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ABSTRACT 

We calculate that the geometrical structure of the crystalline solid mixed 
phase of confined-deconfined hadronic matte~ in neutron stars,- its form, 
size, spacing and location in the star - is highly individualistic according 
to small changes in the stellar mass. This suggests a possible connection 
with the wide range of glitch behavior observed in different pulsars, since 
glitches are almost certainly associated with solid regions. 
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Introduction. Quark matter in the dense, high-pressure cores of neutron stars 
has been an intriguing subject of investigation since pioneering work in 1976 [1, 2, 3]. 
It was assumed, and is here also, that in cold matter the transition from quarks 
confined in hadrons to the deconfined phase of quark matter is first order. However, 
there has been a new development in our understanding of this transition that may 
eventually provide a link between the mixed phase region of a compact star and 
observable pulsar phenomena. Although stars must be electrically neutral they do 
not need to be locally neutral, as was previously assumed. It is now realized that in the 
mixed confined-deconfined hadronic phase, the electric charge on regions of hadronic 
and quark matter m~y not vanish in each region, but simply annul each other over 
an appropriate one [4, 5, 6, 7, 8]. Nature will choose such a distribution of charges as 
minimizes the energy at each proportion of the phases in equilibrium, thus causing 
the pressure to vary with the proporti~n [4, 5]. Imposing the constraint of identically 
vanishing charge may foreclose the possibility of finding a more energetically favorable 
distribution and renders the transition as a constant pressure one in which case the 
mixed phase could not occur in the monotonically varying pressure environment of a 
~M. ' 

More generally, a substance with n conserved charges (independent components) 
has n - 1 degrees of freedom to rearrange charges between the phases in equilibrium 
so as to lower the energy. Consequently the nature of a first order phase transition is 
fundamentally'-different between one-component substances such as water, and those 
with more than one [5]. This is the case with a n~utron star, which, because of /3-
equilibrium, is not composed solely of neutrons but' also contains protons, electrons, 
probably hyperons and in the situation under study here, quarks. So there are two 
conserved charges, baryon and electric. 

The internal force that favors a redistribution of charge is the isospin restoring 
force experienced by the confined phase [5, 6]. It is embodied in the isospin symmetry 
energy in the empirical nuclear mass formula. Charge neutral neutron star matter 
in the pure phase is highly isospin asymmetric, being composed mostly of neutrons. 
However, in the mixed phase, hadronic regions can relieve the asymmetry to the 
degree allowed by overall charge neut-rality by transferring charge to the quark phase 
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in equilibrium with it. The bulk energy will be lowered by reducing the symmetry 
energy of neutron star matter at only a small cost in rearranging the quark Fermi 
surfaces. Thus the mixed phase region of the star will have positively charged regions 
of nuclear matter and negatively charged regions of quark matter arranged so as to 
minimize the sum of surface and Coulomb energies by forming a crystalline lattice. 
The dimensions involved will turn out to be on the nuclear scale. 

An initial study of the lattice structure that was predicted in [4, 5] was carried 
out by Heiselberg et al [7] who investigated several important issues and suggested 
the possible relevance of the structure to pulsar glitches. Our purpose is to explore 
the radial extent and variation of the lattice structure in the environment of neutron 
star models to demonstrate the extreme sensitivity of the crystalline region on the 
stellar mass to which the great individuality [9, 10] of the glitch behavior of different 
pulsars may be related in part. It seems plausible that all solid regions will be in­
volved in the phenomenon of glitches, - unpredictable small discontinuous decreases 
in pulsar rotational period, occurring on a time-scale of days, months or years, that 
are observed in many pulsars. A purely liquid or gaseous star is mechanically un­
able to generate sudden changes in angular momentum or moment of inertia by an:y 
conceivable mechanism. 

Structure of the Crystalline Mixed Phase. Although the above physics 
responsible for structure in the confined-deconfined mixed phase is quite different 
from that causing a nuclear lattice in the stellar crust [11, 12], the interplay of surface 
and Coulomb energies is identical. The problem is to find the particular geometry and 
size of the regions of rarer phase immersed in the other that minimizes the sum of the 
above energies as a function of the proportion of phases in equilibrium. The pressure 
varies as a function of the proportion since the partition of charge is energetically 
optimized at each proportion [5]. And because the pressure monotonically decreases 
with radial distance from the center of the star, the geometry and its size and spacing 
will vary with the Schwarzschild radial coordinate. One may subdivide any locally 
inertial region of mixed phase into (Wigner-Seitz) cells containing one of the structures 
and a surrounding region of the other phase so that the total charge content of the cell 
is neutral. Adjacent cells therefore do not interact. We adapt the results of Ravenhall 
et al [11] who treat three discrete geometric forms in such cells to write for the radius 
of the rare phase immersed in the other and the minimum of the sum of Coulomb 
and surface energies, 

1 
r3 

Ec+Es 
v 

d = 1, 2, 3' (1) 

(2) 

where, qH, qQ are the charge densities of hadronic and quark matter (in units of e) at 
volume proportion of quark matter X = VQ/V and a is the surface interface energy. 
The ratio of droplet (rod, slab) volume to cell volume is denoted by x = ( r / R)d. When 
quark matter is the rare phase x = x and otherwise x = 1- x. In the case of drops or 
rods, r is their radius and R the half distance between centers while for slabs, r is the 
half thickness. The geometric forms are denoted by their dimensionality, d = 1, 2, 3 

2 

(\ 



corresponding to slabs, rods and drops, respectively. 
The function !d( x) is given in all three cases by, 

( ) - _1_ [ 1 ( 1-2/d ] /d x - d+ 2 (d- 2) 2-dx )+x" (3) 

where the apparent singularity for d = 2 has the correct limit for d - 2, namely, ·. 
j 2 (x) = (x-1-lnx)/4. We have supposed that the electrons are uniformly distributed 
throughout the mixed phase. In fact, we find that electrons are almost totally absent 
from the mixed phase as is generally the case when charge neutrality can be realized 
by baryon charge carrying particles [5]. 

Surface tension is a very difficult problem because it should be self-consistent 
with the two phases of matter, quark and hadronic, in equilibrium. Lattice gauge 
simulations have not provided an answer for cold isospin asymmetric matter. Gibbs 
studied the problem of surface energies, and· as a gross approximation it is given by 
the difference in energy densities of the substances in contact times a length scale 
typical of the surface thickness [13], in this case of the order of the strong interaction 
range, L = 1 fm. The surface interface energy should depend on the proportion of 
phases in phase equilibrium, just as everything else does, 

a= const x [tQ(X)- tH(x)] x L. (4) 

The constant should be chosen so that the structured phase lies below the unstruc­
tured one because of the additional degree of freedom that is exploited in the latter 
case. Heiselberg e_t al [7] found a value of combined surface and Coulomb energy 
that satisfies this condition to be about 10 MeV. We choose the constant accordingly. 
It will be understood from the formulae written above that the structure size and 
the sum of surface and Coulomb energies scale with the surface energy coefficient as 
a 113 independent of geometry. Therefore the location in the star where the geometry 
changes from one form to another is independent of (j. 

The geometrical structure of the mixed phase occurs against the background of 
the bulk structure to good approximation. The energy and pressure are of course 
dominated by the bulk properties of matter. The equation of state of the confined 
hadronic phase is calculated as in ref. [14, 15]. The coupling constants of the the­
ory are determined by the bulk nuclear properties, binding energy, B /A = -16.3 
MeV, saturation density, p0 = 0.153 fm-3 , symmetry energy coefficient, asym = 32.5 
MeV, compression modulus I< = 300 MeV and effective nucleon mass at saturation, 
m* fm = 0.7. The ratio of hyperon coupling to mesons as compared to nucleon cou­
plings is chosen in accord with ref. [15] to be Xu = 0.6, Xw = 0.653. We compute the 
pure quark matter phase as in [5] using a bag constant B 114 = 180 MeV and the quark 
masses written there. The method of finding phase equilibrium in multi-component 
systems is also described there. 

To demonstrate the extreme dependence on stellar mass of the crystalline structure 
we comyare two stars differing by only 0.02M0 . In Fig. 1 we show the diameter of 
the geometrical objects, identify their forms and plot the spacing between centers 
of the rare phase objects immersed in the other phase. The mass of the star is 
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Figure 1: Crystalline mixed 
regiOn m a neutron star 
showing the diameter D 
(lower curves) and spac­
mg S (upper curves) of 
indicated geometric struc­
tures as a function of ra­
dial Schwarzschild coordi­
nate. Region internal to 4.6 
km is pure quark matter. 
Notation 'h drops' denotes 
hadronic drops immersed in 
quark matter, and so on. 
Stellar radius is 10.7 km. 

45 

40 

35 

E 
- 30 
U) 

"'C 
c:: 
ctl 

0 

25 

20 

15 
/ 

M/M 0 =1.42 

(crystalline region) 

--- ............ 

""--

10 ~(J)~~ 
0"0 co co 

(J) 

"0 
0 5 -c ~ (J) (J) .... 

..r: ..r: ..r: 0" 

(J) 

0. 
0 .... 

"'0 

0" 
o~~rT~~~rT~~~rT~~~~TT~-o~ 

4.6 5.1 5.6 6.1 6.6 7.1 7.6 

r (km) 

M = 1.42M0 and is at the mass limit. The pressure at the center and extending 
to 4.6 km is sufficiently high that this region is occupied by pure quark matter. 
The region between 4.6 and 7.8 km is in the crystalline confined-deconfined phase. 
Since the phase transition is completed before the center of the star .is reached, the 
geometrical structures span the full range of forms. At the outer edge of the mixed 
phase region, quark .drops of finite diameter are spaced, in the limit of x = 0, at 
infinite distance. At greater depth and therefore proportion of quark matter the 
drops are more closely spaced and slightly larger in size. Deeper in the star, drops 

. are no longer the favored configuration and merge to from rods of varying diameter 
and spacing. At still greater depth, the rods give way to slabs, then the role of quark 
and hadronic matter interchange and the forms are repeated in reverse order until at 
the inner edge of the mixed phase, hadronic drops of finite size but spaced far apart 
are immersed in quark matter. In all cases the diameters of the geometric forms lie 
between about 10 and 25 fm. Of course were it not for the restriction to three discrete 
geometries, the discontinuities in the diameters and spacings shown in the Figures 
would be interpolated by intermediate forms. 

For lower mass stars, the central density and pressure may be insufficient to fully 
convert quark matter to hadronic matter. This is the case for the neighboring mass 
star, M = 1.40M0 , for which the geometries of the crystalline mixed phase are shown 
in Fig. 2. The crystalline phase extends to the center of the star and the central 
geometry consists of rods of ha.dronic matter immersed in quark matter. For a. mere 
0.02M0 change in mass the situation has changed radically from a star having a 
4.6 km quark gas core enclosed by a 3 km thick solid shell, to a star having no gas 
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interior, but an 8 km solid sphere. For a star of mass 1.2M0 we find the quark rods 
occupying the region from the center to 2 km and quark drops from there to 7 km. 
For 1M0 star, quark drops extend from the center to only 3.6 km. All of the above 
configurations are of course surrounded by neutron star liquid and finally a thin solid 
crust of nuclear forms embedded in an electron gas. Stars of somewhat lower mass 
than the above have no quark ma:tter whatever. 

The great sensitivity to stellar m·ass is due to the high compression in neutron 
stars so that the density is a rather flat function of radial coordinate except near 
the edge of the star, and a small change in central value_and therefore mass has a 
large effe<;:t on where in the star a particular density occurs. Naturally, the details 

. illustrated above pertain to the particular parameters chosen. The pattern of the 
results is however general. 

Early work, by inadvertently closing off a degree of freedom, rendered the transi­
tion as one of constant pressure for all proportions in the mixed phase [1, 2, 3, 16]. In 
such a case the mixed phase cannot exist in the gravitational field in a star. The pure 
quark phase was found to occur only at high density or pressure and therefore con­
centrated near the center. That is true here also. However the mixed phase extends 
to a rather low density of only several times nuclear saturation density, as has been 
found by several authors when the star is allowed to exploit the degree of freedom 
opened when charge neutrality is imposed in the global rather than the local sense 
[4, 5, 7, 8]. 

Possible Implication. It is almost certain that solid regions in a pulsar will play 
a role in the period glitch phenomenon, whether associated with cracking of the solid 
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as in star quakes, or with unpinning of superfluid vortices from solid regions. Glitch 
behavior is highly individualistic from one pulsar to another [10]. We tentatively 
suggest that this may be due to the extreme sensitivity on stellar mass of the radial 
extent of the solid crystal region and the forms that occupy it as well as the moments 
of inertia associated with different gaseous (quark), liquid and solid regions. The 
interior solid region of the mixed phase and the crustal solid, separated by a nuclear 
liquid, offer interesting possibilities for interaction or stimulated response at the time 
of a glitch originating in one of them and in post-glitch recovery. 

The crystalline form cannot fit uniformly into the axial symmetry of a rotating 
star without there being lattice imperfections. As the star cools we envision that 
the crystalline structure will develop with relatively few imperfections but over time 
and successive glitches their number will grow, creating eventually a granular region. 
Thus we may also expect a long-term change in behavior with pulsar age. 
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