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Abstract 

Supersymmetry is generally broken by the non-vanishing vacuum energy density present 

during inflation. In supergravity models, such a source of supersymmetry breaking typi

cally makes a contribution to scalar masses of order m2 
,...., H 2

, where H 2 
,...., Vj Mj, is the 

Hubble parameter during inflation. We show that in supergravity models which possess 

a Heisenberg symmetry, supersymmetry breaking makes no contribution to scalar masses, 

leaving supersymmetric fiat directions fiat at tree-level. One-loop corrections in general lift 

the fiat directions, but naturally give small negative squared masses ,...., -g2 H 2 
/ ( 47r? for all 

fiat directions that do not involve the stop. No-scale supergravity of the SU (N ,1) type and 

the untwisted sectors from orbifold compactifications are special cases of this general set of 

models. We point out the importance of the preservation of fiat directions for baryogenesis. 
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One of the more robust mechanisms for the generation of a cosmological baryon asymme

try is the decay of the coherent scalar field oscillations along flat directions in supersymmetric 

theories, commonly referred to as the Affieck-Dine (AD) mechanism [1]. It is well known 

that in the supersymmetric standard model and in supersymmetric grand unified theories, 

there are directions in field space in which both the F- and D-terms of the scalar potential 

vanish identically. Such a direction was explicitly constructed in the context of SU(5) in [1] 

and generalized to larger guts as well [2]. Supersymmetry breaking spoils the flatness, and 

one expects the generation of soft scalar masses for all scalar fields of order of the supersym

metry breaking scale, m. A baryon asymmetry can be generated if at some early stage in the 

evolution of the Universe, the fields along the flat direction obtain large vacuum expectation 

values and can be associated with a baryon number violating operator. Subsequently, when 

the expansion rate, given by the Hubble parameter, H, is of order m, coherent scalar field 

oscillations along the flat direction carrying a baryon number begin. The decay of the scalar 

field oscillations results in a final baryon asymmetry [1, 3]. 

The AD scenario outlined above is normally implemented in the context of inflation [4]. 

During inflation, scalar fields with masses, m < H, are driven by quantum fluctuations to 

large vacuum values which become the source of the scalar field oscillations once inflation is 

over. To avoid the washout of the baryon asymmetry by electroweak sphaleron interactions 

[5], the scenario works most easily in the framework of a gut larger than minimal SU(5) in 

which B- Lis violated, though it is possible that the asymmetry can be preserved even when 

B- Lis not violated [6]. Indeed, it is possib,le to implement the AD scenario for baryogenesis 

without any additional baryon number violation beyond that in the standard model so long 

as lepton number is violated [7]. Here, flat directions associated with lepton number violating 

operators can be used to generate a lepton asymmetry' which is subsequently converted into 

a baryon asymmetry by sphaleron interactions. 

Recently, it has been argued that the simple picture of driving scalar fields to large 

vacuum values along flat directions 'during inflation is dramatically altered in the context of 

supergravity [8]. During inflation; the Universe is dominated by the vacuum energy density, 

V rv H 2 M~. The presence of a non-vanishing and positive vacuum energy density indicates 

that supergravity is broken and soft masses of order of the gravitino mass rv H are generated 

[9]. A similar observation was made in [10) where it was noted that other flat directions, 

associated with moduli, also receive large contributions to their masses from a non-zero 
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vacuum energy density during inflation. There it was argued that in such cases there may 

be no moduli problem ( a.k.a. Polonyi problem [11]) involving excess entropy production. 

However this solution would require that the expectation value of the moduli are unchanged 

during and after inflation, an unlikely circumstance. The contribution to scalar masses can 

be easily understood by considering for example, the scalar potential in a supergravity model 

described by a Kahler potential G [12], 

(1) 

where Gi = 8G I 8¢i and Qi = 8G I 8¢/i. A positive vacuum energy density, V > 0, needed for 

inflation, requires that eGGi =f 0, thus breaking supergravity, and implies that the gravitino 

mass, m 3; 2 = eGf2 =f 0. Typically, scalar-squared masses will pick up a contribution of order 

m~12 "" VIM~ "" H 2, thus lifting the fiat directions and potentially preventing the realization 

of the AD scenario as argued in [8]. Below we use reduced Planck units: Mp I .J8i = 1. 

To see this, let us consider a minimal supergravity model whose Kahler potential is 

defined by 

G = zz* + </>7¢} +In IW(z) + W(</>)1 2 (2) 

where z is a Polonyi-like field [13] needed to break supergravity, and we denote the scalar 

components of the usual matter chiral supermultiplets by </>i. W and W are the superpoten

tials of </>i and z respectively. In this case, the scalar potential becomes 

Included in the above expression for V, one finds a mass term for the matter fields </>i, 

eG </>i </>i = m~12¢>i </>i. If z breaks supergravity this term is non-vanishing. As it applies to all 

scalar fields (in the matter sector), all fiat directions are lifted by it as well. 

Another instructive way to see the lifting of fiat directions is to examine the expression 

(see, for example [14]) for the trace of the scalar squared mass matrix (we ignore D-terms 

assuming the infl.aton is a gauge singlet), 

(4) 

where ( N - 1) is the total number of chiral multiplets </>i, R{ = (ln det G){ is the Kahler 

Ricci tensor, and TrMi;2 is the fiat space value of the trace of the chiral fermion squared 
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mass matrix. In the minimal supergravity model described by eq. (2), Gt = 8f and Rt = 0. 

Thus the traces give 

Tr(M~- 2Mi12 )¢ + m~ + m1- 2m~= -4m~12 + 2(N- 1) (m~12 + v), (5) 

guaranteeing a splitting among each of the chiral multiplets <P by an amount m~12 (neglecting 

space-time curvature contributions to fermion masses). In (5), mA and mB are the masses of 

the scalar components of z, xis its fermion component (i.e., the goldstino: mx = 2m3/ 2 at the 

ground state), and their masses satisfy m~ + m1- 2m~= -4m~12 . As shown below, a more 

careful definition of scalar "masses" is required when we consider non-minimal supergravity 

models. 

The above arguments can be generalized to supergravity models with non-minimal Kahler 

potentials. By and large the same conclusions hold as claimed in (8]. However as we will 

show below, there is a wide class of models with considerable phenomenological interest in 

which flat directions are not lifted by supergravity breaking. Indeed, the flatness is ensured 

by a "Heisenberg symmetry" (15] of the kinetic function in this class of models. 

A special class of these models are no-scale supergravity models, that were first introduced 

in (16] and have the remarkable property that the gravitino mass is undetermined at the tree 

level despite the fact that supergravity is broken. No-scale supergravity has been used 

heavily in constructing supergravity models in which all mass scales below the Planck scale 

are determined radiatively [17], [18]. Indeed, the decoupling of the gravitino mass from global 

supersymmetry breaking in the observable sector was used to derive models with a gravitino 

mass at the Planck scale for the case [19] g _ 0 and within a few orders of that scale for 

the case [27] Wi = 0, with phenomenologically acceptable supersymmetry breaking in the 

matter sector. A large gravitino mass allows a sufficiently early decay of the gravitino, thus 

avoiding [20] potential cosmological problems associated with the gravitino [21]. In this 

context, the moduli problems can also be resolved [22]. Many inflationary models have also 

been considered in the context of no-scale supergravity [23]. These models emerge naturally 

in torus [24] or, for the untwisted sector, orbifold [25] compactifications of the heterotic 

string. 

We will consider the possibility that the inflaton is one of the <Pi or is a "hidden sector" 

field. Thus we introduce the set of chiral fields z, <Pi, ya, with ya in the hidden sector, and 

3 



define the "Heisenberg symmetry" as follows [15], 

(6) 

where ci are complex parameters and ci their complex conjugates. The invariants under this 

symmetry are the ya and the combination 

- + * )..*)..2 'T/ = z z - '+'i '+' . (7) 

Let us assume this is a symmetry of the kinetic function in the Kahler potential. We also 

require that the field z does not have a coupling in the superpotential. Then the most general 

Kahler potential becomes 

(8) 

where the superpotential W is a holomorphic function of <Pi only. 

To analyze the resulting theory, we first look at the kinetic terms of the chiral scalars. 

In terms of the original fields z and <Pi, the kinetic terms are written as 

where I denotes differentiation with respect to 'T!· To "diagonalize" the kinetic term so that 

chiral scalars do not have mixing kinetic terms, we rewrite the kinetic terms in terms of Tf 

defined in Eq. (7) and a U(1) current [26, 27, 28] 

(10) 

and they read as 

(11) 

Therefore, we regard 'T/ and <Pi as independent degrees of freedom rather than z and <Pi. 

We are now at the stage to write down the scalar potential. Following the general 

definition (1) and matrix inversion [29], 

(12) 

It is important to notice that the cross term J<PiWJ 2 has disappeared in the scalar potential. 

Because of the absence of the cross term, flat directions remain fiat even during the inflation. 
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A detailed discussion of the dynamics of 7] field during inflation can be found in Ref. [29] 

for a specific choice of .f = (3/8) ln 7] + ry 2
• The no-scale model corresponds to f = -3ln ry, 

!'2 = 3f" and the first term in (12) vanishes. The potential then takes the form 

(13) 

which is positive definite. The requirement that the vacuum energy vanishes implies 

(Wi) = (ga) at the minimum. As a consequence 7] is undetermined and so is the gravitino 

mass m3;2( 7] ). 

The easiest way to see that the Lagrangian (12) preserves the fiat direction is to look at 

the equation of motion of the fields c~Ji. In the inflationary universe, it reads as 

... . . . . . ef+g [(!'2 ) 1 l 
)...t + 3H,~...~ + rt. )...Jr,-- --3 W:·W*- -W:··(W·)* = 0 
'f/ 'f/ J17'f/ ., f' f" t f' lJ J ' 

(14) 

where the connection f~77 is defined below. Since the fiat direction is characterized by Wi = 0, 

Wij = 0, it is easy to see that a constant c/Ji satisfies the equation of motion for any values 

of c/Ji along the fiat direction. 

It is probably also useful to look at the effective mass term for the quantum fluctuations 

during inflation. For definiteness, we restrict ourselves to the no-scale case in the following 

discussion. The usual procedure of the covariant expansion around the background fields is 

as follows. We start from the general action 

(15) 

and expand the fields as 

(16) 

Here and below, the indices a, f3, ... refer generically to 7], c~Ji, c/Ji, and the Christoffel symbol 

r~')' is derived from the metric Gcx13 ( cjJ) on the field space. We obtain 

l(c/J] = l[c/Jo] + j d4 xvf-9 [g~'vGcxt38ttcjJgDve13 - ocxvecx] 

+~ j d4xv=9 [g~'vGcx13 D~'~cx Dve + Rcx-yot3Ce g~'ll 8~'cjJgovc/Jg- (Dcx8t3 V)t•e] 

+o(e). (17) 

5 



The covariant derivative is defined by Da~f3 = aae + r~"')'fY. The last term contains the 

effective term mass term for the fluctuation ~a, 

(18) 

and its trace gives the field reparametrization invariant result ( 4), with R{ = ~( N + 1) G{ in 

the no-scale case. We now look at the fluctuation ~i of the <Pi fields. In our case, however, we 

assume that the rt field is constant during inflation and do not use the equation of motion 

for the rt field. If we used the equation of motion, the rt field would roll down the potential, 

and the potential identically vanishes in the limit rt -+ oo. It is usually assumed that higher 

order corrections to the potential stops this run-away behavior, and ry will be fixed at some 

point. How this may explicitly be realized will be discussed below. Following this standard 

approach and regarding the rt field as a constant, we do not allow a fluctuation for ry. This 

in turn means f'' - f0~i~j /2 = 0 + O(e). Then the linear term in the f'' does not vanish 

in I[<P], but precisely cancels the second term f0877 V in (m2 )ij· The effective mass term is 

hence just 8/)j V. Then it should be clear from the explicit form of the potential V that 

there is no additional mass term to the fiat direction even during inflation.* 

A natural question a.rises as to whether higher .order corrections modify the form of the 

Kahler potential, thereby lifting the fiat direction. Indeed, only the kinetic energy part of 

our Kahler potential respects the Heisenberg symmetry, which is broken by gauge couplings 

as well as by the superpotential. However, an explicit one-loop calculation shows that the 

gravitational interactions preserve the Heisenberg symmetry [15]. Therefore, the only pos

sible contribution to the mass of the fiat directions come from either gauge interactions or 

superpotential couplings that contribute to the renormalized Kahler potential. Using the 

general results [14, 30] for the one-loop corrected supergravity lagrangian, we obtain, as

suming that inflation is driven by an F-term rather than a D-term (the result is similar if 

(D) =f. 0): 

(19) 

*For a more general choice off( 17) as in [29], the potential may not have this run-away behavior for 1]. In 
this case, 1] will settle to its minimum during inflation, and V11 vanishes there. Therefore, the effective mass 
term is also just O;Oj V in the more general case as well. 
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where the vacuum energy (V) and the gravitino mass m3; 2 are their values during inflation. 

f-l 2: (V) is the appropriate infrared cut-off in the loop integral, and A is the cutoff scale 

below which the effective supergravity Lagrangian given by the Kahler potential eq. (8) is 

valid; A = 1 in many models but can be lower if the inflaton is a composite field. The h's 

are Yukawa coupling constants ga, C~(Ri) are the coupling constant and matter Casimir for 

the factor gauge group Ga, and the parameter a, (3, are model dependent. In the no-scale 

case f = -3ln rJ, the result (19) reduces tot 

(20) 

If the inflaton is one of the r/;i ( r/;0 =f. 0), a = f3 = ~. If the inflaton is in the hidden sector 

(Ya =f. 0), a < 0, (3 = 1 if the inflaton is not the dilaton s : (s) = g-2
• If the inflaton is 

the standard string dilaton, (3 = a = -1. In all but the last case the masses are negative if 

gauge couplings dominate Yukawa couplings. In the following we assume the inflaton is not 

the dilaton. 

There are several interesting points in the above formulae. First of all, higher order 

effects are always suppressed by the typical one-loop factor 1/(4-7!-)2. The vacuum energy 

is related to the expansion rate by H 2 = (1/3)(V), and hence the typical mass of the 

flat directions is m 2 ~ 10-2 H 2 during inflation. While these one-loop masses are small 

enough to generate classical fields on large scales during inflation, they are too large to 

allow sufficient growth due to quantum fluctuations in order to generate a sizeable baryon 

asymmetry. During inflation, quantum fluctuations in (¢2
) begin to grow in time as H 3 t/47r2 

[31] up to a limiting value given by (¢2
) = 3H4 j81r2m 2

. During inflation, the low momentum 

modes of these fluctuations will be indistinguishable from a classical field with an amplitude 

¢0 ~ · j(ii}. In the (AD) mechanism for baryogenesis with inflation, the baryon asymmetry 

produced is [4] 

(21) 

where m 1 "' 10-7 Mp is the inflaton mass, Mx "' 10-3 Mp is the scale associated with the 

baryon number violation, m "' 10-16 is the susy breaking scale when V = 0, i.e. after 

inflation, and € is a measure of the CP violation and in this case can easily be 0 ( 1). If ¢0 
2 

tin the context of string theory, Eq. (20) is valid in more realistic multi-moduli no-scale models that 
describe the untwisted sectors from orbifold compactifications. 
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were given by the maximum value of the fluctuations generated by inflation, then </J0 2 "' 

6H2 
"' 10-13 Mj, and too small an asymmetry would result. However, as we have seen in 

eq. (20), for all scalar matter fields aside from stops, the contribution to the mass squared 

is negative as the Yukawa couplings are smaller than the gauge couplings. Thus any flat 

direction not involving stops, will have a negative contribution ~t one-loop without an ad 

hoc choice of the parameters.t Now, even though fluctuations will begin the growth of <Po, 
the classical equations of motion soon take over. The classical equations of motion drive 

<Po as ( -m2 )t which is smaller than the quantum growth only for Ht < H4 jm4 • Then for 

Ht > H2 
/( -m2

), the classical growth of <Po, becomes nonlinear "' H e-m
2
tf3H, and <Po will 

run off to its minimum determined by the one-loop corrections to <P\ which are again of 

order V. An explicit one-loop calculation [14, 30] shows that the effective potential along 

the flat direction has a form 

Ve1 1 "' ( ::)2 (V) ( -2</J
2

log ( 9~;2 ) + </J
2

) + 0( (V) )
2

, (22) 

where A is the cutoff of the effective supergravity theory, and has a minimum ar~und <P ~ 
0.5A. Also this is consistent because this effective potential is only of order -(V)g2 /(4·7!-)2 

and is a small correction to the inflaton energy density which drives the inflation. Thus, 

<Po '""' Mp will be generated and in this case the subsequent sfermion oscillation will dominate ' 

the energy density and a baryon asymmetry will result which is independent of inflationary 

parameters as originally discussed in [1, 3] and will produce nB/s "'0(1). 
Finally, as noted above, in order to realize the scenario presented here in the no-scale 

case, we need a mechanism to stabilize the ry-field. In no-scale models, typically (V) = 
0, m~12 =I 0 at the ground state. Therefore it is very plausible that there is a solution with 

(V) "' ln(A 2 /m~12)mi;2 /327r 2 ~ m~12 during inflation. Under this assumption, the one loop 

corrections [14] give a contribution 

(23) 

twe do not need to choose a particular set of parameters because the fiat direction is preserved at tree
level, and the one-loop correction is a small perturbation. In models where the flat directions are lifted at 
tree level, one has to add by hand tree-level terms like 5G = cl¢1 2 17,bl 2 to the Kahler potential, and impose [8] / 
c < 0, where 7,b is the inflaton, in order to generate a total negative squared mass (in minimal supergravity, 
the tree level squared masses that are generated during inflation are positive as seen in eq.(5)). However, 
this is an 0(1) effect, and one has to be careful not to spoil the positivity of the potential and the kinetic , 
terms. For instance, one has to impose -1 < c < -2/3 for the case of the inflaton potential in [32]. 
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with m~12 ex ef(TJ), and o: is model-dependent. If cPo is the inflaton, o: = 14, for a hidden 

sector inflaton Yo, a= B-21.§ For·a hidden sector inflaton, Vex ef(.,) and the requirements 

that V + ~V > 0, m~ > 0, give give the condition 3/2 > ln(A2/m~12 ) > 1 which could be 

considered as a fine tuning condition. Actually, these values correspond to results found (see, 

e.g. [18, 27]) in models where the symmetry breaking potential is generated by condensation 

at a scale A. For an inflaton cPa, V ex ef('TI)/3 , and the m~ mass is always positive; positivity 

of the one-loop corrected potential requires only ln(A2 /m~12 ) > 5/3 Once the positivity 

requirements are satisfied, we obtain m; rv (V), which is sufficient to assure that inflation 

can occur in the false vacuum. 

In summary, we have shown that although it is a relatively general property that flat 

directions receive tree-level masses during inflation, this conclusion does not apply to the a 

class of models which possess a Heisenberg symmetry. This class contains the phenomeno

logically interesting no-scale supergravity models as well the forms of supergravity expected 

from string theory truncations. We have also shown that although flat directions remain 

fiat at the tree-level in this class of models, one-loop corrections upset the flatness and we 

expect that for all flat directions which do not involve stops, a negative mass squared is 

generated reulting in large expectation values along the fiat directions, leading, in turn, to 

(AD) baryogenesis along the lines originally suggested. 
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