involves quark and lepton masses. 

Table 2.1: The ansatz for flavor symmetry breaking parameters associated to the 

chiral fermion fields. 'T/i = rmui and ~i = rm:v:. v --;:;- v ----:;;-
FIELD FLAVOR SYMMETRY BREAKING PARAMETER 

Qi " ~ 
ui If: 'T/i 

Di lf:~i 
Li,Ei 1¥ 1 

The rationale behind our choice is as follows. For the leptons the flavor 

symmetries on Li and Ei are equally responsible for suppressing the Yukawa cou-
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plings. For quarks, we have again triedto have both left- and right- handed flavor 

symmetries equally responsible for suppressing Yukawa couplings. However since 

Qi appears in both up and down mass operators, we have taken the symmetry 

breaking parameter tQ; to be the geometric mean of that expected from mu; and 

that expected from mn;· Note that we have allowed for a two Higgs doublet model. 

With only one Higgs boson v1 = v2 = 250GeV. 

The ansatz gives reasonable values for the CKM mixing angles. Vii ~ 
cQ)tQi ~ (mu;mnJmuimn;)t, i < j , which is correct at the factor of 2 level. 

One must keep in mind that the ansatz, despite its simplici~y, is hardly 

unique. A more complicated ansatz might use the KM matrix as input as well as the 

fermion masses. However this extra complexity is not warranted since our ansatz 

is quite consistent with the KM matrix. We use the ansatz only to estimate the 

magnitudes of unknown Yukawa couplings. 

2.3 Experimental Consequences 

We use our ansatz to estimate the size of the Yukawa couplings and then 

the corresponding rates for various processes induced by the effective four fermion 

couplings. In Table 2.2, we list the limits on the exchanged scalar mass [6] obtained 

from a variety of experiments . For now we assume the scalar exchange does induce 

each process and that the flavor symmetry acts only on fermions. Once again, we 
\ 

obtained these numbers using our ansatz to estimate the Yukawa couplings, so we 

expect the values to be reliable up to a factor of perhaps 2 or 3. 

The factor K represents the ratio of the matrix element of the new four 

fermion operator relative to its vacuum insertion value. In the radiative J.L decay, 
' 

the r-lepton contribution dominates in the loop because 'it has the largest Yukawa 

couplings. 
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Table 2.2: Experimental lower limits on the exchanged scalar masses 

process M/GeV(250GeV/vi) 

J-l --t 3e 1 

J-l --t e'Y 4 

f-lN --teN 10 

I<f --t J-l±e~ 20 

Bd --t T+T- 20 eo-4 )i 
B.R. 

Bs --t f-l+ f-l- 70 eo-8 )t 
B.R. 

( o -o) ~m Bd-Bd 400 .fo 
~m( J<O _ j{O) 500 .fo 

First, we can see that these limits are nowhere near as strong as those 

for vector exchange (7). Flavor non conserving theories at the weak scale are not 

ruled out at all. Secondly, if the uncertainty factors of 2 or 3 go the right way, it 

is possible that the rare leptonic Bs decay will be the first place to discover this 

new physics, considering that' branching ratios 10-7
- 10-8 will be obtained in the 

near future [8). The branching ratio prediction for Bs --t J-l+ J-l- is about 10-9 in the 

standard model, and in two Higgs doublet models with discrete symmetries (9). 

There are cases where the scalar cannot induce all the processes considered, 

as in leptoquark models. The tree level exchange of leptoquarks generates four 

fermion operators which contain two quarks and two leptons. The limits from J{ f< 
and B B mixing are therefore removed. In this case our results are particularly 

important: the rare lepton~c B decay modes provide the most stringent test of 

models with scalar leptoquarks. 

We discuss briefly the case in which approximate flavor symmetries act on 

the exchanged scalar too. Such is the case in R-parity violating supersymmetric 

models (10) where the exchanged scalar is a slepton or a squark which carries the 

same approximate flavor. symmetry as its fermion partners. Then, in Table 2.2, 

all mass limits from simple scalar exchange diagrams are lowered by an additional 

symmetry breaking factor Ea, where the approximate symmetry of type "a" is carried 
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by the scalar. It is even less likely that such theories could have been excluded. 

Recently, stringent cosmological bounds have been placed on the size of 

baryon and lepton number violating interactions in certain theories. These bounds 

require much smaller Yukawa interactions for scalars which violate baryon and/ or 

lepton number than are implied by our approximate flavor symmetries. However, 

these bounds are easily evaded. In Chapter 4, we look in detail at this subject. 

We have not mentioned limits arising from CP-violating effects in the 

I<- I< system. These limits can be quite severe if we allow for large phases in the 

scalar couplings of the theory. Hall and Weinberg discuss this issue _in reference 

[4]. They examine the consequences of assuming that C P is also an approximate 

symmetry, thereby insuring very small phase factors. 

2.4 The Glashow-Weinberg Criterion for Multi

biggs Models 

In this section we apply our results to the case of the minimal standard 

model extended only by the addition of an arbitrary number of Higgs doublets. In 

this case it is already known that, for the special case of Fritzsch-like Yukawa matri

ces, the additional scalars need not be heavier than a Te V [11]. However, our results 

are independent of the particular texture and depend only on the approximate flavor 

symmetry. 

To avoid problems with large flavor-changing neutral currents, Glashow 

and Weinberg [5] argued that only one Higgs doublet could couple to up-type quarks 

and only one Higgs to down-type quarks. However, this naturality constraint, known 

as the Glashow-Weinberg criterion, was based on an unusual definition of what is 

"natural". For them the avoidance of flavor-changing neutral currents was natural in 

a model only if it occurred for all values of the coupling constants of that model. For 

us a model will be natural provided the smallness of any coupling is guaranteed by 

approximate symmetries [12], and we find that this implies the Glashow-Weinberg 

criterion is not necessary. 
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In a model with many scalar doublets it is convenient to work in a basis 

where only one doublet, the Higgs doublet, acquires a vev, and all the others are 

massive scalar particles which play no role in the Higgs mechanism. The couplings 

of the Higgs meson are flavor-diagonal at tree level, but in general the couplings 

of the other doublets are not. The limits on the mass M of these extra scalars are 

given in Table 2.2. This shows that approximate flavor symmetries are sufficient to 

allow extra scalar doublets with masses in the 1 OOs of Ge V range, there is no need 

for additional symmetries to act on· the scalar fields. 

One reason why this is important is that the vast majority of phenomenol

ogy on the multihiggs models has been done assuming symmetries which force only 

one Higgs to couple to up-type and one to down-type quarks. We conclude that 

there is no good reason for accepting the predictions of these analyses, except in 

the case of supersymmetric models. 

2.5 Conclusions 

In this chapter, we have introduced a simple ansatz for the approximate 

flavor symmetries as shown in Table 2.2. It reproduces the KM matrix elements at 

the factor of 2 level. If the interactions of additional scalars respect these approx

imate symmetries, then the mass limits on the scalars from various experiments 

are shown in Table 2.2. From this viewpoint, new flavor changing physics at the 

weak scale is not excluded, and is natural. In particular extra Higgs doublets can 

couple to both up and down type quarks; there is no need to impose additional 

discrete symmetries on the scalars. We find that rare leptonic B decay modes, such 

as B~ --+ f.l+ J.L-, could uncover this new scalar-mediated physics in the coming years. 
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Chapter 3 

Maximally Mixed Neutrinos 

3.1 Introduction 

An observed deficit in the flux of electron neutrinos coming from the sun 

has been a persistent and ever more convincing puzzle to physicists over the past few 

years as more groups independently confirm the results of Davis and his associates [1, 

25, 35, 34]. Although the extremely low neutrino rate count and the high precision 

and huge scale of these experiments leave much doubt as to the reliability of the 

reported results, many believe that a deficit exists. 

This deficit, known as the solar neutrino problem, has spurred both astro

physicists and particle physicists to propose a vast array of possible explanations. 

Mikheyev, Smirnov, and Wolfenstein (MSW) [2] have proposed a popular and in

genious mechanism by which small mixing between two different neutrino flavor 

eigenstates can account for a large deficit. Their theory, which we describe in 

greater detail in Section 3.2 , relies on a subtle effect relating to the propagation of 

neutrinos through matter. 

As we will argue however, matter effects are relevant only for a very limited 

set of the free parameters in the theory. We assume the attitude that although one 

could constrain the field of possible solutions by giving the experimental results 

more statistical relevance than they deserve, it is wiser, at this time, to keep open 

the possibility that many of the proposed solutions are not ruled out. In that spirit, 
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we have looked for a solution which is both likely in terms of allowed parameter 

space, and as simple as possible. In Section 3.2.3, we will compare the parameter 

space of small mixing solutions with that of a maximal mixing scheme. We will 

argue that the maximal mixing scheme not only has a far greater parameter space, 

but that it leads to a vastly simplified oscillation explanation for the solar neutrino 

problem. Thus, according to the guidelines above this solution deserves further 

study. 

In Section 3.3, we propose a specific particle theory model which gives a 

maximal mixing neutrino mass matrix like the ones discussed in the :previous sec

tion. In constructing this model, we are naturally lead to the topic of approximate 

flavor symmetries. Applying one possible set of such symmetries, we examine the 

consequences of our model and conclude that the only way to check such models in 

the near future is at new solar neutrino detectors. Our scheme predicts a t depletion 

of the solar electron neutrino flux independent of neutrino energy. 

3.2 The MSW Solution 

In this section, we will discuss the theory behind the most popular particle 

theory explanation for the solar neutrino problem, neutrino flavor oscillations. We 

work in a basis where the charged lepton mass matrix is diagonal and denote the 

SU(2) partner of the electron/muon/tau by lle/JJ./-r respectively. In these theories, 

one gives neutrinos small masses and assumes the neutrino mass eigenstates are 

mixtures of the flavor eigenstates lle/JJ./-r· Such a scheme leads to neutrino flavor 

oscillations. 

3.2.1 Vacuum Oscillations 

Let us first examine neutrino oscillations in vacuum. For convenience, we 

will express all neutrinos as two component left handed spinors. We can always do 

so, since if ll is right handed than ll
1 = lie is left handed, where lie is the charge 

conjugate of ll. We will look at the case of oscillations involving only two flavors 
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and will assume CP is a good symmetry. Then, the mass matrix in this basis 

is symmetric and can be made real. Relaxing our assumption of CP being valid 

does not change any of the res~lts in this section because CP violation can not be 

detected in neutrino oscillations involving only two flavors [20]. The mass matrix 

can be diagonalized by an orthogonal matrix which we call 0. the mass eigenstates, 

vi, are then related to the neutrinos of a given flavor, vOt, in the following way. 

( 
cosO sin 0 ) 

oiOt = · 
-sinO cosO 

where e is the angle of rotation. 

The diagonal mass matrix which results, however may have negative 

masses. This can be remedied by defining the unitary matrix U where UiOt = 
OiOteif(p;-l) where Pi is the sign of the mass eigenvalue mi. 

If an electron neutrino is emitted in a plane wave state with momentum 

kat timet = 0, we can decompose it in terms of mass eigenstates. At some later 

time t the state is given by 

It would be more exact to deal with wave packets and coherence lengths 

but, for our purposes, this simplified approach is more instructive and leads to the 

same conclusions [21]. The probability of detecting an electron neutrino at x and t' 

is then given by 

(3.2) 

where t is the distance the beam has travelled divided by its velocity, which we take 

to be the speed of light, c = 1. For highly relativistic neutrinos, we can express 
D.m2 (E2- E 1 ) as 2k where 

(3.3) 

The combination 

l = (D.m2) 
- 2k (3.4) 
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is known as the vacuum oscillation length. 

A great deal of care can be taken to include the coherence length and dis

persion of the neutrino wave packets, but the only c~nsequence we will be concerned 

with is the effects on the "averaging" of the term proportional to cos((E1 - E2 )t) 

in equation 3.2. We refer to this term as the oscillating term. 

Solar neutrino experiments give a result which is an average over a finite 

range of neutrino energies as well as over ,the position of emission of the neutrino. 

This translates into an average over the factor (E1 - E2 )t above. The average over 
2 

energy will kill the term cos((E1 - E2 )t) as long as Re .r:::.2"!J 8k > 10 wh~re 8k is the 

spread in energy and Re is the earth sun distance. 

Similarly, for mass differences with which we shall be interested a solar 

neutrino wave packet after traveling to the earth may separate into two nonoverlap

ping wave packets corresponding to the two different mass eigenstates, which travel 

at different speeds. This leads to the vanishing of quantum interference terms and 

again kills the cos((E1 - E2 )t) term. If we can drop this term, we are left with the 

averaged result 

(3.5) 

3.2.2 Matter Oscillations 

The situation changes when propagation through the sun is taken into 

account. What Mikheyev, Smirnov, and Wolfenstein noticed was that charged

current interactions between the propagating neutrinos and the electrons in the sun 

contribute an effective mass term to electron neutrinos. The relevant Lagrangian is 

£ = v1(i8o- iu · V)ve + v!(io0 - iu · V)vJL 

me ( T. ) mJL ( T · ) ( T · ) -2 Ve U72Ve - 2 VJL UJ'2VJL -me,.,. Ve UJ'2VIJ. 

-Vv!ve+h.c. (3.6) 

where V = V2 Gp Ne and GF is the fermi constant, Ne is the number density of 

electrons in the medium, and me, m,.,., and me,.,. are neutrino majorana masses. 
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For relativistic neutrinos, the equations of motion can be simplified by 

eliminating the positive helicity states (22]. We are left with an effective equation 

of motion, which, in the flavor basis v01 is given by 

iot [ Ve ] = [ut ( k + ~ 0 5. ) U + ( V 0 ) ] [ Ve ] 

v iJ. 0 k + 2k 0 0 v Ji-

The rotation which diagonalizes this Hamiltonian is 

.6.m2 sin 20 
tan20m = 2 20 2kV' .6.m cos -

(3.7) 

where 0 is the vacuum rotation angle. We denote the eigenstates of this Hamiltonian 

by Vmi where i = 1, 2. Their masses are given by mmi· 

t{mi + m~ + 2kV) 
. 1 

±~ [{.6.m2 cos 20- 2kV)
2 + (.6.m2

)
2 sin2 20] 2 (3.8) 

Up to a term proportional to the identity, this Hamiltonian is of the same form 

as that of a spin ! particle in a uniform magnetic field with off diagonal interac

tions (23]. The potential V above plays the role of the magnetic field. As is well 

known in the spin ! system, a small off-diagonal perturbation can have dramatic 

effects. If the magnetic field is varied slowly in the proper manner, almost complete 

spin flip can occur. This is the well known avoided level crossing phenomenon. 

The exact same mechanism is at work in the neutrino case. For small 

rotation angles 0 the Hamiltonian is almost diagonal. Varying V in the proper 

way can lead to almost complete conversion of Ve to Vw This is easy to see from 

equation (3.7). If V is large, then Om is close to %, and Ve is primarily V2m· If 

~ is varied slowly, then there are no transitions between the local eigenstates vm1 

and Vm2 , and the neutrino stays in the state Vm2· For V equal to zero, Vmi ~ Ve 

and vm2 ~ Vw Thus, if V is slowly varied from a large value to zero, an electron 

neutrino can be transformed almost entirely to a muon neutrino. This can be the 

situation for neutrinos travelling through the sun. The potential V is given by the 

local electron density along the neutrino's path. The value of V at which the level 
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crossing is avoided is known as the resonance density and is given by equation (3. 7) 

for the case where Om~~-

As in the vacuum case, oscillating terms which arise from interference 

between mass eigenstates can be averaged to zero in most cases. If this is the case, 

the probability of a Ve surviving the trip from the sun is just a combination of 

classical probability factors. 

(3.9) 

where c~ :- cos2 em, s~ = sin2 em and c2' s2 are similar for e. 
The above results must be corrected however to account for possible tran

sitions between the matter eigenstates caused by the variation of the matter density 

along the neutrino's path. We may write the Hamiltonian equation for vm1 and Vm2 

in the following form 

[ 

k + mJm. 
- 2k 

-iBm 
iOm l [ Vml l . 

k + mft Vm2 ' 

where em is the spacial derivative of em along the direction of travel of the neu

trino. Thus, the approximation of no transitions, commonly called the adiabatic 

approximation, is only good as long as 

. D.m? 
em<< 4k ' (3.10) 

where .D.m2 = m~2 - m~1 is given by 

mz = ( (2V E)z +. ( .D.m2)zr/2 (3.11) 

Since Om is changing most rapidly at the resonance density and .D.m2 is smallest at 

the same time, any violation of the above condition will be most dramatic there. 

One can take into account the likelihood of a transition between vm1 and vm2 by 

introducing a nonadiabatic transition matrix into equation (3.9). 

1- p. 
J 

p. 
J 

p. 
J 

1- Pi 

1 1 
= 2 + (2- Pj) COS 28 COS 28m, (3.12) 
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where Pi is the probability of a jump between the states ZlmJ and vm2 , and depends 

on the position of origin of the neutrinos involved. Pi has been computed for various 

density profiles. 

One can refine equation (3.12) to take into account phase effects which 

might enter if the neutrino wave packet is still coherent when it enters the resonance 

region or to incorporate corrections to account for neutrinos produced on the far side 

of the sun which may have to travel through two resonance regions, etc. However, 

we will stop here in our explanation of the MSW mechanism, having adequately 

highlighted the i:nain subtleties involved. 

The result, equation (3.12), depends critically on matter effects both 

through Pi and Bm. Although quite beautiful in its intricacy, the MSW solution 

also points to a much more simple and straightforward solution as long as we accept 

a solar neutrino depletion factor of about ~- From equation (3.12), we see that if 

() = ~'then Pve~ve = ~' independent of any matter effects. 

If() = ~' then no matter what linear combination of mass eigenstates in 

which the original neutrino arrives at earth, Pve~ve = ~ as long as we can neglect 

the oscillating interference terms. If the neutrino state at the earth is given by 

where f3i is an oscillating phase, the average probability of finding a lie at earth is 

just ~( cos2 a+ sin2 a) = ~-
Let us look for a mass matrix which results m () ~ ~. For a general 

neutrino mass matrix, 

(3.13) 

the angle of rotation is given by tan 20 = 2me~= . Barring fine tuning of the dif-
m~=-me 

ference mJ.L --me, one should look for a matrix in which the diagonal elements are 

much smaller than mew We can not allow me = mJt, for in this case no oscillations 

take place; we are left with two degenerate neutrino states which we can combine 

into a single Dirac neutrino [24]. 
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3.2.3 Maximal Mixing 

We will ·call a matrix which leads to a mixing angle of ~ a maximal mix

ing mass matrix. In the next section, we shall discuss a model which leads to 

such a matrix. But first, we will briefly discuss our philosophy concerning the 

result Pve->ve = ~. Taking the central theoretical values for Bah call and Pin

sonneault's Standard Solar Model calculations [33], the experimental data from 

Kamiokanda [25], Gallex [34], and Sage [35] are all within 1o- of 0.5. (See Table 

3.1). Davis's chlorine experiment, however, has a central value which is 36% below 

0.5. Nevertheless, we believe that at the present time the lack of calibmtion for the 

chlorine experiment and the poor statistics for all four experiments make ~ a result 

which should not be neglected. The simplicity of such a solution together with the 

existence of a particle model which leads to it provide enough reason to pursue the 

possibility. 

Table 3.1: The solar neutrino observation rates over Standard Solar Model predic

tions for the models of Bahcall-Pinsonneault (BP) [33] and Turck-Chieze (TC) [36]. 

GALLEX and SAGE data are as reported in July 1994 [37]. The errors given are 

at one standard deviation. 

Experiment BC TC 

Chlorine .0.32 ± .05 0.40 ± .09 

I< amiokanda 0.50 ± .07 Q.66 ± .09 

GALLEX 0.60 ± .10 0.63 ± .10 

SAGE 0.52'± .09 0.55 ± .10 

In addition, we believe that the large mixing solution is a far more likely 

solution than the small mixing ones. We can plot the parameter space for a general 

model in a nontraditional, but more transparent, basis. Once we have subtracted a 

term proportional to the identity, the mass matrix for two neutrino oscillations can 

be written as follows; 
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(3.14) 

Figure 3.1 is a rough plot which illustrates our claim. Using m and Mas 

free parameters, we plot the approximate parameter space compatible with various 

values of Pve-+ve in a typical experiment. The area enclosed within the solid lines 

is the allowed solution space for a matrix giving the result Pve-+ve ~ ~ ± 10-2 • The 

large trapezoidal area dominating the right half of the diagram corresponds to the 

maximal mixing solution. Here M < 2 x 10-3 m and the vacuum mixing angle 

is very close to ~; cos 28 < 2 x 10-2 . The parameters enclosed within the annular 

triangular region in Figure 3.1, which also lead to Pve-+ve ~ ~' correspond t<? smaller 

angle solutions which depend critically on matter effects. 

The parameter space for all values of Pve-+Ve < ~ - w-2 is contained 

within the triangular region. The area enclosed in the dotted line corre.sponds to 

1
9
0 > Pve-+ve > 1

8
0 for a typical experiment. The allowed parameter space 

corresponding to 1
8
0 > Pve-+Ve > ~ + w-2 is the region in between the dotted 

area and the solid outline. Figure 3.1 makes it obvious that the solution space, 

parameterized in terms of m and M strongly favor Pve-+Ve ~ ~ and e ~ ~· 
In fact, this conclusion is even stronger than it appears, because Figure 3.1 

is plotted on a log-log scale. The triangular region occupies a tiny fraction of the 

total solution space. We note that the restriction D.m2 < 1.4 x w-2 eV-2 , coming 

from the nonobservation of neutrino oscillations in reactor experiments, means that 

M can not be too large. For small m, we have D.m2 ~ M 2
• Thus, M is restricted 

to be less than 0.12e V. There is no corresponding restriction on m since, for large 

m, D.m2 = 2mM. 

We find this parameter space. analysis to be a compelling reason to inves

tigate models which lead to maximal mixing. 
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Figure 3.1: We draw the allowed parameter space in terms of m and M from 

Equation 3.14 which results in a given range for the survival probability of solar 

electron neutrinos at the earth. The area enclosed in the solid curve corresponds to 

a survival probability within 10-2 of the result Pv.-+ve = ~for a typical experiment. 

This is a reparameterized version of the standard MSW triangle. Within the large 

trapezoidal region, the vacuum mixing angle is very near~; cos 20 < 2 x 10-2
• The 

annular triangular region corresponds to smaller mixing angles and is determined 

in detail by matter effects. The right hand limit results from demanding that the 

lightest neutrino have a mass less than 10e V (See Eq. 3.24). The area enclosed in the 

dotted curve corresponds to a survival probability which satisfies to > Pve-+ve > 1
8
0 

for a typical experiment. 
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3.2.4 "Averaging" Over Oscillations 

Before we discuss the model in Section 3.3, we will briefly examine the 

conditions under which we can ignore the oscillatory term in Pve-+ve. Anada and 

Nishimura [26] argue that the coherence length of a neutrino packet originating in a 

dense medium is limited by the time between collisions, Tc, of the emitting particles. 

Assuming that the coherence length d is given by its maximal value, d ~ ere, where 

C is the speed of light, they estimate it to be about 9 X 10-8cm (for neutrinos 

originating from 8 B reactions). 

A neutrino wavepacket decomposes into its mass eigenstates which travel 

at different velocities. In travelling from a point Ro to earth, Re, the mass eigen

states separate by a distance 

- _!__iRe !::1m2 
L- E E dx, 

Ro 2 
(3.15) 

where m2 = m~2 - m~1 is given by equation (3.11), and we have taken (} ~ ~· If 

L > d, then the neutrino has separated into two nonoverlapping wavepackets, and 

no interference can occur. Under .these circumstances, we can ignore the oscillating 

term in Pve-+ve· 

Taking ne(x) ~ 245 NA exp( - 1
R
0x) (cm)-3 , where NA is Avogadro's num-
0 

ber, and assuming Ro ~ 0, we can compute the integral in equation (3.15) and 

get 

(
!::1m

2
) (R0) [ (s- 1)] js L = 2E2 20 2s + In s + 1 s{ ' 

where s = 1 + (Vol)2exp( - 1
R
0x). Here, Vo is the value of the potential Vat the point 
0 

of origin of the neutrino, l is the vacuum neutrino wavelength ( See Eq. 3.4), and 

sf and Si correspond to the final and initial values of s. 

For small !::1m2 , the product Vol is large and we have 

!::1m
2 

1 (Vo 1 ) L = 2e2 Re + 5R0 E - Vol(1 + ln(Val/2)) . 

The natural log term is irrelevant. For neutrino energies less than an MeV, which 
·' 

are seen in the radiochemical experiments, this distance L is always larger than the 
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coherence length given above. For E ~ 7 MeV, we find that the mass eigenstates 

separate for t:.m2 > 3.3 X 10-7 e V 2
• 

However, this is not the only effect which kills the oscillating terms. As we 

have already mentioned, the finite energy resolution of neutrino experiments causes 

an averaging over the oscillatory terms. For resolution of order 8E, the phase varies 
2 

by 8¢> = Re ~"; 8E. For oscillations to be waihed out, we demand that 8¢ > 100 

or Re/l > (100 to 1000). This gives t:.m2 > (4 to 40) X w-10eV2
. 

Although there exist so called "just so" solutions (27]. to the solar neutrino 

problem which require values of t:.m2 on the order of w-10eV2 and f?r which the 

oscillating term is relevant, we are interested in the much larger solution space 

associated with larger t:.m2
• In the next section, we will impose the limit t:.m2 > 

10-9 e V 2 so that we can safely neglect the oscillating terms. 

3.3 The Model 

The model we will use was first proposed by Zee [3]. To the standard 

model, Zee added two scalar multiplates; a doublet ¢' with the same quantum 

numbers as the Higgs doublet, and a SU(3) x SU(2) singlet h+ with unit electric 

charge. 

With two doublets, we are naturally led into the realm of broken flavor 

symmetries. In fact, as we will see, we must impose approximate flavor symmetries 

to achieve a neutrino mass matrix which leads to maximal mixing. 

We will apply the results of Section 2.2 to give an acceptable flavor struc

ture to Zee's model. Unfortunately, the flavor structure we will impose is slightly 

more complicated than the examples discussed in that section. In order to achieve 

a neutrino mass matrix of the kind discussed in the previous section, we must pro

hibit mixing for one of the neutrinos. We do so by requiring that r number be an 

extremely good or unbroken symmetry, so that we can neglect the mixing of v,. with 

either Ve or Vw 

We will work in a basis of scalar doublet fields where ¢> takes a VEV 
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equal to Jz while the VEV of ¢/ is zero. We also work in a lepton basis in which 

the Yukawa couplings of <P are diagonal. This corresponds to the charged lepton 

mass basis. We identify neutrinos by a subscript corresponding to their charged 

lepton partners. Under these assumptions, the Lagrangian contains the following 

important terms 

(3.16) 

where Greek letters refer to lepton generations, and we have suppr~ssed SU(2) 

indices. In this equation, lex and rex are left and right handed lepton fields , re

spectively, cis the unit antisymmetric matrix in SU(2) space, and C is the charge 

conjugation matrix C = h 2
'·'/. 

The SU(2) structure of the first term in equation (3.16) forces Pexf3 to 

be antisymmetric. Taking into account our assumption that r number is a good 

symmetry, we can write this term for the first two flavors as follows 

(3.17) 

where f = (PeJ..L = -PJ..Le)· 

Neutrinos acquire mass radiatively via the diagram in Figure 3.2. We can 

see that the Lagrangian terms in equation (3.17) naturally lead to a maximum 

mixing neutrino mass matrix. 

There is a subtlety, however. For such a scheme to work we must impose 

approximate flavor symmetries. If we only allowed one scalar doublet to couple to 

leptons, then electron-number-minus-muon-number would be an exact symmetry of 

the theory. Thus, the neutrino mass matrix would have zeros on its diagonal, and we 

would be left with a single Dirac neutrino, as was discussed following equation (3.13). 

Now, we use approximate flavor symmetries to estimate the value of fexf3· 

There are more than one set of flavor symmetries which will result in the desired 

neutrino mass matrix. We will choose one and work out the consequences for it. 

For the first two generations, we will impose the same approximate flavor symmetry 

as we discussed in Section 2.2. Thus, if a term in the Lagrangian breaks left/right 
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Figure 3.2: The diagram giving neutrinos mass in the model of se~tion 3.3.1 

handed lepton number for flavor i, then it is proportional to tiL/R = f!!Jz. Although 

such a model succeeds quite well, as we will see, it leaves no freedom in choosing 

the couplings of our theory. We wish to investigate the allowed parameter space 

of our model more thoroughly. Thus, we will introduce the possibility of further 

approximate flavor symmetries which lead to suppression of the flavor changing 

terms in our Lagrangian. 

Once we have diagonalized the couplings of¢ to the leptons, the charged 

gauge couplings to leptons are diagonal. In this basis, the only flavor changing 

reactions left are ¢"s and h+'s couplings to leptons. We introduce the parameters 

t 1 and t 2 and assume that feJ.L ex: f.t, fJ.Le ex: f.t, and f ex: t 2 • For now, we will not 

assume ti is small , but if we impose approximate flavor symmetries which enforce 

flavor conservation, they will be. For example, we can impose the two approximate 

flavor symmetries Le- LJ.L number and Le + LJ.L number. In this case, t 1 will reflect 

the small violation of Le- LJ.L and t 2 the small violation of Le + Lw Throughout, 

we will keep the approximate flavor symmetries of table 2.2. Thus, the relevant 

couplings of our theory are 

(3.18) 

(3.19) 
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New CP violation effects do exist in a two majora:ria neutrino model [20] as 

well as in the two higgs doublet models. However, CP violating effects do not appear 

in the oscillation of the neutrinos. Since we are interested in neutrino oscillations, 

we will assume CP is a very good symmetry and ignore CP violating phases in the 

following. 

The neutrino mass matrix, computed from Figure 3.1, is 

where the M 1 and M 2 are the masses of the two physical charged scalar fields, p is 

the mass mixing between¢/+ and h+ and Gp is the Fermi constant. Equation 3.20 . 
made use of the identity 

-t 2 - 1 . (Mf) Uhi ln(Mi )Ui¢ = 2 sm(2a) ln Mi , 

where[; is the mixing matrix for the two physical charged scalars h+ and ¢/+ and 

a is the corresponding mixing angle. 

Taking sin(2a) to be of order 1, and assuming that all the scalar mass 

parameters are of order lODGe V, the above matrix results in the following mass 

values. 

v ( 0.24c1 c2 3.4E2 ) _2 2 
Ma{3 = x 10 eV 

3.4E2 1.2 X 10-3 E1E2 
(3.21) 

Such a matrix does not give a mixing angle exactly equal to ~. Thus Pv.-+v. 

differs from ~- This difference is at most ~cos 28 which is equal to 3.5 x 10-2E1. 

Demanding that this correction is less than 10-2, we find that 

(3.22) 

We will see that this is by far the most severe limit on c:i. 

We compute t:.m2 from equation (3.21) and get t:.m2 = 8.1 x 10-5 c1t 22 eV2
• 

Reactor experiments constrain t:.m2 to be less than about 1.4 x 10-2 eV2 • In addi

tion, we require t>.m2 > 10-9 e V 2
, as discussed in Section 3.2.4. These constraints 
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translate to 

(3.23) 

Requiring the mass of the neutrinos to be less than about lOeV [28], we 

obtain the following requirement; 

(3.24) 

3.4 Experimental Limits 

Because all flavor violating interactions are proportional to our symmetry 

breaking parameters, experimental bounds from such reactions are easily met. 

The lepton number nonconserving fJ decays of the form fJ -+ evv,·which 

occur via the exchange of a virtual scalar, have branching ratios on the order of 

' 2 

( 
~? ) 2 lOOGe V 

4 

B ~ -2- ~ 9.2(fd2) ( M ) , 
2L2 w 

(3.25) 

where f 1 and f 2 are the relevant YU:kawa couplings. In this equation, k is given by 
M 

U!/Ji13 -l:rz, where a, f3 refer either to h+ or¢/+. Assuming that M is about lOOGeV, . 
we arrive at the following branching fractions. 

l.B(!l-+ evJJ.vJJ.) ~ 4.6(JJJ.JJ.f)2 ~ 3.0 10-15 €~ 

2.B(!l -+ evevp.) ~ 9.2(fep.f) 2 ~ 2.9 10-17 €~€~ 

3.B(J.L ~ evevp.) ~ 9.2(! fp.e) 2 ~ 2.9 10-17 €~€~ 

4.B(!l-+ eveve) ~ 4.6(! fee) 2 ~ 7.0 10-20 €~ 

5.B(!l-+ evevjJ.) ~ 9.2(fejJ.fjJ.e? ~ 2.9 10-17 Ef 
These branching fractions are extremely small. The only quoted bound 

for these reactions is B(!l-+ eveliJJ.) :::; 5% [18]. · 

The standard fJ decay, fJ -+ eveliJJ. has additional contributions from 

charged scalar exchange. The coupling constant f!tL which reflects the strength 

of the left-handed-vector x left-handed-vector amplitude, 
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is given by 
v ·y'2 p 

(! -1-----
-LL- 8Gp £.12' 

where £.1-2 = cos2 aM12 + sin2 aM22. The coupling constant P~R which reflects 

the strength of the right handed scalar-scalar amplitude, 

4Gp 5 _ _ 
y'2 PRR(eRve)(vJLJ.LR), 

is given by 

where 

(3.26) 

The limit f'tL > 0.96 [29] gives 

. 3 
E2 < 3.8 X 10 . (3.27) 

The limit P~R < 0.066 [30] is easily met. 

The decay J.l -+ e1 involves a loop of charged scalars and neutrinos. The 

rate for this reaction is 

where 
A __ e_f;afcxe 

- 3847r2 M 2 ' 

and M-2 
is as in equation (3.26). This results in a branching fraction relative to 

the standard decay of 

B(J.L-+ e1) = 3.6 x 10-20
E1

2 

Applying the bound B < 4.9 x 10-11 we get 

The exotic decay J.l -+ eee proceeds through the exchange of the neutral 

scal~r. Its branching ratio is given by 
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where mHo is the mass of the neutral scalar. Applying the limit B(J.L ~ 3e) < 10-12 

we get 

Neutrinoless double beta decay is allowed in our model, but proceeds at a 

small rate because it is proportional to the square of the electron-electron element of 

the neutrino mass matrix. The resulting constraint from the limit M;e < 6.3e V [31] 

1S 

(3.28) 

Finally, we will briefly discuss the transition magnetic moment of our neu

trino pair and the lifetime of the heavier neutrino. (The magnetic and dipole mo

ments of Major ana neutrinos are zero by CT P in variance. In the case of C P being a 

good symmetry, our neutrinos have zero transition electric dipole moments because 

they have opposite CP parities [24]). We follow the work of Petcov [32] below. 

The amplitude for the decay v2 ~ v1 + 1 is given by 

(3.29) 

where M
2 

is an approximate average of the two charged scalar masses squared and 

M:e is the J.Le element of the neutrino mass matrix. The transition magnetic moment 

can be read from equation (3.29) and is equal to 

11 e 
J.L21 = 8.7 X 10- €1 X -

2
-

me 

The lifetime for the decay of v2 is 

+ ) 2 1028 -3 -5 
T(l/2 ~ v1 1 = X €1 €2 years. 

3.4.1 Applying Limits 

The only limit which requires either t:1 or t:2 to be less that 1 is equa

tion (3.23), which requires t:1 ~ 2/5. Thus, as we have previously claimed, it is not 

necessary to impose approximate flavor symmetrl.es to make t:1 and t:2 small. 
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We plot the allowed values of <::1 and <::2 in Figure 3.3. The limits in this plot 

come solely from equations (3.22), (3.23), and (3.24). All of the limits calculated in 

this section are already met by these equations, most by many orders of magnitude. 

The closest are,.the limits in equation (3.27) and equation (3.28). The former is met 

by a factor of 10, and the latter by a factor of 100. 

2 

-2 

0 

Figure 3.3: The allowed parameter space for the model in section 3.3. The diagonal 

lines are limits from 10-9 < t:.m2 < 1.4 x 10-2 (See Eq. 3.23). The horizontal line 

comes from demanding that ~cos 2(} < 10-2 (See Eq. 3.22), and the vertical line 

comes from mv < 10eV (See Eq. 3.24). 

Thus, the only real signature for such a scheme is a value of Rve->ve ~ ~ 

which has no dependence on either matter effects or neutrino energy. 

Using the above approximate flayor symmetries, it is unreasonable to ex

pect that <:: 2 is much larger than 1. However, there are a number of alternate ap

proximate flavor symmetry schemes which allow for larger values of f. (Recall that 

f = t:J.LLEe£<::2 .) For example we could have chosen to impose approximate flavor 

symmetries for right-handed electron and right-handed muon number along with 
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(electron±muon) number. The consequences closely parallel the above analysis but 

require small values for all Ei. 

3.5 Conclusion 

We have pointed out that to account for the solar electron neutrino flux 

discrepancy a maximal mixing scheme greatly expands the limited allowed param

eter space of other more popular schemes, as well as makes a definite prediction 

concerning the magnitude of the discrepancy. Any such model predict~ a depletion 

factor of! for electron neutrinos over the examined parameter space. In construct

ing a model which leads naturally to a maximal mixing scheme, it was necessary to 

introduce approximate flavor symmetries. The very same approximate symmetries 

introduced in Section 2.2 work remarkably well in achieving the correct form for 

the neutrino mass matrix. By introducing new approximate flavor symmetries, we 

were able to explore the relevant parameter space of the theory. 
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Chapter 4 

Hypercharge and the 

Cosmological Baryon Asymmetry 

4.1 Introduction 

Various authors [38, 39] have placed cosmological bounds on the size of 

baryon and lepton number violating interactions in theories where baryogenesis 

occurs before the electroweak phase transition. The baryon asymmetry of the uni

verse is threatened by a combination of these interactions and a large electroweak 

instanton rate [40, 41 J. Electroweak instanton interactions are expected to be in 

equilibrium for temperatures above T min, approximately the weak breaking scale, 

up to some very high temperature Tmax ~ 1012GeV. Such reactions create SU(2)L 

transforming fermions out of the vacuum [40]. Lepton and baryon violating interac

tions, such as R~parity breaking terms in supersymmetry [42] or Majorana neutrino 

masses, when in equilibrium simultaneously with instanton reactions, can break all 

linear combinations of conserved quantum numbers which involve baryon number. 

Naively, one is led to believe that the baryon asymmetry of the universe is, there

fore, washed away. In this chapter, we examine the general circums~ances in which 

this outcome is avoided. We find that in many models there will be additional 

symmetries and, even though these symmetries apparently have nothing to do with 

baryon number, they automatically lead to a protection of it. 
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Electroweak instanton interactions respect the symmetries B - 3Li, where 

Li is lepton number for the ith generation. Let us examine the constraints which 

can arise in a supersymmetric model containing the lepton violating interactions 

(4.1) 

where Li and E% are the superfields containing the ith generation left-handed lepton 

and right-handed antilepton, respectively. The claim is that if these interactions 

cause processes which violate Li for all i, then an existing baryon asymmetry is 

threatened. Let us try to save the baryon asymmetry by insuring that B - 3Le is 

a good symmetry of the theory. Electron number is violated if reactions, such as 

f ~ Ile T, are in equilibrium, where i is a scalar tau particle. The reaction rate for 

such a process is r""' A2T for temperatures, T, greater than the mass of the i. It is 

in equilibrium if its rate is larger than the Hubble expansion parameter H ~ 20 It:. 
Taking the scalar tau mass to be lTeV, we arrive at the limit 

• A133 < 4 X 10-8 (4.2) 

On the other hand, our flavor symmetry ansatz of Chapter 2 indicates that 

(
mE;)l/2 (mEi)l/2 (mEk)l/2 

Ai·k ~ -- -- --
3 v v v 

( 4.3) \ 

(See table 2.2). This gives a value for A 133 which is three orders of magnitude larger 

than the one in equation ( 4.2). If, instead, we preserved B - LJ..L or B - L-r the 

discrepancy would be even larger. It is important, then, to examine the applicability 

of these cosmological limits in detail. 

It is well known that a symmetry involving baryon number itself can pre

serve the baryon asymmetry [39]. Approximate symmetries involving B have been 

found in the minimal supersymmetric standard model which can be used to help 

prevent erasure of the baryon asymmetry [43] and, thus, evade these limits. We 

have found that the protection of the baryon asymmetry is extremely common and 

is a typical feature of theories with extra symmetries, even when those symmetries 

do not transform quarks. We illustrate this by a very simple example: assume that 

there exists a particle, X, which carries hypercharge but not SU(2) or SU(3) gauge 
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interactions. Assume that reactions occurring at temperatures well above T min gen

erate an asymmetry in the X species, and that at lower temperatures the reactions 

which change X number are sufficiently weak that this X asymmetry persists. A 

crucial role is played by the requirement that the early universe is hypercharge 

neutral. Because X particles carry hypercharge, the asymmetry in their number 

contributes to the hypercharge density of the universe. The remaining particles in 

the theory must carry an opposite hypercharge density to cancel this. Chemical 

equilibrium equations specify how this hypercharge density is shared. A baryon 

asymmetry can develop either through added B violating interactions or once the 

weak instanton becomes effective. In general, any X asymmetry together with 

chemical equilibrium requires a baryon asymmetry1
. This illustrates just how easy 

it is to preserve the baryon asymmetry and, to our way of thinking, puts the issue 

of direct detection of baryon and lepton number violation back where it belongs: 

with the experimentalists. 

4.2 General Condition for Survival of a Baryon 

Asymmetry. 

In this section, we discuss, in a very general way, the conditions under 

which an extra U(l) symmetry preserves the cosmological baryon asymmetry. 

In thermodynamic equilibrium the number density of particle species i is 

determined by its chemical potential, J.li· If a given reaction, say PI + P2 .= P3 + p4, 

is in equilibrium, then J.LI + J.L2 = ~3 + J.L4 • It is straightforward, yet tedious, to 

solve all chemical equilibrium equations. One can simplify the process by noticing 

that these equations are the same equations one would write down to determine 

the U(l) symmetries of the equilibrium theory. One need only replace J.li with qi, 

the charge of particle i. Solving for q; determines the possible assignments of U(l) 

charge to each particle so that all equilibrium reactions conserve that charge. In 

general, such U(l) symmetries need not be exact symmetries of the Lagrangian. 

1 Implicit in this discussion is the assumption that the universe is homogeneous. 
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They are symmetries of those interactions in thermal equilibrium at temperature 

T, and we refer to them as effective U(l) symmetries at this temperature. 

Thus, a solution to the chemical equilibrium equations corresponds to an 

assignment of effective U(l) charges to each particle, and the possible effective U(l)s 

in a given theory are usually easy to identify. Suppose that at a certain temperature 

there are N such effective U(l)s: U(l)A, A= 1, ... N, then the most general solution 

IS 

-~CA A f..Li- ~ qi 
A 

(4.4) 

where qf is the charge of particle i under U(l)A· The constant CA we refer to as the 

asymmetry constant for U(l)A· -As soon as some interaction which violates U(l)A 

comes into thermal equilibrium, CA rapidly tends to zero: U(l)A is no longer able 

to support particle asymmetries. 

This general solution is restricted, however. We assume that the universe 

IS homogeneous and that no charge asymmetry has developed for the unbroken 

gauged U(l)s of the theory2
• This forces the charge density for these U(l)s to zero. 

We can write the charge density for U(l)A as follows, 

(4.5) 

where ni is the particle asymmetry density of species i. If particle asymmetry 

densities are small, then they can be written, forT~ mi, as 

T2 
n·"' -c·u· 

t - 6 'tr-t (4.6) 

where Pi is the number of internal degrees of freedom of particle i, £i, multiplied 

by a factor of two for bosons. (However, see reference [45] for an interesting look 

at small mass effects.) Under these conditions the charge density constraint is a 

simple linear equation in the f.-LiS. QA can be written using ni from equation ( 4.6) 

and f..Li from equation ( 4.4): 

T2 T2 - -
QA~-6 LcsL'Piqfqf=-6 LcsB·A 

B i B 
(4.7) 

2This requirement avoids the problems inherent in giving a massless gauge boson a chemical 
potential. 
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where we define B ·A by 

(4.8) 

Should the diagonal generators of non-Abelian gauge groups, such as T3L, 

be included in the list of effective U(1 )s? The answer is no, as can be seen easily 

from the above equations. Call such a generator a, then neutrality of the universe 

with respect to this charge requires 

( 4.9) 

where 

( 4.10) 

When A refers to a U(1) generator (not embedded in a non-Abelian gauge group), 

then A · a = 0. This is because the ~i and qf are the same for all components of 

an irreducible representations of a, and hence the sum in equation (4.10) can be 

written as a sum of zero terms, one for each irreducible multiplet of a. When A = /3 
·is a diagonal generator of a non-Abelian group, the orthogonality property of the 

generators within each multiplet ensures that l:i qfqf vanishes for f3 =j:. a. Hence, 

the sum in equation (4.9) just has one term: COla· a= 0. Since a· a =j:. 0, we have 

proved that COt = 0 follows from QOI. = 0. This implies that such U(1 )s need not be 

included in the list of effective U(1)s. 

Now, let's apply this formalism. We are interested in the situation in 

which additional particles and interactions have been added to the standard model 

such that at temperatures T, Tc < T < T max, where Tc is the weak breaking 

temperature, there are just two effective U(1)s: Y and X, where Y = 2(Q -

T3 ) denotes hypercharge and X is an ungauged effective symmetry. The charge 

neutrality condition equation ( 4.9) when applied to hypercharge gives 

CY-- x. Ycx 
- -2 . y 

( 4.11) 

Using equation (4.11) in equation (4.7), the asymmetry in baryon number is just 

2 ( -- ) T X - X·Y- -
nB ~ -C X - --Y · B 6 y2 ' ( 4.12) 
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where we have rewritten Q8 , the baryon density, as nB. This is the general result 

of this chapter. Any effective U ( 1 )x, whether it contains a piece of baryon number 

or not, will in general contribute to nB if ex =f=. 0. The extension of equation (4.12) 

to many extra X symmetries is straightforward. If such a U(1)x exists, there is no 

limit to how large the B and L violating interactions can be. 

We will examine the case in which X particles carry no baryon number 

themselves. Then, 
T X Y·B --2 ( - -) 

nB ~ 6C - y 2 X· Y. ( 4.13) 

In the standard model, Y · BfY
2 = A. Additional particles will change 

this, but would generally give some non-zero value which we call a. Then, nB ~ 

- ~2 

aCX (x · Y). Thus, to obtain n8 =f=. 0, we require that some particles with 

Xi =f=. 0 have Yi =f=. 0. Hypercharge neutrality then forces other particles to have an 

asymmetry, some of which carry baryon number, thus providing a baryon asymme

try. 

Cline et al. [44] point out that the standard model interactions conserve 

right handed electron number down to a temperature of about 10 TeV. If no other 

operators violate this symmetry, then right handed electrons can act as X particles. 

However, couplings such as in equation ( 4.1) would still be strictly limited. In 

Section 4.3, we discuss another possibility, an X symmetry which does not transform 

any standard model particles. In this case, equation ( 4.11) can be rewritten in terms 

of the hypercharge density carried by the standard model sector, QY (SM), and by 

the X sector, QY(X) = ~iqrnx;· 

In terms of QY(X), equation (4.13) becomes 

nB ~ -~Qy (X). 
11 

(4.14) 

( 4.15) 

(We have assumed that T < 10TeV so that right handed electrons are in equilib

rium.) 



39 

Equation ( 4.15) doesn't assume that X number density is small or propor

tional to its chemical potential. Thus, it is valid even when the temperature drops 

below the mass of certain X particles. When this happens, the heavier species car-
... · 

rying X might decay into lighter ones. Nevertheless, providing the particles with 

X #- 0 possess a hypercharge asymmetry the baryon asymmetry will survive. In 

particular, the X #- 0 particles must continue to carry such an asymmetry until a 

temperature T0 , beneath which B and L violating reactions are sufficiently weak 

that a symmetry having a baryon number component has become an effective U(l). 

The resulting baryon asymmetry after X decay depends on the sp~cifics of the 

model. In the least complicated scenario, in which baryon number is a good sym

metry below T0 , today's baryon asymmetry is simply derived form equation (4.15) 

and entropy considerations. 

We note that it is not necessary for our X sector to be neutral under SU(2). 

Adding additional SU(2) transforming fermions to the standard model will mea:u 

that these particles also take part in instanton mediated reactions. Nevertheless, in 

a consistent theory, instanton reactions will conserve the hypercharge asymmetry 

carried by the X sector of the theory. This is true because instantons neither violate 

hypercharge in the standard model sector nor in the theory overall, and thus must 

conserve hypercharge in the X -sector. 

In this section, we have tacitly assumed that some component of baryon 

number is a good symmetry below Tc, the weak breaking temperature. If this is 

not the case, then, for temperatures T, To < T < Tc, the role of hypercharge is 

played by electric charge. In this case, the X sector must carry an electric charge 

asymmetry. 

An intriguing possibility exists if the lightest X particle is stable and elec

trically neutral. If this is the case, the particle is a candidate for the dark matter 

in the universe [46, 47]. To realize such a scenario, the X sector would still have to 

maintain a hypercharge asymmetry for temperatures above T0 . (For convenience, 

we have assumed T0 2:: Tc.)· However, at a lower temperature, charged X particles 

would decay to standard model particles plus these electrically neutral X particles. 

If Ox is the fraction of the critical density contributed by the electrically neutral 
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X particles, then their mass is given by 

mx 

where (qx) is the appropriate average of X-particle hypercharges. Low-background 

Ge detector experiments [48, 49] indicate that an electrically neutral dark matter 

particle with nonzero hypercharge must have a mass greater than "' 1000 Ge V. 

Thus, we can effectively rule out a dark matter X particle with nonzero hypercharge. 

One possible candidate is the neutral component of a new hyperchargeless SU(2) 

multiplet. Such a particle is expected to interact via loop diagrams with nuclei and 

thus its cross section with Ge is approximately 10-35cm 2 or smaller [47], effectively 

evading relevant experimental limits [48]. Another candidate is a new particle with 

no gauge interactions whatsoever [46]. 

4.3 A Simple Model. 

In this section, we illustrate the general ideas discussed above with a very 

simple model. We add to the standard model a single fermion X, of mass mx, which 

is SU(2) neutral but has three units of electric charge. It is unstable, decaying to 

three charged leptons via the effective interaction 

+ h.c., 

where ek is the right handed lepton field of flavor i, X is the X particle field, C 

is the charge conjugation matrix, M is a constant with units of energy, and fiik 

( = fikj) is a flavor dependent constant of order 1. In addition, we let our model 

include unspecified lepton and/or baryon violating terms which together with the 

instanton reaction break all linear combinations of B and L numbers. 

Both the mass of the X particle, mx, and the constant M are constrained 

by the various requirements of our theory. First, we must insure that the X asymme

try develops before all baryon violating interactions fall out of equilibrium. Other

wise, the X asymmetry has no effect on baryon number. Let Tx be the temperature 
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at which X violating reactions drop out of equilibrium. Without specifying the ex

act scenario, we assume that an X asymmetry develops at some temperature lower 

than Tx but above the temperature at which instantons freeze out (See [50] and ref

erences therein for numerous methods by which number asymmetries can develop). 

In this way, the instanton reaction provides the baryon violation required for our 

mechanism to work. This is a convenient choice, but not a necessary one if other 

baryon violation exists in the theory. 

It is interesting to note that the only baryon violation required in this 

model is instantons. If an X asymmetry exists or develops during the epoch in 

which instantons are in equilibrium, then it will necessarily generate a proportional 

baryon asymmetry. 

In our example, X particles will eventually decay into standard model par

ticles. Various constraints must be imposed on this decay. To make things simple, 

we require X particles to survive past the temperature at which instantons freeze 

out. We assume that after this temperature baryon number is a good symmetry. 

Thus, the only possible effect on the produced baryon density comes from the change · 

in entropy of the universe upon X decay. 

The standard nucleosynthesis scenario places limits on this decay [50]. If 

X particles decay after nucleosynthesis, they must not dump more than a factor of 

"' 15 times the entropy density present at the time of nucleosynthesis. If they did, 

then the observed baryon to photon density would be incompatible with standard 

nucleosynthesis. Also, if the mass of the X particle is larger than a few MeV, which 

it must be to avoid strict limits on the width of the Z boson, then energetic photons 

from X decay can destroy too much deuterium. Further, depending on the era of 

decay, photons from X decay can destroy the uniformity of the cosmic microwave 

background radiation or contribute too much to the diffuse photon background. If 

X particles decay before nucleosynthesis, their mass and density prior to decay must 

be compatible with the known baryon to photon ratio, 7], during nucleosynthesis. 

Let us examine our first constraint. The rate for X violating 4-fermion 
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49j21f5 T 5 

fx ~ 12960((3) M 4 
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where j2 is an average of terms like ft}kflmn, and we have dropped terms of order 

.!!!X. T. 

The Hubble constant, H, is 17 ~. The 4-fermion interaction drops out 

of equilibrium when its rate falls below the Hubble expansion rate3 . Calling the 

temperature at which this occurs Tx, we have 

( 4.16) 

Although X number changing interactions freeze out at Tx, X particles 

stay in thermodynamic equilibrium below this temperature through their gauge 

interactions. These gauge interactions freeze out at a much lower temperature 

given by the standard cold relic freeze out crit~ria. 

Now, we examine the decay of the X particles. The decay rate for these 

particles is given by 
j2 m1:-

r ~ 2567r3 M 4 

where we have ignored terms of order the temperature over mx since they will be 

seen to be negligible. The X particles decay when this rate is approximately equal 

to the Hubble expansion rate. Calling the temperature at which these rates become 

equal Tn, we have 

( 4.17) 

If significant entropy is generated by X decay, then Tn is the "reheat" temperature 

after decay. 

Equations (4.16) and (4.17) can be combined to give 

3 For convenience, and because we are interested in the order of magnitude of our results, we 
assume g .. ~ 106 independent of the temperature. 
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In Figure 4.1, we plot the allowed parameter space by considering the 

constraints discussed above. (We have assumed Tv~ Tmin ~ 102GeV and required 

Tx > 10Tmin·) 

The diagonal dotted lines in this figure are lines of constant T x and are 

labeled in GeV. The allowed region is divided up into three regimes. The first, 

corresponding to Tv > 10-3 GeV, covers the case in which X particles decay before 

the onset of nucleosynthe~is. In this case, X density just before decay may be quite 

large, leading to an early matter dominated era and a significant increase in entropy 

density upon X decay. This is because for large mx, X particle gauge interactions 
,. 

freeze out when there is still a large anti-X particle density. In this situation, the 

X number asymmetry is a small fraction of the symmetric relic freeze out density. 

A large symmetric relic density leads to large entropy dumping when X particles 

decay. Let us call the factor by which entropy is increased R. Since, in our model, 

today's observed baryon asymmetry is proportional to the X asymmetry divided 

by R, a large X asymmetry is required when R is large. We have plotted a dot

dashed line which corresponds to the onset of significant entropy generation when 

X particles decay. At this line, entropy is increased by 10% upon X decay. As we 

rise above this line, the amount of entropy generated when the X particles decay 

increases. At the top boundary of our allowed region, the X asymmetry required 

to generate todays observed baryon asymmetry becomes infinite. Above this line, 

there is no way to generate enough baryon asymmetry. 

In the second regime, 10-4 GeV < Tv < 10-3 GeV, during which nucle

osynthesis is taking place, we impose the conservative requirement that X decay 

increases the universe's entropy by less than 10%. This is shown as a dip in the top 

boundary of the allowed region. 

The last regime, Tv < 10-4Ge V, in which X particles decay after nucle

osynthesis, is bounded on the left by the requirement that decay products don't 

destroy too much deuterium [51]. The curved line marked with an arrow takes 

account of this limit (We have used Lindley's rough calculation for heavy dark mat

ter particles [51]). This constraint is more severe than those arising from cosmic 

microwave background and diffuse photon background observations. The top limit 
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of this region is determined by entropy dumping considerations. Since, in this case· 

X particles are still present during nucleosynthesis, we know that the required X 

asymmetry is equal to -1V times the baryon asymmetry at the time of nucleosyn

thesis. When X particles decay, they can increase the entropy and thus decrease 

the value of TJ today relative to its value during nucleosynthesis. We allow at most 

a decrease by a factor of 15, and this gives us our top limit. Figure 4.1 illustrates 

how general our mechanism is. The X particle's mass can range over 12 orders of 

magnitude, from 45 GeV to 1012 GeV. 

4.4 Conclusion 

We have shown that in order to avoid the strict cosmological limits placed 

on lepton and baryon number violating interactions it is not necessary to resort 

to low temperature baryon generation or to the addition of new symmetries which 

affect baryons. Any symmetry which allows one sector of the theory to acquire a net 

hypercharge density will suffice. This includes a symmetry under which standard 

model particles are neutral, as our example shows. The key observation is that, 

although this new symmetry seems decoupled from the rest of the theory, the gauged 

U(1) symmetries can connect it. Thus, an asymmetry in X particles, because they 

are charged, is enough to ensure a proportional asymmetry in all charged particles 

independent of whether their particle number is conserved or not. 

If a scenario similar to the one proposed here was realized in the early . 

universe, then experimental searches for lepton and baryon violating interactions 

may prove successful. Such a success would not only directly signal exciting new L 

and/or B number violating physics, but would also indirectly signal the existence 

of a baryon number protection mechanism. 
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Figure 4.1: The allowed parameter space in our example is shown, bounded by 

solid lines. We have assumed TD :::; Tmin ~ 102GeV and required Tx > 10Tmin 

and mx > 45 GeV. The diagonal dotted lines are lines of constant TD, and are 

labeled in Ge V. Our parameter M is also constant on these dotted lines, M = 

2.9 x 104 (Jet- )314 
GeV. On the dot-dashed line the entropy of the universe is 

increased by 10% when X particles decay. In determining this line, as well as 

the top boundary line, we have assumed that X particle gauge interactions freeze 

out according to the standard cold relic freeze out criteria [50]. We have made 

conservative assu~ptions in determining the relative increase in entropy upon X 

decay; allowing the cosmic scale factor to scale as tn where n ·ranges from 1/2 to 2/3. 

We ha~e used a value for 1] at the time of nucleosynthesis equal to ( 11) 3 x 10-lO. 
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Chapter 5 

Proton Decay in SUSY SO{IO) 

5.1 Introduction 

While successfully addressing various theoretical problems and correctly 

predicting the weak angle, sin Ow[54], in the Standard Model, supersymmetric 

(SUSY) grand unified theories (GUTS) also introduces a large assortment of new 

phenomenon and unknown parameters [55] which make predictions difficult. Chief 

among the new phenomenon is the instability of the proton. In SUSY GUTS, in 

addition to the standard heavy gauge boson mediated decays, proton decay can oc

cur via the exchange of heavy chiral superfields [56]. This process results in baryon 

violating four-fermion operators which are suppressed by only one j)Ower of a GUT 

scale mass, in contrast to the gauge boson mediated processes, which have two 

powers. 

Determining these operators, which dominate the proton decay rate, is a 

two step process. First, one evaluates a diagram in which a heavy superfield is 

exchanged, resulting in dimension-five operators which involve two Standard Model 

(SM) fermion fields and two SUSY scalar partners. Then, one dresses the scalars, 

using either gluinos, neutralinos, or charginos to convert them into fermions. Unlike 

their gauge boson mediated counterparts, the resulting operators depend upon new 

Yukawa couplings, whose values, in general, are unrelated to known parameters. 

Most past attempts at predicting the rates and branching ratios involved in proton 
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decay have relied on simplifying assumptions to relate the new Yukawa couplings 

to those of the standard model, predictions based on the minimal supersymmetric 

SU(5) theory (MSGUT)[57) being the most common (58). 

Unfortunately, this is a poor choice to base real world predictions upon, 

as it fails to correctly predict the mass spectrum of the known fermions. To solve 

this problem, one is forced to introduce new Yukawa couplings beyond those of 

the MSGUT. Within the context of an SO(lO) theory, this new structure will have 

definite effects on the couplings which determine proton decay rates and branching 

ratios. Thus, it seems important to examine the repercussions of a model which is 

both predictive and correctly accounts for the known fermion spectrum. 

We can not choose one such model without limiting the applicability of our 

predictions. Nevertheless, because factors of two and three will be important, and 

because we will be dealing with issues which require us to understand the origin of 

our couplings, we do not simply impose a phenomenological flavor symmetry ansatz 

of the form used in Chapter 2. Instead, we will examine a particular model which 

explains the hierarchical nature of the Yukawa couplings in the theory in terms of 

a specific flavor symmetry structure. The model we choose is outlined in reference 

[59), and we refer to it throughout this chapter as the ADHRS model, after the 

initials of the authors. 

This choice is not as limiting as one might think. The ADHRS model 

actually encompasses a whole class of models which, though sharing the same uni

versal Yukawa texture, differ in the specific values for the couplings. The Yukawa 

matrices which result are very similar to ones derived from a simple phenomenolog

ical flavor symmetry ansatz, and, in much of this chapter, we use an approximate 

parameterization which makes the generality of our results apparent. In addition, 

we have the added benefit of being able to determine the specific Clebsch factors 

involved for a whole series of models. 

In our calculations, we find a large number of expected phenomena which 

differ substantially from the results of standard MSGUT proton decay calculations, 

foremost among them being the dominance of certain gluino dressed diagrams and 

the increased branching fraction for charged lepton decay modes under common 
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circumstances. In addition, we conclude that certain neutralino diagrams contribute 

substantially to certain proton decay modes, and should not be ignored. We do not 

calculate the overall rate for proton decay, as this depends on theory details which 

are more specific than we deal with here. Instead, we examine relative branching 

ratios and compare the size of differently dressed operators to make our conclusions. 

We note that the results stated above are not a special case peculiar to 

the ADHRS flavor scheme alone. In fact, the ADHRS scheme gives comparatively 

conservative results, as it is a simple matter to apply flavor symmetry schemes, 

such as that of Section 2.2, which give far more dramatic deviations f~rm MSGUT 

proton decay calculations. Thus, the fact that we find significant deviations, is a 

testament to the fragility of previous calculations based on the MSGUT. 

In addition to the expected changes brought about by our Yukawa matri

ces, we examine the possible repercussions for proton decay of nonstandard squark 

mass matrices, which are either a consequence of nonminimal Planck scale bound

ary conditions or of high energy radiative corrections. In Sections 5.5 and 5. 7, we 

discuss how the implementation of a flavor symmetry scheme based on the ADHRS 

philosophy can very easily lead to flavor mixing effects in the squark mass matrices 

which make gluino dressed diagrams dominant for all nucleon decay modes. We 

point out that only very modest flavor changing effects, well within experimen

tal limits, are required to make most gluino dressed diagrams dominant in most 

circumstances. 

5.2 What is Wrong with the MSGUT? 

We begin by discussing Yukawa couplings relevant to proton decay in the 

MSGUT. Thus, we assume that a single 5 and 5 of SU(5) are responsible for fermion 

masses. The superpotential terms which give the relevant Yukawa couplings are 

W _ 1 h·. • 1.af3.,,"'~sHe + rn2fij .,,a/3"'. H 
Y - 4 tJ f..OI/3"'!6€ 'f/ i 'f/ j y L, 'f/ i 'f/ JOI {3 l (5.1) 

where latin indices refer to families, Greek indices to SU(5), and hij, Jij are dimen

sionless coupling constants. 
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The Higgs superfields are the 5 and 5, H = (He, He, He, H1+, H1o) and 

H (Hc,Hc,He,HJ-,-Hfo), respectively. Above, He and He are the Higgs 

triplet superfields. H1 and H 1 are the doublets. 

The matter field,¢, is a 10 of SU(5), 

0 uc -uc u d 

-ue 0 uc u d 
1 

¢= V2 ue -ue 0 u d 

-u -u -u 0 ec 

-d -d -d -ec 0 

and <Pis a 5 of SU(5), 

Above, u, d, e, v are chiral superfields which contain the left handed up quark, 

charged lepton, and neutrino respectively. The chiral superfields ue, de, ee contain 

the right handed fermions. 

The Yukawa couplings in the superpotential in terms of the component 

fields 

e e de Q e, u, , = 

are given by 

Wy = }..fiuiQiH! + }..fidiQiH! + NfieiLiH! 

+ !Ui~ (QiQjHe) + UB (QiLjHe) + ui~ (ufejHe) + UH (ufdjHc)· 
(5.2) 

We will work in the convenient basis in which the Yukawa matrices ).. u, 

;.e, and )..d I< are diagonal. I< is the Kobayashi Maskawa (KM) matrix [60]. In this 

basis, we have 

(5.3) 
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and ui, <4, ei, uf, df, ef are each in a basis which diagonalizes their fermion compo

nent's mass matrix. We will use this basis extensively in this chapter, referring to 

it as the d' basis. 

Proton decay proceeds through the exchange of the Higgs triplet super

fields. Thus, the Yukawa matrices, UG, for G = Q, L, E, D, determine the structure 

of these decays. 

If SU(5) is unbroken, the following equalities hold at the GUT scale in the 

basis above ; 
u9 = 8·. ,\1!. ei<l>j 

t) t) JJ 

u~ = >.l t) t) 

ui~ = .Afi I<ij 

UP = e-iq,, .A~. 
t) t) 

.\ii = 8ii (Ad I<)jj, 

where the phases </>i satisfy L:i </>i. = 0 and there is no sum on i or j. 

(5.4) 

Equation (5.4), however, embodies the very boundary conditions which 

lead to incorrect fermion mass relations. The last equation, relating the mass ma

trices of down quarks and charged leptons, gives the unacceptable result !!!:.d. = .!&.. ms mp. 

Solutions to this problem invariably introduce new, possibly effective operators into 

equation (5.2), at the very least, altering this last relation. In SO(lO) theories, 

solving this problem disturbs all of the equalities in equation (5.4), as we will see 

in the next section. Even in GUT theories based on other gauge groups, arrang

ing for acceptable fermion masses will often disrupt these relations. Proton decay 

calculations in the MSGUT which rely on these SU(5) equations must therefore be 

reexamined. 

5.3 The ADHRS Model 

With a vast assortment of schemes designed to explain. the known flavor 

structure of the light fields, we require further assumptions if we wish to make 

any predictions about proton decay. Eventually, we will choose to parametrize the 

Yukawa couplings of our theory in terms of different Clebsch factors multiplying the 
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various elements of a single matrix with a specific texture. Though this form has 

been explained within the context of other theories, we will examine the theory of 

ADHRS, using it as a guidepost for the analysis of this chapter. 

In arriving at their Yukawa matrices, ADHRS employ philosophical as-

sumptions which include; 

a) maintaining the successful prediction of sin Ow in the MSGUT. 

b) maximizing the predictivity of the theory. 

c) " explaining " the hierarchical nature of the Yukawa matrices. 

This last requirement precludes the use of small dimensionless couplings 

in the theory. 

To reduce the number of free flavor parameters in the theory, ADHRS 

begin with the gauge group 50(10), which relates the Yukawa matrices for up 

quarks, down quarks, and leptons. They assume that the theory below the 50(10) 

breaking scale, v10 , has the same particle content as the MSGUT, thus preserving 

the sin Ow prediction. To improve predictivity of the model, their theory contains 

only one 10 multiplet, which is responsible for both the up and down type masses. 

ADHRS introduce a number of 45 multiplets which participate in the 

breaking of 50(10) and 5U(5). These 45s are assumed to take vacuum expec

tation values ( vevs) in one of the four following directions in the two dimensional 

subspace of 50(10) which preserves 5U(3) x 5U(2) x U(l); 

X, Y, B - L, T3R· (5.5) 

Above, X is the 50(10) generator which commutes with the 5U(5) Georgi-Glashow 

subgroup, Y is hypercharge, B- L is baryon number minus lepton number, and 

T3R is the T3 generator of 5U(2)R· 

The Yukawa couplings of the theory are derived from a set of operators of 

the following form; 

0 ij = 16i < 451 > ... < 45k > 10 < 45k+l > ... < 451 > 16j, (5.6) 
M1 Mk Mk+l M1 

where 16i is the 16 multiplet for the ith generation of fermions, and 45j is one of the 

45s. Such operators are the result of integrating out heavy 16 and 16 multiplets. 



52 

The resulting gauge structure leads to very simple values for these operators; If a 

45 takes a vev in the X direction it just couples to various members of the adjacent 

16 with a strength proportional to the X value of that member. A hierarchy is 

generated by arranging that the vevs in the numerator are smaller than the masses 

in the denominator. 

We refer to the generation basis used in equation (5.6) as the flavor basis. 

Beginning with the operator 0 33 = 163 10 163, ADHRS search for the 

minimal number of operators which are compatible with known experimental in

formation. The result of the search is a group of possible models, e~ch of which 

has just four such operators. The resulting theory has six free parameters ( 4 real 

constants, 1 phase, and tan f3 1 ), and thus can be used to make seven predictions. 

We will examine the nucleon decay branching ratios that result from a 

group of 54 models, all with the Yukawa structure 0 33 + 023 + 022 + 0 12. The 

different theories are listed in Appendix A. One example is given below. 

( 45 )
3 

(45 )
3 

012 = 161 ¥ 10 ¥ 162 

022 = 162 10 4~~;L 162 

0 - 16 ~ 10 45
B-L 16 23 - 2 45 X 45 X 3 

(5.7) 

033 = 163 10 163. 

The 45s in this equation are vevs taken in the indicated directions. 

Such a structure can be justified by the imposition of an approximate U(1) 

flavor symmetry and appropriate choices for the corresponding U(1) charges of the 

relevant fields. 

The resulting Yukawa matrices are all of the form 

(5.8) 

with A ~ B and E ~ C, reflecting powers of ~ or .2!L, where v5 is the SU(5) 
VlO mpl 

breaking scale. The Clebsch factors, x, x', y, and z, are products of B- L,,_y, 
1 We use the notation tan ,8 = ;;- where v1 is the vev of H 1 and v2 is the vev of H 1. 

\ 
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and X values for the 16 multiplets involved. In Appendix A, we list the Yukawa 

matrices for the 54 models. 

The notation of that appendix and the discussion below is as follows. We 

introduce the matrices {JG, where G = Q, L, E, D, and ~9 where p = u, d, e, which 

are the Yukawa matrices of equation (5.2) in the flavor basis of this section, the 

correspondence being obvious from the notation. We denote the Clebsch coefficients 

for a specific matrix with the appropriate subscript; 

(5.9) 

with similar relations for the ~g. 

Since the vevs in equation (5.6) differentiate between the B- L, Y, and X 

values of the fields within the 16s they violate the relations in equation (5.4). For 

example let us examine the relative values of the (1, 2) elements of various Yukawa 

matrices. 

All the models listed in Appendix A have the same 0 12 operator, 

(
45x )

3 
(45x )

3 

0 12 = 161 M 10 M 162. (5.10) 

The 45 vevs m 0 12 give factors of the X quantum numbers of the vanous 

fields in the 16s. The X value for the matter fields (Q,uc,dc,L,ec,vc) are 

(1, 1, -3, -3, 1, 5), respectively. The values of the (1, 2) elements of the up quark, 

down quark, charged lepton , and neutrino mass matrices in the flavor basis are thus 

(1, -27,-27, -27, 125), respectively. Similarly, relative to the up mass matrix, the 

(1, 2) element of the matrices ((JQ, {JL, {JD, {;E) are (1, -27,-27, 1), respectively. 

Similar factors distinguish the other elements of the various Yukawa matrices, vio

lating the relations in equation (5.4). See Appendix A. 

To determine the triplet Yukawa matrices UQ and UL in equation (5.2), we 

need the matrices V£ and V£ which rotate the left handed up quarks and charged 

leptons into their mass basis. Using notation similar to that used by ADHRS [59], 
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we have 

(5.11) 

(5.12) 

()2e = zeC /fleE· We have introduced the notation fluE for the (2, 2) .entry of the 

matrix ,\1\ and <f>v. for the phase of Yv.· Similar relations hold for YeE and <f>e· 

Using these rotation matrices, we can calculate the matrices 

UQ = Vt* (JQ vzt and uL = V£* {JL vzt. Taking note of the fact that UQ IS 

symmetric, we have 

ZQCei<l>u- s2yQE -s2(xQ- Xv.)B l 
YQEQ (xQ- xv.)B , 

A 

(5.13) 

( 

-S2eZLCei4>u- S2ZLCei4>e + S2eS2YLE Z£Cei4>u- S2YLE 

uL = Z£Cei4>e- S2eYLE YLE . 
-s2e(XL- Xe)B (xL- Xe)B 

where 

Analogous results hold for the matrices UE and uD. 

-s2(x~- xv.)BJ 
(x~- xv.)B 

A 
(5.14) 

(5.15) 

The formulas above are messy. We are interested in determining the rela

tive importance of various diagrams leading to proton decay, a result which depends 

on the choices for the Clebsches above. However, rather then simply using numeri

cal calculations, we wish to make our results more transparent. We thus introduce 
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a rough parameterization for our Yukawa matrices similar to the phenomenological 

parametrization of the KM matrix introduced by Wolfenstein [61). 

With A ~ 0.2 ~ sin Be, we have for the rough magnitude of the matrix 

elements 

IU;~I =A ( 

.1.._.\4 l_.\3 ~~') ( !~4 l_.\3 P') 18 6 

!ubi= A \3 

2 
l_.\3 l_.\2 _.\2 l_.\2 ..\2 (5.16) 
6 2 2 
l_.\3 ..\2 1 ..\3 ..\2 1 3 

u 
..\ ~') II<ijl = 1 ..\2 ' (5.17) 

..\2 1 

with ~U~~ ~ 1uq1 and !uP!= ~U~~ tJ tJ tJ tJ • 

This approximate form for the Yukawa matrices agrees, to within a few 

percent, with the actual matrices fo.r some of the ADHRS models. For other models 

it is a poor approximation. Nevertheless, it is a helpful tool in evaluating the relative 

importance of various diagrams. In all cases discussed below, we will also indicate 

the precise results for the ADHRS models given in Appendix A. The form of these 

approximations make it clear that we are, in effect, employing a very familiar flavor 

symmetry scheme for our Yukawa matrices, one that is similar to the examples in 

Chapter 2. 

Most of the various factors of .A, ~, and ~, that appear above arise from 

relatively simple considerations. For example, from the form of the up and down 

quark mass matrices, we have I<cb ~ (xd - xu)~, which gives us our order of 

magnitude approximation for the (2, 3) and (3, 2) elements of the matrices above, 

as long as the Clebsch's, xa, are of order one. 

The factor of ~, raised to various powers, that appears throughout the 

matrices, will play a crucial role in certain diagrams. It arrises from the fact that 

the rotation angle, 82 , in the light generation sector of the matrix V.i (see equa

tion ( 5.11) ), is approximately one third of the corresponding angle in the down 
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sector. This is a simple consequence of the relations 

(5.18) 

where 01 is the corresponding rotation in the matrix V£, which diagonalizes the down 

quark mass matrix. Since the flavor basis Yukawa matrix (;Lhasa zero in its (1, 3) 

entry, a factor of a third naturally appears in the (1, 3) entry of UL = V£* (;L vzt. 
The same holds for the matrices UQ, UE, and uv. Similarly, because the (1,2) 

entry of the matrix (;Q is small, smaller than the sin 02yuE contribution which 

comes from rotating the light sector, as we show below, the factor of ~·also appears 

in the (1, 2) entry of UQ = V£* (;Q vzt. 
W~ can see why (;~ must be small by taking the determinant of the up 

and down Yukawa matrices 

(5.19) 

where mu, md, and m 5 are taken at the scale 1GeV, while the remaining masses are 

given at their particular mass scale [59]. This equation implies that the combination 

(zv./ zd)2 ~ 10-3 . This makes the (1, 2) entry of (;Q small enough so that the rotation 

contribution dominates u~. 

A comment is in order concerning the value of tan {3 = ~, where v1 and 
V2 

v2 are the Higgs doublet vevs for H1 and H f, respectively. In the ADHRS model a 

single 10 multiplet and a single coupling, 163 10 163 , are responsible for top quark, 

bottom quark, and tau lepton masses. This leads to large values of tan {3 and 

large values for the Yukawa couplings in ).d and uL. This situation is disfavored in 

most models, because proton decay rates, which are already_ severely constrained by 

experiment, are proportional to uL. This is not a serious problem, however. It is 

possible to arrange: for an overall suppression factor to enter proton decay diagrams, 

sacrificing only the prediction of tan f3 in the process. One way of accomplishing 

this is to introduce an additional 10 multiplet into the theory and arrange for the 

proper triplet and doublet mass matrices. Since we are concerned with relative 

branching ratios, we will not examine the details of such a scheme here. We only 
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· wish to point out that the ADHRS model can be modified to allow tan ..B to take 

values on the order of one, and that smaller values of tan ..8 are favored, leading to 

longer proton lifetimes. 

We note that because of the minimality of the theory and the assumed 

vev structure, ADHRS are forced into models with very particular Clebsch factors 

in some cases. For example all of the models in Appendix A have an 0 22 operators 

which result in Yu = 0, the familiar Georgi-Yarlskog form. It is certainly possible to 

add additional operators in a given model. Doing so will affect the predictivity of the 

model and also the specific proton decay results. As we stated in the }ntroduction 

of this chapter, the ADHRS structure, in fact, gives very conservative results for 

proton decay, in the sense that one can easily arrange for larger deviations from the 

standard MSGUT predictions by introducing different flavor schemes. We discuss 

some interesting possibilities in Sections 5.8 and 5.9. 

5.4 Dimension-Five Operators and Discussion 

The superfield exchange of He pictured in Figure 5.1 results in the following 

relevant proton decay superpotential terms; 

(5.20) 

where the contraction of indices is given by 

(5.21) 

with Greek letters representing SU(3) indices. In equation 5.20, we have ignored 

operators involving the right-handed neutrino superfields because their contribution 

to proton decay is negligible. 

The superfield couplings in equation (5.21) lead to dimension-five vertices 

connecting two fermion and two scalar fields. In order to arrive at the four-fermion 

operators which mediate nucleon decay, we must dress the scalar fields, converting 
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Q; 
L! 

Om 

Figure 5.1: The supergraph responsible for the left handed dimension-five proton 

decay operators. A similar graph gives us the right handed analog. 

them to fermions by the exchange of gaugino or higgsino fields. Some examples of 

the resulting diagrams are shown in Figures 5.4 and 5.5. 

In the past, the assumptions of equation (5.4) have been used t? conclude 

that charged wino exchange necessarily dominates over other dressings. To see this, 

we must note a few points. First, because UQ is proportional to the up quark 

mass matrix, the dominant decay modes will involve U~ or US,. This will favor 

dimension-five operators involving 2nd and 3rd generation fermions. It will also 

require ~avor changing in the dressing process. 

Flavor changing due to squark flavor mixing is assumed to be small, often 

by invoking the stringent experimental limits from flavor changing neutral processes 

such as f{ - f< mixing [62]. If one ignores flavor changing effects due to squark 

exchange, then the dressing of the dimension-five operators by gluinos, neutral 

winos, or neutral higgsinos does not change the flavor of the fields involved. This 

immediately kills all contributions from these dressings to charged lepton modes. 

This is because the only four-fermion operators which contribute to these decays 

must contain two up quark fields. However, since these is no flavor changing in 

the dressing process, these operators can only come from dimension-five operators 

with two up quark superfields, and these vanish by SU(3) antisymmetrization. For 

neutrino modes, again because of the lack of flavor mixing, neutral gaugino and 
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gluino dressed diagrams are suppressed. They are proportional U:f{ ex mu. Past 

calculations have often been based on the assumption of squark mass degeneracy 

[63]. Under such an assumption, gluino and bino dressed diagrams vanish identically 

for all proton decay modes; by Fiertzing the four-fermion operators resulting from 

gluino dressing, one can see that they cancel among themselves. The same holds 

for bino dressed operators. 

Diagrams involving higgsinos are suppressed by small Yukawa couplings in 

the first and second generation which accompany the higgsino vertices. This leaves 

charged wino diagrams as the dominant contribution to nucleon decay. 

Charged wino diagrams for charged lepton modes involve a f~ctor of uS, 
whereas the diagrams for neutrino modes avoid this suppression factor. Thus, with 

· MSGUT Yukawa matrices and degenerate squarks, we arrive at the standard con

clusion, that charged wino diagrams for the decays (p ---+ J{+vJ.L) and (p ---+ J{+vT) 

dominate the proton decay process. In Section 5.8, we will examine this set of 

circumstances in more detail. 

When squark mass splittings are included, it is within the framework of 

the MSGUT [64, 65], ie. using MSGUT Yukawa couplings and minimal soft super

symmetry breaking squark masses. Results depend crucially on the value of tan /3. 
We give a brief overview of the possibilities here, leaving a detailed discussion for 

later, when we have calculated the relevant four-fermion operators. 

For smaller values of tan /3, all squark matrices are very close to being 

diagonalized in the d' basis of equation (5.3) [64, 66]. In such a case, little is 

changed. Although gluino diagrams for neutrino modes no longer vanish, they still 

invariably involve a factor of mu. Gluino diagrams for charged lepton modes still 

·vanish, due to SU(3) antisymmetrization (See Section 5.7). Diagrams dressed by 

neutralinos still invariably involve a factor of mu. Charged higgsino diagrams still 

involve Yukawa couplings from the lighter two generations at the higgsino vertices. 

For tan f3 ~ 1 significant mixing in the ·UP squark propagators can take 

place. Although the first two generation squarks remain close to degenerate, effects 

from the third generation can cause gluino diagrams to become dominant for charged 
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lepton decay modes (64] (See Section 5.7). 

Replacing MSGUT Yukawa matrices with ours dramatically shifts this 

picture. No longer diagonal, the matrix UQ now contributes to diagrams involving 

Ui~ with i =/:. j. We briefly outline the results we find in the next few sections. 

Assuming degenerate squarks, charged lepton modes generally are less 

suppressed than in the MSGUT case. In addition, neutral wino diagrams become 

more important in many models. 

With MSGUT squark masses and with tan f3 not necessarily large, we find 

that, in addition to the changes above, gluino diagrams for certain ~ecay modes 

dominate the wino diagrams in many models. 

In the next section, we examine the issue of squark mixing in greater 

detail, revealing that additional assumptions are necessary to insure that either of 

the simple squark mass scenarios considered above are realized, large squark mass 

splittings being the norm. 
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5.5 Squark Masses 

5.5.1 Preliminaries and the MSSM 

In N=l supergravity models with flavor blind gravitino couplings to mat

ter, all squarks receive a universal mass at the Plank scale from soft supersymmetry 

breaking. In this section, we will examine how radiative corrections to this result 

will effect squark masses [67]. We begin by examining results from the minimal 

supersymmetric standard model (MSSM). 

The squark mass terms in the lagrangian are given by 

( - -c) £12 q,q q ( 
q ) = (- -c) ( .M;,L 
-c q, q _M2t 
q q,LR 

~;,LR) ( q ) ' 
Jkf2 -c q,R q 

(5.22) 

where each of the four entries in the mass matrix is a 3 x 3 matrix itself in flavor 

space and q stands for either up or down squarks. The overbar in q signifies complex 

conjugation. 

The matrices above are related to soft symmetry breaking parameters and 

the quark mass matrices mq in the following way. 

if2 mumut + M2 + ~(lc2 _ ~c2)(v2 _ v2) 
u,L Q 4 2· 2 6' 1 2 1 ' 

if2 mutmu + M2 + ~c2(v2 _ v2) 
u,R U 6' 1 2 1 ' 

- 2 
Mu,LR Jlmu cot {3 + Amu 

(5.23) 

where A is the trilinear scalar soft symmetry breaking matrix, tan f3 = !!1. (the ratio 
V2 

of vevs of the two Higgs scalars), the matrices MQ, lkfu are the soft symmetry 

breaking scalar mass matrices, m u is the fermion mass matrix, and 11 is the scalar 

doublet coupling in the superpotential. Similar results hold for the down sector. 

In minimal supergravity models, at the Planck scale, the matrices MQ and 

Mu are equal to the universal scalar mass m0 times the identity matrix. Similarly, A 

is proportional to the same combination. We see that at the tree level the matrices 

in equation (5.23) are diagonalized in the quark mass basis. 

Radiative running from the Planck scale down to the weak scale gives con

tributions to the parameters above. In most cases, running from the Planck scale 
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down to the GUT scale is ignored. The result is that the matrices M; receive con

tributions from the quark Yukawa matrices A q and from gaugino masses. Ignoring 

the latter contribution, which is identical for all fields with the same gauge charges, 

we have for the radiative contributions D..M;,L and D...M;,R, 

-2 m~ (c1AuAut +c2 AdAdt) (5.24) D..Mu,L f"V 
f"V 

- 2 m~ (c~AuAut +c;AdAdt) (5.25) D..Md,L f"V 
f"V 

- 2 m~ ( C3A utA u) (5.26) D..MuR ~ 
' 

- 2 m~ ( ~Adt Ad) ' (5.27) D..MdR f"V 
f"V 

' 

(5.28) 

where the constants ci, c~ are of order -!· 
Except for the third generation contributions, the off-diagonal matrices 

.M;,LR are relatively small compared to the diagonal blocks. We will ignore their 

contributions throughout most of this chapter. 

Mass Splittings in the MSSM 

In gluino dressed diagrams, squark degeneracy causes a complete cancel

lation of the nucleon decay amplitudes. Thus, it is important to determine to 

what extent squark masses split from one another. Because the lower generational 

Yukawa couplings are small, the radiative running above has little effects on the 

squark masses of the first two generations. They remain nearly degenerate, the 

largest splitting effect coming from the D terms in equation (5.23), which are neg

ligible unless tan f3 ~ 1. 

Third generation squarks can be considerably lighter than the first two 

generations, because the top Yukawa coupling, At, is of order one. This leads to 

nonvanishing gluino dressed diagrams. However, we will see that if one uses the 

MSGUT Yukawa couplings, then charged wino diagrams are still much larger. This 

is not true if we employ our Yukawa matrices (See Section 5.7). 

r) 
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Squark Mixing in the MSSM 

Squark flavor mixing, which occurs when squark mass eigenstates do not 

correspond to quark mass eigenstates, also plays a role in determining the impor

tance of various proton decay diagrams. We introduce some notation which will be 

helpful in our discussion. 

Let vq be the 6 X 6 unitary matrices which diagonalize the squark mass 

matrices. With q signifying either up or down squarks, we have 

V qM-2vqt d. z (- 2 ) ·- 1 2 6 q = zapona mq; , z - , , · · · , . (5.29) 

Gluino couplings involve the matrix Kq, a product of the matrix Vq and 

the quark rotation' matrices Vi,R, 

(5.30) 

We introduce the off-diagonal matrices .6. q, which parametrize flavor chang

ing neutral current effects. 

(5.31) 

(5.32) 

with ihq" as in equation (5.29) and man average squark mass. For future reference, 

we write .6. q in terms of its submatrices; 

(5.33) 

From equations (5.28), (5.30), and (5.33), we deduce that the mixing ma

trix .6. £ is of the form 

(5.34) 

Similarly, the mixing matrix for the down sector is given by 

(5.35) 
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The form of equations (5.34) and (5.35) lead to very small flav0r changing 

effects which easily meet the stringent flavor changing neutral current (FCNC) limits 

below. Unless tan (3 ~ 1, this mixing is also too small to significantly effect the size 

of gluino diagrams (See Section 5. 7). 

5.5.2 Beyond MSGUT Masses 

High Energy Radiative Corrections 

As first noted by Hall, Kostelecky, and Raby [68], the running of squark 
' 

masses for energies above the GUT scale can lead to large corrections in the squark 

mass matrices. In almost any theory which explains the hierarchy in fermion masses, 

there exist couplings between the standard model fields and exotic fields. Diagrams 

in which the exotic fields are exchanged lead to radiative corrections to squark mass 

matrices which can be quite large [69]. 

Most of the scenarios designed to explain fermion masses, such as. higher 

dimensional operators induced by quantum gravity, radiative hierarchy schemes, 

and see-saw schemes, introduce flavor symmetries to establish the structure of new 

exotic couplings. 

In all of these models, the Yukawa couplings appearing in the low energy 

theory are effective couplings which conceal the underlying physics. This under

lying physics invariably involves vertices coupling light fermion superfields to non

Standard Model multiplets. In addition, the coupling constants for these vertices 

are of order 1, since otherwise we are not "explaining" the hierarchy. 

For example, in schemes such as the ADHRS model, hierarchies are gen

erated by diagonalizing mass matrices which involve both the known fermions and 

new heavy fermions. This mechanism is common to a large class of models which 

attribute hierarchies to various factors of small mass ratios of the form A J:t where 

A is a coupling constant of order 1, vis a vev relating to flavor symmetry breaking, 

and M is the mass of a heavy particle. In such models, lower generation fermion 

masses have higher powers of the suppression factor. In effect, the diagrams con

necting fermions involve more heavy propagators and flavor breaking vevs as we 
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Figure 5.2: Feynman diagrams which contribute to the radiative squct.rk masses. 

move to lower generations. 

In the ADHRS model, the light 16 multiplets, which contain the known 

quarks, couple to heavy 16s. The relevant terms in the superpotential are of the 

form 

(5.36) 

where Aij is one of the 45 representations of S0(10) which takes a vev (see equa

tion (5.6) ), the <J"ij are the 16 dimensional spinor S0(10) matrices (normalized 

so that trace( <J"ij<J"ij) = 16 with. no sum on ij), and ,\ is a dimensionless coupling 

constant not much smaller than one. The field 16H is heavy, taking a mass of the 

order ..\ Vto. 

Diagrams, such as those in Figure 5.2, which enter in the renormalization 

group scaling of squark masses for energies between the Planck and GUT scales, 

lead to possibly large squark mass corrections. These radiative effects primarily 

contribute to diagonal squark mass terms in the flavor basis - the basis singled out 

by diagonalizing the exotic couplings in the theory. Such corrections can lead to 

unacceptably large flavor changing neutral current (FCNC) effects, as well as to 

changes in the proton decay expectations. 

We can get a rough idea of the size of these corrections by looking at the 

one loop effects. From the coupling in equation (5.36), we get one loop corrections 
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to the diagonal elements of the squark matrix on the order of 

!1M:~ - 16~2 m~ A2 
45 (3 + A2

) In(::;) 
2 

(5.37) 

where Am~ is the trilinear soft supersymmetry breaking parameter, and mH is the 

mass of the heavy field 16H. If A is approximately one, then this correction is 

disastrously large, in fact too large for perturbation theory to be valid. One way to 

avoid violating FCNC limits is to just assume A is of order 1/10. This insures that 

the squark masses don't differ significantly froni those computed using the MSSM. 

( Although it does lower the mass of the heavy 16s by a factor of 10 ~hile keeping 

the mass of the heavy gauge bosons in the theory fixed. )2 

Meeting FCNC Limits 

Limits from FCNC processes are most severe for mixing between the first 

two down squark generations [62]. 

(t1~h2 < 0.008, (5.38) 

where M stands for either L or R, and the precise limits, here and below, can differ 

by up to a factor of 3 to 4 because of hadronic uncertainties. These limits come 

from experimental results on C P violation in the K - K system when one assumes 

the relevant phases are large. For very small phases, we can ignore the limits in 

equation (5.38). However there are other limits from t1MK measurements; 

(!1~ h2 < 0.1, 

We also have limits for the other mixing elements [70], 

(t1~h3 < 0.27, 

(!1M- h2 < 0.1, 

(t1fh3(!1~h3 < (0.07)2 

(t1I,)12(!1Rh2 < (0.04)2 

(5.39) 

(5.40) 

Even small diagonal (in the flavor basis) radiative corrections to squark 

matrices can violate some of the limits above. For example, if the second generation 

2 We require an even smaller coupling constant for operators such as 16; 126 16j which can be 
used to give large majorana masses to right handed neutrinos. 
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squarks receive a correction of order tm5, then the mixing matrix ~~ Is given 

approximately by 

(5.41) 

For (~~ )12 < 0.0005 and (Vf)12 ~ sin Oc, we require t < 2 x 10-3 , implying very 

small contributions to the first two generation down squark masses. 

There are ways, however, to accommodate large diagonal radiative cor

rections without violating the FCNC limits above. One method is to align down 

squark and down quark mass eigenstates. The only natural way to accomplish this 

is to assume very nearly unbroken flavor symmetries in the down sector, leading to 

negligible off diagonal couplings for the down flavor eigenstates. This unavoidably 

leads to the relation V£ ~ K. Nir and Seiberg apply such a scheme in reference 

[70] where they address the problem of nonminimal soft supersymmetry breaking 

squark masses. In Section 5. 7, we will see that such a solution naturally leads to 

large gluino dressed diagrams for proton decay. 

Nonminimal Boundary Conditions 

There is a separate problem with the MSGUT squark mass assumptions 

as we mention above. Besides flavor symmetries, there is no theoretical reason why 

at the Planck scale the squarks should be degenerate. Recently, various authors 

have used flavor symmetries to limit the form of Planck scale squark mass matrices 

[70, 71, 72]. Dine, Leigh, and Nelson have applied a spontaneously broken SU(2) 

flavor symmetry to insure near degeneracy of the first two generation squarks [71]. If 

we are to take seriously the possibility of nonminimal soft supersymmetry breaking 

squark masses, we must employ a method similar to that used by Dine et al., Nir 

and Seiberg, or the authors of reference [72]. 

In. our calculations, below, we will examine the consequences of various 

squark mass assumptions. We note that, even with standard MSGUT squark 

masses, our Yukawa matrices lead to increased gluino contributions which challenge 

the dominance of charged wino diagrams. If we allow for even moderate squark 

mixing, gluino diagrams will very likely surpass the wino contributions. 
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5.6 Calculational Preliminaries 

In the remainder of this chapter, we we will be concerned primarily with 

the proton decay modes (p--+ K+vJ.L), (p--+ J{+vT), and (p--+ K 011+), which are 

the dominant proton decay modes to neutrinos and charged leptons in the MSGUT 

calculations [63]. We leave the other modes, which are simply related to these, for 

Appendix B, where we also list neutron decay results. 

As discussed in Section 5.3, we will make use of our approximate Yukawa 

matrices given in equation (5.16). This makes apparent the flavor symmetry struc

ture of our theory, and allows one to easily determine how that structure effects 

proton decay. Although the Yukawa matrices in a specific ADHRS model may dif

fer from this ansatz, the variation over the models is slight in many cases, and we 

indicate the exact values of important quantities where appropriate. We also make 

a few approximations which reduce the complexity of our calculation, but which 

have very little effect on our conclusions. 

First, except for higgsino dressed diagrams, we will ignore left-right mixing 

in the squark matrices. Such mixing, expected to be small for all but the third 

generation, will not change our 'general results. Second, we will neglect certain 

renormalization effects, namely the running of the dimension-five operators from 

the SU(5) breaking scale down to the SUSY breaking scale and the running of the 

four-fermion operators from the SUSY scale down to lGeV. Since we are concerned 

with ratios of diagrams, our approximation leads to very small quantitative errors 

(and no error for ratios involving dimension-five operators with the same superfield 

flavor content). 

In the following section, we examine the possibility of large gluino dressed 

diagrams: We begin by using typical minimal supersymmetric standard model[73, 

74] (MSSM) squark masses. We find that our Yukawa ansatz greatly i!lcreases the 

chances that gluino contributions to the decay p --+ K+z;T are large. In certain 

ADHRS models, the vJ.L mode also receives big gluino contributions. We also ex

amine the consequences of nonstandard squark masses and find that small flavor 

changing effects in squark propagators can lead to a great enhancement of all gluino 
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dressed diagrams. 

In Section 5.8, we discus chargino and neutralino diagrams. Using the 

ADHRS Yukawa couplings, we find that, out of these dressings, charged wino dia

grams are the l~rgest sources of proton decay, although neutral wino diagrams can 

contribute significantly. In addition, these diagrams give a larger branching ratio 

for charged lepton modes than one finds using MSGUT couplings. Unfortunately, 

the charged lepton modes are still sufficiently suppressed so that they will probably 

not be among the first modes observed. However, this result is sensitive to the 

exact structure of the ADHRS effective operators. We point out that very simple . 
and reasonable changes in this structure are enough to make the charged lepton 

modes among the first observed. 

5. 7 Gluino Dressed Diagrams 

Derivation and General Result 

In this section, we will examine the dressing of dimension-five nucleon 

decay operators by gluinos. We wish to determine the relevance of these gluino 

diagrams given our nonstandard Higgs triplet couplings. We show that, in contrast 

to the MSGUT situation, certain gluino diagrams become important even when 

MSSM squark masses are used. In addition, we examine the increased importance 

of the gluino dressed diagrams for the case of non-MSSM squark masses. 

The most significant result of this section is the marked increase in the 

branching ratio for the gluino dressed diagram leading to the decay (p --+ ]{+ v,.) 

when we use our Yukawa ansatz rather than MSSM couplings. For MSGUT squark 

and gaugino masses favored by experimental limits on proton decay, we conclude 

that this gluino contribution is larger than the normally dominant charged wino 
I 

diagram. In addition, w~ examine the possibility that flavor changing effects in 

squark mass matrices make all gluino diagrams large. We show that FCNC data 

does not imply that these effects are negligible. On_ the contrary, allowed flavor 

changing effects can easily make gluino diagrams the dominant source for all nucleon 
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decay modes. 

5.7.1 Neutrino Modes 

We first examine proton decay modes with neutrinos in the final state. 

Only the left handed dimension-five operators of equation (5.20) contribute to these 

neutrino modes. In superfield notation, we have 

(5.42) 

where we have suppressed SU(3) indices, and the subscript F indic~tes that one 

should take the F-term in the square brackets3 For example, we have 

(uidjdWm)p = (uidj)(dzilm) + (uidz)(djilm) + (djdz)(uiilm) 

+ (uivm)(dzdj) + (djvm)(uidz) + (dwm)(uidj), (5.43) 

where a tilde signifies a sfermion field. 

Gluinos can dress the last three terms in equation (5.43). The relevant 

couplings in the Lagrangian are given in four component notation by 

(5.44) 

where Q is a quark field, L = !(1-ls), R = !(1 +Is), the majorana gluino spinor 

(Ja is related to the the two component gluino spinor pa by 

( 

·-a ) - -U! 
Ga- . 

- - ' ipa 
(5.45) 

and .xa are the SU(3) matrices normalized such that trace(.X2
) = 2. 

Dressing the scalars ( uidi), for example, involves the triangle diagram 

pictured in Figure 5.3. This diagram converts the squark fields to quark fields 

(5.46) 

3 In equation (5.42), we have used the fact that uQ is symmetric. 
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Figure 5.3: A triangle diagram, which converts squark fields into quark fields by 

the exchange of a gluino. 

where m9 is the mass of the gluino and we have suppressed Lorentz indices. Above, 

we have used the I<q matrixes of equation (5.30), but have ignored the chirality 

flipping components of the squark mass matrices. The function f is the so called 

triangle diagram factor [75] giving the contribution from the loop integral in Fig

ure 5.3: 

(5.47) 

This gives 

(5.48) 

By dressing equation (5.42) and using the Pierz identity to combine terms, 

we arrive at the following four-fermion operator responsible for gluino mediated 

proton decay to neutrino modes. 
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£-( -+ ) - 1 ~4 cxf3-y(d'cx f3)(d''Y ) [uQUL UQUL] 9 p, n 11m - MHc 211" 3 € q Us t 11m ij lm - il jm 

·(KJ)za(I(l)aq [U<J)ib(KJht f(mJ,., mJb)ois- (I<!)ib(I<uhs f(mJ,., m~Joit], 
(5.49) 

where we have reintroduced color indices (Greek letters) and have dropped the 

explicit dependence on m9 in the function f. Equation (5.49) includes a factor of 

-~from a trace over SU(3) matrices and a factor of~ from (p3 /.J2) 2
• 

The squark mixing matrices l<q in equation (5.49) are in the d' basis of 

equation (5.3), so we have; 

_ ( vzt o ) 
I<q = vq o vt . (5.50) 

It is easy to see from equation (5.49) how degenerate squarks lead to the 

vanishing of gluino dressed diagrams. For degenerate squarks, the l<q matrices can 

be chosen to be the ide,ntity, and the last factor of equation (5.49) in square brackets 

IS zero. 

Using MSSM Squark Masses 

We will return to the more general case below, but first, let us examine the 

implications of equation (5.49) when squark masses are given by a MSSM calcula

tion. Unless tan f3 » 1, the down quark Yukawa coupling contributions to squark 

masses can be treated as perturbations, and the squark mass matrices are very close 

to being diagonalized in the d' basis above, ie. I<q ~ 1. This is a well known MSSM 

result, and it leads to negligible gluino amplitudes when MSGUT Yukawa matrices 

are used [73]. Setting I<q ~ 1, we can rewrite equation (5.49) in the following form. 

r ( ) _1_ ~ i ccxf3-y(d'cxuf!)(d''Y11 ) .1..-g p, n -+ 11m = MHc 211" 3 '- l z 3 m . 

· [ugu~~- ui9ufm] [J(m~,, ihJ)- f(mJ,, m~J]. 
(5.51) 

We now use equation (5.51) to compute the relevant 4-fermion operators 

for the decay f(p-+ J<+vm)· Borrowing the notation of reference [63], 

(5.52) 
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The gluino contributions to the constants C are given by 

C9(sudvm) = 
M~c ~~ K12 Kj1 [uBuz~- uSuftn] [f(m~1 , m~)- f(m~1 , m~J], 

(5.53) 

and Cg(dusvm) is equal to the same thing _with K12Kj1 --+ K11Kj2 • 

Nucleon decay rates predicted by minimal SUSY GUT theories are already 

severely constrained by experiment. These constraints restrict the allowed values 

for the function f in equation (5.53). If we wish to keep SUSY particle masses 

below 1Te V, then these limits favor large squark masses, on the order of 1Te V, and 

small gaugino masses on the order of 100GeV [63]. Similarly, since the decay rate 

in these theories goes as (sin 2/3)2, smaller values for tan j3 are desirable. Thus, we 

tend to lean towards small gaugino masses, large squark masses, and tan j3 ~ 1. 

For the MSSM with tan j3 ~ 1, we expect near degeneracy for the squarks 

of the first two generations. Even for large values of tan /3, the splitting between 

these generations is small enough so that the combination 

(5.54) ' 

appearing in the previous equation, is negligible unless j = 3. 

Using this fact and our approximate Yukawa matrices from equation (5.16), 

we see the largest gluino contribution is to the v.,. decay mode. An example of the 

relevant diagrams is given in Figure.5.4. 

In equations (5. 78) and (5. 79), we write the corresponding contributions 

from charged wino diagrams. By using the approximate Yukawa matrices of equa

tion (5.16), one can determine that the flavor factors are of the same order for both 

gluino and wino diagrams. Numerical calculations verify this, giving a ratio which 

varies from 1.2 to 0.84 over the different ADHRS models of Appendix A. We thus 

arrive at the following; 

(5.55) 

where 

L 



Figure 5.4: These are the gluino dressed diagrams which contribute to ,four-fermion _ 

operators with the flavor factor U~U{3. They cancel among themselves to lowest 

d · M-2 ·f - 2 - 2 - 2 or er In He 1 mu = mb' = m 5 ,. 

f f(-2 -2 ) m ,m ,mw+ 

m I_+ x ~ I [I - ~n x Ill =2 
2 w :c=m fmw+ 

and m is the common squark mass for the first two generations4 • 

(5.56) 

(5.57) 

(5.58) 

The ratio T depends on the specifics of the superpartner spectrum. As 

long as tan f3 is not very large, the mass mJ.
3 

in !:lf is the mass of the left handed 

b squark, which receives radiative corrections of order -!>.; m~ .. These radiative 

corrections lower its mass below m. Since all squark masses also receive positive ra

diative corrections proportional to gaugino masses, the factor !:lf depends critically 

on the ratio of m0 to the gaugino masses. 

For typical models in which the universal Planck scale gaugino mass m 1 is 
2 

approximately one tenth of the universal scalar mass mo [76], the ratio fl./ is about 

one. As discussed above, experimental constraints favor this sparticle spectrum. In 

such models, gluino diagrams are twice as large as charged wino diagrams for the 

4 The term with 1 = 3 in equation (5.53) vanishes when j = 3. 
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decay (p -+ K+vT)· On the other hand, if m0 ::::::: mt, then o/- is usually of order 

10%- 20%, and the ratio in equation (5.55) is twice this. For no-scale models, in 

which m0 = 0, the gluino contribution above is negligible. 

The enhancement of this gluino mode is a definite consequence of our 

nonminimal Yukawa matrices. If we use MSSM Yukawa matrices in our four-fermion 

operators, then we recover the standard result; the matrix UQ is proportional to 

the diagonal up quark mass matrix mu, charged wino diagrams have a contribution 

proportional to US, all gluino diagrams are proportional to US. This leads to an 

additional suppression factor in equation (5.55) on the order of .!!!:.l.!. sin-2 Be. Thus, 
me . ,. 

with MSSM squark masses, it is the violation of the SU(5) relations of equation (5.4) 

which allows for a potentially large gluino contribution. 

From equations (5.53), (5.78), and (5.79), and usmg our approximate 

Yukawa matrices, we deduce that for vll- modes gluino diagrams receive an addi

tional suppression relative to wino diagrams which is usually of the order sin2 Be· 

Numerical calculations, however, show that there are ADHRS models in which this 

additional suppression, in effect, is absent, b_eing as small as 0.83. In general we 

have 

(5.59) 

I 
C9(dusv11-) I::::::: la2~ a3 !:::..fl 

C-w+(dusvll-) 3 a2 f ' 
(5.60) 

where the coefficient a1 ranges over values from 0.83 to 2.3 x 10-4 and the coefficient 

a 2 ranges over values from 0.53 to 7.6 x 10-6 for the differen~ ADHRS models. Thus, 

there are models in which the gluino diagrams for vll- modes are as large or larger 

than charged wino diagrams. The gluino contribution to the Ve mode can also be 

as large as the charged wino contribution in some ADHRS models. 

, We conclude that, just by employing a flavor symmetry structure which 

corrects the fermion mass relations in an SO(lO) GUT theory, gluino mediated di

agrams for the decay (p -+ J<+ V 7 ) can easily become twice as large as the wino 

contributions. Similarly, certain, flavor symmetry structures lead to equally large 

gluino mediated diagrams for the decay (p-+ J<+v,_,.). When one allows for nonstan-
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dard squark masses, the deviation from MSGUT predictions is even more marked. 

Nonstandard Squark Masses 

Let us suppose that we allow for large corrections to the squark mass 

matrices as discussed in Section 5.5. We can meet FCNC limits by aligning the 

down squark and down quark mass basis. In such a scenario, squark degeneracy 

is no longer a problem. If the mass splittings are of order the squark masses, in 

most situations gluino diagrams will dominate for all neutrino modes. In fact, even 

for moderate squark flavor changing effects, well within FCNC data Limits, gluino 

diagrams are dominant. 

Since these effects are actually necessa~y to avoid the vanishing of gluino 

dressed diagrams for charged lepton modes, we leave their analysis for the next 

section. Although we do not explicitly show that similar results hold for neutrino 

modes, it should be obvious from our discussion. 

5.7.2 Charged Lepton Modes 

The situation for charged lepton decay modesdiffers in important ways 

from the neutrino case. We will focus on the left handed dimension-five operators 

of equation (5.20), later discussing the right handed operators. Using the same 

notation as in equation (5.52), we have 

£9(p,n--+ Kem) = M~c ¥;~ cal3-r(d~au~)(u']em) [ugul~- ugui~] 

·(K!)za(Ku)aq [U<})ib(KJht f(m~,., m~b)bis- (I<!)ib(Ku)bs f(m~a' m~)8it] 
(5.61) 

For MSSM squark masses with tan f3 ~ mt, the Kq- are very close to the 
mb 

identity in the basis of equation (5.3) (the d' basis). This forces i = l = 1, and 

the first term in squark brackets vanishes. In such a situation, there is no flavor 

changing for up squarks, so the original dimension-five operator of equation (5.20) 

vanishes due to color antisymmetrization. 
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In the MSSM, off-diagonal corrections in the triangle factor are propor

tional to .6.ij from equation (5.34); 

(5.62) 

Thus, it is possible for equation (5.61) to contribute if the down quark Yukawa 

couplings are big, ie. for large tan (3. ( Large values for the Yukawa couplings Ad 

also increase the overall proton decay rate. As discussed in the last section, this 

consideration argues for small tan (3.) 

To examine the effects of off-diagonal triangle factors for !!lore general 

squark mass~s, we make the approximation that the squark eigenmasses can be 

expanded in the form 

(5.63) 

where m is an average squark mass and 8m~k is assumed to be small. Although 

this is not a very good approximation for the third generation, it suffices when 

determining the relative importance of gluino diagrams. 

We expand the function fin terms of 8m~ 

f(-2 -2 ) m ,m ,m9 (5.64) 

1 _ 2 um1 um2 um2 
( 

c - 2 c - 2) ( ( c - 2) 2) + f (m 'mg) m2 + m2 + o m2 ' 

where 

'(_2 1 1 [X ln X l ( ll .. J m 'mg) = mg (x- 1)2 X+ 1 - 2 X- 1) x=m2jm~. 
g 

(5.65) 

Substituting equation (5.65) into equation (5.61), and keeping only the 

lowest order terms in 8m2
, we get 

where f' = f'(m2
, m 9), and we have used the notation of equation (5.33). 

Using the same notation as in equation (5.52), we have 

(5.67) 
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with 

(5.68) 

To get an idea of how important this operator is, we compare it to the 

corresponding charged wino contribution given in equation (5.81), in which we have 

neglected squark mixing effects. Of course, if our comparison indicates that the 

gluino dressed operator is of the same order, squark mixing effects will also be 

important for the wino dressed operators. Using our approximate Yukawa matrices 

of equation (5.16), we see that 

C9(suup) ~ 2a3f' ( ("u) b("u) ) ___::....:...._____:__.:.__ "" --- a w. L 21 + w. L 31 ' 
Cw+ ( sudp) 3 a2 f 

where the coefficients a and bare roughly given by 

Ia I 
lbl 

"" "" 

"" "" 

3 
sin Be 

6 
sin Be· 

(5.69) 

(5.70) 

Our approximation is fairly good for jaj, which we find varies from 13 to 30 over the 

different ADHRS models. However, for lbl, the approximation is not as good. For 

the different ADHRS models we find values of lbl, as large as 181 and as small as 13. 

FCNC limits for the factors (~£)21 and (~£)31 were given in equation (5.40). We 

see that the term in brackets in equation (5.69) can be of order one for relatively 

small values of (~£)31 . For models in which lbl ::::::: 180, values of (~£)31 an order of 

magnitude smaller than the most conservative experimental limit are large enough. 

We do not have enough information about the squark mass matrices to 

determine how gluino dressed operators will compare to wino dressed ones when 

squark mixing is taken into account for both. But, since gluino couplings are larger 

than wino couplings, a value for the ratio in equation (5.69) larger than one indicates 

that it is likely that gluino diagrams play the dominant role in these decays. 

The factor f depends on the sparticle spectrum, but is of order 1 in most 

models. For m1 ~ m0 it is given by 
2 

(5.71) 

.. 
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with the last equality following from the well known result ~ ::::: £a.. 
m,;;+ a2 

As argued in Section 5.5, large squark mass splittings are possible in many 

models. If there are corrections to the MSSM squark masses of the form LlMi, we 

have 

(5.72) 

If we accommodate large flavor diagonal corrections by aligning down squarks and 

quarks, then (Ll£)21 is approximately sin Oc, slightly larger than its experimental 

limit5
, and (Lli,h1 is of order /{31· 

From equation (5.69), we see that if either Lll, factor is th:is large, then 

gluino diagrams are of the same order or larger than wino diagrams. For models in 
-2 

which lbl is large, we only require a radiative correction on the order (A~¥h3 
::::: 15% 

to make the ratio in equation (5.69) of order one, assuming v;_~::::: I<13 . 

We note that it is possible for gluino mediated charged lepton modes to 

become dominant even when one uses MSGUT Yukawa matrices [64]. This is be

cause MSGUT Yukawa matrices not only suppress the gluino contributions to these 

modes, but also the charged wino contributions (See Section 5.8). One only requires 

a large enough value for Lll,. This can be realized using MSSM squark masses if 

tan f3 ::::: ~' which implies that the term proportional to AdA~ in equation (5. 72) is 

large[64]. 

The right-handed dimension-five operators of equation (5.20) lead to very 

similar 4-fermion operators. One arrives at these operators by making the following 

replacement in the equations above; 

f{ --t 1 
(5.73) 

u,d,e --t uc,dc,ec, 

where the bar in qc denotes Hermitian conjugation. 

Let us, once again, get an idea of the importance of these operators by 

comparing them to the corresponding charged wino contribution given m equa-

5 Recall that the limits in equation (5.40) are uncertain by a factor of 3 to 4. 
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tion (5.81). We have 

C9(suup,)R ~ 2a3f' ( (Au) b (Au) ) 
_::..~___;_-..:....,- "' --- aR i..l.R 21 + R uR 31 · 
Cw+(sudp,) 3 a2 f 

(5.74) 

Because of the large (3, 2) and (2, 3) entries of (JE (See Appendix A), we find that 

aR can be as large as 70 and bRas large as 1500 for certain ADHRS models. Thus, 

very small values of (LlR)21 and (LlR)s1 are required to induce large gluino dressed 

right handed operators. 

5. 7.3 G luino Conclusions 

We have seen that the introduction of our Yukawa matrices has increased 

the possibility of large gluino mediated proton .decay. This is most dramatic in the 

tau neutrino decay mode where in many cases, even with tan f3 ~ 1 and MSSM 

squark masses, gluino diagrams are of the same order as, or larger than wino dia

grams. 

Allowing for non-MSSM squark masses greatly increases the chances of 

gluino dominance. We have shown that gluino contributions to· charged lepton 

modes are likely to be at least as important as the wino contributions for relatively 

small squark flavor changing effects. The same holds true for the neutrino modes. 
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5.8 Chargino and Neutralino Dressed Diagrams 

We now examine the other possible dressings for the dimension-five oper

ators, paying particular attention to pure wino diagrams. In most instances, these 

diagrams give larger contributions than other chargino and neutralino dressings. We 

concentrate on diagrams which have the possibility of being the dominant source 

of a primary nucleon decay mode. Thus, for example, we ignore pure bino dressed 

diagrams which will always be smaller than their gluino counterparts. 

The most important conclusion we reach concerns the relative branching 

ratio of charged lepton decay modes versus neutrino modes for pure wino diagrams. 

While this branching ratio is of the order 10-3 in MSGUT calculations, it is an 

order of magnitude larger when we use our Yukawa matrix ansatz. 

5.8.1 Chargino Dressing 

For chargino dressing, squark mass degeneracy does not cause a cancel

lation among the diagrams. From the discussion in Section 5.5, we conclude that 

any :flavor changing effects from squark matrices are expected to be at most of or

der the KM matrix. Using our Yu:kawa matrix ansatz, chargino diagrams already 

have :flavor mixing effects of this order, so we will ignore squark mass splittings in 

most of our discussion. If splittings are large enough to dramatically effect chargino 

diagrams, we certainly expect that gluino diagrams will be much larger. 

Charged Wino Dressing 

We first examine charged wino exchange diagrams. Proceeding as we did 

for gluino diagrams, we arrive at the following relevant Lagrangian terms; 

.Cw+(vm) = Ml a
2 (d~uz)(djvm) [uSuz~- ui9uftn] u;l Vk*l 2f(mx+ ), 

. He 27r . k 

(5.75) 

where f is the triangle diagram function of equation (.5.48) for average squark mass 

m and chargino mass eigenstate xt, 
(5.76) 
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and U and V are the 2 x 2 unitary matrices which diagonalize the chargino mass 

matrix 

(
. mu;+ mwv'2 cos (3 ) . 

mwv'2 sin (3 p, 
(5.77) 

(We have used the notation of reference [77]). The mass p, is a pure higgsino mass. 

Below, we approximate U'k1 '\tk; f(mxt) by f(mu;+ ), valid for mxt ~ m. 

Once again, we will examine the Kaon decay modes. Using the same 

notation as in equation (5.52), we have 

Cu;+ (sudvm) = ~He;; 2 f(mu;+) { [I<TUQ I<]21 [uLtm- [I<TUQLI [KTULltm}' 

(5.78) 

Cu;+ (dusvm) = ~He;; 2 /(mu;+) { [I<TUQ I<t2 [uLtm- [I<TUQ]n [KTULLm}' 

(5.79) 

where J(T denotes the transpose of the KM matrix, I<. 

The wino dressed operator leading to charged lepton decay modes is 

(5.80) 

with the corresponding result 

Using MSGUT Yukawa Couplings 

As explained in Section 5.4, when one assumes squark degeneracy, charged 

wino diagrams dominate the nucleon decay process. If one also uses the MSGUT 

Yukawa matrices of equation (5.16), then neutrino decay modes have a much larger 

branching fraction then those of charged leptons. In the d' basis of that equation, UQ 

is diagonal and proportional to the up quark mass matrix. From equations (5. 78), 

(5.79), and (5.81), we see that charged lepton decay modes involve uS ex mu while 

neutrino modes have terms, such as 

(5.82) 
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which are proportional to me sin Be. 

It is a simple matter to conclude that the neutrino modes are enhanced 

by a factor of 

'

me· . 2() 1
2 

-Sill e 
mu 

(5.83) 

relative to the ·charged lepton modes. Chiral Lagrangian coefficients in 

Equations (B.1) and (B.2) of Appendix A add an additional enhancement factor of 

(2.02/0. 70?. The result is a relative branching fraction 

r(p-+ J<+vJl.) 3 

f(p ~ J<OJ.L+) = 1.4 X 10 . (5.84) 

Using ADHRS Yukawa Couplings 

What value do we expect for the previous ratio when we use our Yukawa 

matrix ansatz (again assuming small gluino diagrams)? For our matrices, UQ is 

no longer diagonal, and it is possible that the first term in the curly brackets of 

equation (5.81) is dominant. In fact, if we naively assume that ~~~ ~sin Be, then 

the only enhancement for neutrino modes comes from the chirallagrangian factor, 

and the ratio in the previous equation is of order 10. This naive guess is incorrect, 

however. We see from our approximate Yukawa matrices of equation(5.16) that 

~~~ ~ ~sin Be· In the discussion following that equation, we examined the origin 

of this extra factor of one third. 

We conclude that. 

(5.85) 

in sharp contrast with the MSGUT results; 

(5.86) 

Using our Yukawa matrices, we calculate the size of the flavor factors for 

the vJJ. mode relative to the 11+ mode; 

(5.87) 
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Combined with the chiral Lagrangian enhancement factor (2.02/0. 70), which also 

appeared in the MSGUT calculation, we find that, for charged wino dressed dia-

grams, 

(5.88) 

Using our Yukawa ansatz, we find that the charged wino contribution to the mode 

(p -t J<+v.,.) is roughly equal to the vi-L mode, while the Ve mode is much smaller. 

Thus we have 

(5.89) 

As we have stated previously, we expect the exact value of R above to vary 

with the different ADHRS models. A detailed numerical calculation gives values 

that range between 92 and 400 for the models in Appendix A. 

Large Charged Lepton Modes 

To what extent are the results above general? All we really can conclude 

from these calculations is that the large suppression factor in equation (5.83) is a 

special case of the MSGUT Yukawa couplings. It is true that the ADHRS Yukawa 

matrices also give a suppression which implies that the charged lepton modes will 

not be among the first observed in such models. However, it is easy to avoid this 

conclusion. After all, as we have just seen, it is a simple factor of three in the 

amplitude which means the difference between the observability or invisibility of 

the charged lepton modes. We give some examples of models which lead to large 

charged lepton branching fractions. 

Let us insert a 45 multiplet which takes a vev in the T3R direction into 

the operator 022 in the ADHRS models. This makes the Clebsch factors YQ and YL 

equal to zero. By examining our Yukawa structure, we see that this can increase the 

ratio in equation (5.87). If we make no other changes, our numerical calculations 

indicate that, in certain ADHRS models, this scheme leads to 

(5.90) 
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where we have included diagrams dressed by pure neutral winos also (See below). 

Since experiments are more sensitive to charged lepton modes by a factor of about 

three, they may be seen in the first few proton. decay observations in such models. 

Unfortunately, inserting this factor of< 45T3 R >will ruin the fermion mass 

predictions for the basic ADHRS rriodels. However, one need not assume, as ADHRS 

do, that the model one uses is maximally predictive. By adding extra effective 

operators, we can increase the degrees of freedom and allow for more complex flavor 

structures. Although we lose the ability to make all the predictions which ADHRS 

make, we can see from the above example that arranging for large c~arged lepton 

modes is not difficult. 

If one is willing to allow different group contractions in the effective oper

ators of the theory, it is even simpler to generate large charged lepton amplitudes. 

For example, one can introduce the effective operator 

(5.91) 

where A is a 45 of SO(lO), Tis the Higgs multiplet, 16k is the kth generation fermion 

multiplet, ri are the SO(lO) gamma matrices, C is the SO(lO) charge conjugation 

matrix, and M is a GUT scale mass. If A takes a vev in the B - L direction then 

this operator only contributes to the Higgs triplet Yukawa matrices(78]. Thus, one 

can generate large values of uS without disturbing the fermion mass predictions. 

As we discussed above, one only needs US ~ sin Be U~ to make charged lepton 

modes visible. 

Charged Higgsino Dressing 

Most diagrams which involve charged higgsino interactions are negligible 

in comparison to the pure charged wino diagrams. In contrast to the weak gauge 

coupling constant, the Higgsino couplings, being proportional to fermion masses, 

are very small for the lighter generations. The exceptions are diagrams with top

bottom-higgsino vertices which have the large coupling At or the possibly large 

coupling Ab, the latter being large only for tan f3 ~ ~· Since this last possibility is 

disfavored, we will assume Ab < p2 , and keep only diagrams with At couplings. 
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W+ 

Figure 5.5: This chargino diagram containing a higgsino vertex is the dominant 

such diagram in the ADHRS model. 

We conclude that the only possible large higgsino diagrams require a hig

gsino coupling at one of the dressing vertices and a wino coupling at the other. Such 

diagrams must include a chirality flip in one of the squark propagators. The domi

nant diagrams of this type come from the dressing of the left-handed dimension-five 

operators with a chirality flip in the stop leg. (Right-handed dimension-five opera-. 

tors with ,\~ require a chirality flip in the down squark sector and additional small 

mixing angles.) Out of these diagrams, the only one which does not suffer a flavor 

symmetry suppression due to our Yukawa matrices is the diagram in Figure 5.5 for 

the decay (p --t I<+vr)· However, in addition to requiring a chirality flip in the 

stop leg, this diagram is proportional to the off diagonal element of the chargino 

mass matrix. Thus, although it is enhanced relative to the corresponding pure wino 

diagram by a factor ..\tf p2 , it has a suppression factor of the order 

(5.92) 

We expect this factor will more than compensate for the coupling constant 

enhancement in most models, the exception being those models in which squark and 

gaugino masses are not much larger than the weak scale. 

" 
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.5.8.2 Neutralino Dressing 

Most neutralino dressed diagrams are also quite small in our model. Dia

grams with neutral higgsino couplings in the dressing process always involve small 

higgs doublet Yukawa couplings, and thus are negligible. The only possibly large 

diagrams involve the neutral gaugino particles. In the limit of squark degeneracy, 

diagrams dressed by pure bino exchange vanish just as in the gluino case. Since the 

couplings of binos are smaller than gluinos, gluino diagrams will always be larger. 

We, thus, do not examine pure bino contributions here. 

Dressings with a bino at one vertex and a neutral wino at the other are 

small due to the structure of the neutralino mass matrix. At the tree level, there is 

no mass term which directly connects neutral binos and winos. Thus, the neutralino 

propagator is suppressed by at least three mass insertions. We conclude that the 

dominant neutralino diagrams have neutral winos at both dressing vertices. 

Using the notation of equations (5.75) and (5.76), the neutral wino four

fermion operators responsible for neutrino decay modes are given by 

C-w(vm) = _Ml 
2
a

2 
(diui)(dwm) [ugu1~- Ui9uftn] N;k N;k 2f(mk), He 7r 

(5.93) 

where, using the notation of reference [77], N is the 4 x 4 unitary matrix which 

diagonalizes the neutralino mass matrix, mk are the neutralino mass eigenvalues, 

and the combination 

(5.94) 

picks out the pure wino mass, M 2• As in equation (5.75), we have neglected squark 

m1xmg. 

Approximating N;k N;k f(mk) by j(M2), valid for mk ~ m, we arrive at 

the relevant amplitudes 

Cw(sudvm) =-~He;; 2 j(M2) { [uQ Kt
2 

[KTuLtm- [uQ K] 
11 

[KTULLm} 

(5.95) 

Cw(dusvm) = -Cw(sudvm)· (5.96) 

Our approximate Yukawa matrices work well when comparing the vJ.L and Ve modes 

above with the corresponding charged wino four-fermion operator. They indicate 
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that the neutral wino operator is approximately one third of the charged wino one. 

Detailed numerical calculations show that the actual ratio varies between 0.23 and 

0.40 over the different ADHRS models for the vJJ. mode, and between 0.21 and 

0.45 for the ve mode. Our calculations indicate that the neutral wino operator for 
-

the V-r mode is even further suppressed relative to the charged wino one, the least 

suppression being by a factor of 5.1 x 10-2 • 

When we include neutral wino diagrams in our calculation of the ratio 

in equation (5.89), the range of possible values changes little. R now runs over 

values from 92 to 280. The value for individual models changes by abot;t five to ten 

percent. However, in models like those discussed in Section 5.8.1, the neutral wino 

diagrams can alter the ratio significantly. 

The neutral wino amplitude f~r charged lepton decay modes vanishes in 

this approximation since there is no flavor changing in the dressing process. This 

same phenomenon was seen in the corresponding gluino diagrams. Non-minimal 

squark masses will lead to nonzero contributions, but, as in the bino case, gluino 

diagrams will always be larger. 

5.8.3 Chargino and N eutralino Conclusions 

Pure charged wino dressing is the dominant· type of char gino diagram in 

most models. Although our Yukawa matrix ansatz has lead to the result that 

neutrino modes dominate the decay rate for these diagrams, we find that charged 

lepton modes are not as suppressed as in the MSGUT case and that it is a simple 

matter to arrange for even less of a suppression by altering the flavor· structure 

of the theory. In addition, diagrams dressed by neutral winos contribute a larger 

fraction of the neutrino mode decay rates than in the MSGUT case. 
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5.9 Discussion of Branching Ratios 

In the previous two sections, we have shown that MSGUT calculations for 

proton decay are likely to be wrong in GUT theories such as ours which accurately 

predict the mass spectrum of the SM fermions. Unfortunately, the specific way 

in which they differ from MSGUT results depends critically on the superpartner 

spectrum. Thus, it is difficult to make any definitive predictions, although we can 

discuss branching ratios in particular cases. 

An issue of importance is the relative branching ratios one expects for the 

charged lepton versus the neutrino modes. One need not fine tune the parameters 

of a theory to get much larger charged lepton mode decay rates. One can assume 

that squarks are very degenerate in mass, so that gluino diagrams are negligible. If 

one imposes a flavor ansatz, for example, with u~ = sin ()c u~, then, as we showed 

in Section 5.8, charged wino diagrams give the same order flavor factors for both vi-L 

and p modes. Nuclear matrix elements lead to a very modest relative suppression, 

on the order of a tenth, for the p mode. This would imply that this mode would be 

one of the first to be observed, since experiments are about a factor of three more 

sensitive to it than to the neutrino modes. 

Our lack of knowledge about squark masses makes it particularly difficult 

to predict these ratios if squark flavor mixing is large. In such a circumstance, we 

expect gluino diagrams to dominate all proton decay modes, and the branching 

fractions to be dependant on squark masses in a complicated way. Comparable 

flavor factors for the charged lepton and neutrino modes are certainly not ruled 

·out, however, and, if realized, lead to relatively large charged lepton branching 

fractions as in the wino dominated case above. 

One can even arrange for partial cancellation of_ neutrino modes between 

gluino and wino diagrams. This can be accomplished using basic MSSM squark 

masses. For example, in specific ADHRS models where the ratios in equations (5.55), 

(5.59), and (5.60) are large, one can arrange for such a cancellation. 

Thus, the common assumption, that charged lepton modes will be swamp

ed in most cases, is far less certain. 
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5.10 Conclusion 

We have examined proton decay in a class of SUSY GUT models which 

accurately predict the SM fermion spectrum. Previously, SUSY GUT proton decay 

calculations have been based, almost exclusively, on the minimal supersymmetric 

standard model, with little regard for the fact that the Yukawa couplings of this 

theory are known to be incorrect. 

Flavor symmetries are the natural mechanism by which one fixes the 

Yukawa couplings. In this chapter, we looked in detail at a particular flavor sym

metry scheme, the ADHRS scheme. We found that the mechanism by which the 

Yukawa matrices are corrected in the ADHRS model alters the couplings respon

sible for proton decay in SUSY theories. In many other models, a similar result 

holds. 

In addition, we discussed the repercussions for squark masses of schemes, 

such as the ADHRS scheme, which attempt to explain the hierarchical nature of the 

Yukawa couplings. The squark spectrum is important in determining the relative 

importance of gluino dressed diagrams in the proton decay process. We found that 

radiative running of squark masses for energies above the GUT scale can very easily 

cause large squark mass splittings, posing a threat to limits from various FCNC 

processes. We discussed the possibility of meeting these limits while still allowing 

the large splittings. 

We then used the new Yukawa couplings and various assumptions concern

ing the mass spectrum of the supersymmetric particles to determine the relative 

importance of different dressing processes and the relative branching fractions for· 

certain key proton decay modes. 

In Section 5. 7, we examined gluino dressed diagrams. First assuming typi

cal MSGUT squark masses, we determined that these diagrams will be the dominant 

source for the decay modes (p ~ J{+v-r) and (p ~ I<+vp.) in certain ADHRS mod

els. Next, we discussed the consequences of non-MSGUT squark masses for the 

charged lepton decay modes. We found that flavor mixing effects in the up squark 

mass matrices can very easily lead to gluino dominance for these modes as well. 

1.• 
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In Section 5.8, we examined proton decay modes dressed by neutralinos 

and charginos. We found that pure wino dressed diagrams are the dominant di

agrams of each kind. Assuming small squark mass effects, we determined that, 

for these diagrams, in contrast to calculations based on the MSGUT, our Yukawa 

structure gives a larger branching fraction for the dominant charged lepton mode, 

(p --+ 1{0 J.t+ ), relative to the dominant neutrino modes. 

In Sections 5.8.1 and 5.9, we discussed the possibility that charged lepton 

modes will be among the first proton decays to be seen. With sufficient squark :flavor 

mixing, gluino diagrams will be the dominant source for all proton ~ecay modes. 
' ' 

In this circumstance, the charged lepton mode (p --+ I<0 J.t+) can be large enough to 

be seen in the first proton decay observations. If we assume wino dominance, it is 

unlikely that the charged lepton modes will be large enough in the ADHRS models. 

However, we pointed out that :flavor symmetry schemes exist which lead to large 

enough charged lepton modes even for wino dominance. 

Unfortunately, definitive conclusions are impossible to make without lim

iting oneself to a particular model in all its detail. However, it is clear that many 

past proton decay calculations have relied on faulty assumptions. Relaxing these 

assumptions opens the possibility of very different proton decay signatures . 
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Appendix A 

Yukawa Matrices 

We list the 54 ADHRS models which we use in the main text. They differ 

by the choice of 0 22 and 0 23 operator used. All have the same 0 33 and 012 operator 

given in equation (5. 7). The notation is explained in the text and in reference [59]. 

The six choices for 022 are 

16 45 10 458
-L 16 2 X 45x 2 

162 4ix 10 45B-L 162 

162 45x 10 45B-L 162 

16 10 458
-L 16 

2 45x 2 

162 10 45x 45B-L 162 

16 10 458
-L 16 

2 ~ 2 

(A.1) 



The nine choices for 0 23 are 

162 45y 10 4ix 163 

16 45 10 45
B-L 16 

2 Y 45x 3 

162 !~:![ 10 4ix 163 
16 ~ 10 45B-L 16 2 45x 45x 3 

162 45y 10 !~; 163 

16 ~10~16 
2 45x 45x 3 

162 10 4:2 163 
X 

16 10 45
B-L 16 2 ~ 3 
2x 

162 10 
4:~iL 163 

X 

100 

(A.2) 

For the possible choices ·above, we list the Yukawa matrices ~9 , p = u, d, e, 

which are defined in the text. 

0 

(1, -1, 1, -1, -4, -4, 1, -1, 1)B 

c 
Eei<P 

( -4, -4, -4, -4:-4, -4, I, I, I )B l 
(A.3) 

( -~, ~' -~, ~' -~, -~, ~' -~, ~)B 

(2,2,-~,-~,:,-p,I,I)B l 
(A.4) 

c 
3Eei<P (A.5) 

( -3, -9, 1, 3, -18, 6, 1, 3, 9)B 

Similarly, For the possible choices above, we list the Yukawa matrices (;G, 

G = Q, L, D, E, which are defined in the text. 

.. 
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-~ . 0 l 
( -~, -~, -~, ~' ~' ~)Eei<t> (1, 1, 1, 1, 1A, 1, 1, 1, 1)B 

(1, 1, 1, 1, 1, 1, 1, 1, 1)B 

(A.6) 

c 
(~, !, ~' ~' !, ~)Eei<l> 

( -3, -3, 1, 1, -3, 1, 1, 1, 1)B 

c 
( _.2. !. _!. _!. !. _2-)Eei<l> 

4'2' 2' 2'2' 4 

(2, -2, -~, ~' -8, ~' 1, -1, 1)B 

( 

0 _Q.. 0 l 27 

A E = ! - Q.. - ~ - ~ -!. ~ !. ~ i</> - - - - - -U 
2 27 ( 4 , 2 , 2 , 2 , 2 , 4 )Ee ( 4, 12, 4, 12, 24, 24,1,3,9)B 

0 (6,-6, 6,-6,-24,-24, 1,-1, 1)B A 
(A.9) 
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Appendix B 

Branching Ratios 

We list some of the branching ratios for proton and neutron decays in the 

table below. For the neutrino modes we have normalized by the rate for (p ~ 

/{+vp.)· For the charged lepton modes we have normalized by the rate for (p ~ 

/{
0 11+ ). The relative branching ratio 9f these reference modes is discussed in the 

text in Sections 5.8, 5.8.1, and 5.9. 

Replacing Vp. by Ve or J.L by e introduces two extra factor of sin 01 ~ 0.2 in 

the branching ratios. The V-r modes are also discussed in the text in Sections 5. 7 

and 5.8. 

In arriving at our result, we have used the Chiral lagrangian analysis of 

reference [63]. For example, 

(m2 -m7<)21 ( m )12 
f(p ~ K 0

ei) = 3;1rm~r; C(suuei) 1 - m: (D- F) (B.2) 

where the chirallagrangian factors are estimated to be ms = 1150M e V , D = 0.81 

and F = 0.44. Similar results for the other possible decays are listed in reference 

[63]. 
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TJJ.£ 
qv!!mode~ 

f(p-+K+v .. ) 

P--+ 'lf'+vJ.£ 1.2 X 10-1 

n--+ 1r
01JJ.£ 5.8 X 10-2 (B.3) 

n--+ 7JVJ.£ 2.1 X 10-2 

n--+ KOVJ.£ 1.8 

f.l+ qJ.£+mode! 
ffv-+K0 J.£+) 

p--+ 7ro f.l+ 4.8 X 10-1 

n --+ 7r- f.l+ 1.0 
(B.4) 

p--+ 'T]J.l+ 1.7 X 10-1 
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