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Abstract 

A new high-order vortex method for the 2-D Euler equations is 
presented. The method eliminates smoothing by constructing a sin
gular quadrature rule for the Biot-Savart law at each time step, using 
quadtrees and orthogonal polynomials. Theory and numerical exper
iments show that the method is accurate and efficient, yielding excel
lent long-term accuracy in almost optimal CPU time. 

*Research supported by a NSF Young Investigator Award, Air Force Office of Scientific 
Research Grant FDF49620-93-l-0053, and the Applied Mathematical Sciences Subprogram 
of the Office of Energy Research, U.S. Department of Energy under Contract DE-AC03-
76SF00098. 

1 



Contents 

1 Introduction 

2 Vortex methods for 2-D Euler 

3 Velocity evaluation 
3.1 Data structure. 
3.2 Smooth rules . . 
3.3 Error bounds . . 
3.4 Uncorrected velocity evaluation 
3.5 Singular rules 
3.6 Error bounds ......... . 

4 Implementation and numerical results 
4.1 Velocity evaluation .... 
4.2 Long-time accuracy . . . . 
4.3 Interacting vortex patches 

A Exact integration formulas 

B Natural interpolation and contouring 

List of Figures 

1 
2 
3 
4 
5 
6 
7 
8 
9 

Vortex method algorithm ........... . 
Tree structure with p or p + 1 points per cell. 
Velocity evaluation algorithm ..... . 
Tree structures for velocity evaluation. . . 
Long-time accuracy for a Perlman patch 
Four Gaussian vortex patches (N = 6400). 
Four Gaussian vortex patches (N = 12800). 
Four Gaussian vortex patches (N = 25600). 
Contouring examples ............. . 

2 

3 

5 

9 
9 

11 
12 
14 
14 
15 

19 
19 
23 
23 

29 

34 

8 
10 
16 
22 
24 
25 
26 
27 
35 



1 Introduction 

Vortex methods are powerfula nd sophisticated numerical methods for com
puting incompressible turbulent flows [1, 3, 6, 7, 13, 16]. Because they are 
grid-free and naturally adaptive, they create little or no numerical diffusion 
and preserve features which other methods may distort. Vortex methods 
are particularly useful when computing free-surface, free-space and external 
flows, because only the support of the vorticity need be discretized. 

A typical vortex method involves several steps; velocity evaluation, vor
tex motion, diffusion and boundary conditions. In this paper, we focus on 
the most expensive and difficult step, the velocity evaluation. We employ 
standard techniques for the vortex motion and consider inviscid free-space 
flow to eliminate diffusion and boundary conditions. General background 
material on vortex methods is presented in Section 2. 

The standard velocity evaluation approximates the Biot-Savart law by a 
fixed quadrature rule, with weights conserved by incompressibility and inde
pendent of the singularity in the Biot-Savart kernel. Smoothing is required 
to make the quadrature rule accurate. 

There are three major and interrelated difficulties with the standard ap
proach. First, the use of fixed quadrature weights loses accuracy as the flow 
becomes disorganized. Perlman [15] and Beale and Majda [~] observed large 
oscillations in the error during long-time integrations. These oscillations are 
not present in triangulated vortex methods [18] or regridded methods [14], 
which generate new weights at each step. Second, smoothing is required be
cause the quadrature weights ignore the singularity; this lowers the order of 
convergence. Third, if any product integration [9, 10] or similar techniques 
are used to treat the singularity, the variable weights preclude the use of the 
fast multipole method [5] on which the practicality of the method depends. 

This paper presents a different velocity evaluation method which over
comes these difficulties. A new quadrature rule at each step preserves long
time accuracy. Smoothing is unnecessary since the method integrates the 
Biot-Savart law with order-q accuracy for any fixed q. Only the nearby 
weights vary with the singularity, so the fast multipole method can still be 
applied. 

Our method is described in Section 3. It is based on locally-corrected 
quadrature rules for multidimensional singular kernels [20] and proceeds in 
stages. First a data structure groups the N vortices into cells convenient 
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for integration. Then a global order-q quadrature rule which ignores the 
singularity is built.. The fast multipole method evaluates this rule efficiently, 
yielding a regridded vortex method if smoothing is used. Finally, we correct 
the weights of vortices near the evaluation point and the appropriate terms 
of the velocity, using the detailed calculations from Appendix A. 

Numerical results presented in Section 4 show that this method has sev
eral nice features. It runs in O(N log N) CPU time with N vortices and 
achieves essentially qth order accuracy for any specified q. It deals effec
tively with arbitrary initial distributions of vortices. Long-time accuracy is 
preserved. The method is naturally parallel since each point is corrected 
independently. 

The method extends naturally to 3-D calculations, Navier-Stokes equa
tions, and flows in bounded domains. It is equipped with a natural interpo
lation which gives the vorticity at any point (see Appendix B). 
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2 Vortex methods for 2-D Euler 

The Euler equations for the velocity field ( u(x, y, t), v(x, y, t)) of two-dimensional 
incompressible inviscid flow are 

U + UUx + VUy + Pxf p = 0 

V + UVx + VVy + Py/ p = . 0 

Ux + Vy = 0, 

(2.1) 
(2.2) 
(2.3) 

where subscripts denote partial derivatives, overdots denote time derivatives, 
p is the (constant) density of the fl. uid and p( x, y, t) the pressure. 

The vorticity w := Vx - uy satisfies the vorticity equation 

W + UWx + VWy = 0, 

which implies that the vorticity is passively transported along streamlines. 
By incompressibility, we can write u in terms of a stream function 'lj;: 

V = -'1/Jx· 

The definition of vorticity then yields a Poisson equation for the stream 
function: 

-~'1/J=w. 

In flow without boundaries with zero velocity at infinity, this implies the 
Biot-Savart law 

( u(x, y, t), v(x, y, t)) = { K(z- z')w(z', t) dx' dy'. (2.4) lmz 
Here it is convenient to introduce the complex variable z = x + "Y (where 
L = J=l) and the Biot-Savart kernel 

K(z) = -"- = (-y,x) . 
21rz 21r(x2 + y2 ) 

The flow map r.p: JR2 x [0, T]-->-tlR2 is defined so thatr.p(~, t) is the position 
at time t of the fluid particle initially at ~· Since a fluid particle moves with 
velocity (u,v), the Biot-Savart law (2.4) implies that r.p(~,t) satisfies 

cp(~, t) = { K(r.p(~, t)- z)w(z, t) dxdy. 1m2 
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Changing variables z ~ cp(z, t) in the integral gives 

cp(~, t) JIR
2 
K(cp(~, t) ~ cp(z, t))w(cp(z, t), t) dxdy 

{ K(cp(~, t)- cp(z, t))w(z, 0) dxdy JJR2 (2.5) 

since the Jacobian of cp(~, t) is unity and vorticity is constant along stream
lines. 

Vortex methods use various recipes for evaluating the Biot-Savart integral 
numerically. Lagrangian methods evaluate (2.5), tracing back the vorticity 
to the initial time and usually losing accuracy as the initial grid distorts. 
Free-Lagrangian methods approximate the velocity at each timet via (2.4). 

The point vortex method [17], for example, approximates (2.5) by 

ii =I: K(zi- Zj)w(~j, O)h2 

#i 

where initially the vortices zi(t) are the N vertices ~i of an equidistant grid 
with side h. This is very physical since it moves N point vortices with 
circulations rj = w(~j)h2 . Although the method converges [11], it presents 
serious computational difficulties: If vortices come too close, the computed 
velocity blows up. 

Chorin [7] improved the method by smoothing the singularity with a blob 
function g0 (z): 

9o(z) = :29 (~) · 
This gives the now-standard vortex blob method -

N 

ii =I: Ko(zi- zi)w(~j, O)h2
. 

j=l 

Convergence theory for this method is presented in [1, 4, 8, 12]. The nu
merical behavior of this method has been studied in [15], for example. It 
has been very widely used in practice and generalized to model complex 
three-dimensional viscous turbulent flows with boundaries and combustion 
[6, 7, 13]. 

Triangulated vortex methods [18] approximate w in (2.4) by a piecewise 
linear function on a triangulation. For each t let Th ( t) = { Ti ( t)} ~1 be a 
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triangulation covering the support of w, with N vertices {zj(t)}f=1 , and let 

Vh = { v(z) E C 0(JR2
) : vJri is linear for each i} 

be the space of continuous piecewise linear functions over Th(t). At each time 
t the vorticity w(z, t) is approximated by the piecewise linear interpolant 
wh(z, t) E Vh. The velocity is approximated by 

Nr 

uh(z, t) = JIR
2 
K(z- z')wh(z', t) dz' = ~ 1i K(z- z')wh(z', t) dz'. 

A variant of the fast multipole method and a fast Delaunay triangulation 
scheme are used to speed up the calculation, and an adaptive initial tri
angulation scheme to resolve complex initial data. This method appears 
straightforward to extend to flows in bounded domains, three-dimensional 
problems, and viscous flows. However, it appears quite difficult to make a 
triangulated vortex method with higher than second-order accuracy in space. 

In this paper, we construct a qth-order quadrature rule for the evaluation 
of the Biot-Savart law (2.4) at each time step. Thus we obtain efficient and 
accurate free-Lagrangian vortex methods of any desired order. 

A general vortex method is outlined in Figure 1. Here the vortices are 
moved by a second-order Runge-Kutta method for simplicity; any ODE solver 
can be used. The velocity evaluation is described in detail in the next section. 
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Algorithm 

Read parameters from input file: 

Time step k, initial and final times ti and t1. 
Initial vortex locations ~j and strengths Wj = w(~j, ti) for 1 :::;; j :::;; N . 
Control parameters 
Exact solution parameters (if available) 

Set t = ti. 

Time loop: while t < t 1 do 
t=t+k 
Compute weights Wij and evaluate velocities ui of vortices zi: 

Ui = :Lf=1 WijK(zi- zj)Wj ~ J K(zi- z)w(z, t)dxdy 
First half-step of second-order Runge-Kutta: 
Zi = Zi + kui 
Compute weights Wij and evaluate velocities Ui of temporary positions Zi: 

ui = :Lf=l WijK(Zi- Zj)Wj ~ J K(Zi- z)w(z, t + k)dxdy 
Second half-step of second-order Runge-Kutta: 
Zi = zi + k(ui + Ui)/2 
Measure error, plot results, write output, etc. 

End of time loop: end do 

Figure 1: General outline of a free-Lagrangian vortex method. 
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3 Velocity evaluation 

We now describe the velocity evaluation used in our method, focusing on 
quadrature rules for the Biot-Savart law wit~ arbitrary quadrature points. 

Our construction has four stages. First, we partition the smallest rect
angle B = [a, b] x [c, d] containing all the vortices into rectangular cells con
taining a fixed number of vortices, determined by the order of accuracy q. 
Second, we construct a quadrature rule of order q on smooth functions, ignor
ing the singularity. Third, the weights of this smooth rule are used to do an 
uncorrected velocity evaluation· with the fast multipole method. Finally, we 
correct locally by recomputing the weights of vortices near each evaluation 
point and re-evaluating the appropriate terms of the sum. We conclude with 
error bounds for the corrected rule. 

3.1 · Data structure 

We first partition B into rectangular cells containing precisely p or p + 1 
points Zj each, where p will be chosen in Section 3.2. 

Let B = B 1 be the level-0 root of the tree. Divide B 1 in half along its 
longest edge, with the dividing plane located so that each half of B 1 contains 
either l N /2 J or LN /2 J + 1 points. This gives the level-1 cells B2 and B3 . 

Recursively, split B2 and B3 along their longest edges to get B 4 through 
B7, each containing LN/4J or LN/4J + 1 points Zj· Repeat this procedure L 
times to get M = 2£ cells Bi on the finest level L, numbered from i = M .to 
i = 2M - 1, each containing p = L N / M J or p + 1 points Zj. The union of 
all the cells on any given level is B. The tree structure is stored by listing 
the boundaries of each cell Bi = [ai, bi] x [ci, di] from i = 1 to i =2M- 1, a 
total of 4 ·2M numbers, and indexing the points into a list so that the points 
Zj E Bi are given by j = j(s) for s = b(i), ... , e(i) and three integer functions 
j, band e. This can be done in O(NlogN), but the simplest method requires 
sorting each cell before each subdivision, giving a total cost O(Nlog2 N) for 
the tree construction with an O(N log N) sorting method such as Heapsort. 
Figure 2 shows an example. We note that hierarchical data structures with 
similar properties - though not this particular one - have been extensively 
discussed in [ 19 ]. 

Remark: The tree structure permits efficient O(L) lookup of the level-L 
cell containing any point z E B. Begin at the root and discard all children 
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not containing z; repeat recursively on the remaining child until level L is 
reached. Similarly, all cells intersecting a given rectangle R can be listed in 
time proportional to L times their number. We will use this to construct 
singular rules. 

The cell structure can likewise be used to determine the smallest distance 
between two vortices 

First, the minimum distance dm between any two distinct vortices in the 
same cell is computed. Then for each vortex zi, cells intersecting the ball of 
radius dm around zi are listed and dm is reset to the minimum distance to 
any other vortex in those cells. Since the minimum dm found so far is used 
at each step, it is rarely necessary to search additional cells. 

3.2 Smooth rules 

We now construct qth-order quadrature rules with the N quadrature points 
Zj for integrating smooth functions over the rectangle B. Let q :2: 1 be the 
desired order of accuracy of the rule, assume N 2: m := q( q+ 1) /2, and choose 
an integer L :2: 0 with p := lN/2L J :2: m. The data structure just constructed 
divides B into M = 2L rectangular subcells Bi with disjoint interiors such 
that B is their union and each Bi cont~ins either p or p + 1 points Zj. On 
each Bi, we construct local weights Wl for Zj E Bi which integrate the m 
monomials xkyl with 0 ::; k + l ::; q - 1 exactly over Bi. Because of the 
well-known ill-conditioning of the power basis, we construct these weights by 
solving the following equivalent system of m linear equations in. at least p 
unknowns: 

2: Pk(xj)Pz(yj)Wj = k. Pk(x)Pz(y)dxdy = 8ko8wiBil 
~E~ I 

0::; k+l::; q-1. 

(3.1) 

where Pk(t) are the usual Legendre polynomials on [-1, 1] and Xm = (bi + 
ai)/2, xh = (bi - ai)/2, with similar expressions for the y variable. Since 
p 2: m, this system of m equations in at least p unknowns generically has 
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solutions. We compute the solution Wj of least Euclidean norm, using the 
QR decomposition routine from LAPACK [2]. Section 3.3 discusses what to 
do when no solution exists. The weights of the rule W are then defined to 
be wj = Wj where Zj E Bi. 

Remark: The technique employed to construct this quadrature rule has 
many generalizations and applications. The general idea is that we approx
imate a linear functional F( 'P) of functions 'P on each cell by a weighted 
combination of evaluations Ei('P) = 'P(zi) at the points zi, with the weights 
determined to integrate polynomials of degree :::; q - 1 exactly over each cell 
and have small norm. For example, suppose we want to interpolate the val
ues of the vorticity to a point z = (x, y) which is not one of the vortices zi. 
We can construct weights for interpolation by requiring them to be exact on 
monomials of degree :::; q - 1 on the cell Bi where z lies, yielding qth-order 
accuracy on smooth functions.. This yields a least-squares problem simi
lar to the equations (3.1) for the smooth rule integration weights, but with 
Pk(x)Pz(y) replacing fsi Pk(x)Pz(y)dxdy on the right-hand side. This tech
nique, which we use to contour the vorticity, is discussed further in Appendix 
B. 

3.3 Error bounds 

The weights Wj now integrate all monomials xkyl with 0 :::; k + l :::; q - 1 
exactly over all level-£ cells Bi for M :::; i :::; 2M- 1. In [20], we showed 
that this property alone results in order-q accuracy, with a condition number 
appearing in the error bound: 

Theorem 1 Let B = u~lBi where Bi = [ai, bi] X [c;, di]· Suppose that w 
integrates xkyl exactly over each Bi for 0 :::; k + l :::; q - 1. Then for any Cq 
function g on B, the error 

satisfies 
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where h = maxi max(bi - ai, di - ci) is the longest cell edge, 

is the condition number of the rule W, lEI = (b- a)(d- c) is the area of B, 
and the C 0 norm is defined by 

II'PIIc0 (B) :=max lcp(z)l 
zEB 

for continuous functions cp on B. 

Note that n plays the role of a condition number for W, mediating be
tween the intrinsic difficulty of integrating g (as measured by the derivatives 
of g) and the accuracy of the final result. In general, n cannot be bounded 
for arbitrary points, but we can easily compute it a posteriori, yielding an 
excellent diagnostic for the quality of the rule. If all the weights are positive, 
n = 2; otherwise, n > 2. 

Remark: There are several ways to reduce each cell condition number 
Oi = 1 + l~d l:ziEB; IWjl and thus obtain a better global condition number 
n = l:i ni· Usually taking more points per cell reduces n, since the addi
tional degrees of freedom are not needed to satisfy (3.1) and can be applied 
to reducing the 2-norm of Wj. However, this increases the cost of computing 
W considerably and increases the cell size h, so taking larger p is not cost-

. effective if applied globally. It can be applied adaptively, however, by going 
up to a different level of the tree structure when necessary. To implement 
this, we specify a tolerance Om. When Oi 2:: Om, we merge Bi with its sib
ling in the tree structure, obtaining a cell B1 containing twice as many points 
Zj· We then recompute all weights Wj for which Zj E B1 , usually obtaining 
0 1 « Om at the cost of a larger QR decomposition and a larger cell size h. 
If 0 1 is still too large, the process may be repeated. 

This adaptive technique also permits treatment of the degenerate cases 
when no solution exists to (3.1) on cell Bi, because the points Zj are not in 
sufficiently general position. Such a cell can be merged with its sibling, after 
which a solution is much more likely to exist. The process may be repeated 
if necessary. 
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3.4 Uncorrected velocity evaluation 

Next we evaluate the uncorrected sums 

N 

u(zi) = 2:: WjK(zi- zi)wi 
j=l 

which approximate the Biot-Savart law (2.4), using the weights Wi designed 
for smooth functions and ignoring the singularity of the Biot-Savart kernel 
K(z) when z = 0. We exclude the infinite term j = i. Note that if a 
smoothed kernel is used in place of K, we have a regridded vortex method 
which may be more accurate than standard vortex methods. 

Direct evaluation of these sums costs O(N2) CPU time, which rapidly 
becomes prohibitive for the large numbers of vortices needed to model inter
esting flows. Thus we use the adaptive fast multipole method (FMM) of [5] 
to evaluate this.sum to any prescribed accuracy E in O(NlogNlogE) CPU 
time. In practice, the FMM is faster than direct evaluation on a Sparc-2 
with E = 10-7 whenever N 2:: 300, and much faster when N 2: 1000 or so. 

3.5 Singular rules 

We now select and correct certain weights Wi of the smooth rule W, for 
each evaluation point Zi, to produce a singular rule w which will integrate 

· singular functions f(z) = cp(z)K(z- zi) more accurately when cp is smooth. 
For convenience let cr(z) = K(z- s) where s = Zi· 

The weights to be corrected are selected by forming a list of c·ells Bi in 
the tree structure built for the smooth rule W and correcting all the weights 
Wi for vortices Zj lying in some cell on the list. For each cell Bi on the list, 
we construct the corrected weights Wj for Zj E Bi by requiring Wj to satisfy 
the linear system of 2m equations which expresses that Pk(x)P1(y)a-(z) is 
integrated exactly for 0 :::; k + l :::; q - 1: 

2:: WjPk(xj)Pz(yj)cr(zi) =h. Pk(x)Pz(y)a-(z)dxdy (3.2) 
~E~ ' 

for 0 :::; k + l :::; q - 1 and both real and imaginary parts of a-. Exact formulas 
for the integrals on the right-hand side of (3.2) are derived in Appendix A. 

In order for these equations generically to have solutions w, we cannot 
use the cells Bi on the lowest level L of the tree structure, because each 
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of these contains only p 2: m or p + 1 of the points Zj. Instead, we use 
half as many larger cells on level L' := L - 1, each ·containing at least 
p' := Nj2L' 2: 2m points. Thus (3.2) will generically be solvable by a QR 
decomposition, obtaining w as least 2-norm solution if it exists. 

In order to keep the number of corrected cells bounded while correcting 
enough to ensure accuracy, we select cells for correction by the following 
approach. The user specifies a dimensionless correction radius r c, typically of 
order unity. We find the cell Bi = [ai, bi] x [ci, di] in which the evaluation point 
lies, and let R = [-rc(bi- ai)/2, rc(bi- ai)/2] x [-rc(di- ci)/2, rc(di- ci)/2]. 
We then correct all cells intersecting the rectangle s + R. This scales the size 
of the corrected area to the local cell size and therefore to the local density of 
nodes, keeping the number of corrected points per evaluation point s bounded 
as N ---->00 with r c fixed. We found r c ~ 1 to give excellent results in practice. 
The lookup of cells to be corrected costs only O(L) percell. The complete 
algorithm is presented in Figure 3. 

3.6 Error bounds 

The key requirement in the error bound proved in [20] is that we must cor
rect all cells sufficiently close to the evaluation point s. For notational con
venience, let's renumber the M cells used in the singular rule, so that the 
first n are corrected and the last M - n are not: thus B = U~1 Bi where 
each cell Bi contains at least 2m points for 1 ~ i ~ n and at least m points 
for n + 1 ~ i ~ M. Let h =maxi max(bi- ai, di- ci) be the maximum cell 
edge. Then we have weights Wj such that 

for 0 ~ k + l ~ q - 1 and 1 ~ i ~ n, while 

f xkyl dxdy = ""' Wjx~y1. }B. ~ J J 
t ZjEB; 

for 0 ~ k + l ~ q- 1 and n + 1 ~ i ~ M. Assume that (J is Cq and that its 
qth order derivatives satisfy a growth condition: 

lz- si 2: 8 > 0 
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Velocity evaluation 

Set parameters: 
Degrees of freedom required per cell: m = q(q + 1)/2 
Top level in cell structure: L = Llog2(.Njm)J. 
Points per cell: p = N j2L. 

Construct cell data structure: 
B 1 = B = smallest rectangle enclosing all the points Zi. 
do l = 1, L- 1 

Divide level-l cells along longest edge with half the points 
in each subcell, yielding level-l + 1 cells. 

end do 
Result: 2£ cells on level L with p or p + 1 points each. 

Compute smooth weights VVi one cell at a time. 
do i = 1, 2£ 

Compute least-2-norm solution VV of 
L,zjEB; VVjPk(xj)Pl(Yj) = 8ko8wiBil for 0 ~ k + l ~ q- 1 

end do 
Use smooth weights and FMM to evaluate. uncorrected velocity field U: 

do i=1,N 
ui = L,f=l VVjK(zi- Zj)Wj 

end do 
Correct velocity field ui one point at a time. 

do i = 1, N 
ui = ui 
Find cell B1 containing evaluation point Zi. 
List cells Bn intersecting rectangle centered at Zi, with size rcB1 . 

foreach Bn do 
Form and solve least-squares problem for VVj on cell Bn: 
L,ziEBn Pk(xj)Pz(yj)K(zi- Zj)VVj =fEn Pk(x)Pl(y)K(zi- z)dxdy 
Correct contribution from Bn to ui to get Ui: 

Ui = Ui + L,ZjEBn (wj- VVj)K(zi- Zj)Wj 
end for 

end do 

Figure 3: Velocity evaluation algorithm. 
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for k + l = 0 and k + l = q. This assumption is very mild since it does not 
even guarantee that e7 is in L1 (B). It is satisfied by the Biot-Savart kernel 
e7(z) = K(z- s). 

With these assumptions, we proved the following error bound in [20]: 

Theorem 2 FixE > 0 and correct the 0(1) cells intersecting s + R where 
r c = c I/ q. Then the error in integrating cp · e7 over B with the locally corrected 
rule w is bounded by 

N 

E li cp(z)e7(z)dxdyl- [; wjcp(zj)e7(zj) 

< C(n + Ou) (I log hihqii'PIIcq(B) + cllcpllco(B)) 

where C depends only on B and the derivatives of e7, 

1 M 
n = 1 + -,B, L lwjl 

J=l 

and 

This theorem implies that we need only correct a fixed number of points as 
N-+ oo if we are satisfied with an "c+O(hk)" error bound. This error bound 
is natural in this context, since the fast multipole method itself evaluates the 
uncorrected velocity field only to accuracy E. 

Remark: It is not necessary to correct the local weights Wj to the same 
order of accuracy as the global weights W. Indeed, an efficient approach is to 
choose distinct global and local orders q9 and q1, with q9 2: q1, corresponding 
to roughly equal degrees of freedom m9 = q9 (q9 + 1)/2 and m 1 = q1(q1 + 
1). This better balances the work required by the global and local weight 
constructions, since cells of the same size can be used for both calculations. 
Table 1 shows good choices of global and local weights which roughly balance 
the degrees of freedom. In practice, almost all the CPU time is devoted to 
local corrections. 

Remark: In practice, one does not know the exact number of vortices in 
advance, and choice of L may therefore be difficult. Too many points per cell 
is wasteful, while too few can lead to large errors if the number of degrees 
of freedom is not enough to achieve the desired order of accuracy. Thus our 
code determines L internally, using a user-specified parameter S 2: 1 which 
indicates the degree of safety desired. The code determines L such that each 
level-L cell contains at least LSmJ points, where m = q(q + 1)/2. If q9 =/= qz, 
two safety parameters S9 and S1 are used. 
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qg 1 2 3 4 4 5 6 7 9 10 
qz 1 1 2 2 3 3 4 5 6 7 

mg 1 3 6 10 10 15 21 28 45 55 
mz 2 2 6 6 12 12 20 30 42 56 

Table 1: Global and local orders (q9 , qz) and required degrees of freedom 
(m9 , mz) per cell. 
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4 Implementation and numerical results 

We implemented a version of the algorithm described above in Fortran and 
studied several numerical examples. We measured the accuracy and efficiency 
of the velocity evaluation scheme in isolation, using smooth initial vorticity 
fields. Then we measured the error in a long-time calculation with Perl
man's standard test example. Finally, we studied the long-time interaction 
of several smooth patches of vorticity. 

4.1 Velocity evaluation 

First, we studied the accuracy of the velocity evaluation for several choices 
of the orders qg and q1, using two smooth initial vorticity fields for which the 
velocity can be evaluated analytically. These are the Gaussian 

1 
p= 2' 

and the Perlman test case 

wp(x, y, t) = max(O, 1- x 2
- y2 f. 

The corresponding velocity fields are 

. P2 ( e-(x2+y2)/ P2 - 1) 
(u,v)= -2(x2+y2) (y,-x) 

and 
max(O, 1 - x2 - y2

) 8 - 1 
(u,v)= 16(x2+y2) (y,-x). 

These are stationary radial solutions of the Euler equations with shear and 
popular test cases for vortex methods. 

In order to test our method, we used several different techniques to gen
erate the initial distribution of vortices. The most severe was simply to 
generate uniformly distributed random vortices on the support of the initial 
vorticity. The least severe is to use the vertices of an equispaced grid or a 
grid adapted to the initial vorticity, as in [18]. An intermediate choice is the 
following adaptive random grid. Given Nand n with n2 < N, first distribute 
n 2 vortices uniformly over the smallest rectangle R enclosing the support of 
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the vorticity. To do this, divide R into a n x n grid and choose a point Zi 

randomly in each grid cell. Of the remaining M = N- n2 vortices, put 

or mi + 1 random vortices in the ith cell of the n x n grid. Thus the remaining 
vortices are distributed in regions where the vorticity is large, providing some 
degree of adaptivity despite their randomness. 

We generated N = 200,400, ... , 51200 vortices in an adaptive random 
grid on the square [-2, 2]2 with n 2 ~ N/4 for each of the above two exam~ 
ples and evaluated the velocity at each of the vortices, using rules of orders 
(qg, q1) = (2, 1), (3, 2), (5, 3) and (6, 4). We took rc = 1 and Sg = S1 = 1.5 in 
all cases. The resulting relative discrete L 1 errors Ea and Ep for wa and wp 
respectively, memory usages M (in thousands of integers), CPU times T in 
seconds on a Sparc-2 workstation and other statistics are reported in Table 
2. Figure 4 shows some of the cell structures for these calculations. 

The velocity evaluation clearly requires CPU times and memory pro
portional to the number of vortices N, with a constant of proportionality 
depending on the order q. The CPU time is dominated by the correction 
of local weights, which in turn is mostly due to solving least-squares prob
lems. Exact evaluation of the Biot-Savart kernel and forming the matrix of 
Legendre polynomials require less than a few percent of the correction time 
all told. Thus we expect the method would be a natural candidate for par
allel computing,' since each point is corrected independently. At some cost 
in memory, the least-squares systems could be farmed out to many small 
processors to solve. 

In all cases, the error appears to be decreasing roughly according to the 
theoretical estimate E + O(hq1). Note that when N doubles, the maximum 
cell size h decreases by a factor v0, so we expect the error to decrease by 
a factor 2qd2 until E is reached. The value of E appears to be of order 10-3 

to 10-4 , sufficient for two to three digit accuracy; smaller E would require 
larger rc, implying more corrected cells per point and longer running time. 
As one would expect, higher-order methods require more vortices to yield 
higher-order convergence. However, we note that higher-order methods as 
well as lower-order ones have 0 ~ 2 for large N. 
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(qg, ql) = (2, 1) (qg, ql) = (3, 2) 
N Ea Ep M T L n N Ea Ep M T L n 

200 .55-0 .25+1 4.1 2.5 5 2.32 200 .14+1 .61+.1 3.8 7.3 4 6.89 
400 .94-1 .49-0 8.3 4.7 6 2.23 400 .20-0 .22+1 7.6 15.3 5 3.36 
800 .35-1 .63-1 16.5 7.6 7 2.07 800 .70-1 .92-1 15.1 25.0 6 2.41 
1600 .17-1 .26-1 33.9 13.8 8 2.06 1600 .88-2 .46-1 30.1 44.0 7 2.14 
3200 .87-2 .10-1 65.7 26.1 9 2.02 3200 .47-2 .84-2 60.1 78.3 8 2.10 
6400 .49-2 .55-2 131 53.9 10 2.04 6400 .22-2 .35-2 120 147 9 2.08 
12800 .31-2 .34-2 263 107 11 2.02 12800 .14-2 .15~2 240 294 10 2.06 
25600 .21-2 .23-2 525 217 12 2.02 25600 .10-2 .11-2 480 579 11 2.06 
51200 .14-2 .16-2 1050 423 13 2.04 51200 .62-3 .70-3 961 1180 12 2.10 

(qg, ql) = (5, 3) (qg, ql) = (6, 4) 
N Ea Ep M T L n N Ea Ep M T L n 

200 .14+1 .17+2 3.6 16.8 3 22.7 200 .20-0 .16+1 3.5 39.3 2 47.2 
400 .18+1 .49+2 7.2 41.2 4 66.0 400 .99-0 .41+2 7 115 3 814 
800 .27-0 .37+1 14.4 73.1 5 12.2 800 .10+1 .13+2 14 298 4 219 
1600 .24-1 .56-0 28.7 123 6 3.6 1600 .10-1 .14+1 28 591 5 18.8 
3200 .33-2 .30-1 57.3 223 7 3.6 3200 .95-2 .11-0 56 1030 6 4.39 
6400 .90-3 .27-2 114 438 8 2.9 6400 .57-3 .50-2 112 1730 7 2.60 
12800 .66-3 .96-3 229 860 9 2.8 12800 .24-3 .66-3 223 2810 8 2.33 
25600 .30-3 .39-3 458 1770 10 2.8 25600 .15-3 .25-3 447 5540 9 2.22 
51200 .27-3 .31-3 916 3530 11 2.8 51200 .72-4 .91-4 893 10900 10 2.18 

Table 2: Relative L1 errors Ep and Ea, memory usage (inK) M, CPU times 
T (in seconds on a Sparc-2), number of levels L and condition number n 
for evaluating the velocity due to Perlman-type and Gaussian vorticity fields 
with N points and a quadrature rule of orders (q9, q1). 
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Figure 4: Cell structures for velocity evaluation with adaptive random grid 
for a Gaussian vorticity with (q9, q1) = (3, 2) and N = 100,400, 1600,6400 
vortices. 
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4.2 Long-time accuracy 

We also tested the long-time accuracy of the method on the Perlman test 
case, running for 0 ::; t ::; 100 ~ 327r, a final time at which the fastest
moving particles of fluid (near the origin) have completed 8 revolutions while 
the slowest have completed only one. This strong shear is usually considered 
a severe test for a vortex method. We started with an adaptive random grid 
and used fourth-order Runge-Kutta for the time integration, with quadrature 
of orders (2, 2). We used N = 400, 800, 1600, 3200, 6400, 12800 vortices with 
Nr = 100, 140,200,280,400,560 time steps from t = 0 to t = 100. In all 
cases we took rc = 1 and S9 = Sz = 1.5. The resulting relative discrete L1 

errors in the velocity are shown in Figure 5, in base-2logarithmic scale to aid 
in the study of convergence. They clearly confirm the long-time second-order 
accuracy of the method; the oscillations observed by Perlman [15] are not 
seen. This pleasant behavior of the error is undoubtedly due to the ab initio 
calculation of the quadrature rule at each time step. Particularly encouraging 
is the slower increase of the error when more vortices are employed. 

4.3 Interacting vortex patches 

We also computed the evolution of several interacting vortex patches, each 
given by a shifted and scaled Gaussian. Thus the initial vorticity is given by 

m 

w(x, y, 0) = L ni exp( -((x- Xj)
2 + (y- Yi) 2

)/ PJ) 
i=l 

where (xi, Yi) E [-2, 2]2, Pi E [-:1,1] and Oi E [-1, 1] are pseudorandom 
uniformly distributed numbers such that the circles of radius Pi with centers 
(xi, Yi) do not overlap. We used m = 4 patches, with parameters shown in 
Table 3. We used N = 6400, 12800 arid 25600 vortices with quadratures of 
orders (q9 , q1) = (2, 2), with rc = 1 and S9 = S1 = 1.5. The evolution of this 
flow is shown in Figures 6 through 8. The figures show the final result at 
t = 36 with three different values of N; the result is clearly converged. 

23 



-:::J -4.0 
c 
~ 

0 
~ 
~ 

Q) -6.0 .,... 
_J 

Q) 

.> ....... 
co -8.0 
Q) 
~ -C\1 
C) 
0 -10.0 _J 

-12.0 ......___--'----'-----'---..&.------' 

0 20 40 60 80 100 

Time 

Figure 5: Relative L1 errors in the evolution of a Perlman patch to time 
t = 100, computed with a quadrature rule of orders (2, 2). From top to 
bottom, the lines plotted are the base-2 logarithms of the relative discrete L 1 

errors in the velocity computed with N = 400, 800, 1600, 3200, 6400, 12800 
points and Nr = 100, 140, 200, 280, 400, 560 time steps up to t = 100. 

24 



Figure 6: Evolution of four patches of Gaussian vorticity, computed with 
(q

9
, q1) = (2, 2) and N = 6400 vortices. 
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Figure 7: Evolution of four patches of Gaussian vorticity, computed with 
(q9 , q1) = (2, 2) and N = 12800 vortices. 
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Figure 8: Evolution of four patches of Gaussian vorticity, computed with 
(q9 , q1) = (2, 2) and N = 25600 vortices. 
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J Xj Yj Pj nj 
1 -0.6988 -1.7756 0.6768 -0.4515 
2 1.4363 -1.4566 0.3294 0.4968 
3 -0.1722 0.4175 0.5807 -0.9643 
4 -1.5009 -0.0937 0.2504 0.3418 

Table 3: Strengths rlj, centers (xi, Yi) and scales Pi for four Gaussian patches 
of vorticity. 
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A Exact integration formulas 

Given z0 , a cell C = [a, b] x [c, d] and a degree q, we require the integrals 

Uij(zo) = 1 1 
Pi(x)Pj(y)dxdy 

c z0 - z 

for 0 :::; i + j :::; p = q - 1. Here 

with Xm = (b + a)/2, xh = (b- a)/2 and Pi the Legendre polynomial on 
ltl :::; 1 defined by the recurrence 

Po(t) = 1, PI(t) = t, 

for i 2 1. Similar expressions hold for the y variable. 
The calculation proceeds in three steps: First, we express the product of 

Legendre polynomials in the form 

p p 

~(x)Pi(Y) = L L Q~(z0 :- z)k(.z0 - z)1 (A.1) 
k=O l=O 

where z = x + ty. We define Q~ = 0 for convenience, whenever any of i, j, k 
or l is negative or k + l exceeds i + j. Then we have 

p p 

Uij(zo) = L L Q~ 1 (zo- zl-1(z0 - z)1dxdy 
k=O l=O C 

p p 

L L Q~Skl(zo- C) 
k=O l=O 

where 
Skl(C) =·fc zk-l zldxdy 

Step two is to evaluate Skl when k = 0, and step three is to evaluate Sk1 when 
k > 0. Note that we need only evaluate Skl once and for all, for 0:::; k+l :::; p. 

Step one is done by using the recurrence for Legendre polynomials, in the 
form 
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which fo~lows from (Ao1)o Multiplying by Pi(x), using (Ao1) twice and equat
ing coefficients gives 

Qi,j+l 2j + 1 [Q01Qij Q01Qij Q01Qij ] J Qi,j-1 
kl = j + 1 00 kl + 10 k-1,1 + 01 k,l-1 - j + 1 kl 0 

We use this recurrence to evaluate Q~(+1 for i = 0, 1, 2, 0 0 0, p and j 
1, 2, 0 0 0 ,p- io 

To evaluate the first two columns of the recurrence, for which j = 0, 1, 
we use the corresponding recurrence on i, which is derived by interchanging 
x and y and i and j: 

Q
i+1,j _ 2i + 1 [Q10Qij Q10Qij Q10Qij ] i Qi-1,j 
kl - i + 1 00 kl + 10 k-1,1 + 01 k,l-1 - i + 1 kl 

for Jo = 0, 1 and i = 1, 2, 0 0 0, p- jo This leaves only the four sets of coefficients 
with i, j = 0, 1 to be evaluated, and three are easy to compute directly from 
the definition: 

Qoo 
00 

Q10 
. 00 

Q01 
00 

1 

1 ) 10 -1 -(zo + Zo- 2xm , Q10 = -
2 

, 
2xh xh 

1 - 01 -1 
-
2
-(zo- Zo - 2tym), Q1o = -

2
-, 

LYh LYh 
The fourth set can be calculated most easily by multiplying: 

implies 

1 
-(x- Xm)(y- Ym) 
XhYh 
P1(x)Po(y)Po(x)P1(Y) 
(Q~g + Qi8(zo- z) + Q~~(zo- z))(Q86 + Qn(zo- z) + Q8i(zo- z)) 

Q 11 Q10Q01 
00 00 00 

· Qll Q10Q01 + Q10Q01 
10 00 10 10 00 

Q ll Q10Q01 + Q10Q01 . 
01 00 01 01 00 

Q ll Q10Q01 
20 10 10 

Q ll Q10Q01 + Q10Q01 
11 10 01 01 10 

Q 11 Q10Q01 
02 01 01° 
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The recurrence pattern is shown in the following table: 

Qoo Q01 --+ Q02 --+ ... QOp 

"\, 
Q10 Qll --+ Q12 --+ 

! 1 "\, 
Q20 Q21 --+ Q22 

(A.2) 

! 1 
Qp-1,0 Qp-1,1 

! 
QPO 

Several approaches are possible to step two, using either complex or real 
variable techniques. The complex approach is simpler but encounters dif
ficulty when programming a convenient branch of the complex logarithm. 
Hence we present a real-variable approach to the integrals 

Soz(C) 

where subscripts x and y denote partial derivatives. When we integrate by 
parts, the double integrals cancel, and two one-dimensional integrals remain: 

Soz(C) 
1 rd b 2 lc log(x2 + y2)(x- ty)ldy Ia 

t 1b d - log(x2 + y2)(x- ty)1dx lc. 
2 a 

(A.3) 
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Integrating by parts again gives further cancellation, eliminates the loga
rithms, and yields 

where 
Fi+1 (x, y) = {x 

2 
X 

2 
(x- iy)1+1dx. 

lo x +y 

Pulling out one factor of X-iy from the power and using that x2 = x2 +y2 -y2 

gives 

where 

rx --:--1~(x- iyy+1dx 
lo x 2 + y2 

.Fl(x, y)- iYGz(x, y). 

The second line comes from applying the same trick to Gl+1· Thus we have a 
pair of coupled recurrence relations for the F's and the G's, which can easily 
be solved to yield 

(l + 1)Soz (2x)l+1 X - (-2iy)l+1 y; ix=b iy=d 
l l x=a y=c 

l 1 )k -i X- iY i 2 2 1 Y -2:::-( --log(x +y)+tan- (-) 
2 k=1 k 2x 4 x 

l ( )k -i 1 X - iY i 2 2 1 Y - L- - -log(x + y ) -tan~ (-) . 
2 k=1 k -2iy 4 X 

Yz = 

Since X 1 and Yz satisfy trivial recurrence relations, this formula is easy to 
evaluate. Note that (2x)l+1X 1 vanishes if x = 0 and (-2iy) 1+1Yz vanishes if 
y=O. 

Step three involves integrating polynomials over a rectangle since k > 0, 
so can be done several ways. Perhaps the simplest is to employ product 
Gaussian quadrature of sufficiently high order to be exact on polynomials of 
the degree involved. We present a slightly more efficient approach, based on 
the Cauchy integral formula and recurrence relations. 
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The Cauchy integral formula for a possibly non-analytic function reads 

1 r f(~) r af 1 
Xc(z)f(z) = 27rL lac~- z - lc a~~- z dA(~) 

where xc is the characteristic function of the set C and z is not on the 
boundary aC of C. Put 

1 f(z) = --zk.zl+l 
l+1 

so that 
af k-1 az = z z. 

For z = 0, we have f = 0 and therefore 

Ski(C) = 1 [ ~k-l~l+ld~ 
2L(l + 1) lac 

Parametrize each edge of C as a line segment 

~(t) = t~j+l + (1- t)~j 

where ~j are the vertices of C (1 :S j :S 5, with ~5 = 6 for convenience). 
Then 

1 4 

Ski( C)= 2L(l + 1) _f;(~J+l- ~j)Tkl(~j, ~J+l) 

where 

Tk1(a, b)= fo 1 

(tb + (1- t)a)k-1(tb + (1- t)a)1+1dt 

for 0 :S k + l :S q and complex numbers a and b. 
Tk1 can be evaluated exactly by the binomial theorem or by Gaussian 

integration since k 2: 1. Wepresent a recurrence relation based on integration 
by parts. First, observe that when k = 1 the integral is trivial: 

T _ 1 
(lJl+2 -1+2) 

11
- (l + 2)(b- a) .-a · 

For k 2: 2, we integrate by parts to obtain 

_ 1 ( k-1-1+2 k-1-1+2) (k- 1)(b- a) 
Tkl - (l + 2)(b _a) b b -a a - (l + 2)(b _a) Tk-1,1+1· 

Thus k can be reduced and l increased until the first exponent goes to 1, 
whereupon T1,k+l- 1 is trivial. The recurrence can be solved explicitly, but 
the resulting formula is best evaluated by recurrence. 
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B Nat ural interpolation and contouring 

A common difficulty in vortex methods is that the vorticity is known only at 
scattered data points, so some form of interpolation must be used to evaluate 
the vorticity at other points. One advantage of the approach of this paper is 
the natural interpolation technique provided by the tree structure. Suppose 
we have vortices Zj in a cell C and we want to know the vorticity at a point 
zinC. We approximate w(z) by a weighted sum 

w(z) ~ 2:::: nj(z)w(zj), 
ZjEC 

where the interpolation weights nj(z) form the least 2-norm solution of the 
underdetermined linear system 

L nj(z)Pk(xj)Pz(yj) = Pk(x)Pz(y), o:::;k+l:::;q-1. 
ZjEC 

This gives an qth order interpolation formula on each cell, with reasonably 
small weights if there are enough interpolation points Zj in C. 

We found this technique useful in contouring the vorticity produced by 
our method. To contour the vorticity, we first interpolated w to a sufficiently 
fine equidistant grid on the computational domain, then found the level sets 
of the linear interpolant to the grid values. This produces continuous contour 
lines. Figure 9 shows the points, the cells, and five contour levels produced 
when this technique is applied to the function 

w(x, y) = cos(kx) cos(ky) + tsin(kx) sin(ky), k = 11, t = 1/10. 

(The points and cells are omitted from the last picture for clarity.) We 
generated N = 129, 515, 2051 and 8197 pseudorandom uniformly distributed 
points in [0, 1]2, interpolated them to an equidistantgrid with M = 10, 20, 
40 and 80 points per side with fourth-order accuracy, and contoured the 
resulting values. With 8197 points on a 80 by 80 grid, for example, we 
obtained three-digit accuracy at each grid point, and Jw(z)l was less than 
0.5 x 10-2 at each endpoint of the 2018 segments obtained. The 10 by 10 
grid, of course, cannot resolve this function, but the 20 by 20 grid does well. 
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Figure 9: Contour lines produced by fourth-order scattered data interpola
tion, for random points on [0, 1 ]2. 
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