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ABSTRACT 

annihilation of soft photon emission by 

the electrons and a finite energy spread on the shapes of resonant cross 

sections and determination of resonance parameters are treated in a 

simple coherent manner. The. modification of the well-known area method 

for finding partial widths in the presence of appreciable radiative 

corrections is discussed in detail and illustrated. Experimental line 

shapes are expressed in terms of a radiatively corrected energy resolu­

tion function GR(W- W'). Numerical values and an explicit functional 

approximation for GR are given for a Gaussian distribution of beam 

energies. The emphasis is on narrow resonances such as the recently 

discovered states at 3.1 and 3.7 GeV. 

1. Introduction 

The problem of radiative corrections is familiar to workers at 

electron accelerators or + -
e e storage rings, but the recent discovery 

of resonant states with widths small compared to the beam energy resolu-

tion introduces aspects not normally considered. The purpose of this 

paper is to collect in one place formulas relevant for the analysis of 

* This work was supported in part by the U. S. Energy Research and 

Development Administration. 
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resonant line shapes and the determination of resonance parameters in 

+ -e e annihilation and to illustrate their use on the narrow resonances 

at 3.1 and 3.7 GeV. Most of the material is known to, and perhaps 

derived by, physicists at SLAG and elsewhere. Our purpose is frankly 

didactic, although the results on the radiatively corrected Gaussian are, 

to our knowledge, new. 

Only radiative corrections for the initial + -e e state are 

treated. These are all that need be considered in discussing the total 

cross sections or integrated partial cross sections. Furthermore, the 

large masses of other particles relative to electrons mean that the 

radiative corrections in the final state are less important, even for 

detailed differential angular and energy distributions, except for the 

elastic channel. 

In + -e e annihilation the lowest order radiative corrections 

are described by the six diagrams in fig. l(b). The first two diagrams 

correspond to real photon emission and their sum contributes incoher-

ently to the cross section. The other four renormalization diagrams 

are higher order in a and contribute in lowest order only by inter-

ference with the nonradiative amplitude of fig. l(a). The calculation 

of the lowest order radiative corrections is done in several places. 

The most immediately applicable reference is Bonneau and Martin1 ). 

Their eq. (16) is given below as eq. (1). 

A more complete treatment of the problem of the infrared 

divergences associated with the vanishing of the photon mass involves 

the consideration of emission of arbitrary numbers of very soft 

photons. A basic understanding of the soft photon problem was 

achieved by Bloch and Nordsieck in 1937. A comprehensive modern 
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treatment is given by Yennie, Frautschi, and Suura2 >. A pedagogical 

version of this work appears in the Brandeis lectures of Yennie3>. The 

consequence of including the multiple emission of soft photons is an 

"exponentiation" of the lowest order logarithmic corrections into power 

law corrections. A nice discussion of this exponentiation for soft 

photon emission by a classical current source can be found in Bjorken 

and Drell4). 

Radiative corrections for high-energy electron scattering by 

nucleons and by nuclei are treated authoritatively by Mb and Tsai5) 

and Tsai6 ). 

A brief account of some of the present considerations, as 

applied to the analysis of the resonance at 3.1 GeV, has been given by 

Yennie7 ). 

2. Basic Formulas 

(a) Notation We consider ultrarelativistic electrons and use 

the following notation: 

w 

E 

k 

t 

o (W) 
0 

o(W) 

total energy in the center of mass 

W/2 energy of each of the electrons in the 

initial state 

energy of an emit ted photon 

a cross section for + -e e annihilation at energy 

W in the absence of radiative corrections 

cross section with radiative corrections 
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crew> cross section with radiative corrections and 

folded with a resolution function 

M mass of narrow resonant state 

r total width (FWHM) of a resonance 

partial width of a resonance into channel a 

energy integral of an isolated resonance cross 

section, in the absence of radiation corrections 

G(W - W' ) normalized resolution function 

standard deviation parameter of a (Gaussian) 

resolution function 

2.3548 (J FWHM of a Gaussian resolution 

function 

FWHM of cr( W) for an isolated resonance 

The quantity t is the (classical) energy radiatedperunit frequency 

interval at low frequencies when electron and positron in head-on 

collision disappear. 

(b) Bonneau-Martin first order formula 

Equation (16) of Bonneau and Martin for the cross section inclu­

ding photon emission and renormalization corrections can be written in 

our notation as 

o(W) 

+ t (1) 



0 

·0 
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In the integral over dk the argument (W - k) in cr should more 
0 

correctly be (W2 - 2Wk)~, but for narrow resonances our approximation 

is perfectly adequate. Bonneau and Martin's upper limit of integration 

a has been put- equal to E, corresponding to the fact that an "1!lax 

electron can lose all its energy in radiation. The soft-photon emis-

sion is contained in the dk/k term and is just the classical result, 

corrected for energy conservation by the cross section cr
0
(W- k). It 

is convenient to rewrite eq. (1) with the soft-photon part displayed 

separately from the "hard" photon rermsi 

cr(W) 

(2) 

where 

(3) 

is a small number that changes slowly with energy. (For the ~(3100), 

where t = 0.076, E = 0.085.) The last term in eq. (2) is small com-

pared to the first two unless the energy W is far off resonance. 

From now on we omit this "hard" photon piece, although at an appropri-

ate point below we will come back and pick it up. 

With the omission of the "hard" photon terms, our slightly 

simplified version of the Bonneau-Martin formula reads 

cr(W) 
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(c) Exponentiated form of the radiatively-corrected. 

cross section 

The emission of arbitrarily large numbers of soft photons with 

energies less than k leads to the introduction of a factor2 '3) 

[ ] __ ( _kE)t exp - t Jl,n(E/k) (5) 

in the integrand of the integral in eq. (4). Then we find that the 

radiatively corrected cross section becomes 

(6) 

The justification for keeping the E cr
0

(W) term after exponentiation 

is not clear. The presence of the factor (k/E)t ~es the integral 

convergent at the lower limit. In fact, 

showing that the radiative processes redistribute theeffective energy 

of annihilation but do not alter the normalization. This argues 

for the omission of at least part of the term E cr (W) in (6). The 
. . 0 

first part of E is very small (0.0027) and can be viewed as some sort 

of "inner" correction to the width r e in the entrance channel. The 

second, energy-dependent, part of E is larger, but is not greater 

than 0.1 even at PEP or EPIC energies of W = 30 GeV. For simplicity, 

we omit the E cr (W) term from ( 6) from now on. 
0 

wishes to add its contribution may do so. 

The reader who 



(d) Folding with the energy resolution function 

The incident beams in a storage ring have inherent spreads in 

energy coming mostly from the quantum fluctuations in the emission of 

synchrotron radiation. Each beam is approximately Gaussian in energy 

and so the total energy W is distributed approximately in a Gaussian 

fashion. If the normalized resolution function for a mean beam energy 

W is G(W - W' ), the observed cross section is 

iJ<w) cr(W') G(w - W') (7) 

The resolution function G is assumed to fall off sufficiently rapidly 

that the limits of integration can be taken formally as :too without 

damage-to the physics. Using the radiative correction formula (6) for 

cr(W') this becomes 

cr(w) 100 LE' = t dW' G(W- W' )· ~(Ek' y ·a
0

(W' - k) 
-oo 0 (8) 

In using eq.(8) below, we assume that the cross sections 

a
0
(W) and cr(W) are resonant cross sections, that is, each is the 

part of the cross section in a particular channel that shows rela-

tively rapid energy variation above (or below) a smooth, essentially 

constant, background. The background cross section has its own 

radiative corrections, but that is a separate and comparatively simple 

problem. For relatively narrow resonances it will be convenient to 

make certain quite justifiable approximations. For example, with 

a 
0

(W) as a resonance whose width r is small compared to its mass M 

(the p0 meson with· M = 0.77 GeV, r = 0.15 GeV qualifies), it is 
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justified to replace the variable upper limit on the k integration 

w 
by E = 2 and to approximate 

(Note in this connection that t ranges from t = 0.06 at W 0.5 

GeV to t = 0.10 at W = 40 GeV.) Then eq. (8) reads 

cr(w) l oo ~W/2 
= t -eo dW' . O ~ (~J a0 (W 1 

- k) G(W- W') 

( 9) 

A change of variable from W' to W" = W' - k yields 

iJ<w) Loo 

dW" a ( W" ) G ( W - W" ) o R (10) 

where 

G(w - k) ( 11) 

is the radiatively corrected resolution function. 

The resolution function is assumed to be relatively narrow 

(tens of MeV at worst). Since we are interested in w values in 

GR(w) of the order of the width of the resonance, or at least not 

comparable to W/2, the integrand in (11) vanishes rapidly for large 

k and the upper limit on the integral can be replaced by infinity. 

Suppose now that the normalized energy resolution function (not 

necessarily a Gaussian) has a standard deviation a that measures its .... 
width in energy. If we use k/~ as variable in the integral in (4) 

then GR(w) can be written 
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( 
2cr )t 
; ~ F(z,t) 

fill 
z = w/:;;,., , ( 12) 

where F(z,t) is a dimensionless function, 

F( z, t) ( 13) 

Note that t varies with energy only logarithmically from resonance 

to resonance (t = 0.063 at the 0 
p ' t = 0.076 at the w(3100)). 

The function F(z,t) therefore almost depends only on the shape of 

G(w) with w in units of 3,. The dependence of GR on the beam 

energy and the energy spread is essentially all contained in the factor 

( 2cr /W ) t in eq. ( 12 ) • ., 
Equation (10) shows that, given GR(w), the folding of the 

cross section is the same as always. The radiative corrections have 

been transferred to the beam energy resolution function. For a specific 

function G( w), the integral ( 13) can be performed to obtain F( z;t) 

and hence GR(w). The example of a Gaussian resolution function G(w) 

is treated in Section 9 below. 

3. High-energy Radiative Tail 

A characteristic feature of the cross sections is a radiative 

tail on the high-energy side of a resonance, as shown in fig. 2. This 

corresponds physically to the emission of a photon by one or the other 

of the incident electrons causing the energy of annihilation to be in 

the neighborhood of the resonance mass M, even though the incident 

energy W is considerably higher. For energies sufficiently far above 

the resonance that (W - M) is large compared to both the natural line 

width r and the width ~W of the resolution function, an asymptotic 
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expansion for cr( W) can be obtained. From eq. ( 10) we see that in 

this limit, the important arguments of GR are large compared to ~W. 

This means that we can neglect the width of the resolution function 

and approximate G( w - k) :: o( w - k) in eq. ( 11). Then we find 

( 8( w) - e(w - ¥)] (14) 

for w >>cr. Not surprisingly, eq. (10) then becomes the same as the 
"" 

integral in eq. (6). Since cr
0

(W 1 ) peaks at W' = M, the relatively 

slowly varying function GR, eq. ( 14), can be expanded around 

w = W - M in eq. ( 10). Provided (W - M) >> r and 

around W = M, we obtain the asymptotic expansion, 

cr(w) 

where 

1 (w- M)t 
t(Area)0 w-:-M~-E-

( 1 - t )( 2 - t ) ~ )2 > ] W-M .o+ ... 
2(W - M)

2 

cr is symmetric 
0 

(15) 

( 16) 

is the area of the cross section without radiative corrections and 

( (W - M)
2

) 
0 

is the mean square width of the resonant cross section 

C1
0
(W). There are three necessary comments here: 

(1) The leading term, proportional to the area, is indepen-

dent of the detailed shape or symmetry of cr (W). 
0 

(2) If we had kept the lowest order terms in the width z 
of G(w), the mean square width would be replaced by <(w- Ml> + a2 • 

I 0 .._.. 

(3) For a Breit-Wigner resonance, decreasing as (W- M)-2 

asymptotically, the mean square width is infinite. This is a signal 
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that (15) is incorrect beyond the first term for such a line shape. 

The equivalent expansion is not just in inverse powers of (W - M). 

If accuracy demands more than the first term in (15), it is best to 

perform a numerical evaluation of ( 6.) or (10). 

For narrow resonances, with widths smaller than or comparable 

to the resolution, only the first term, basically the 1/~E bremsstrah-

lung spectrum, in (15) is important once (W- M) »g. For quite 

large values of (W - M) it is possible that the neglected "hard" 

photon terms are not negligible. If we keep only the leading term in 

e:q: ( 15), but go back and pick up the "hard" photon contributions from 

eq. (2), the high-energy tail becomes 

crew) [ 
. t ] W-M 1 1 W-M t( Area) · (~--) -- - - + --:or-

o \: E W - M E 2EG (17) 

The lowest order (Bonneau-Martin) cross section gives (17) with the 

factor ~W- M)/E]t omitted. As observed by Yennie7 ), an accurate 

measurement of the radiative tail, (17), allows a determination of the 

area of the cross section independent of the beam energy spread. 

4. Cross Section For a Resonance Whose Width is Large 

Compared to the Energy Resolution 

For a resonance like the p0 and even the w0
, its width r 

is large compared to the beam resolution. Then the resolution function 

G(W - W' ) can be taken as a delta function and the observed cross 

section o(W) is essentially equal to (6). An integration by parts 

gives 

cr(W) -f ( k)t d dk - - cr (W - k) 
E. dk o 

(18) 
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In writing ( 18) we have dropped a term cr (W/2), the assumption being 
0 

that, if cr
0

(W) is a resonant cross section peaking at W = M and W 

is not too far from resonance, such a term is negligible. Suppose that 

cr (W) is a Breit-Wigner resonance with widths whose energy variation 
0 

can be neglected. Then 

cr (W) 
0 

2 
(cr ) r /4 

.o max 2 (M- W) 
r2 

+-
4 

( 19) 

The cross section (cr
0

)max is the peak cross section; its value 

depends on the particular channel or channels being considered. With 

( 19) inserted, eq. ( 18) becomes 

cr(W) 2(M - W + k) dk 

[(M- W + k)2 + r:r 
( 20) 

It is probably simplest at this stage to integrate numerically in order 

to see what (20) gives. 

For reference and orientation we evaluate (20) at W = M. This 

is essentially, but not quite, the peak cross section, the maximum being 

infinitesimally higher in magnitude and in position. We find 

cr(M) c 'lft/2) ( r )t 
sin( 'lft/2) M ( cr o )max ( 21) 

The first factor can be approximated as 

('lft/2)/sin(nt/2) ~ (1 + n2t 2/24). It is equal to unity within 0.004 

or less up to W = 30 GeV. Thus cr( M) == ( r /M) t ( cr ) • Numerically 
o max 

for the p0 meson, with M : 770 MeV, t = 0.063, r = 150 MeV, we 

find (f/M)t - 0.90. For the w0 meson, with f = 10 MeV, 

(f/M)t = 0.76. The reduction in peak cross section because of 
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radiative processes is thus not negligible and is larger the smaller 

the width (provided the energy resolution is good--see the next 

section). 

For completeness we note that the lowest order radiative 

correction gives a factor ( 1 - t R.n(M/f )) instead of ( r /M)t, 

corresponding to the first terms in an expansion of 

(r/M)t = exp[-t R.n(M/f~ in powers of t. For the w0 the linear 

radiative correction factor is 0.723 instead of 0.758. Inclusion 

of E cr~(M) from eq. (2) or (6) adds 0.072 to the 0.723, giving 

0.795. 

The high-energy radiative tail is given by eq. (17) with 

!. r( cr ) 2· o max ( 22) 

5. Cross Section For a Resonance Whose Width is Very Narrow 

Compared to the Energy Resolution 

Although the general circumstance of a resonance whose width 

is comparable to the energy resolution can be dealt with effectively 

only by numerical integration, the limit of a very narrow resonance 

(or very poor energy resolution) can be discussed simply if the reso-

lution function G( w) is known. For a resonant cross section with 

a total width r that is very small compared to the width ~ of 

G(w), we can approximate the cross section cr
0
(W") in (10) by 

a (W") = (Area) o(W" - M). Then we obtain 
0 0 

o(w) 

where GR(W - M) is the radiatively corrected resolution function 

( 11 ). 
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We discuss the detailed shape of GR(w) for a Gaussian G 

below. Here we content ourselves with considering the value of the 

cross section at W = M. From ( 12) and ( 13) we find 

cr(M) = ( 
2
:) G(O)·N(t) 

where 

N( t) F( 0, t) 
~ ... 

- l"" dx t G(~x) -t -x--
x G( 0) 

0 

( 24) 

( 25) 

is a number depending upon t and on the shape of G( w). It is a 

number close to unity, as can be seen qualitatively as follows. 

Suppose that the resolution function is of rectangular shape, 

G(w) = (2-{3 .2)-1, 

1 + 0.5493 t. 

- "'{3 cr < w < -{3 cr. Then N( t) = ( 3) t/2 -
... ... 

For the more realistic Breit-Wigner resolution function, 

G(w) (fi..W/2rr) 

with fi..W playing the role of 2cr, the value of N(t) can be read off ... 
from (21) to be N(t) (nt/2) cosec(Trt/2)- 1 + n2t 2/24. For the still 

more realistic Gaussian shape, we find 

N( t) 2t12 r( 1 + !.) 
2 1 + 0.058 t. 

For an inverted, truncated parabola, N(t) = 2(5)t/2/(2 + t) ~ 

1 + 0.3047 t. For reasonable resolution functions, then, we find 

( 26). 

N(t) to be a number within a few percent of unity for t < 0.1, and 

for the Breit-Wigner or Gaussian much closer. The observed peak cross 

section for a resonance whose width is negligible compared to the 

energy resolution is therefore given closely by ( 24) with N( t ) = 1. 
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Theradiative processes decrease the peak cross section by a factor 

TYPical values for the ~(3100) are M = 3095 MeV, 

a= 0.78 MeV, t = 0.076. These give (2a/M)t = 0.561, a very 
"" .... 

significant reduction. 

6. Area Method of Determining Resonance Widths in the 

Presence of Radiative Corrections 

The area method is one of the most reliable for determining 

resonance parameters because the details of the energy resolution are 

minimized to a great degree (In principle, they are eliminated 

entirely. ) . The method is well known in nuclear physics. The only 

new aspect here is the presence of soft-photon processes. Firstly, 

consider only the energy resolution. If the resonant cross section 

is a (W) then the folded cross section is 
0 

cr(w) J G(W - W') a
0
(W') dW' 

We now integrate the cross section, smeared by the resolution function, 

from wmin to a variable upper limit w •. The lower limit wmin is 

chosen in practice to be where the resonant part of the cross section 

first begins to be visible above the background. The integral is 

f W cr(W') dW' 

w. 
r dW'fdW" G(W' - W") a0(W"~ 

wmin lllJ.n 

The behavior of A(W,Wmin) as a function of W is shown schematically 

in fig. J(b). In fig. J(a) the cross section and the folded cross 

section are sketched. At positive values of (W- M) large compared 

to the observed width robs of cr(W) the integral becomes constant. 

Its values is found by interchanging orders of integration above.. 

Since G is normalized we find 

lim A(W,Wmi ) 
(W-M)»r b n 

0 s 
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a (W") 
0 

_ (Area) 
0 

( 27) 

The plateau value of A(W,W . ) is thus equal to the area of the orig­
lllJ.n 

inal cross section, independent of the form or details of G(w - W' ). 

The method needs only slight modification because of the 

radiative corrections. We begin with the smeared cross section with 

radiative corrections, eq. (8), and integrate it from Wmin to W: 

x a (W" - k) 
0 

Since we are concerned with resonances whose observed widths are small 

compared with W it is permissible to neglect the energy variation of 

a factor (M/2E")t--even for the p0 it causes an error of less than 

1%--and also put the upper limit on the dk integration as M/2. Then 

an integation by parts in the dk integral gives 

A(W,Wmin) 
rw 

Jw dW' 
wmin L oo fM/2 t 

..oo dW" G(W' - W") O dk ( ~) 

X 

da (W" - k) 
0 

dW" 

If we now perform the dW" integration and integrate by parts, we 

obtain 
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X dG(W' - W") 
dW' 

Now we can do the W' integration: 

X [G(W - W") - G(W . - W" )] · m1n 

Since W = W . is the energy below which there is no resonant cross 
IDln 

section, the last term G(W ·. - W") can be dropped. Then a change 
IDln 

of variables in the dW" integr.al gives 

JM/2 Loo 
= 

0 
dkc~J -00 dW' cr

0
(W') G(W - k - W') . ( 28) 

To see the behavior of A( W, W . ) we note that the integral over dW 1 
ro1n 

is confined by the resonant cross section cr
0
(W') to a range of the 

order of ±r around W' = M. The resolution function, on the other. 

hand, is nonvanishing only for IW- k- W'l ~ ~W. If (W- M) is 

large compared with the larger of r and ~W, the range of the dk 

integration is confined to k ~ (W- M) ± r ± ~W. Since the factor 

( 2k/M)t is slowly varying provided k is not too small, it can be 

evaluated at k = (W - M) in this limit and taken outside the inte-

gral. The remaining integrals are just as in the radiationless 
' 

situation, provided (W - M) >> ~W. We thus obtain 

or 
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( ) [2(W M M)]t ·(Area )o A w,wmin + 

(Area) = 
0 

t 

lim [2(W ~ M)l ·A(W,Wmin) 
(W-M)»r ,~W 

( 29) 

This is the generalization of eq. (27) to include the effects of the 

radiative corrections. The integral A(W,W . ) continues to increase 
ro1n 

slowly with increasing W because of the radiative tail, (15), rather 

than levelling off to a plateau as in fig. 3(b). The factor 

[M!2(W- M)]t, which is larger than unity but decreases with increasing 

energy, corrects for the rise in A(W,W . ). The product is larger 
IDln 

than A(W,W . ), compensating for the reduced cross section near the 
IDln 

resonance, but levels off to a well-defined plateau thatiis the true 

area of cr
0

(W) in the absence of soft-photon processes. In practice, 

one calculates A(W,Wmin) as a function of W and then begins multi­

plying by the correction factor for values of W slightly above the 

resonance. 

7. Example of determination of r for 1/1(3100 ) 
e 

To illustrate the use of eq. (29) we consider the integration 

( 
+ -of the cross section cr e e + hadrons) to determine r e for the 

1/1(3100). We use the data from Augustin et a1. 8 ) These are not the 

latest or best data, but they are accessible in the literature and 

serve for purposes of illustration. 

The data on e+e- + hadrons near 3.1 GeV are plotted on a 

linear ordinate scale in fig. 4. A background cross section of 25 nb 

has been subtracted. Also shown are the radiative correction factor 

[M/2(W- M)]t, the integral A(W,W . ) and the product of the two. m1n 
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The plateau value for the area according to eq. (29) is 

11.5 X 103 nb X MeV 

For a narrow resonant line (19) the area is given by (22). If 

a J = 1- assignement is assumed, the peak cross section for a reaction 

a + b is 

(30) 

where ra,rb are the partial widths for the two channels and r is 

the total width. The product rarb/f is thus determined to be 

-~ r(Area )o] 
61r ~ ab 

4.34 x l0-14[M(Mev)) 2·(Area(nb ~Mev)] MeV. 

( 31) 

The numerical factor converts nb to (MeV)-2, as well as including the 

( 2)-l 3 factor 61r • For M = 3105 MeV and (Area) = 11.5 x 10 nb x MeV, 
0 

this gives 

4.81 X 10-3 MeV . 

A rough estimate of the error in determining the area and the resonant 

mass indicates a generous uncertainty of 5 to 10%, apart from systematic 

errors. 

Integration according to eq. (29) of the cross section 

( + - + -) 8) a e e + ~ ~ of Augustin et al. (called by them the cross section 

for 2-body, collinear events that are not pairs of electrons) gives 

-20-

(Area)~~ ::: 7.8 x 102 nb x MeV 
0 

with an error of 20% at most, apart from systematics. Assuming this 

• + - + -cross section 1s truly e e + ~ ~ we have 

r r 
e ~ -r- 3.3 X lo-4 MeV 

We thus have f~/fhad = 0.068. Assuming that r = re + r~ + rhad and 

that r = r (This is consistent with the observed resonant contribu­
~ e 

tion in the e+e- + e+e- channel and the results of Ford et al. 9 )), 

we can solve for re' rhad' r: 

fe 5.5 ± 0.5 keV 

81 keV 

r = 92 keV . 

The error on rhad and r .is probably less than 20%, apart from 

systematics. 

With a larger sample of data and better estimates of efficien­

cies the LBL-SLAC collaboration have presented more recent results. 10 ) 

Including estimates of systematic errors, these are 

(Area)
0 

= (10.8 ± 2.7) x 103 nb -MeV and 

r 5.2 ± 1.3 keV e 

r 77 ± 19 kev 

M 3095 ± 5 MeV 
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8. Quick and Dirty Method of Estimating (Area)
0 

While the area method is most reliable in determining (Area)
0

, 

a fair estimate can be made quickly using the radiative correction 

factor for the peak cross section. For a resonance seen in good 

resolution (Sect. 4) we found a factor ( r /M)t and for one seen in 

poor resolution (Sect. 5), ( 2o/M)t where .2. is the standard deviation -
of a Gaussian resolution function. Since the FWHM of a Gaussian is 

~W = 2.3548o, a general radiative reduction factor for whatever condi-

tions of narrowness is 

radiative ( 32) (omax)with radiative 
processes processes 

' 

where ~Wobs is the observed FWHM of the line. This interpolates 

between the two limits smoothly and is in error by less than 1% in 

comparison with ( 2aJM) t. 
If the observed line is assumed to be Gaussian in shape, its 

area, without radiative tail, is 

(Area)obs ( 33) 

If the line shape is a Breit-Wigner, the coefficient 1. 0645 becomes 

n/2 = 1.57. We assume here that the resonance is narrow and the resolu-

tion function is Gaussian, so that the observed line shape is approxi-

mately Gaussian. 

The true area can thus be estimated from eqs. (32) and (33) 

to be 

(34) 
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The radiative tail produces a skewing of the symmetrical line shape, 

but makes an effect of only a few percent on ~Wobs· 

As an example of the use of ( 34) we consider the data of 

Augustin et al., used previously in fig. 4. The observed peak cross 

section and FWHM are (o ) = 2300 nb, ~W b = 2.5 MeV. With max obs o s 

M = 3105 MeV and t = 0.076, eq. (34) gives 

(Area)
0 

= 1.0645 x 1.72 x 2300 x 2.5 10.5 X 103 nb X MeV . 

This is to be compared with the value of 11.5 x 103 nb x MeV found 

by the area method. 

9. Radiatively Corrected Gaussian Resolution Function 

Since the beams in e+e- storage rings are expected to give a 

roughly Gaussian spread in energy, we consider 

G(w) 1 2 2 -- exp( -w /2o ) 
-..{;a -_... 

The function F(z,t) of eq. (13) is then 

F( z, t) t 

Vrr 
2 t-1 -(z-x) /2 dx x e 

(35) 

This can be recognizedll) as an integral representation of a Weber's 

parabolic cylinder function, Dv(x). Thus we have 

F( z, t) 
2 

f(l + t) e-z /4 D (-z) 
'{2; -t 

( 36) 
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Some mathematical properties are 

(a) In the limit t ~ 0, 

Gaussian ( .35 ) • 

D ( -z) 
2 

e-z /4 and we recover the 
0 

(b) For large positive z, the asymptotic expansion of 

F(z,t) is 

F(z,t) - t zt-l [1 + (l- ~~( 2 - t) + ···]. ( .37) 

This is just the soft-photon part of the radiative tail discussed in 

Sect. ,3. 

(c) For large negative z, the asymptotic expansion is 

F( z 't ) :: f( 1 + t ) e -z2/2 ( ; )t [1 - t( 1 2 t ) + •• ·J 
"{2; · TzT 2z 

( 38) 

Note that on the negative side the radiatively corrected Gaussian has 

its exponential decrease augmented by a power law factor, 'ZI -t. 

(d) The parabolic cylinder functions can be expressed in terms 

of confluent hypergeometric or Kummer functions. One such representa-

tion is 

F( z, t) = 
2t/2 r (1 +!) 
-------~-~--2~--Mcl- t 1 -..{2-i 2 ' 2' 

ll) - 2 

t r( 1 + t ) (, t 3 1 2 ) < ) 
+ 2 2t/2 r ( 1 + ~ }z M ~ - 2' 2' - 2 z . 39 

·rn eq. (39) the function M(a,b,x) is the standard confluent hyper-

geometric function defined by the series, 

M(a,b,x) 
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00 

~ a(a + l)(a + 2)···(a + n- 1) xn 
L b(b * l)(b + 2)···(b + n- l)"iiT 
n=O 

and sometimes written as 1F1(a; b; x). 

(e) The values of F(O,t) and F'(O,t) can be read off from 

eq. ( 39 ). 

The function F( z, t) has been evaluated for t.he interesting 

range of t values, 0.06 to 0.10 (W = 0.5 GeV to W = 40 GeV). The 

evaluation was done with the original integral representation, after 

an integration by parts, and also with the representation (39),using 

a library routine for confluent hypergeometric functions in the LBL 

computer. Except for very large lzl, where the convergence of the 

hypergeometric series routine is poor, the two sets of values agree 

to four or more significant figures. The table 'contains values of 

F(z,t) for t = 0.070, 0.075, 0.080, 0.085, and z values of 

-5(0.5) - 2, -2(0.2)2, 2(0.5)8. The t range corresponds to 

W:: 1.6 GeV to 8.0 GeV. Figure 5 shows a typical curve of F(z,t) 

for t = 0.08, together with the Gaussian, eq. (35). The soft-photon 

emission changes the position and height of the peak only slightly, 

but causes a skewing of the curve and adds the radiative tail. The 

full width at half maximum is only a few percent greater than for the 

uncorrected Gaussian. Remember, however, that GR(w) has the factor 

(2cr/M)t multiplying F(z,t). The height of the peak is therefore 
"""' 

reduced, often considerably, as discussed in Sect. 5. 
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10. Approximate Explicit Representation of GR(w) for a 

Gaussian G( w) 

To facilitate the folding of cross sections according to eq. 

(10) without the necessityofcomputing the function F(z,t) for a large 

array of z values, a relatively simple explicit approximation to 

F(z,t) has been evolved. The functional form is 

-t/2 

0.31 0.73 z + z2 

F cl + ~.J,s 
+ ~ , )t , t G :2 :~~ ~Jll + __ __,.l(..;:l_-__;:,t ~)(..::,2_-_t.::-)!1-/.::..2 ___ ) 

[ ~- /~ 2;"1
2 

+ 2.44 + 1.5t]J 
') (40) 

This is a somewhat ungainly expression, but it does incorporate the 

proper asymptotic behaviors (37) and (38) including O(z-2 ), has 

approximately the correct values for F(O,t) and F'(O,t), and is found 

to differ from the true F( z, t) by less than 0. 5% in absolute value for 

an infinite strip in the z-t plane, -oo < z < oo, 0 ~ t ~ 0.10. 

Over most of the important range of z it represents F(z,t) to 

within one or two parts in 103. 

If one percent accuracy is adequate, eq. (40), together with 

(12) and (10), can be employed to compute the energy resolution-folded, 

radiatively-corrected cross section in the same manner as without soft-

photon processes. It is important to remember in such integrations 

that F(z,t) has a radiative tail that falls off slowly with energy. 

Unless the cross section itself cuts off the integrand in (10), the 
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integral may appear to diverge. This is one reason for defining 

cr0(W) to be the (resonant) cross section above background. 

11. A Few Examples of Cross Sections, With and Without Interference 

Figures 6, 7, and 8 are examples of the energy dependence of 

cross sections for + - + - + -e e + hadrons and e e + ~ ~ , with the effects 

of finite beam energy spread and radiative corrections included. It 

has been assumed that the resonant state has iP = 1- and that th~ 

coupling to leptons is parity-conserving and the same for electrons 

and for muons. For + - + -e e + ~ ~ , the ordinary one-photon annihilation 

amplitude interferes with the resonant amplitude. The cross section 

for + -e e + hadrons is actually the total cross section, minus the 

resonant contribution from the leptons (it involves a factor 

rh;r = 1 - 2fe/r), plus an energy independent background cross section 

+ - + -
crb. For the e e + ~ ~ channel, the background cross section is 

(cr~~)QED = 4na
2
!3Mf. 

Figure 6 is the cross section for + -e e + hadrons with 

parameters appropriate for the ~(3100) seen with an energy resolution 

typical of the beamslin SPEAR II. The dotted curve here, and in figs. 

7 and 8, is the cross section cr
0
(W) without either radiative 

corrections or smearing with the energy resolution function. The 

solid curve is the cross section with both these effects included. 

The reduction in peak cross section and the radiative tail on the high 

side of the resonance are the significant features. 

Figures 7 ·and 8 represent cross sections for the channel 

+ - + -e e + ~ ~ for the ~(3100) and ~(3700) respectively, again with 

typical SPEAR II energy resolution. The one-photon and resonant 
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amplitudes interfere destructively below the resonance, giving a 

dramatic dip in the "bare" cross section. The radiative corrections 

and, more importantly, the finite energy resolution reduce the effect 

to 10-30%, but at the same time move the minimum a few MeV away from 

the peak. The interference for the ljJ( 3100) has been observed at the 

level of a three standard deviation effect,10 ) leading to the not 

unexpected spin-parity assignment of iP = 1-. At present, the cross 

+ - + -section for e e + ~ ~ near 3700 MeV is not accurately enough 

known to check the iP = 1- assignment assumed here. It should be 

noted, too, that the total width r = 300 keV assumed for fig. 8 is 

merely exemplary. The total width of the ljJ( 3700) is presently only 

known to be somewhere between 200 keV and 800 keV.lO) 
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Table of the radiatively corrected Gaussian energy resolution 

function F(z,t), given by eq. {36), for four t values 

z t = 0.070 t = 0 • .075 t = 0.080 t = 0.085 

-5.0 1.280 ( -6) 1.267 ( -6) 1.254 ( -6) 1.241 ( -6) 

-4.5 1.386 ( -5) 1.372 { -5) 1.358 ( -5) 1.345 ( -5) 

-4.0 1.169 { -4) 1.158 ( -4) 1.148 ( -4) 1.137 ( -4) 

-3.5 7.691 (-4) 7.624 ( -4) 7.557 (-4) 7.492 (-4) 

-3.0 3.944 ( -3) 3.913 (-3) 3.881 (-3) 3.850 ( -3) 

-2.5 1.578 (-2) 1.566 ( -2) 1.555 (-2) 1.544 ( -2) 

-2.0 4.925 ( -2) 4.894 ( -2) 4.863 ( -2) 4.833 (-2) .• 

-1.8 7.245 ( -2) 7.203 (-2) 7.161 (-2) 7.119 (-2) 

l 
.::1.6 1.025 ( -1) 1.019 ( -1) 1.014 ( -1) 1.008 ( -1) 

-1.4 1.393 ( -1) 1.386 ( -1) 1.379 ( -1) 1.373 ( -1) 

-1.2 1.821 ( -1) 1.813 ( -1) 1.805 ( -1) l. 797 ( -1) 

-1.0 2.-288 (-1) 2.279 (-1) 2.271 (-1) 2.262 ( -1) 

1 -0.8 2.765 (-1) 2. 757 ( -1) 2.748 (-1) 2.740 (-1) I ~.6 3.215 (-1) 3.207 ( -1) 3.199 (-1) 3.192 (-1) 

-0.4 3.595 (-1) 3.590 (-1) 3.584 (-1) 3.579 ( -1) 

1 -0.2 3.870 (-1) 3.867 (-1) 3.865 ( -1) 3.862 ( -1) 

' 0.0 
4.010 (-1) 4.0ll (-1) 4.013 ( -1) 4.015 (-1) 

! 0.2 4.002 ( -1) 4.009 (-1) 4.015 (-1) 4.022 ( -1) 

I 0.4 3.850 ( -1) 3.862 ( -1) 3.874 ( -1) 3.886 (-1) 

l 0.6 3.573 ( -1) 3.591(-1) 3.608 (-1) 3.625 ( -1) 

I 0.8 3.204 ( -1) 3.226 ( -1) 3.247 (-1) 3.269 (-1) 

1.0 2.780 (-1) 2.805 ( -1) 2.831 (-1) 2.856 ( -1) 

1.2 2.340 (-1) 2.368 (-1) 2.396 (-1) 2.424 (-1) 

Table continued next page 
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Table continued. 

Table of the radiatively corrected Gaussian energy resolution 

function F(z,t), given by eq.(36), for four t values. 

z t = 0.070 t = 0.075 t = 0.080 t = 0.085 

1.4 1.916 ( -1) 1.946 ( ~1) 1.976 (-1) 2.006 ( -1) 

1.6 1.535 ( -1) 1.565 ( -1) 1.596 ( -1) 1.627 ( -1) 

1.8 1.209 ( -1) 1.239 (-1) 1.269 ( -1) 1.300 ( -1) 

2.0 9.436 (-2) 9. 731 ( -2) 1.003 ( -1) 1.032 ( -1) 

2.5 5.205 ( -2) 5.463 (-2) 5. 721 ( -2), 5.982 ( -2) 

3.0 3.304 (-2) 3.521 ( -2) 3.741 (-2) 3.962 ( -2) 

3.5 2.487 ( -2) 2.673 ( -2) 2.860 ( -2) 3.049 (-2) 

4.0 2.079 ( -2) 2.241 ( -2) 2.404 (-2) 2.570 ( -2) 

4.5 1.822 ( -2) 1.965 ( -2) 2.111 ( -2) 2.259 ( -2) 

5.6 1.632 (-2) 1. 762 ( -2) 1.894 ( -2) 2.028 ( -2) 

5.5 1.482 ( -2) 1.600 ( -2) 1. 721 ( -2) 1.844 ( -2) 

6.0 1.359 ( -2) 1.468 ( -2) 1.580 ( -2) 1.694 ( -2) 

6.5 1.256 ( -2) 1.358 ( -2) 1.462 ( -2) 1.567 ( -2) 

7.0 1.168. ( -2) 1.264 ( -2) 1.361 ( -2) 1.460 ( -2) 

7.5 1.093 ( -2) 1.183 ( -2) 1.274 ( -2) 1.367 ( -2) 

8.0 1.027 ( -2) 1.112 ( -2) 1.198 (-2) 1.286 ( -2) 

~ 
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FIGURE CAPTIONS 

F. 1 e+e- annihilation via one-photon exchange. (a) Lowest order lg. . 

diagram; (b) Higher order diagrams,· the top two involving real 

(soft) photon emission and the next four each involving one 

additional virtual photon. 

Fig. 2. Resonant cross section, without radiative corrections (dashed 

line) and with (solid line). 

Fig. 3. Area method of determining rarb;r for a resonant cross 

section. (a) Resonant line with and without smearing from 

finite energy resolution; (b) The integral A(W,Wmin) as 

a function of W. 

Fig. 4. Illustration of the use of the area method for determination 

of rerh;r for the ~(3100). The data of reference 8 for 

e+e- ~ hadronsare plotted with a background cross section of 

25 nb subtracted. The dashed curve is one tenth of the area 

A(W,Wmin), while the solid curve above it is one tenth of the 

radiatively corrected area (right-hand side of eq. (29D. 

Also shown is the radiative correction factor (M!2(W- M)]t 

(scale at .the right). 

Fig. 5. Gaussian energy resolution function G(w), eq. (35) (dotted 

curve) and radiatively corrected Gaussian F(z,t), eq. (36), 

for t = 0.08 as functions of z = w/~. 

Fig. 6. Cross section for e+e- ~ hadrons at the ~(3100) as a 

function of total em energy W. Resonance parameters are 

M = 3095 MeV, r = 5.2 keV, e f = 77 keV. The standard 

deviation of the Gaussian energy resolution function is 

cr = 1.0 MeV. 
Ill\ 

Background cross section is crb = 22 nb. 



Fig. 7. 

Fig. 8. 
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Cross section for + - + -e e .... ll ll at the 1/!(3100) as a 

\ function of total em energy W. The same resonance parameters 

a.s for fig. 6. 

Cross section for at the 1jJ(3700) as a 

function of total em energy W. The resonance parameters are 

chosen to be M = 3684 MeV, re = 2~2 keV, r = 300 keV. The 

energy resolution is cr .7 1.5 MeV. 
. """ 
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