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THE RELIABILITY OF DSM IMPACT ESTIMATES 

Edward L. Vine, Lawrence Berkeley Laboratory, Berkeley, CA 

Martin G. Kushler, Michigan Public Service Commission, Lansing, MI 

Abstract 

Demand-side management (DSM) critics continue to question the 

reliability of DSM program savings and, therefore, the need for funding such 

programs. In this paper, we examine the issues underlying the discussion of 

reliability of DSM program savings (e.g., bias and precision) and compare the levels 

of precision of DSM impact estimates for three utilities. Overall, the precision 

results from all three companies appear quite similar and, for the most part, 

demonstrate reasonably good precision levels around DSM savings estimates. We 
conclude by recommending activities for program managers and evaluators for 

increasing our understanding of the factors leading to DSM uncertainty and for 

reducing the level of DSM uncertainty. 

Introduction 

Supporters of energy efficiency assert that demand-side management 

(DSM) is a reliable resource that should be included in a utility's resource planning 

activities. However, DSM skeptics continue to question the reliability of DSM 

program savings and, therefore, the need for funding such programs. DSM planners 

and evaluators will need to address this issue in the coming years if DSM is to 

continue. Thus, the purpose of this paper is to examine the issues underlying the 

discussion of reliability (e.g., examining other areas of uncertainty in demand-side 

and supply-side planning, and the potential negative side effects of focusing on 

levels of precision). In addition, we compare the levels of precision of DSM impact 

estimates for three utilities. 
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As described below, a few state and federal regulators have addressed_ the 

reliability of DSM programs and the precision of energy-savings estimates (e.g., 

California, Massachusetts, New Jersey, Pennsylvania, and the U.S. Environmental 

Protection Agency). As DSM comes under even greater scrutiny in a more 

competitive environment, it is expected that additional state and federal regulators 

will have to respond to these issues (e.g., as part of the development of statewide or 

national measurement and evaluation protocols). In the last few years, a number of 

practitioners in the field of DSM program evaluation have discussed the issue of 

reliability and uncertainty in the literature, in regulatory hearings, and in program 

evaluations (e.g., Buller and Miller 1992; Hanser and Violette 1992; Horowitz 1992; 

Messenger et al. 1994; NEES 1994; Quantum Consulting 1994; Raab and Violette 1994; 

Schlegel et al. 1991; Sedmak et al. 1994; Sonnenblick and Eto 1995; Violette 1991; and 

Xenergy 1993 and 1994). After reviewing this !!l~t~_ri_al~_we _!ec~rrun~Il,cl_~~tiyities fQr 
improvh1g-our-u~d~r~t~d~g-~d~-P~;~ibly, reducing the uncertainty of DSM as a 

resource. 

Putting DSM Uncertainty in Perspective 

There is always uncertainty about the savings associated with DSM 

measures. This level of uncertainty permeates all DSM program evaluation 

activities: e.g., designing samples, collecting and analyzing data, and interpreting 

and reporting the results of evaluations. Given this level of uncertainty, one must 

understand the limits of evaluation - what can and cannot be accomplished by 

evaluation. 

Many factors influence the value of a resource to a utility, and uncertainty 

across all of these factors influences the investment risk related to that resource. 

According to a recent report prepared for the National Association of Regulatory 

Commissioners (NARUC), uncertainties are inherent in both supply-side as well as 

demand-side resources and, therefore, the evaluation of demand-side resources may 

in principle be no more uncertain than the evaluation of supply-side resources 

(Raab and Violette 1994): 
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Supply-Side Uncertainties 

• Future prices of fuels (natural gas, oil and coal) 

• Future availability of supply-side plants (major outages at 
baseload plants and forced and unforced outage rates) 

• Capital costs of plants 

• Operating costs of plants 

• Changing environmental regulations 

• Demand and energy forecasts 

• Development time frames 

• Licensing and construction time frames 

• Public opposition 

• Future regulatory structure 

Demand-Side Uncertainties 

• Uncertainty in DSM impacts (operating assumptions, 
interactions between measures, persistence of savings, 
projections of program participation, estimated technical 
potential) 

• Uncertainty in DSM costs (program marketing, measure 
installation) 

• Level of free riders, spillover (including free drivers), and 
snapback 

• Demand and energy forecasts 

• Future regulatory structure 

Compared to uncertainties in long-run forecasted (incremental) demand 

levels (which may be off as much as +/- 50%), estimated DSM impacts may be 

viewed as relatively accurate (ibid.). For example, the North American'Electric 

Reliability Council has experienced large errors in forecasting demand: summer 

peak demand was projected in 1973 to reach 734 GW by 1983, but actual demand was 

448 MW, a 39% error (DOE 1995). Uncertainty bands around load growth may be 
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even greater and is a more important variable because load growth projections 

(especially, peak load growth as well as transmission and distribution growth) are 

used by system planners to determine incremental resource acquisition needs. 

Nevertheless, compared to the supply side, demand-side uncertainties are 

relatively new and, therefore, are of more interest to regulators, utility staff, and 

intervenors. Measures of reliability are needed for characterizing the uncertainty of 

DSM, as discussed in the next section. 

Measures of Reliability 

The "mean" (average) estimate is typically regarded as the best estimate of 
DSM-impacts: However, -fwootner-detern\inants~-the level-of bias- (e.g., systematic 

omission of key variables, see below) and precision (acceptable variation around the 

estimated mean load impacts) of DSM program impact estimates, are needed to 

assess the reliability of DSM as a resource. A good example of the relationship 

between bias, precision and reliability is presented in the following: 

". . . imagine a bull' s eye target. If your shots are tightly 

placed in the center, then your rifle (measuremen~ and 

evaluation study) is unbiased and precise. It is reliable. If 

however, your shots are in a tight pattern but all to the left 

of the target, then your rifle is precise, but biased. An 

imprecise but unbiased rifle would produce a pattern that 

is centered about the hull's eye, but widely scattered. 

Consequently, a study may be quite precise but unreliable 

because it is biased; or unbiased but still unreliable because 

it has too great a variance." (Messenger et al. 1994) 

Most practitioners feel that evaluations should produce credible results 

that focus on the elimination of bias and attempt to be precise, but are flexible in 

levels of precision. I It is hoped that these unbiased estimates become more precise 

over time. 

1 Examples of categories of bias include the following: nonrepresentative samples, self-selection in participating in 
programs, contamination from other programs, measurement error in variables examined, and omitted variables. 
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The degree of credibility that may be attached to results is expressed by the 

level of statistical confidence (e.g., 90% confidence). This is in contrast to the 

precision of the estimate, which is gauged by'the width of the confidence interval 

itself. Confidence and precision are competing ends. For a fixed sample size and 

variance, a reduction in the interval width, causing greater precision, can be 

achieved only at the expense of reducing the level of confidence, and vice versa. The 

only way to increase both confidence and precision is to collect a larger sample, but 

there are costs associated with this (see below). Thus, precision levels (and our 

confidence in savings results) are typically driven by budgets, not a priori accuracy 

criteria. And the budgets will affect the type of evaluation methods (e.g., 

econometric methods based on whole-premise billing data, or metering methods 

utilizing information on specific equipment installed) used to estimate energy 

savings (and vice versa), also affecting the uncertainty of th~ evaluation results and 

program cost-effectiveness (Sonnenblick and Eto 1995).2 

As noted above, the accuracy of estimates of DSM impacts is generally 

reported using a measure of precision at a given level of confidence. In 

conventional medical studies, where the risks of error can be life threatening, 

researchers are "confident" that their findings are correct if there is less than a one 

percent chance that the true population mean is 2.5% or above, or 2.5% below, the 

study estimate (this is called a "99 /5" decision rule) (Horowitz 1992). In social 

sciences, researchers often report their results at the 95% confidence level (implying 

a willingness to accept a 1 in 20 random event to be misinterpreted). Many 

suggestions regarding what might be reasonable confidence and precision levels for 

DSM impact evaluation are based on the experience of load research. Load research 

has long had a standard of 90% confidence and 10% precision ("90/10" rule), but load 

research simply measures a level of consumption, and not a change in consumption 

which is less predictable and which is relatively small. Thus, the 90/10 standard is 

too stringent for evaluating DSM savings. In general, most experts agree that the 

precision guideline for load research is not suitable for the DSM savings situation 

where changes are being measured, in contrast to the one-time, static precision of 

consul!lption (as in load research) (Hanser and Violette 1992) . 

. 2oifferent methods are subject to different uncertainties that will result in different estimates of precision. For 
example, some methods (e.g., multivariate regression) have relatively strict assumptions (e.g., normality and little 
correlation among independent variables). 
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Moreover, these specifications of confidence are conventions only: 

" ... there is no absolute standard for when to be confident 

in study findings; acceptable precision levels depend on 

the conventions of the field of study. The costs of error, 

the costs of measurement, what is technically achievable 

given the available measurement tools, and finally, the 

tolerable level of uncertainty, all play a role in establishing 

reasonable and prudent standards. . . . the field of DSM 

impact evaluation has yet to agree on standards for 

confidence or required precision levels." (Horowitz 1992) 

A recent study assessing the uncertainty in estimates of DSM program 
cost-effectiveness -when- evaluation methods --of-varying- precision ana- accuracy-are 

used found that the imprecision in the cost of conserved energy was significant for 

programs with mean total resource cost ratios close to one, while higher ratios seem 

to guarantee cost-effectiveness even with significant estimate imprecision 

(Sonnenblick and Eto 1995). However, they found that biased savings could threaten 

the confidence of cost-effectiveness estimates for programs with ratios approaching 

2.0, especially when estimate imprecision was considered. Thtis, the bias of the 

savings estimates is probably just as important (if not more) than the precision of 

the estimates. 

Another issue not examined is at what level should precision standards be 

applied? For the whole DSM portfolio, all DSM programs for a specific sector, an 

individual DSM program, or individual measures? They all have different 

methodological and cost implications. 

In conclusion, confidence intervals and precision levels are important, but 

have sometimes been over emphasized. A practical approach is needed for 

determining the level of precision and should reflect realistic expectations given the 

technical, economic, and practical limitations in the measurement of energy savings 

(Schlegel et al. 1991; Sonnenblick and Eto 1995). 
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Side Effects of Precision Requirements 

DSM evaluation is not an exact science and requires the use of judgment 

and interpretation for assessing the performance of utility DSM programs. Making 

sure that the evaluations of these programs can provide the level of confidence 

required by regulators to make decisions about investments in certain types of DSM 

programs is critical; however, too much focus on the precision of the results may be 

detrimental if the ''big picture" is not taken into account. As a result, the setting of 

precision levels may become threshold precision values that the utility will believe 

it has to exceed with its impact evaluation before investing in a DSM program: 

"H these accuracy levels are not achieved, the utility may 

be concerned about penalties. Under these conditions, if 

commissions require high levels of precision, utilities will 

be given an incentive to only invest in those programs 

that produce large, readily identifiable savings where 

impact evaluations are likely to meet these potentially 

restrictive accuracy requirements. Other programs that are 

likely to be cost-effective but, for example, represent small 

percent reductions in consumption when compared to a 

customer's total consumption may not be undertaken." 

(Raab and Violette 1994) 

Similarly, the production of precise impact results to qualify for 

shareholder incentives may discourage utilities from attempting to evaluate some 

of the more difficult program parameters, such as spillover effects and market 

barrier costs, as described in a recent report on California's measurement and 

evaluation load impact studies (Messenger et al. 1994). Market evaluations that use 

baseline studies, conjoint methods, and trade ally and manufacturers' data should be 

able to estimate precision around program spillover effects, and the neglect of such 

measures may lead to biased (and, therefore, less credible) results. 
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Regulatory Policies 

NARUC Report 

Although the National Association of Regulatory Commissioners 

(NARUC) has not formally adopted a policy on reliability and uncertainty, a recent 

NARUC white paper has offered the following recommendations: 

"PUCs should not require higher levels of accuracy than is 

cost-effective to achieve. Moreover, PUCs should not set 

standards for accuracy that are more stringent than those 

required of utility management when making investment 

decisions in supply-side resources or other utility 

____ i~v~stm~n!__'!-~c~ion~ PUfs II!ay also ~a!lt _to C@Sici~r 
setting some lower bound accuracy levels, but should be 

flexible to account for the wide range of program types and 

other factors." (Raab and Violette 1994) 

EPA's Conservation Verification Protocols 

The U.S. Environmental Protection Agency (EPA) recently designed a set 

of Conservation Verification Protocols (CVP) as part of its mission to implement the 

Acid Rain Program of the Clean Air Act Amendments of 1990 (EPA 1993). The CVP 

was designed 

" . . to be rigorous without being burdensome on the 

utility or the regulator. The CVP has the added benefit of 

helping to ensure the cost-effectiveness of utility 

conservation programs and S02 emission reduction 

measures, as well as the reliability of energy savings from 

the measures." (EPA 1993) 

For purposes of the emissions allowances, the objective of the CVP is to 

award allowances for savings that occurred with reasonable certainty. The CVP 

requires that the savings are expressed in terms of the utility's confidence that the 

true savings were equal to, or greater than, those for which it applied. Thus, the CVP 

uses a 75% level of confidence using a one-tailed test (no specific precision level is 

targeted): in other words, the reporting entity must be statistically confident (at the 
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75% level) that the minimum level of energy savings has been achieved. The 

authors of the CVP note that their approach differs from the more stringent 

procedures employed by some electricity rate regulators, but argue that the CVP 

procedure ". . . offers utilities more flexibility, smaller sample sizes, and the 

opportunity to claim some legitimate savings even when the evaluation itself was 

not as successful as planned" (ibid). 

The authors conclude by noting the following: 

"The CVP takes this approach because while it is not based 

on usual statistical standards, it reflects the state-of-the-art 

for reasonable impact evaluation of savings from utility 

conservation programs." (ibid) 

In summary, EPA considers a one-tailed test appropriate for most DSM 

applications because the real concern is not that there are too much savings, but 

rather that there are too little savings for the program to be cost-effective. Emphasis 

is thus placed on the lower bound only. 

The Massachusetts DPU Decision 

The Massachusetts Department of Public Utilities (MDPU) is the only state 

regulatory commission to have formally addressed the issue of uncertainty and 

precision. The MDPU reviewed the issue of confidence and precision in the early 

1990s and recommended that a 90/10 rule be used. In 1992, the MDPU reviewed and 

revised its earlier order. In the 1992 proceeding, the Boston Edison Company 

presented evidence that precision levels in impact evaluation could be as high as 

+/- 70% at a 90% confidence level for some programs (MDPU 1992). In that 

proceeding, the MDPU retreated from the 90/10 standard, stating: 

"The Company had correctly pointed out statistical errors 

underlying the Department's earlier reliance on the 90/10 

standard. The Department directs the Company to seek 

the best precision it can expect to attain with a 90% 

statistical confidence, subject to the constraint that the 

marginal value of the precision attained should ?Ot 

exceed the marginal cost of attaining it." (ibid) 
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In that order, the MDPU also indicated that it expected kWh to be 

measured more precisely than kW, due to the greater costs of measuring capacity. 

Furthermore, the MDPU "found it appropriate and cost-effective ·to seek similar 

precision levels from one program to the next in terms of absolute kWh or kW, 

rather than in percentages." This results in tighter relative precision levels (i.e.,­

precision expressed in percentage terms) for programs with greater savings than for 

programs with smaller kWh and kW savings. 

In the NARUC report mentioned above, the authors note that it still was 

not clear that "even achieving a targeted absolute kWh precision rather than a 

constant targeted relative precision across most programs would be reasonable given 

the differences in programs" (Raab and Violette 1994). The authors assert that 

different programs target end-uses within different customer groups, and the 

relative savings impact will be different depending on total consumption and 

predicted impact. 

California, New Jersey, and Pennsylvania 

In 1992, the California Collaborative (the major investor-owned utilities, 

the California Energy Commission, the Division of Ratepayer Advocates, and the 

Natural Resources Defense Council) prepared a set of measurement and evaluation 

protocols that were later approved by the California Public Utilities Commission 

(CPUC 1993). Confidence intervals and levels of precision were discussed in 

workshops on the development of the protocols, but were not included in the 

protocols for reporting energy savings for the following reasons (personal 

communication from Don Schultz, CPUC, Division of Ratepayer Advocates, Sept. 

26, 1994): 

• It was impossible to determine a reasonable standard (reference 

point). 

• Applying a reference point would be burdensome and challenging 

(e.g., holding a utility (or an evaluator) to a certain standard). 

• Nobody wanted to rely on one statistical reference point. 

• There is always a potential for legitimate error - it was best to try to 

minimize error during the process of collecting and analyzing data. 
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The New Jersey Board of Regulatory Commissioners (NJBRC) adopted 

evaluation protocols that are almost exactly the same as the verification protocol 

developed by the National Association of Energy Service Companies (NJBRC 1993), 

but the protocols have no guidelines on confidence and precision levels for savings 

(personal communication from Bill Brady, NJBRC, Sept. 29, 1994). 

Finally, the Pennsylvania Public Utilities Commission is in the process of 

preparing evaluation guidelines that must be followed by the state's utilities, and 

the level of precision to be required of DSM impact evaluations is set at a target 

confidence level of 75%, similar to the EPA standard (Hastie 1995). 

Utility Estimates of Relative Precision 

Until recently, it was hard to find evaluations that reported estimates of 

relative precision. Examples from a few utilities are presented below.3 

Consumers Power Company 

In 1991, the Consumers Power Company (CPCo) initiated large-scale DSM 

programs in the residential, commercial, and industrial sectors (Kushler 1993). In 

1992-93, a comprehensive evaluation of these programs was conducted and is the 

source of the data described below (Vine 1994). In Table 1, we present the relative 

precision of the net annual energy savings estimates for CPCo's residential and non­

residential programs at the 90% confidence level. In the residential sector, the 

Residential Free Install was the most precise (10%), while the Appliance Recycling 

program was the least precise (81%).4 The levels of precision for the Mail Order 

Catalog and the Water Heater Conversion program were in the 20-26% range, while 

the Residential Rebate Coupon program had a 41% relative precision. In the non-

3The programs were selected after reviewing program evaluation reports in the DEEP Library maintained at Lawrence 
Berkeley Laboratory. The goal of the Database on Energy Efficiency Programs (DEEP) Project is to compile and 
analyze the measured results of energy efficiency programs in a consistent and comprehensive fashion (Vine et al. 
1993). The DEEP Library contains over 600 evaluation reports from around the country and Canada. The three 
programs examined in this paper were selected because they contained the data needed for measuring the precision 
of DSM impacts, data that, until recently, were often missing in DSM program evaluation reports. 

4-fhe precision estimate indicates the relative magnitude of the difference between the low (or high) estimate and the 
mean estimate. For example, at the 90% confidence level, the average net energy savings for the Residential Free 
Install program were 13,005 MWh and ranged from 11,700 MWh to 14,316 MWh. The precision level was 10%: 
(13,005-11,700)/13,005. 
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residential sector, the Non-Residential Free Install and Direct Rebates programs, 

which were primarily lighting programs, each had a reasonably good level of 

precision (16%). The Custom-Designed Rebates program, due to the diversity of 

measures applied, was the least precise (57%). 

Pacific Gas and Electric Company 

Pacific Gas and Electric (PG&E) analyzed the relative precision of the gross 

annual energy savings estimates from its 1991 and 1992 commercial and industrial 

programs at the 90% confidence level (Table 1) (PG&E 1993). The most precise 

annual savings estimate was from its lighting rebate program (14%). The 

refrigeration rebate program was the least precise (33%), and the HV AC rebate 

program had medium precision (28%). 

New England Electric System 

The New England Electric System (NEES) reported estimates of the 

relative precision of its 1993 DSM programs offered by one of its companies, the 

Massachusetts Electric Company (Table 1) (NEES 1994). Some programs had relative 

precision levels of 100%, but most of these had small load impacts. Excluding these 

programs, the Residential Space Heating program was the most precise (23%) 

residential program while the Appliance Recycling program was the least precise 

(58%). In the non-residential sector, the most precise was the new construction 

program (Design 2000) targeting motors (23%) and the least precise was the Design 

2000 program targeting lighting (38%). 
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Table 1. The Relative Precision of Energy Savings of Selected DSM Programs 

Net Gross Relative 
Annual Annual Precision at 
Energy Energy 90% 

Program Savings Savings Confidence 

Utility/Reference Sector Program Name Year (GWh) (GWh) Level(%) 

CPCo/Xenergy 1994 Residential Appliance 1992-93 15 81 
Recycling 

CPCo /Xenergy 1994 Residential Free Install 1992-93 13 10 

CPCo /Xenergy 1994 Residential Rebate Coupon 1992-93 8 41 

CPCo /Xenergy 1994 Residential Mail Order 1992-93 0.3 26 
Catalog 

CPCo/Xenergy 1994 Residential Water Heater 1992-93 4 20 
Conversion 

CPCo /Quantum 1994 Non-Residential Free Install 1992-93 10 16 

CPCo /Quantum 1994 Non-Residential Direct Rebates 1992-93 128 16 
CPCo /Quantum 1994 Non-Residential Custom-Designed 1992-93 91 57 

Rebates 
PG&E/Xenergy 1993 Non-Residential CIA Rebates - 1991-92 485 14 

Lighting 
PG&E/Xenergy 1993 Non-Residential CIA Rebates - 1991-92 49 33 

Refrigeration 
PG&E/Xenergy 1993 Non-Residential CIA Rebates - 1991-92 124 28 

HVAC 
NEES/NEES 1994 Non-Residential Design 2000 & 1993 600 38 

Energy Initiative 
-Lighting 

NEES/NEES 1994 Non-Residential Design 2000 & 1993 67 23 
Energy Initiative 

-Motors 
NEES/NEES 1994 Non-Residential Design2000& 1993 112 30 

Energy Initiative 
- Variable Speed 

Drives 
NEES/NEES 1994 Non-Residential Design 2000 & 1993 31 100 

Energy Initiative 
-HVAC 

NEES/NEES 1994 Non-Residential Design2000& 1993 3 100 
Energy Initiative 

-Food 
NEES/NEES 1994 Non-Residential Design 2000 & 1993 167 26 

Energy Initiative 
-Custom 

NEES/NEES 1994 Non-Residential Perlormance 1993 73 34 
Engineering 

NEES/NEES 1994 Non-Residential Small C&I 1993 215 31 
NEES/NEES 1994 Residential Appliance 1993 15 58 

Recycling 
NEES/NEES 1994 Residential Complementary 1993 0 100 

Program 
NEES/NEES 1994 Residential Energy Crafted 1993 4 50 

Home -
NEES/NEES 1994 Residential Energy Fitness 1993 33 100 

NEES/NEES 1994 Residential Multi-Family 1993 106 53 
Retrofit 

NEES/NEES 1994 Residential Residential 1993 83 38 
Lighting 

NEES/NEES 1994 Residential Residential 1993 128 23 
Space Heating 

NEES/NEES 1994 Residential Water Heater 1993 2 100 
Rebate 
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Cross-Utility Comparisons 

Comparing the precision levels of utility programs within a utility as well 

as between utilities is a difficult endeavor, since precision levels vary by evaluation 

methods, savings estimate (gross versus net savings), targeted measures and 

markets, program evaluation budgets, and utility experience in program design and 

evaluation. In Table 2, we compare precision levels for CPCo and NEES at a more 

aggregate level - by sector (residential and non-residential) and for all programs. For 

NEES's programs, the relative precision at the 90% confidence level was 16% for all 

of its programs, 20% for its non-residential programs, and 21% for its residential 

programs.s For CPCo's programs, the relative precision at the 90% confidence level 

was 18% for all c;>f its programs, 21% for its non-residential programs, and 32% for its 

residential programs. Overall, the precision results from the companies appear quite 

similar and, for the most part, demonstrate reasonably good precision levels around 

DSM savings estimates. 

Table 2. The Relative Precision of Energy Savings By Sector 

Net Relative 
Annual Precision at 
Energy 90% 

Program Savings Confidence 

Utility/Reference Sector Year (GWh) Level(%) 

CPCo/CPCo 1994 Residential 1992-93 40 32 
CPCo/CPCo 1994 Non-Residential 1992-93 229 21 
CPCo/CPCo 1994 TOTAL 1992-93 269 18 
NEES/NEES 1994 Non-Residential 1993 1,268 20 
NEES/NEES 1994 Residential 1993 371 21 
NEES/NEES 1994 TOTAL 1993 1,639 16 

5The combined relative precision for all of the programs is less than the relative precision for the residential and non­
residential sectors because random discrepancies tend to offset one another (NEES 1994). 
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Recommendations for Reducing Uncertainty 

A number of opportunities exist for increasing our understanding of the 

factors leading to DSM uncertainty and for reducing the level of DSM uncertainty. 

We briefly recommend below some activities that the evaluation and regulatory 

communities can undertake to take advantage of these opportunities. 

Historical data analysis 

• Devise tests and develop procedures to detect and correct bias. 

• Support statewide, regional, and national efforts that compile and synthesize 

results from many impact evaluations (e.g., DEEP) (Vine et al. 1993). 

Future program evaluations 

• Conduct process evaluations that focus on key uncertainty parameters 

(including evaluation methods) affecting precision and bias. 

• Conduct evaluations of the same program periodically to see if uncertainty 

decreases over time. 

• Use multiple evaluation methods to see how uncertainty varies with 

methodology (Sonnenblick and Eto 1995). 
- ~ 

Program design 

• Conduct social science experiments to determine critical parameters of 

uncertainty. 

• Once critical uncertainty parameters have been identified, redesign program 

to reduce uncertainty and then evaluate new program. 
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Risk assessment and decision analysis 

• Assess the risk of not pursuing DSM because of uncertainty problems. 

Evaluate the risks associated with not pursuing DSM versus pursuing DSM, 

or with reduced levels of DSM (Buller and Miller 1992)6 

• Weigh the value of reducing uncertainty? Since there will always be 

uncertainty, focus on achieving the optimal decision given certain levels of 

confidence, precision, and risk. Decision theory may be helpful for this issue, 

including examining the "penalty" (cost) associated with a utility ignoring 

DSM, even though savings may occur from DSM. 

Measurement and evaluation guidelines 

• Prepare guidelines for achieving cost-effective accuracy levels (similar to 

MDPU decision). Consider how to obtain a given reduction in uncertainty in 

the most cost-effective manner. 

• Prepare guidelines for reducing measurement bias, so that key factors are 

accounted for (e.g., program spillover). 

Program evaluation is recognized by many for reducing the uncertainty of 

DSM program impacts and for enhancing the value of DSM as a resource (e.g., 

Messenger et al 1994; Sedmak et al 1994). By analyzing billing data and end-use 

metered data, using large participant and comparison samples, conducting on-site 

visits, assessing market shipment or sales data, and designing and implementing 

better customer survey questionnaires, evaluators have been able to reduce the 

uncertainty of DSM estimates associated with engineering results and self-reported 

data. On the other hand, these same methods have increased our awareness of the 

remaining uncertainties underlying the evaluation methods used for estimating 

energy savings and program cost-effectiveness. Admittedly, much work remains to 

be done. 

As noted above, prec1s10n levels vary by evaluation methods, savings 

estimate (gross versus net savings), targeted measures and markets, program 

6using sensitivity analysis, Eric Hirst has suggested that DSM programs generally reduce uncertainties in a utility's 
resource portfolio compared to a portfolio without DSM. And even increasing the cost of DSM programs by 50% 
had little effect on the conclusions from the sensitivity analysis (Hirst 1992). 
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evaluation budgets, and utility experience in program design and evaluation. 

Accordingly, it is difficult to recommend a single precision standard for impact 

evaluations, due to the importance of individual circumstances. As a constructive 

recommendation, however, evaluators should estimate and report confidence 

intervals, as well as means, and they should include a discussion Of how the issues 

of bias and precision were addressed in their research. Finally, it is also important to 

reiterate that one needs to keep DSM uncertainty in perspective: there is lots of 

uncertainty in all aspects of resource planning, on the supply side as well as the 

demand side. That fact, together with the relatively good precision levels 

demonstrated by the three utilities examined in this paper, suggests that there is no 

justification for broadly attacking DSM as a resource on the basis of uncertainty of ~ 

evaluation savings estimates. 
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