
,
1
I
~

LBL-36881
UC-405
Pre rint

Lawrence Berkeley Laboratory
UNIVERSITY OF CALIFORNIA

Physics Division

Mathematics Department

To be submitted for publication

2-D Vortex Methods and
Singular Quadrature Rules

J. Strain

February 1995

"'

:::0
IT1

0 ""T1 ... om
-sO:::o
Onlrrt
t: Cll z 0
OJZrrt
r+O
a~r+o

0
"'0
-<

Q.---cc .
0'1
lSI

r
r::T 0
-s 0
IIJ 1:1
-s I<
I< .-

Prepared for the U.S. Department of Energy under Contract Number DE-AC03· 76SF00098

r
OJ
r
I

w
01
CD
CD .-

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

LBL-36881

2-D VORTEX METHODS AND SINGULAR QUADRATURE RULES1

John Strain
Department of Mathematics and Lawrence Berkeley Laboratory

University of California
Berkeley, CA 94 720

February 1995

1 l'his work was supported in part by a NSF Young Investigator Award, Air Force Office of Scientific
Research Grant FDF49620-93-1-0053, and the Applied Mathematical Sciences Subprogram of the Office
of Energy Research, U.S. Department of Energy under Contract DE-AC03-76SF00098.

2-D Vortex Methods
and Singular Quadrature Rules

John Strain *
Department of Mathematics

and
Lawrence Berkeley Laboratory

University of California
Berkeley, California 94 720

February 25, 1995

Abstract

A new high-order vortex method for the 2-D Euler equations is
presented. The method eliminates smoothing by constructing a sin
gular quadrature rule for the Biot-Savart law at each time step, using
quadtrees and orthogonal polynomials. Theory and numerical exper
iments show that the method is accurate and efficient, yielding excel
lent long-term accuracy in almost optimal CPU time.

*Research supported by a NSF Young Investigator Award, Air Force Office of Scientific
Research Grant FDF49620-93-l-0053, and the Applied Mathematical Sciences Subprogram
of the Office of Energy Research, U.S. Department of Energy under Contract DE-AC03-
76SF00098.

1

Contents

1 Introduction

2 Vortex methods for 2-D Euler

3 Velocity evaluation
3.1 Data structure.
3.2 Smooth rules . .
3.3 Error bounds . .
3.4 Uncorrected velocity evaluation
3.5 Singular rules
3.6 Error bounds

4 Implementation and numerical results
4.1 Velocity evaluation
4.2 Long-time accuracy
4.3 Interacting vortex patches

A Exact integration formulas

B Natural interpolation and contouring

List of Figures

1
2
3
4
5
6
7
8
9

Vortex method algorithm
Tree structure with p or p + 1 points per cell.
Velocity evaluation algorithm
Tree structures for velocity evaluation. . .
Long-time accuracy for a Perlman patch
Four Gaussian vortex patches (N = 6400).
Four Gaussian vortex patches (N = 12800).
Four Gaussian vortex patches (N = 25600).
Contouring examples

2

3

5

9
9

11
12
14
14
15

19
19
23
23

29

34

8
10
16
22
24
25
26
27
35

1 Introduction

Vortex methods are powerfula nd sophisticated numerical methods for com
puting incompressible turbulent flows [1, 3, 6, 7, 13, 16]. Because they are
grid-free and naturally adaptive, they create little or no numerical diffusion
and preserve features which other methods may distort. Vortex methods
are particularly useful when computing free-surface, free-space and external
flows, because only the support of the vorticity need be discretized.

A typical vortex method involves several steps; velocity evaluation, vor
tex motion, diffusion and boundary conditions. In this paper, we focus on
the most expensive and difficult step, the velocity evaluation. We employ
standard techniques for the vortex motion and consider inviscid free-space
flow to eliminate diffusion and boundary conditions. General background
material on vortex methods is presented in Section 2.

The standard velocity evaluation approximates the Biot-Savart law by a
fixed quadrature rule, with weights conserved by incompressibility and inde
pendent of the singularity in the Biot-Savart kernel. Smoothing is required
to make the quadrature rule accurate.

There are three major and interrelated difficulties with the standard ap
proach. First, the use of fixed quadrature weights loses accuracy as the flow
becomes disorganized. Perlman [15] and Beale and Majda [~] observed large
oscillations in the error during long-time integrations. These oscillations are
not present in triangulated vortex methods [18] or regridded methods [14],
which generate new weights at each step. Second, smoothing is required be
cause the quadrature weights ignore the singularity; this lowers the order of
convergence. Third, if any product integration [9, 10] or similar techniques
are used to treat the singularity, the variable weights preclude the use of the
fast multipole method [5] on which the practicality of the method depends.

This paper presents a different velocity evaluation method which over
comes these difficulties. A new quadrature rule at each step preserves long
time accuracy. Smoothing is unnecessary since the method integrates the
Biot-Savart law with order-q accuracy for any fixed q. Only the nearby
weights vary with the singularity, so the fast multipole method can still be
applied.

Our method is described in Section 3. It is based on locally-corrected
quadrature rules for multidimensional singular kernels [20] and proceeds in
stages. First a data structure groups the N vortices into cells convenient

3

for integration. Then a global order-q quadrature rule which ignores the
singularity is built.. The fast multipole method evaluates this rule efficiently,
yielding a regridded vortex method if smoothing is used. Finally, we correct
the weights of vortices near the evaluation point and the appropriate terms
of the velocity, using the detailed calculations from Appendix A.

Numerical results presented in Section 4 show that this method has sev
eral nice features. It runs in O(N log N) CPU time with N vortices and
achieves essentially qth order accuracy for any specified q. It deals effec
tively with arbitrary initial distributions of vortices. Long-time accuracy is
preserved. The method is naturally parallel since each point is corrected
independently.

The method extends naturally to 3-D calculations, Navier-Stokes equa
tions, and flows in bounded domains. It is equipped with a natural interpo
lation which gives the vorticity at any point (see Appendix B).

4

2 Vortex methods for 2-D Euler

The Euler equations for the velocity field (u(x, y, t), v(x, y, t)) of two-dimensional
incompressible inviscid flow are

U + UUx + VUy + Pxf p = 0

V + UVx + VVy + Py/ p = . 0

Ux + Vy = 0,

(2.1)
(2.2)
(2.3)

where subscripts denote partial derivatives, overdots denote time derivatives,
p is the (constant) density of the fl. uid and p(x, y, t) the pressure.

The vorticity w := Vx - uy satisfies the vorticity equation

W + UWx + VWy = 0,

which implies that the vorticity is passively transported along streamlines.
By incompressibility, we can write u in terms of a stream function 'lj;:

V = -'1/Jx·

The definition of vorticity then yields a Poisson equation for the stream
function:

-~'1/J=w.

In flow without boundaries with zero velocity at infinity, this implies the
Biot-Savart law

(u(x, y, t), v(x, y, t)) = { K(z- z')w(z', t) dx' dy'. (2.4) lmz
Here it is convenient to introduce the complex variable z = x + "Y (where
L = J=l) and the Biot-Savart kernel

K(z) = -"- = (-y,x) .
21rz 21r(x2 + y2)

The flow map r.p: JR2 x [0, T]-->-tlR2 is defined so thatr.p(~, t) is the position
at time t of the fluid particle initially at ~· Since a fluid particle moves with
velocity (u,v), the Biot-Savart law (2.4) implies that r.p(~,t) satisfies

cp(~, t) = { K(r.p(~, t)- z)w(z, t) dxdy. 1m2

5

Changing variables z ~ cp(z, t) in the integral gives

cp(~, t) JIR
2
K(cp(~, t) ~ cp(z, t))w(cp(z, t), t) dxdy

{ K(cp(~, t)- cp(z, t))w(z, 0) dxdy JJR2 (2.5)

since the Jacobian of cp(~, t) is unity and vorticity is constant along stream
lines.

Vortex methods use various recipes for evaluating the Biot-Savart integral
numerically. Lagrangian methods evaluate (2.5), tracing back the vorticity
to the initial time and usually losing accuracy as the initial grid distorts.
Free-Lagrangian methods approximate the velocity at each timet via (2.4).

The point vortex method [17], for example, approximates (2.5) by

ii =I: K(zi- Zj)w(~j, O)h2

#i

where initially the vortices zi(t) are the N vertices ~i of an equidistant grid
with side h. This is very physical since it moves N point vortices with
circulations rj = w(~j)h2 . Although the method converges [11], it presents
serious computational difficulties: If vortices come too close, the computed
velocity blows up.

Chorin [7] improved the method by smoothing the singularity with a blob
function g0 (z):

9o(z) = :29 (~) ·
This gives the now-standard vortex blob method -

N

ii =I: Ko(zi- zi)w(~j, O)h2
.

j=l

Convergence theory for this method is presented in [1, 4, 8, 12]. The nu
merical behavior of this method has been studied in [15], for example. It
has been very widely used in practice and generalized to model complex
three-dimensional viscous turbulent flows with boundaries and combustion
[6, 7, 13].

Triangulated vortex methods [18] approximate w in (2.4) by a piecewise
linear function on a triangulation. For each t let Th (t) = { Ti (t)} ~1 be a

6

triangulation covering the support of w, with N vertices {zj(t)}f=1 , and let

Vh = { v(z) E C 0(JR2
) : vJri is linear for each i}

be the space of continuous piecewise linear functions over Th(t). At each time
t the vorticity w(z, t) is approximated by the piecewise linear interpolant
wh(z, t) E Vh. The velocity is approximated by

Nr

uh(z, t) = JIR
2
K(z- z')wh(z', t) dz' = ~ 1i K(z- z')wh(z', t) dz'.

A variant of the fast multipole method and a fast Delaunay triangulation
scheme are used to speed up the calculation, and an adaptive initial tri
angulation scheme to resolve complex initial data. This method appears
straightforward to extend to flows in bounded domains, three-dimensional
problems, and viscous flows. However, it appears quite difficult to make a
triangulated vortex method with higher than second-order accuracy in space.

In this paper, we construct a qth-order quadrature rule for the evaluation
of the Biot-Savart law (2.4) at each time step. Thus we obtain efficient and
accurate free-Lagrangian vortex methods of any desired order.

A general vortex method is outlined in Figure 1. Here the vortices are
moved by a second-order Runge-Kutta method for simplicity; any ODE solver
can be used. The velocity evaluation is described in detail in the next section.

7

Algorithm

Read parameters from input file:

Time step k, initial and final times ti and t1.
Initial vortex locations ~j and strengths Wj = w(~j, ti) for 1 :::;; j :::;; N .
Control parameters
Exact solution parameters (if available)

Set t = ti.

Time loop: while t < t 1 do
t=t+k
Compute weights Wij and evaluate velocities ui of vortices zi:

Ui = :Lf=1 WijK(zi- zj)Wj ~ J K(zi- z)w(z, t)dxdy
First half-step of second-order Runge-Kutta:
Zi = Zi + kui
Compute weights Wij and evaluate velocities Ui of temporary positions Zi:

ui = :Lf=l WijK(Zi- Zj)Wj ~ J K(Zi- z)w(z, t + k)dxdy
Second half-step of second-order Runge-Kutta:
Zi = zi + k(ui + Ui)/2
Measure error, plot results, write output, etc.

End of time loop: end do

Figure 1: General outline of a free-Lagrangian vortex method.

8

3 Velocity evaluation

We now describe the velocity evaluation used in our method, focusing on
quadrature rules for the Biot-Savart law wit~ arbitrary quadrature points.

Our construction has four stages. First, we partition the smallest rect
angle B = [a, b] x [c, d] containing all the vortices into rectangular cells con
taining a fixed number of vortices, determined by the order of accuracy q.
Second, we construct a quadrature rule of order q on smooth functions, ignor
ing the singularity. Third, the weights of this smooth rule are used to do an
uncorrected velocity evaluation· with the fast multipole method. Finally, we
correct locally by recomputing the weights of vortices near each evaluation
point and re-evaluating the appropriate terms of the sum. We conclude with
error bounds for the corrected rule.

3.1 · Data structure

We first partition B into rectangular cells containing precisely p or p + 1
points Zj each, where p will be chosen in Section 3.2.

Let B = B 1 be the level-0 root of the tree. Divide B 1 in half along its
longest edge, with the dividing plane located so that each half of B 1 contains
either l N /2 J or LN /2 J + 1 points. This gives the level-1 cells B2 and B3 .

Recursively, split B2 and B3 along their longest edges to get B 4 through
B7, each containing LN/4J or LN/4J + 1 points Zj· Repeat this procedure L
times to get M = 2£ cells Bi on the finest level L, numbered from i = M .to
i = 2M - 1, each containing p = L N / M J or p + 1 points Zj. The union of
all the cells on any given level is B. The tree structure is stored by listing
the boundaries of each cell Bi = [ai, bi] x [ci, di] from i = 1 to i =2M- 1, a
total of 4 ·2M numbers, and indexing the points into a list so that the points
Zj E Bi are given by j = j(s) for s = b(i), ... , e(i) and three integer functions
j, band e. This can be done in O(NlogN), but the simplest method requires
sorting each cell before each subdivision, giving a total cost O(Nlog2 N) for
the tree construction with an O(N log N) sorting method such as Heapsort.
Figure 2 shows an example. We note that hierarchical data structures with
similar properties - though not this particular one - have been extensively
discussed in [19].

Remark: The tree structure permits efficient O(L) lookup of the level-L
cell containing any point z E B. Begin at the root and discard all children

9

. -~·: ·: -~::·<·.?~~i __ -;).--~~:;x::.:·= <·~:
;_ :::·. ·::·.· ••••• :·. ":'·.: =.· •• ~ •

... . .. :' ..:·: ::.. .:· ·::_.·:: \ ~·.·:~·=:~;_

ii:~·~ :··~:~).-~:;.~_· .. : /.=}~ __ : :> .-:= _: .=:.
, '·"l •• •• : •• ·;: ••••• •• ·: •• ·.·,:·
~:- · .. :·. ·.:. _,._, ..

• • • • • • • - • .. • • : # ••

.: .. " :, • • • • • • • ;·.· ·-· :::..=.
.,. ·. '.!· ' . . ." ... :: .. ·... . . . · ~: . .:

--=; . :·-:: .. •. :,·:.~: .· .. :·.··~ ... · ·.- .:.·'? .· ...
• •• • • • •• t•

·" ·. ·. --:·. ·.· £·.· .. -'··:· ;.~ :·: ,.; ,
; ~-. : ··:{:.. ':·::: /.:· :.: ·::.: .. :: ·: ~:·.-.'

. ·:.. · -::~ :,: ·.•.· .··-~:~· .. ····!. ··. : c.. ...-- : • . . ,;. ·: ·' . . · .. ·: .::.·
• :' J:.• • ~-. ; .. _: .. ·::..- . .. :· . -=·.: . :· ...

-..•
·' .·-: . .

. ·· .. . ·' .
·-=-:?'

·
' ,

... · -::• ·. ·: ,.. ". ··: .. · .. · ...
. ·: .. · .. :· _../ ... ~ .. x::·>?· ,:·· . ·.
;_ ;~·:·. ~-·.. . .• :· . -=·.: : ... '· ;:.:·,... ::::. '.. -::· ·:::. ·. .: :··. :·"':;_

)f}>~~;.:~.·.; .:.}: .. ::>::· /.':·
: · . · . .:

:...· .. ·:.: .. ·.: _,._ . : . . . ·. : . " . ::. 7::·~- i::.:. #

'//:~.·./:_{<::>_:_;_·.:_': '.\ · .. : !.··~.:"<2·.j:.:.
.. - . - . . ; -.~ ·.:.: ':; ,.

; ... · .. · ._·. : ·,Y_.· , -~ .. · .. · .. : .: . : :-:· ""·:· .·.: :··.: .. ·.. . .

... · .:.• .. . · •' ...
. .,·. ·: ..

· .. . ·: .
:······ .. ·. ,:· .. ,

~ · .. :·. · .. :·· . ·'·' ~ .· ... ·.
: • '\ • I : -:,. •'"• • '"•.• ::::,. <#

•. ·.,: : •. , .. '.!· '.· •:. ·.• ·.. . ·.· ':, .· ... - -· · ... ·· .. : ·
. . .:·. . :· ,.; : .. : · .. ··

•' ~ ,.'"• -.:·. "" .···.:.:•,.• • • .-""'",.•'" • • I •
r ;:,.·.··::::':•

.· ... · ... ~·. ·. ''"·: .. · : ·: :-:· ...
I • ,.: • I • •= ,.• • .• .. • ,.••:• :.~ :••,. .. ••

.: '
.· ,·:. _· -::_..._· ·.,:. •,._,. .· ~ .· -:=:..= ·:·'"·~·-· . . . ,

" ·:·

.. .. . : ·: : ·. . . . '....,· .. . ·: ·: '·.. ~
.... ·· .. · ·.· ... t;-: ·.::-;._· •.· ~-· -=--~ ~ :"'.: ····'-'· ... r · .. :

• • ::· •• ' • • • • •• • : • ••• • :. • 4 • • •• • • ~- •• ' • • •• t:-:-t;.·.:-.:'. ~;_::• • .:,· ,....,.~..;·:!~~
• • ':. I • • • .., f-'i-.L.~:..,..r~..,..,i..,;,~-l_ I • • • -

... ·:::. . --.: :·· .: • == .. =~ .7· •• • _.·::. --.: :··I:. ::'·J.
...... :.;: ··~:: \:. ~ :.~ 'F-...,:--~'"i •• ·.··.:.;· ··~:: ... :. : :_, 'F---+:1--'--'-l-o....:....,~---~:..-...---,

t •• : : .:-:?-- . : -: : ~..;~~:.:....r-~.r.-:----j . :.. " . -: :
~-~~:·7··~·:~~~~:~~~·~-~~··~· ~·~·~,.:,;~:[=7:·~~~·:~~-~·=~~~~·~·~··-··~~~
t--' ·-:·. :······ : •• •• ,:· .. , t---' • •• :····· : •• •• ,.:· .. ,

..... - ··"·' ·.· ··.. . "·' ·.·.·· · .

.:. '\

-·
•·•• :~o--:_·~·,...;·!.,f.:;,.:.r • .--:-r·~·::~:-:.-:.:"l •. l:-':.""·-= ... _.,._ _-:4· ~+_.·: ··: ._- '.

..... ··· -~~-.-... \.· .. :·._ .: ··.. :.. . -..- . .. ~.. -..-
:

.. . ··· ·' ·.
;:_·

. ... ,.; ·: .. ·. ·· .. ·.. ..:· ·:.' :,·.· .· ~. _ •.... · .. :: ... ·· .. ~-
. ·. •·.· ·-· L..::_· •. ·· ·-·

•, • , •• • .::,•.• • • .- •,. • I • • • ,.• I • -: ~ ,. • ... • • • • I .• • • ,. •

.... ~···: .. · • . !:':·."'" .•..•. ..,... "'..·•'""""':' 7 !:':- ...
··'.'·· •• ·: ~· •• '! ••• • •• '.. ~ ·: . : .· ··:· .: :··. : .· ·-:· .: :··.

.

Figure 2: Levels 1 through 6 in the tree structure with N
random uniformly distributed points 101 [0, 1 j2.

1137 pseudo-

not containing z; repeat recursively on the remaining child until level L is
reached. Similarly, all cells intersecting a given rectangle R can be listed in
time proportional to L times their number. We will use this to construct
singular rules.

The cell structure can likewise be used to determine the smallest distance
between two vortices

First, the minimum distance dm between any two distinct vortices in the
same cell is computed. Then for each vortex zi, cells intersecting the ball of
radius dm around zi are listed and dm is reset to the minimum distance to
any other vortex in those cells. Since the minimum dm found so far is used
at each step, it is rarely necessary to search additional cells.

3.2 Smooth rules

We now construct qth-order quadrature rules with the N quadrature points
Zj for integrating smooth functions over the rectangle B. Let q :2: 1 be the
desired order of accuracy of the rule, assume N 2: m := q(q+ 1) /2, and choose
an integer L :2: 0 with p := lN/2L J :2: m. The data structure just constructed
divides B into M = 2L rectangular subcells Bi with disjoint interiors such
that B is their union and each Bi cont~ins either p or p + 1 points Zj. On
each Bi, we construct local weights Wl for Zj E Bi which integrate the m
monomials xkyl with 0 ::; k + l ::; q - 1 exactly over Bi. Because of the
well-known ill-conditioning of the power basis, we construct these weights by
solving the following equivalent system of m linear equations in. at least p
unknowns:

2: Pk(xj)Pz(yj)Wj = k. Pk(x)Pz(y)dxdy = 8ko8wiBil
~E~ I

0::; k+l::; q-1.

(3.1)

where Pk(t) are the usual Legendre polynomials on [-1, 1] and Xm = (bi +
ai)/2, xh = (bi - ai)/2, with similar expressions for the y variable. Since
p 2: m, this system of m equations in at least p unknowns generically has

11

solutions. We compute the solution Wj of least Euclidean norm, using the
QR decomposition routine from LAPACK [2]. Section 3.3 discusses what to
do when no solution exists. The weights of the rule W are then defined to
be wj = Wj where Zj E Bi.

Remark: The technique employed to construct this quadrature rule has
many generalizations and applications. The general idea is that we approx
imate a linear functional F('P) of functions 'P on each cell by a weighted
combination of evaluations Ei('P) = 'P(zi) at the points zi, with the weights
determined to integrate polynomials of degree :::; q - 1 exactly over each cell
and have small norm. For example, suppose we want to interpolate the val
ues of the vorticity to a point z = (x, y) which is not one of the vortices zi.
We can construct weights for interpolation by requiring them to be exact on
monomials of degree :::; q - 1 on the cell Bi where z lies, yielding qth-order
accuracy on smooth functions.. This yields a least-squares problem simi
lar to the equations (3.1) for the smooth rule integration weights, but with
Pk(x)Pz(y) replacing fsi Pk(x)Pz(y)dxdy on the right-hand side. This tech
nique, which we use to contour the vorticity, is discussed further in Appendix
B.

3.3 Error bounds

The weights Wj now integrate all monomials xkyl with 0 :::; k + l :::; q - 1
exactly over all level-£ cells Bi for M :::; i :::; 2M- 1. In [20], we showed
that this property alone results in order-q accuracy, with a condition number
appearing in the error bound:

Theorem 1 Let B = u~lBi where Bi = [ai, bi] X [c;, di]· Suppose that w
integrates xkyl exactly over each Bi for 0 :::; k + l :::; q - 1. Then for any Cq
function g on B, the error

satisfies

12

where h = maxi max(bi - ai, di - ci) is the longest cell edge,

is the condition number of the rule W, lEI = (b- a)(d- c) is the area of B,
and the C 0 norm is defined by

II'PIIc0 (B) :=max lcp(z)l
zEB

for continuous functions cp on B.

Note that n plays the role of a condition number for W, mediating be
tween the intrinsic difficulty of integrating g (as measured by the derivatives
of g) and the accuracy of the final result. In general, n cannot be bounded
for arbitrary points, but we can easily compute it a posteriori, yielding an
excellent diagnostic for the quality of the rule. If all the weights are positive,
n = 2; otherwise, n > 2.

Remark: There are several ways to reduce each cell condition number
Oi = 1 + l~d l:ziEB; IWjl and thus obtain a better global condition number
n = l:i ni· Usually taking more points per cell reduces n, since the addi
tional degrees of freedom are not needed to satisfy (3.1) and can be applied
to reducing the 2-norm of Wj. However, this increases the cost of computing
W considerably and increases the cell size h, so taking larger p is not cost-

. effective if applied globally. It can be applied adaptively, however, by going
up to a different level of the tree structure when necessary. To implement
this, we specify a tolerance Om. When Oi 2:: Om, we merge Bi with its sib
ling in the tree structure, obtaining a cell B1 containing twice as many points
Zj· We then recompute all weights Wj for which Zj E B1 , usually obtaining
0 1 « Om at the cost of a larger QR decomposition and a larger cell size h.
If 0 1 is still too large, the process may be repeated.

This adaptive technique also permits treatment of the degenerate cases
when no solution exists to (3.1) on cell Bi, because the points Zj are not in
sufficiently general position. Such a cell can be merged with its sibling, after
which a solution is much more likely to exist. The process may be repeated
if necessary.

13

3.4 Uncorrected velocity evaluation

Next we evaluate the uncorrected sums

N

u(zi) = 2:: WjK(zi- zi)wi
j=l

which approximate the Biot-Savart law (2.4), using the weights Wi designed
for smooth functions and ignoring the singularity of the Biot-Savart kernel
K(z) when z = 0. We exclude the infinite term j = i. Note that if a
smoothed kernel is used in place of K, we have a regridded vortex method
which may be more accurate than standard vortex methods.

Direct evaluation of these sums costs O(N2) CPU time, which rapidly
becomes prohibitive for the large numbers of vortices needed to model inter
esting flows. Thus we use the adaptive fast multipole method (FMM) of [5]
to evaluate this.sum to any prescribed accuracy E in O(NlogNlogE) CPU
time. In practice, the FMM is faster than direct evaluation on a Sparc-2
with E = 10-7 whenever N 2:: 300, and much faster when N 2: 1000 or so.

3.5 Singular rules

We now select and correct certain weights Wi of the smooth rule W, for
each evaluation point Zi, to produce a singular rule w which will integrate

· singular functions f(z) = cp(z)K(z- zi) more accurately when cp is smooth.
For convenience let cr(z) = K(z- s) where s = Zi·

The weights to be corrected are selected by forming a list of c·ells Bi in
the tree structure built for the smooth rule W and correcting all the weights
Wi for vortices Zj lying in some cell on the list. For each cell Bi on the list,
we construct the corrected weights Wj for Zj E Bi by requiring Wj to satisfy
the linear system of 2m equations which expresses that Pk(x)P1(y)a-(z) is
integrated exactly for 0 :::; k + l :::; q - 1:

2:: WjPk(xj)Pz(yj)cr(zi) =h. Pk(x)Pz(y)a-(z)dxdy (3.2)
~E~ '

for 0 :::; k + l :::; q - 1 and both real and imaginary parts of a-. Exact formulas
for the integrals on the right-hand side of (3.2) are derived in Appendix A.

In order for these equations generically to have solutions w, we cannot
use the cells Bi on the lowest level L of the tree structure, because each

14

of these contains only p 2: m or p + 1 of the points Zj. Instead, we use
half as many larger cells on level L' := L - 1, each ·containing at least
p' := Nj2L' 2: 2m points. Thus (3.2) will generically be solvable by a QR
decomposition, obtaining w as least 2-norm solution if it exists.

In order to keep the number of corrected cells bounded while correcting
enough to ensure accuracy, we select cells for correction by the following
approach. The user specifies a dimensionless correction radius r c, typically of
order unity. We find the cell Bi = [ai, bi] x [ci, di] in which the evaluation point
lies, and let R = [-rc(bi- ai)/2, rc(bi- ai)/2] x [-rc(di- ci)/2, rc(di- ci)/2].
We then correct all cells intersecting the rectangle s + R. This scales the size
of the corrected area to the local cell size and therefore to the local density of
nodes, keeping the number of corrected points per evaluation point s bounded
as N ---->00 with r c fixed. We found r c ~ 1 to give excellent results in practice.
The lookup of cells to be corrected costs only O(L) percell. The complete
algorithm is presented in Figure 3.

3.6 Error bounds

The key requirement in the error bound proved in [20] is that we must cor
rect all cells sufficiently close to the evaluation point s. For notational con
venience, let's renumber the M cells used in the singular rule, so that the
first n are corrected and the last M - n are not: thus B = U~1 Bi where
each cell Bi contains at least 2m points for 1 ~ i ~ n and at least m points
for n + 1 ~ i ~ M. Let h =maxi max(bi- ai, di- ci) be the maximum cell
edge. Then we have weights Wj such that

for 0 ~ k + l ~ q - 1 and 1 ~ i ~ n, while

f xkyl dxdy = ""' Wjx~y1. }B. ~ J J
t ZjEB;

for 0 ~ k + l ~ q- 1 and n + 1 ~ i ~ M. Assume that (J is Cq and that its
qth order derivatives satisfy a growth condition:

lz- si 2: 8 > 0

15

Velocity evaluation

Set parameters:
Degrees of freedom required per cell: m = q(q + 1)/2
Top level in cell structure: L = Llog2(.Njm)J.
Points per cell: p = N j2L.

Construct cell data structure:
B 1 = B = smallest rectangle enclosing all the points Zi.
do l = 1, L- 1

Divide level-l cells along longest edge with half the points
in each subcell, yielding level-l + 1 cells.

end do
Result: 2£ cells on level L with p or p + 1 points each.

Compute smooth weights VVi one cell at a time.
do i = 1, 2£

Compute least-2-norm solution VV of
L,zjEB; VVjPk(xj)Pl(Yj) = 8ko8wiBil for 0 ~ k + l ~ q- 1

end do
Use smooth weights and FMM to evaluate. uncorrected velocity field U:

do i=1,N
ui = L,f=l VVjK(zi- Zj)Wj

end do
Correct velocity field ui one point at a time.

do i = 1, N
ui = ui
Find cell B1 containing evaluation point Zi.
List cells Bn intersecting rectangle centered at Zi, with size rcB1 .

foreach Bn do
Form and solve least-squares problem for VVj on cell Bn:
L,ziEBn Pk(xj)Pz(yj)K(zi- Zj)VVj =fEn Pk(x)Pl(y)K(zi- z)dxdy
Correct contribution from Bn to ui to get Ui:

Ui = Ui + L,ZjEBn (wj- VVj)K(zi- Zj)Wj
end for

end do

Figure 3: Velocity evaluation algorithm.
16

for k + l = 0 and k + l = q. This assumption is very mild since it does not
even guarantee that e7 is in L1 (B). It is satisfied by the Biot-Savart kernel
e7(z) = K(z- s).

With these assumptions, we proved the following error bound in [20]:

Theorem 2 FixE > 0 and correct the 0(1) cells intersecting s + R where
r c = c I/ q. Then the error in integrating cp · e7 over B with the locally corrected
rule w is bounded by

N

E li cp(z)e7(z)dxdyl- [; wjcp(zj)e7(zj)

< C(n + Ou) (I log hihqii'PIIcq(B) + cllcpllco(B))

where C depends only on B and the derivatives of e7,

1 M
n = 1 + -,B, L lwjl

J=l

and

This theorem implies that we need only correct a fixed number of points as
N-+ oo if we are satisfied with an "c+O(hk)" error bound. This error bound
is natural in this context, since the fast multipole method itself evaluates the
uncorrected velocity field only to accuracy E.

Remark: It is not necessary to correct the local weights Wj to the same
order of accuracy as the global weights W. Indeed, an efficient approach is to
choose distinct global and local orders q9 and q1, with q9 2: q1, corresponding
to roughly equal degrees of freedom m9 = q9 (q9 + 1)/2 and m 1 = q1(q1 +
1). This better balances the work required by the global and local weight
constructions, since cells of the same size can be used for both calculations.
Table 1 shows good choices of global and local weights which roughly balance
the degrees of freedom. In practice, almost all the CPU time is devoted to
local corrections.

Remark: In practice, one does not know the exact number of vortices in
advance, and choice of L may therefore be difficult. Too many points per cell
is wasteful, while too few can lead to large errors if the number of degrees
of freedom is not enough to achieve the desired order of accuracy. Thus our
code determines L internally, using a user-specified parameter S 2: 1 which
indicates the degree of safety desired. The code determines L such that each
level-L cell contains at least LSmJ points, where m = q(q + 1)/2. If q9 =/= qz,
two safety parameters S9 and S1 are used.

17

qg 1 2 3 4 4 5 6 7 9 10
qz 1 1 2 2 3 3 4 5 6 7

mg 1 3 6 10 10 15 21 28 45 55
mz 2 2 6 6 12 12 20 30 42 56

Table 1: Global and local orders (q9 , qz) and required degrees of freedom
(m9 , mz) per cell.

18

4 Implementation and numerical results

We implemented a version of the algorithm described above in Fortran and
studied several numerical examples. We measured the accuracy and efficiency
of the velocity evaluation scheme in isolation, using smooth initial vorticity
fields. Then we measured the error in a long-time calculation with Perl
man's standard test example. Finally, we studied the long-time interaction
of several smooth patches of vorticity.

4.1 Velocity evaluation

First, we studied the accuracy of the velocity evaluation for several choices
of the orders qg and q1, using two smooth initial vorticity fields for which the
velocity can be evaluated analytically. These are the Gaussian

1
p= 2'

and the Perlman test case

wp(x, y, t) = max(O, 1- x 2
- y2 f.

The corresponding velocity fields are

. P2 (e-(x2+y2)/ P2 - 1)
(u,v)= -2(x2+y2) (y,-x)

and
max(O, 1 - x2 - y2

) 8 - 1
(u,v)= 16(x2+y2) (y,-x).

These are stationary radial solutions of the Euler equations with shear and
popular test cases for vortex methods.

In order to test our method, we used several different techniques to gen
erate the initial distribution of vortices. The most severe was simply to
generate uniformly distributed random vortices on the support of the initial
vorticity. The least severe is to use the vertices of an equispaced grid or a
grid adapted to the initial vorticity, as in [18]. An intermediate choice is the
following adaptive random grid. Given Nand n with n2 < N, first distribute
n 2 vortices uniformly over the smallest rectangle R enclosing the support of

19

the vorticity. To do this, divide R into a n x n grid and choose a point Zi

randomly in each grid cell. Of the remaining M = N- n2 vortices, put

or mi + 1 random vortices in the ith cell of the n x n grid. Thus the remaining
vortices are distributed in regions where the vorticity is large, providing some
degree of adaptivity despite their randomness.

We generated N = 200,400, ... , 51200 vortices in an adaptive random
grid on the square [-2, 2]2 with n 2 ~ N/4 for each of the above two exam~
ples and evaluated the velocity at each of the vortices, using rules of orders
(qg, q1) = (2, 1), (3, 2), (5, 3) and (6, 4). We took rc = 1 and Sg = S1 = 1.5 in
all cases. The resulting relative discrete L 1 errors Ea and Ep for wa and wp
respectively, memory usages M (in thousands of integers), CPU times T in
seconds on a Sparc-2 workstation and other statistics are reported in Table
2. Figure 4 shows some of the cell structures for these calculations.

The velocity evaluation clearly requires CPU times and memory pro
portional to the number of vortices N, with a constant of proportionality
depending on the order q. The CPU time is dominated by the correction
of local weights, which in turn is mostly due to solving least-squares prob
lems. Exact evaluation of the Biot-Savart kernel and forming the matrix of
Legendre polynomials require less than a few percent of the correction time
all told. Thus we expect the method would be a natural candidate for par
allel computing,' since each point is corrected independently. At some cost
in memory, the least-squares systems could be farmed out to many small
processors to solve.

In all cases, the error appears to be decreasing roughly according to the
theoretical estimate E + O(hq1). Note that when N doubles, the maximum
cell size h decreases by a factor v0, so we expect the error to decrease by
a factor 2qd2 until E is reached. The value of E appears to be of order 10-3

to 10-4 , sufficient for two to three digit accuracy; smaller E would require
larger rc, implying more corrected cells per point and longer running time.
As one would expect, higher-order methods require more vortices to yield
higher-order convergence. However, we note that higher-order methods as
well as lower-order ones have 0 ~ 2 for large N.

20

(qg, ql) = (2, 1) (qg, ql) = (3, 2)
N Ea Ep M T L n N Ea Ep M T L n

200 .55-0 .25+1 4.1 2.5 5 2.32 200 .14+1 .61+.1 3.8 7.3 4 6.89
400 .94-1 .49-0 8.3 4.7 6 2.23 400 .20-0 .22+1 7.6 15.3 5 3.36
800 .35-1 .63-1 16.5 7.6 7 2.07 800 .70-1 .92-1 15.1 25.0 6 2.41
1600 .17-1 .26-1 33.9 13.8 8 2.06 1600 .88-2 .46-1 30.1 44.0 7 2.14
3200 .87-2 .10-1 65.7 26.1 9 2.02 3200 .47-2 .84-2 60.1 78.3 8 2.10
6400 .49-2 .55-2 131 53.9 10 2.04 6400 .22-2 .35-2 120 147 9 2.08
12800 .31-2 .34-2 263 107 11 2.02 12800 .14-2 .15~2 240 294 10 2.06
25600 .21-2 .23-2 525 217 12 2.02 25600 .10-2 .11-2 480 579 11 2.06
51200 .14-2 .16-2 1050 423 13 2.04 51200 .62-3 .70-3 961 1180 12 2.10

(qg, ql) = (5, 3) (qg, ql) = (6, 4)
N Ea Ep M T L n N Ea Ep M T L n

200 .14+1 .17+2 3.6 16.8 3 22.7 200 .20-0 .16+1 3.5 39.3 2 47.2
400 .18+1 .49+2 7.2 41.2 4 66.0 400 .99-0 .41+2 7 115 3 814
800 .27-0 .37+1 14.4 73.1 5 12.2 800 .10+1 .13+2 14 298 4 219
1600 .24-1 .56-0 28.7 123 6 3.6 1600 .10-1 .14+1 28 591 5 18.8
3200 .33-2 .30-1 57.3 223 7 3.6 3200 .95-2 .11-0 56 1030 6 4.39
6400 .90-3 .27-2 114 438 8 2.9 6400 .57-3 .50-2 112 1730 7 2.60
12800 .66-3 .96-3 229 860 9 2.8 12800 .24-3 .66-3 223 2810 8 2.33
25600 .30-3 .39-3 458 1770 10 2.8 25600 .15-3 .25-3 447 5540 9 2.22
51200 .27-3 .31-3 916 3530 11 2.8 51200 .72-4 .91-4 893 10900 10 2.18

Table 2: Relative L1 errors Ep and Ea, memory usage (inK) M, CPU times
T (in seconds on a Sparc-2), number of levels L and condition number n
for evaluating the velocity due to Perlman-type and Gaussian vorticity fields
with N points and a quadrature rule of orders (q9, q1).

21

~ ----1
I

I
- I -

I ' -
I --4--± I

::r

I 11= I ~~ I i=l

I "iT'- I I ~ ::\ *ir11 I I
f--1- ::c

f- - r::= :r= 1--

I
-

- ,.....--- '---

Figure 4: Cell structures for velocity evaluation with adaptive random grid
for a Gaussian vorticity with (q9, q1) = (3, 2) and N = 100,400, 1600,6400
vortices.

22

I--

4.2 Long-time accuracy

We also tested the long-time accuracy of the method on the Perlman test
case, running for 0 ::; t ::; 100 ~ 327r, a final time at which the fastest
moving particles of fluid (near the origin) have completed 8 revolutions while
the slowest have completed only one. This strong shear is usually considered
a severe test for a vortex method. We started with an adaptive random grid
and used fourth-order Runge-Kutta for the time integration, with quadrature
of orders (2, 2). We used N = 400, 800, 1600, 3200, 6400, 12800 vortices with
Nr = 100, 140,200,280,400,560 time steps from t = 0 to t = 100. In all
cases we took rc = 1 and S9 = Sz = 1.5. The resulting relative discrete L1

errors in the velocity are shown in Figure 5, in base-2logarithmic scale to aid
in the study of convergence. They clearly confirm the long-time second-order
accuracy of the method; the oscillations observed by Perlman [15] are not
seen. This pleasant behavior of the error is undoubtedly due to the ab initio
calculation of the quadrature rule at each time step. Particularly encouraging
is the slower increase of the error when more vortices are employed.

4.3 Interacting vortex patches

We also computed the evolution of several interacting vortex patches, each
given by a shifted and scaled Gaussian. Thus the initial vorticity is given by

m

w(x, y, 0) = L ni exp(-((x- Xj)
2 + (y- Yi) 2

)/ PJ)
i=l

where (xi, Yi) E [-2, 2]2, Pi E [-:1,1] and Oi E [-1, 1] are pseudorandom
uniformly distributed numbers such that the circles of radius Pi with centers
(xi, Yi) do not overlap. We used m = 4 patches, with parameters shown in
Table 3. We used N = 6400, 12800 arid 25600 vortices with quadratures of
orders (q9 , q1) = (2, 2), with rc = 1 and S9 = S1 = 1.5. The evolution of this
flow is shown in Figures 6 through 8. The figures show the final result at
t = 36 with three different values of N; the result is clearly converged.

23

-:::J -4.0
c
~

0
~
~

Q) -6.0 .,...
_J

Q)

.>
co -8.0
Q)
~ -C\1
C)
0 -10.0 _J

-12.0___--'----'-----'---..&.------'

0 20 40 60 80 100

Time

Figure 5: Relative L1 errors in the evolution of a Perlman patch to time
t = 100, computed with a quadrature rule of orders (2, 2). From top to
bottom, the lines plotted are the base-2 logarithms of the relative discrete L 1

errors in the velocity computed with N = 400, 800, 1600, 3200, 6400, 12800
points and Nr = 100, 140, 200, 280, 400, 560 time steps up to t = 100.

24

Figure 6: Evolution of four patches of Gaussian vorticity, computed with
(q

9
, q1) = (2, 2) and N = 6400 vortices.

25

Figure 7: Evolution of four patches of Gaussian vorticity, computed with
(q9 , q1) = (2, 2) and N = 12800 vortices.

26

~ @J~ ~' ~~
@' '

@) ~

Figure 8: Evolution of four patches of Gaussian vorticity, computed with
(q9 , q1) = (2, 2) and N = 25600 vortices.

27

J Xj Yj Pj nj
1 -0.6988 -1.7756 0.6768 -0.4515
2 1.4363 -1.4566 0.3294 0.4968
3 -0.1722 0.4175 0.5807 -0.9643
4 -1.5009 -0.0937 0.2504 0.3418

Table 3: Strengths rlj, centers (xi, Yi) and scales Pi for four Gaussian patches
of vorticity.

28

A Exact integration formulas

Given z0 , a cell C = [a, b] x [c, d] and a degree q, we require the integrals

Uij(zo) = 1 1
Pi(x)Pj(y)dxdy

c z0 - z

for 0 :::; i + j :::; p = q - 1. Here

with Xm = (b + a)/2, xh = (b- a)/2 and Pi the Legendre polynomial on
ltl :::; 1 defined by the recurrence

Po(t) = 1, PI(t) = t,

for i 2 1. Similar expressions hold for the y variable.
The calculation proceeds in three steps: First, we express the product of

Legendre polynomials in the form

p p

~(x)Pi(Y) = L L Q~(z0 :- z)k(.z0 - z)1 (A.1)
k=O l=O

where z = x + ty. We define Q~ = 0 for convenience, whenever any of i, j, k
or l is negative or k + l exceeds i + j. Then we have

p p

Uij(zo) = L L Q~ 1 (zo- zl-1(z0 - z)1dxdy
k=O l=O C

p p

L L Q~Skl(zo- C)
k=O l=O

where
Skl(C) =·fc zk-l zldxdy

Step two is to evaluate Skl when k = 0, and step three is to evaluate Sk1 when
k > 0. Note that we need only evaluate Skl once and for all, for 0:::; k+l :::; p.

Step one is done by using the recurrence for Legendre polynomials, in the
form

29

which fo~lows from (Ao1)o Multiplying by Pi(x), using (Ao1) twice and equat
ing coefficients gives

Qi,j+l 2j + 1 [Q01Qij Q01Qij Q01Qij] J Qi,j-1
kl = j + 1 00 kl + 10 k-1,1 + 01 k,l-1 - j + 1 kl 0

We use this recurrence to evaluate Q~(+1 for i = 0, 1, 2, 0 0 0, p and j
1, 2, 0 0 0 ,p- io

To evaluate the first two columns of the recurrence, for which j = 0, 1,
we use the corresponding recurrence on i, which is derived by interchanging
x and y and i and j:

Q
i+1,j _ 2i + 1 [Q10Qij Q10Qij Q10Qij] i Qi-1,j
kl - i + 1 00 kl + 10 k-1,1 + 01 k,l-1 - i + 1 kl

for Jo = 0, 1 and i = 1, 2, 0 0 0, p- jo This leaves only the four sets of coefficients
with i, j = 0, 1 to be evaluated, and three are easy to compute directly from
the definition:

Qoo
00

Q10
. 00

Q01
00

1

1) 10 -1 -(zo + Zo- 2xm , Q10 = -
2

,
2xh xh

1 - 01 -1
-
2
-(zo- Zo - 2tym), Q1o = -

2
-,

LYh LYh
The fourth set can be calculated most easily by multiplying:

implies

1
-(x- Xm)(y- Ym)
XhYh
P1(x)Po(y)Po(x)P1(Y)
(Q~g + Qi8(zo- z) + Q~~(zo- z))(Q86 + Qn(zo- z) + Q8i(zo- z))

Q 11 Q10Q01
00 00 00

· Qll Q10Q01 + Q10Q01
10 00 10 10 00

Q ll Q10Q01 + Q10Q01 .
01 00 01 01 00

Q ll Q10Q01
20 10 10

Q ll Q10Q01 + Q10Q01
11 10 01 01 10

Q 11 Q10Q01
02 01 01°

30

The recurrence pattern is shown in the following table:

Qoo Q01 --+ Q02 --+ ... QOp

"\,
Q10 Qll --+ Q12 --+

! 1 "\,
Q20 Q21 --+ Q22

(A.2)

! 1
Qp-1,0 Qp-1,1

!
QPO

Several approaches are possible to step two, using either complex or real
variable techniques. The complex approach is simpler but encounters dif
ficulty when programming a convenient branch of the complex logarithm.
Hence we present a real-variable approach to the integrals

Soz(C)

where subscripts x and y denote partial derivatives. When we integrate by
parts, the double integrals cancel, and two one-dimensional integrals remain:

Soz(C)
1 rd b 2 lc log(x2 + y2)(x- ty)ldy Ia

t 1b d - log(x2 + y2)(x- ty)1dx lc.
2 a

(A.3)

31

Integrating by parts again gives further cancellation, eliminates the loga
rithms, and yields

where
Fi+1 (x, y) = {x

2
X

2
(x- iy)1+1dx.

lo x +y

Pulling out one factor of X-iy from the power and using that x2 = x2 +y2 -y2

gives

where

rx --:--1~(x- iyy+1dx
lo x 2 + y2

.Fl(x, y)- iYGz(x, y).

The second line comes from applying the same trick to Gl+1· Thus we have a
pair of coupled recurrence relations for the F's and the G's, which can easily
be solved to yield

(l + 1)Soz (2x)l+1 X - (-2iy)l+1 y; ix=b iy=d
l l x=a y=c

l 1)k -i X- iY i 2 2 1 Y -2:::-(--log(x +y)+tan- (-)
2 k=1 k 2x 4 x

l ()k -i 1 X - iY i 2 2 1 Y - L- - -log(x + y) -tan~ (-) .
2 k=1 k -2iy 4 X

Yz =

Since X 1 and Yz satisfy trivial recurrence relations, this formula is easy to
evaluate. Note that (2x)l+1X 1 vanishes if x = 0 and (-2iy) 1+1Yz vanishes if
y=O.

Step three involves integrating polynomials over a rectangle since k > 0,
so can be done several ways. Perhaps the simplest is to employ product
Gaussian quadrature of sufficiently high order to be exact on polynomials of
the degree involved. We present a slightly more efficient approach, based on
the Cauchy integral formula and recurrence relations.

32

The Cauchy integral formula for a possibly non-analytic function reads

1 r f(~) r af 1
Xc(z)f(z) = 27rL lac~- z - lc a~~- z dA(~)

where xc is the characteristic function of the set C and z is not on the
boundary aC of C. Put

1 f(z) = --zk.zl+l
l+1

so that
af k-1 az = z z.

For z = 0, we have f = 0 and therefore

Ski(C) = 1 [~k-l~l+ld~
2L(l + 1) lac

Parametrize each edge of C as a line segment

~(t) = t~j+l + (1- t)~j

where ~j are the vertices of C (1 :S j :S 5, with ~5 = 6 for convenience).
Then

1 4

Ski(C)= 2L(l + 1) _f;(~J+l- ~j)Tkl(~j, ~J+l)

where

Tk1(a, b)= fo 1

(tb + (1- t)a)k-1(tb + (1- t)a)1+1dt

for 0 :S k + l :S q and complex numbers a and b.
Tk1 can be evaluated exactly by the binomial theorem or by Gaussian

integration since k 2: 1. Wepresent a recurrence relation based on integration
by parts. First, observe that when k = 1 the integral is trivial:

T _ 1
(lJl+2 -1+2)

11
- (l + 2)(b- a) .-a ·

For k 2: 2, we integrate by parts to obtain

_ 1 (k-1-1+2 k-1-1+2) (k- 1)(b- a)
Tkl - (l + 2)(b _a) b b -a a - (l + 2)(b _a) Tk-1,1+1·

Thus k can be reduced and l increased until the first exponent goes to 1,
whereupon T1,k+l- 1 is trivial. The recurrence can be solved explicitly, but
the resulting formula is best evaluated by recurrence.

33

B Nat ural interpolation and contouring

A common difficulty in vortex methods is that the vorticity is known only at
scattered data points, so some form of interpolation must be used to evaluate
the vorticity at other points. One advantage of the approach of this paper is
the natural interpolation technique provided by the tree structure. Suppose
we have vortices Zj in a cell C and we want to know the vorticity at a point
zinC. We approximate w(z) by a weighted sum

w(z) ~ 2:::: nj(z)w(zj),
ZjEC

where the interpolation weights nj(z) form the least 2-norm solution of the
underdetermined linear system

L nj(z)Pk(xj)Pz(yj) = Pk(x)Pz(y), o:::;k+l:::;q-1.
ZjEC

This gives an qth order interpolation formula on each cell, with reasonably
small weights if there are enough interpolation points Zj in C.

We found this technique useful in contouring the vorticity produced by
our method. To contour the vorticity, we first interpolated w to a sufficiently
fine equidistant grid on the computational domain, then found the level sets
of the linear interpolant to the grid values. This produces continuous contour
lines. Figure 9 shows the points, the cells, and five contour levels produced
when this technique is applied to the function

w(x, y) = cos(kx) cos(ky) + tsin(kx) sin(ky), k = 11, t = 1/10.

(The points and cells are omitted from the last picture for clarity.) We
generated N = 129, 515, 2051 and 8197 pseudorandom uniformly distributed
points in [0, 1]2, interpolated them to an equidistantgrid with M = 10, 20,
40 and 80 points per side with fourth-order accuracy, and contoured the
resulting values. With 8197 points on a 80 by 80 grid, for example, we
obtained three-digit accuracy at each grid point, and Jw(z)l was less than
0.5 x 10-2 at each endpoint of the 2018 segments obtained. The 10 by 10
grid, of course, cannot resolve this function, but the 20 by 20 grid does well.

34

Figure 9: Contour lines produced by fourth-order scattered data interpola
tion, for random points on [0, 1]2.

35

References

[1] C. Anderson and C. Greengard. On vortex methods. SIAM J. Math.
Anal., 22:413-440, 1985.

[2] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, and
D. Sorensen. LAPACK Users' Guide. Society for Industrial and Ap
plied Mathematics, Philadelphia, 1992.

[3] J. T. Beale, A. Eydeland, and B. Turkington. Numerical tests of 3-D
vortex methods using a vortex ring with swirl. In C. Anderson and
C. Greengard, editors, Vortex Methods and Vortex Dynamics. Springer
Verlag, New York, 1992.

[4] J. T. Beale and A. Majda. Vortex methods II: high order accuracy in
two and three dimensions. Math. Camp., 39:29-52, 1982.

[5] J. Carrier, L. Greengard, and V. Rokhlin. A fast adaptive multipole
method for particle simulations. SIAM J. Sci. Stat. Comput., 9:669-
686, 1988.

[6] Y. Choi, J. A. C. Humphrey, and F. S. Sherman. Random vortex simula
tion of transient wall-driven flow in a rectangular enclosure. J. Comput.
Phys., 75:359-383, 1988.

[7] A. J. Chorin. Computational Fluid Mechanics: Selected Papers. Aca
demic Press, 1989.

[8] G. H. Cottet. A new approach for the analysis of vortex methods. Ann.
Inst. H. Poincare, Analyse non Lineaire, 5:227-285, 1988.

[9] P. J. Davis and P. Rabinowitz. Methods of Numerical Integration. Com
puter science and applied mathematics. Academic Press, second edition,
1984.

[10] T. 0. Espelid and A. Genz, editors. Numerical integration : recent'
developments, software, and applications. Kluwer Academic, Dordrecht;
Boston, 1992.

36

[11] J. Goodman, T.Y. Hou, and J. Lowengrub. Convergence of the point
vortex method for the 2-d Euler equations. Comm. Pure Appl. Math.,
43:415-430, 1990.

[12] 0. H. Hald. Convergence of vortex methods for Euler's equations III.
SIAM J. Numer. Anal., 24:538-582, 1987.

[13] A. Leonard. Computing three dimensional flows with vortex elements.
Ann Rev. Fluid Mech., 17:523-559, 1985.

[14] H. 0. Nordmark. High-order vortex methods with regridding. J. Com
put. Phys., 97:366, 1991.

[15] M. Perlman. On the accuracy of vortex methods. J. Comput. Phys.,
59:200-223, 1985.

[16] E. G. Puckett. Vortex methods: an introduction and survey of selected
research topics. In R. A. Nicolaides and M. D. Gunzburger, editors, In
compressible Fluid Dynamics- Trends and Advances. Cambridge Uni
versity Press, 1991.

[17] L. Rosenhead. The formation of vortices from a surface of discontinuity.
Proc. R. Soc. Lon. A., 134:170-192, 1931.

[18] G. Russo and J. Strain. Fast triangulated vortex methods for the 2-D
Euler equations. J. Comput. Phys., 111:291-323, 1994.

[19] H. Samet.' The design and analysis of spatial data structures. Addison
Wesley, Reading, Massachusetts, 1990.

[20] J. Strain. Locally-corrected multidimensional quadrature rules for sin
gular functions. SIAM J. Sci. Comput., to appear, 1995.

AMS Subject Classifications: 76M10, 76M25, 65M50, 65M60, 65Y25,
65D32, 65D05, 65D30, 65R20

Key words and phrases: quadrature, vortex methods, Euler equations,
Legendre polynomials, least-squares problems, quadtrees, data structures,
free-Lagrangian methods, adaptive methods, interpolation, product integra
tion.

E-mail address: strain@math.berkeley.edu.

37

LA~NCEBERKELEYLABORATORY

UNIVERSITY OF CALIFORNIA
TECHNICAL INFORMATION DEPARTMENT

BERKELEY, CALIFORNIA 94720

