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assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
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necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 
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FIELD ERRORS IN HYBRID INSERTION DEVICEStl 

Ross D. Schlueter 
Lawrence Berkeley Laboratory 
1 Cyclotron Road, MS 46-,161 
Berkeley, CA 94720, USAt2 

Abstract 

Hybrid magnet theory as applied to the error analyses used in the design 
of Advanced Light Source (ALS) insertion devices is reviewed. Sources of field 
errors in hybrid insertion devices are discussed. 

1 Introduction 

Klaus Halbach is well known for originating and developing permanent magnet 
(PM) technology for accelerator magnets, including insertion devices (IDs). An 
equally important contribution, though perhaps less glamorous, is his pioneering 
work in error analyses, both their theoretical calculation and effects, applicable to 
these accelerator magnets, again including IDs [1,2]. Hybrid IDs, employing both 
permanent magnet material and soft iron, were pioneered at LBL and have since 
become popular in synchrotron sources worldwide. Recently several outside requests 
have been received to set forth the error analysis theory used in the design of these 
devices. That follows herein. Implications for resulting mechanical tolerances and 
permanent magnet block quality specifications are already described in the various 
ALS ID conceptual design reports [3-7]. 

Yet another immense contribution of Klaus's is his mentorship of numerous scien
tists and engineers and the "little-boy-excitement" he transmits to those that work 
with him in the field of accelerator magnet design and technology. This paper is 
dedicated to Klaus Halbach in appreciation for both the broad training graciously 
tendered and the little-boy-excitement for the subject he has infused in me. 

2 Permanent Magnets: Passive Materials with Active Terms 

In directions parallel and perpendicular to the magnetization of a permanetly 
magnetized material the induction B is related to the field H by, respectively 

and (1) 

where Br is the remanent field and f1 is the differential permeability. Vectorially the 
B - H relation may be expressed 

or (2) 

1 t This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sci
ences, Materials Science Div.,ofthe U.S. Dept. ofEnergy under Contract.No. DEAC03-76SF00098. 

2 1 E-mail: ross@lbl.gov, Fax: 510-486-4873. 
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Figure 1. Plots of (a) Band (b) H for a homogeneously magnetized PM block in 
free space and for equivalent current or charge sheet models. 

where He is the coersive force and ..Y = p.-1 . In a current-free, time-independent 
region, it follows from Maxwell's equations V x H = 0 and V · B = 0. Thus the 
divergence of Eq. (2a) and the curl of Eq. (2b) yield, respectively, 

V • {LH = - V · Br . Peq 

with V x fi = 0 - -with \1 · B = 0, 

(3) 

where peq and ]eq are equivalent charge and current densities, respectively. The PM 
material thus can be represented~ a passive material of permeability fi or ..y-I with 
active source terms Peq or ieq· For a homogeneously magnetized PM block V ·Brand 
V x fie are zero everywhere except at surfaces parallel and perpendicular, respectively, 
to the block magnetization, giving rise to surface charge sheets u = Peq8 = ±Br [G] 
or current sheets P = Jeq8 = ±He [G], respectively, where·8 is the infinitesimal sheet 
thickness. Figure la,b plot B and H, respectively for a homogeneously magnetized 
PM block and for either equivalent current or charge sheets, respectively. The remain
ing quantity, H or B, can be obtained from the B- H relation, e.g., Eq. (2). The 
high strength Nd-Fe-B, Sm-Co, and ferrite PMs used in accelerator magnets exhibit 
permeabilities JL ~ 1.04, thus it is often convenient to model these with ±Br charge 
sheets separated by effectively free space. 
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(c) (a) 
DIRECT FIELDS 

+ 

+ (b) 
INDIRECT FIELDS 

Figure 2. Hybrid solution for two infinite J.L bodies in the presence of a point charge Q: 
(c) the total solution, (a) the direct field component, (b) the indirect field component. 

3 Hybrid Magnets: Zero Reluctance Volumes with Iso-Scalar Potential 
Field Shaping Surfaces passing Zero Net Flux 

A hybrid magnet can be modeled by charge sheets at appropriate PM surfaces 
and by iso-scalar potential surfaces enclosing the reluctance-free soft iron. Imagine 
a single point charge Q near two iso-scalar potential surfaces. A field solution can 
be constructed that satisfies Maxwell's equations in space outside the iron and has 
net flux 4> 1 = 0 entering surface 1 on scalar potential Vo. (The other is a reference 
surface pegged to a scalar potential V = 0, without loss of generality.) As shown 
by Fig. 2, this solution, (c), is a superposition of two solutions, (a) and (b), to 
Maxwell's eqp.atioris outside the iron. The first solution, (a),. comprises the direct 
flux emanating from the point charge being deposited on either of the two surfaces, 
both of whose surfaces are on iso-scalar potential contours V =0. The second solution, 
(b), comprises the indirect flux arising from assumed different scalar potentials of the 
two surfaces, in the absence ofall sources (charges). In fact, the equilibrium scalar 
potential V = Vo that surface 1 assumes is that required to satisfy fa

1 
B · da1 = 0, 

where a 1 is the area of surface 1, i.e., no net flux enters the iron. 
In the first solution, (a), the direct flux deposited on surface 1, 4> 1d = fQ, (0 S 

f S 1), where j, the fraction of Q deposited on surface 1, is readily obtained from the 
geometry of the second solution, (b): f is merely the scalar potential at the location of 
the charge (in its absence) normalized with respect to the potential of surface 1, i.e., 
f = Vi(iQ )/Vo. The remainder, (1 - J)Q is deposited on the reference surface. That 
this is so is somewhat intuitive; the source in a vacuum region near two zero potential 
surfaces is analogous to a voltage divider. A rigorous proof is given in Appendix A. 

In the second solution, (b), the indirect flux into surface 1, 4> 1; = -Voc2, where 
V0 is still unknown and where the "capacitance" c2 , is a constant of proportionality 
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readily determined from the geometry alone by solving the boundary value problem, 
(b), with any assumed value of Vo. . 

Finally, in' the combined solution, (c), the net flux crossing surface 1 is zero, which 
determines the value of the equilibrium scalar potential Vo: 

(4) 

Zero net flux across the reference surface is likewise achieved when the necessary 
complimentary negative point charge -Q is added to the model. For a dipole then, 
the direct flux deposited on surface 1 is, 

(5) 

and for a PM block, with Q{rq = !Br!apMb-;.q = Brdv, the direct flux deposited on 
surface 1 is 

(6) 

The total solution to a hybrid system then, consists of solving a boundary problem 
and integrating over the charge distribution modeling the PM material to obtain f 
(or equivilently {[> 1J and c2 • 

Applying this theory to a hybrid ID design, let surface 1 be that of a soft iron 
undulator pole and the reference surface be the zero scalar potential surface consisting 
of the ID midplane and the vertical planes midway between adjacent poles. Then c2 Vo 
is the indirect flux leaving the pole sitting on scalar potential Vo. The design of a 
hybrid ID entails selecting the pole tip shape that produces the desired [indirect
flux-induced] field distribution, then determining the pole scalar potential required 
to achieve the desired field strength, and finally designing the rest of the iron and 
{direct-flux-generating] PM to produce this potential. It should be noted that in a 
hybrid design the PM is positioned so the direct flux goes where one desires, i.e., 
either to/from an energized pole or from/to a non-critical portion of a zero scalar 
potential surface, thus leaving only indirect flux in the "business region". Detailed 
hybrid theory analytical calculation for accelerator magnet design (including IDs) is 
an interesting subject in itself, but is not treated here. 

4 Partitioning of the Capacitance c2 

Here we are interested in the integrated error flux that the electron beam sees. 
It is thus incumbent on us to determine both how much direct flux and how much 
indirect flux crosses the midplane in the region underneath the pole-width-envelope 
where the field is invariant in the transverse direction. For this reason, though not for 
the hybrid ID design itself, it is necessary to partition the capacitance c2 , as shown 
below. (Partitioning of c2 is likewise integral to analytical design of ID ends and 
calculation of error propagation through the ID.) 

The hybrid theory introduced in the preceeding section may be rigorously extended 
to systems. with multiple isopotential surfaces. Here we take advantage of inherent 
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Figure 3. ID circuit model. 
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Figure 4. (a) 2-D and (b) fringe flux to ID reference 
surface for determination of capacitance Co· 

ID symmetries allowing simple partitioning of the capacitance c2. Figure 3 shows an 
electrical analog of an undulator where the nodes are poles, with the reference ground 
on V = 0 being the ID midplane. 

For +, -, +,- pole excitation, the PM-induced charge Q2 into pole #2 on + Vo 
leaves the pole as indirect flux to either pole #1 or pole #3, both on potential - Vo 
or to to the midplane on V = 0. The direct flux Q2 is then given by 

(7) 

We already know from the hybrid design, which assumes+,-,+,- pole excitation, 
that the direct flux entering a pole is equal to the indirect flux leaving, which in turn 
is proportional to the pole potential Vo, via the capacitance c2. The c2 then can be 
partitioned as follows: 

(8) 

With c2 known from the [analytical or numerical) solution of a boundary value 
problem, it remains to calculate either c1 or C{); Consider a fictitious +, +, +, + pole 
excitation, where all poles lie on isopotential V = 1/2. In this case there is no net flux 
pole-to-pole and 100% of the charge Q into pole #2 leaves the pole as indirect flux 
to the midplane on V = 0: 

Q = 1/2({). (9) 

Two parts contribute to C{) as shown in Fig. 4a,b: (a) The 2-D portion in the region 
underneath the pole-width-envelope where the field is invariant in the transverse 
direction is given by 

({)1 /4 = [A(>-/4, 0)- A(O, O)]Dd\12, (10) 
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Figure 5. Modeling iron displacement with charge sheet equivalents: 
(a) an ideal pole, (b) a shortened pole, (c) direct and indirect 

error flux from positive and negative charge sheets. 
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where coordinates are in the z-y plane, A is the 2-D magnetostatic vector potential 
(\7 x A = B), .A is the ID period, and D1 is the pole half-width in the transverse 
direction; (b) The fringe flux at the side and top surfaces· of the pole is given by 

(11) 

where coordinates are in the x-y plane, H3 and D3 are the half-gap and pole height, 
respectively. The nearby iron backing beam must be considered part the the zero 
scalar potential reference surface. To be rigorous one must modify the C{). calculation 
to account for an excess voltage drop associated with the fact that the pole does 
not extend axially to .A/4. Also one could include capacitances between non-adjacent 
poles. Both these are relatively minor effects. 

5 ID Error Sources and Their Effect on Integrated Field Errors 

An ideal pole energized by charge Q and an energized charge sheet ideal equivalent 
recessed pole with charge sheets separated by the recessed amount 8 yield identical 
flux distributions, as shown in Fig. 5a. An energized pole exhibiting a gap error 
thus, can be modeled by superposing to an energized ideal equivalent recessed pole 
an unenergized recessed pole with charge sheets of the opposite polarity, as shown in 
Fig. 5b. The decomposition of the error fields is shown in Fig. 5c for the plus charges 
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Figure 6. A quarter-period ID model with adjacent pole excitation patterns of: 
(a)+,+,+,+, and (b)+,-,+,-

and for the negative charges separately. The direct error flux going to the midplane, 
Q0 is all from the negative charges. It may be calculated following the argument se.t 
forth in section 3: The magnitude of the charge density q- = B+-+-, where B+-+
is the field at the location rq- for the+,-,+,- pole excitation shown in Fig 6a. The 
J, the fraction of q- that goes directly to the midplane, found by putting all poles on 
zero scalar potential and the midplane on V2, is just f = Vi(rq- )/Vo = B++++8/Vo, 
where B++++ is the field at the location rq- for the+,+,+,+ pole excitation shown 
in Fig 6b, and 8 is the half-gap error. Error flux to the midplane is thus 

Qo = 8 j B+-+-(s)B++++(s)ds/V2, (12) 

where ds is along the charge sheet. 
From Fig. 5c, an equal amount of direct flux (100% of the + charges and 98% 

of the - charges in this hypothetical example shown) but of opposite polarity -Qo 
goes to the poles. Indirect fields must deposit this flux on the midplane, but only a 
fraction eo,/ (eo, +eo.) is seen by the electron beam, per the argument of the preceding 
section. Thus the net flux that the electron beam sees is 

(13) 

Various error sources are depicted in Fig. 7. Pole thickness error is modeled 
analogously, following the pole gap error method. Spacing between the PM and the 
pole is analogously modeled with a perfectly sized PM block and a superimposed PM 
block sliver of thickness 8 and with magnetization in the opposite direction as the ideal 
PM block. An easy axis orientation error of angle a is modeled as charge sheets of 
charge density ±Br sin a at the top and bottom of the PM block, respectively. Where 
two adjacent PM blocks are mismatched in strength, there is are error charge sheets of 

7 



DOD 
"'----... . 

-·-·-·-·-

·ooo 
Vertical pole motion 

-·-·-·-·-

oDo 
Pole thickness variation 

• 

I 
• 

Spacing variation between 
pole and CSEM 

Easy axis misorientation 

• 

I • 

-·-·-·-·-·-·-
. 
I 

Adjacent block 
Br variation 

Figure 7. Various Hybrid ID error sources. 
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strength ±(Br1 -Br2 ). Chips in PM blocks, oversized PM blocks, and inhomogeneities 
in PM blocks can also be handled analogously. The relative iomportance of these error 
sources varies with the geometry, field strengths, etc. Notice that whenever there is 
an erior charge sheet, there is a corresponding error sheet of opposite charge, usually 
adjacent to a pole, where a feature is or should have been. It should be noted that the 
only reason there is net flux to the beam is because of three-dimensional effects; if Co$ 

were zero, Qbeam ----? 0 too! Implications for tolerances and PM quality specifications 
have been discussed at length in the various ALS ID conceptual design reports. 

The theory described in this paper is quite general, and is good for all hybrid 
designs, error analyses, or whenever one wishes to determine out how much of a 
charge winds up on a given surface. 

6 Acknowledgements 

I am happy to acknowledge Klaus Halbach's original work on the hybrid theory 
and his guidance in applying the fundamentals to the ALS IDs described herein. 

7 References 

1. K.Halbach, ID Design, Law. Berk. Lab. Rep. V-8811-1.1-16 (1989). 
2. K.Halbach, 3-D Hybrid Theory, Law. Berk. Lab. Rep. LSBL-034. (1989). 
3. U5.0 Conceptual Design Report, Law. Berk. Lab. Pub-5256 (1989). 
4. U8.0 ConceptuaJ Design Report, Law. Berk. Lab. Pub-5276 (1990). 
5. W16.0 Conceptual Design Report, Law. Berk. Lab. Pub-5288 (1991). 
6. UJO.O Conceptual Design Report, Law. Berk. Lab. Pub-5390 (1994). 
7. EW20.0 Conceptual Design Report, Law. Berk. Lab. Pub-5400 (1995). 

8 Appendix A 

The f = Vi(fQ)/Vo. Proof: consider I = !(ViEd- VdEi) · d<i, where dais over 
all surfaces enclosing the total volume that is not iron. On the reference surface: 
Va = 0, Vi = 0; on surface 1: Vd = 0, Vi = Vo; and at infinity V E ----? 0 faster than 
a --+ oo. Thus, one expression for I is 

(14) 

Alternatively, I can be expressed 

I= j (ViEd- VdE;) · da = j "9 · d(ViEd- VdE;)'dv = 

jCVi-9 ·Ed- "Vd-9 · E; + iid · E;- H; · Ed)dv = j Vi(i)peq(i)dv, (15) 

since '9 · Ed = Peq, '9 · E; = 0, and fid · E; = fi; · Ed. The latter can be shown: 

Hd·B; = J.Lo(ii;
11
+H;j_)·(J.LuHd

11
+1!-J.jjdj_) = J.Lo(J.Luii;

11
Hd

11
+J.LJ.jjij_jjdj_) = H;·Bd. (16) 

Equating the two expressions for I gives <l> 1d = f Vi(i)peq(i)dv/Vo, which for a 
point charge Q reduces to <l> 1d = \l;(rQ)Qj\!Q = fQ. 

9 



·~~·-· y4 

LAWRENCE BERKELEY LABORATORY 
UNIVERSITY OF CALIFORNIA 
TECHNICAL AND ELECTRONIC 

INFORMATION DEPARTMENT 
BERKELEY, CALIFORNIA 94720 

~- ... .::, • lt" o~. "' 


