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Abstract 

Emission tomography amounts to the statistical estimation of the spatial distri­

bution of a radioactive tracer based on a finite sample of externally-detected photons. 

We present is an algorithm-independent theory of statistical accuracy attainable in 

emission tomography that makes minimal assumptions about the underlying image. 

Let f denote the tracer density as a function of position (i.e., f is the image being 

estimated). We consider the problem of estimating ~(f)= J rp(x)f(x) dx, where¢ is 

a smooth function. Assuming only that f is bounded above and below away from 0, 

we construct minimum-variance unbiased (MVU) estimators for ~(f). By definition, 

the variance of the MVU estimator is a best-possible lower bound (depending on ¢ 

and f) on the variance of unbiased estimators of ~(f). It gives a benchmark for 

the performance of iil).age reconstruction and quantification algorithms. The. analysis 

gives a geometrical explanation of when and by how much estimators based on the 

standard filtered-backprojection reconstruction algorithm may be improved. 

Keywords: Radon transform, Unbiased estimation, Density estimation 

AMS Subject Classifications: 92C55, 62G07 
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1 INTRODUCTION 5 

1 Introduction 

Computed tomography is based on the fundamental mathematical result that, under 

suitable regularity conditions, a function f: IR 2 -----+ IR is uniquely determined by its 

line integrals. 

Definition 1.1 Let IR d denote d-dimensional Euclidean space. Let G denote the set 

of lines in IR 2 (G is mnemonic for Grassmann manifold). The Radon transform of 

f: IR 2 -----+ IR is defined to be the function RJ : G -----+ IR which maps l E G to the line 

integral of f over l. 

In emission computed tomography (ECT), the goal is to determine the density, 

f, of a radioactive tracer in a subject as a function of position by external detection 

of emitted photons. 'Since the probability of a photon traveling,along a specific line 

through the subject is proportional to the integral of f along that line, the probabil­

ity density function (p.d.f.) of the observations is given by the (appropriately scal~d) 

Radon transform of f. Because only a finite number of observations distributed ac­

cording to the Radon transform of f are available, not the Radon transform of f itself, 

a statistical estimate off must be made from the available data. In this paper, we will 

quantify the statistical difficulty of estimating quantities of the form J ¢>(x)f(x) dx, 

where ¢> is a smooth function. We term these quantities integral functionals of f 

generated by smooth functions or, more briefly, smooth functionals. 

Example 1.2 Let D~ IR 2 denote the closed unit (radius disk). Suppose that f is 

square integrable and 0 outside D and that ¢> is an element of an orthonormal basis 

for the square-integrable functions on D. Then J ¢>(x)J(x) dx is the coefficient of¢ 

in the expansion off with respect to that basis. 

Example 1.3 If ¢ approximates the indicator function of a pixel or region of interest 

(ROI), then J ¢>(x)f(x) dx approximates the fraction of activity in that pixel or ROI. 
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Under minimal assumptions about j, we shall construct minimum-variance unbi­

ased (MVU) estimators for smooth functionals and compute their performance. By 

definition, the variance of these estimators gives a best-possible lower bound on the 

variance attainable by any unbiased estimator. It therefore provides an algorithm­

independent measure of how well such functionals may be estimated. Moreover, it 

turns out that there is a simple geometrical relationship between the MVU estima­

tor and an estimator based upon the filtered-backprojection reconstruction algorithm 

commonly used in medical imaging. The analysis provides an explanation of when 

and how much estimators based on filtered backprojection may be improved. 

Remark 1.4 The MVU estimator will be seen to depend on f. Since, in practice, 

f is unknown, one cannot attain the bound simply by just applying the MVU esti­

mator. However, as will be discussed in sec. 8, the analysis gives insight into how 

one might construct practical estimators whose performance approaches that of the 

MVU estimator. 

1.1 Mathematical Model of ECT 

There are two principal types of ECT used in medical imaging: single-photon emission 

computed tomography (SPECT) and positron emission tomography (PET). The very 

idealized mathematical model we will consider here is applicable to both. To motivate 

the model, we will consider the specific example of PET. 

As the name suggests, PET images are produced using a positron-emitting ra­

dioactive tracer. Shortly after a positron is emitted, it combines with an electron in 

an annihilation reaction. On the average, a positron travels only a very short dis­

tance between emission and annihilation, so the position of the annihilation reaction 

is approximately that of the positron's emission. The annihilation reaction results in 

the emission of a pair of annihilation photons that travel in (approximately) opposite 

directions along a line that has uniformly-distributed random orientation. These pho-
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tons subsequently strike detectors at approximately the same time, forming what is 

known as a coincident pair. From a coincident pair, one can thus infer that a positron 

was emitted (approximately) on the line segment between the two detectors which 

detected the pair. 

The positions of the positron emissions and the paths of the annihilation photons 

are naturally modeled as points and lines, respectively, in IR3 . However, the most 

common detector configurations actually only detect coincident pairs whose paths 

are close to a fixed plane (and which therefore must originate from an annihilation 

reaction near that plane). In this case, it makes sense to think of the problem as being 

2-dimensional. While in what follows we will, for simplicity, restrict ourselves to the 2-

dimensional problem, our approach could equally be applied to the full 3-dimensional 

problem or any other detector configuration. 

To construct a mathematical idealization of the PET problem, we model the 

locations of positron emissions as independent random variables distributed according 

to a p.d.f., j, D. Let rc G denote the set of lines in IR 2 that pass through D. 

Given that the ith positron emission occurs at XiE D, the line along which the 

resulting annihilation photons travel will be modeled as a random line liE T through 

Xi with uniformly-distributed random orientation. We model these orientations as 

being independent of the Xi and each other so that the li are independent random 

variables. It can then be shown that the li are distributed according to the probability 

density ~Rf on r [14, sec. 2.1][15, sec. 2.3]. For convenience, we define T f def ~Rf. 

Remark 1.5 In sec. 2, we will redefine R and T as operators on spaces of functions. 

Remark 1.6 It should be emphasized that t.he model described here is a very ide­

alized model of the PET problem. It ignores a number of physical effects which 

complicate PET in practice. (A brief discussion of how one might extend the model 

to include some of these effects may be found in sec. 7.) Nevertheless, it abstracts 

the fundamental problem of ECT. 
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1.2 Integral Functionals 

The problem of estimating smooth functionals is motivated, in part, by their being 

a statistically well-posed substitute for the more natural problem of estimating the 

fraction of the total tracer contained in some subset S C D. Define the indicator 

function of S by 

def { 1 XES 1s(x) = . 
0 xrf.S 

Then the fraction of the total tracer inS is given by fv 1s(x)f(x) dx. This suggests 

considering the more general problem of estimating quantities of the form J(f)def 

fv </>(x)f(x) dx, which we term integral functions, where the indicator function is 

replaced by a more general function. We shall consider the problem of estimating 

J(f) from n independent observations distributed according to the probability density 

T f in the case where 4> is a smooth function, i.e., <Pis infinitely differentiable. 

Remark 1. 7 It is natural to ask why we treat only integral functionals generated 

by smooth functions and thereby exclude, in particular, indicator functions. The 

reason is that, under the very minimal assumptions that we want to make about j, it 

is impossible to construct estimators for integral functionals generated by indicator 

functions that perform well for all possible f. In other words, the problem of esti­

mating integral functionals generated by indicator functions is statistically ill-posed 

without strong regularity conditions on f. Precise results along these lines may be 

found in [15, sec. 6.2] and [16, prop. 7.1]. Previous workers have avoided this difficulty 

by making strong assumptions about the functional form off (see section 1.4). In a 

sense, the approach taken here obviates the need for strong assumptions apout f by 

placing strong conditions on <fy. 

Remark 1.8 While indicator functions are not smooth, any indicator function can 

be closely approximated by a smooth function (cf. [8, prop. 8.17]). Under suitable 

regularity conditions on f, the integral functional generated by an indicator function 
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will then be close to the integral functional generated by the approximating smooth 

function. Thus, under suitable regularity conditions, the results presented here may 

be carried over to the problem of estimating the fraction of the total tracer in a pixel 

or ROI. 

Remark 1. 9 Suppose f is square integrable and {<Pi} is an orthonormal basis for the 

square-integrable functions on D. Then f = I:j ¢j(J)¢j and the problem of estimat­

ing f is closely related to the problem of estimating the ¢j(J). Thus, understanding 

how well one can estimate the integral functionals of f provides an approach to un­

derstanding how well one can estimate f. The point of t~his and the preceding remark 

is that understanding the estimation of smooth functionals of f provides a technical 

tool for understanding the estimation of the basic quantities of interest in ECT. 

Remark 1.10 Note well that f is defined to be a p.d.f. on emission locations; it 

contains no information about the rate of emissions. (One can think of the p.d.f. as 

being obtained by dividing the emission rate per unit area by the total count rate.) 

Similarly, the data are taken to be a sequence of elements of r, there is no time 

information. Thus the way we have set up the problem defines away the problem of 

estimating the total count rate. This explains why the familiar Poisson distribution 

does not appear in our model. In practice, one would like to known the total count 

rate, but good estimates for this quantity are easy to construct. 

1.3 Basic Statistical Notions 

In this subsection, we introduce some basic statistical notions. We follow [22]. 

Definition 1.11 We define a statistical experiment to be an ordered pair (n, {PJ : 

f E P} ), where n is a probability (sample) space and fPJ : jE 'P} is a set of p.d.f.s 

on n indexed by the set P. The set n is the set of possible observations. In our 

model of the ECT problem, n will be then-fold Cartesian product of r, rn. The set 
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P is called the parameter space ( cf. [22, clef. 7.1]) and represents the set of possible 

states of nature. Under the statistical hypothesis f E P, the observation is a random 

variable distributed according to the p.d.f. PJ. In our model of the ECT problem, 

P will be taken to be a set of p.d.f.s on D. Under the statistical hypothesis f E P, 

the observations will be distributed according to the n-fold product of T f, (T f)n, 

i.e., the probability density at l = (ll,l2,···,ln) Ern is given by ITi=lTf(li)· In 

other words, we shall consider the statistical experiment (rn, { (T f)n : f E P}). For 

comparison, we shall also consider the simpler statistical experiment, the so-called 

planar-imaging problem, in which the observations under f are elements of the n­

fold Cartesian product Dn distributed according to then-fold product off, i.e., the 

statistical experiment (Dn, {fn : f E P} ). In other words, the observations are the 

locations of the radioactive disintegrations. 

Definition 1.12 We are interested in estimating smooth functionals off given ob­

servations in rn (or Dn). We will therefore consider estimators that are functions 

¢n: rn -+ lR (or Jn : Dn -+ IR). If Jn(l) is an estimate of¢(!), the "badness" of the 

estimate will be quantified by the squared error [ Jn ( l) -¢(!)F. The expected value of 

the squared error under f is termed the mean squared error (MSE) of the estimator 

Jn under f. 

Roughly speaking, we would like construct estimators whose MSE is small for 

many of the f E P. It is easy to construct estimators whose MSE is small at any 

particular foE P, indeed the estimator Jn = ¢(fo) has MSE 0 at fo. But such 

estimators perform poorly at other f E P and are of little interest. In order to 

obtain useful results, we must restrict our attention to estimators that satisfy some 

impartiality criterion. One such criterion is unbiasedness. 

Definition 1.13 An estimator Jn is said to be an unbiased estimator of ¢(!) if 

E J¢n = ¢(!) for all f E P, where E 1 denotes mathematical expectation under the 

statistical hypothesis f. The MSE of an unbiased estimator is equal to its variance. 
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An estimator is said to be minimum-variance unbiased (MVU) at fo if its variance at 

fo is minimal with respect to that of all unbiased estimators. An estimator is said to 

be uniformly MVU if it is MVU at all f E P. 

In what follows, we will construct MVU estimators for both the planar-imaging 

and ECT problems. 

1.4 Image Model 

As discussed in sec. 1.3, useful estimators need to satisfy some impartiality criterion 

with respect to the various f E P. This makes any useful notion of statistical opti­

mality dependent upon P. While a number of authors have obtained results on the 

statistical difficulty of the ECT problem, the work here differs from previous work in 

that it makes very weak assumptions about the unknown density j, i.e., Pis allowed 

to be a very "large" subset of the set of p.d.f.s on D. 

In most statistical models for ECT, f is assumed to belong to some predetermined 

finite-dimensional family of probability densities. Such models are termed "paramet­

ric". Most commonly, the domain of interest is "pixelized", i.e., divided into a finite 

number of squares. It is then assumed that f is constant on each square (e.g., (24, 

sec. 1.2]). Another parametric approach, based on a singular value decomposition of 

the tomography process, is described in [1]. The advantage of parametric models is 

that one can use standard methods of parametric statistics to develop and evaluate 

estimators (e.g., maximum likelihood estimators and Cramer-Rao bounds). The main 

disadvantage of parametric models in ECT is that, in practice, the actual f is unlikely 

to conform to the assumed model, creating an error which falls outside the assumed 

statistical framework. 

Definition 1.14 In the remainder of this paper, we will take P to be the set of p:d.f.s 

on D that are bounded above and below away from 0. 

Remark 1.15 In our opinion, the restriction f E P is sufficiently weak to cover 
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almost all practical applications. The assumption that the density function is bounded 

above corresponds to the physical condition that the concentration of tracer in the 

subject is bounded above. Since this upper bound can be arbitrarily large, this 

condition will be satisfied in any practical application. The. assumption that the 

density function is bounded below away from 0 is perhaps more problematic, but 

since this lower bound can be chosen to be arbitrarily small, we do not believe it 

alters the essence of the problem. Physically, one can think of it as postulating some 

positive level of background radiation. Alternatively, one could alter the experiment 

by adding some artificial observations that mimic those that would be obtained from 

a low-intensity uniform distribution. 

1.5 Outline of Paper 

In sec. 2, we review concepts related to the Radon transform. In sec. 3, we discuss 

the representation of smooth functionals on P by functions on r and construct MVU 

estimators in the class of linear estimators for both the planar-imaging and ECT 

problems. In sec. 4, we show that the linear estimators constructed in sec. 3 are 

actually MVU estimators in the class of all estimators. In sec. 5, we discuss concrete 

representations of the estimators· constructed in sec. 3. In sec. 6, we consider the 

special case where ¢ is a Gaussian p.d.f.. Explicit numerical results for this case are 

given. In sec. 7, we sketch a simple generalization of our model to include the physical 

effects of photon attenuation and detector nonhomogeneity. Some concluding remarks 

are given in sec. 8. 
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2 The Radon Transform 

In this section, we review some notions related to the Radon transform that are used in 

what follows. In sec. 2.1, we introduce some notation and define the Radon transform. 

Sec. 2.2 discusses the adjoint of the Radon transform, which is commonly referred 

to as the backprojection operator in medical imaging. In sec. 2.3, we consider the 

Radon transform on spaces of square-integrable functions. Sec. 2.4 gives the inversion 

formula for the Radon transform. 

Remark 2.1 On a first reading, the reader may wish to just skim this section, focus­

ing mainly on the notation and definitions. The motivation for many of the definitions 

will become apparent in sec. 3. 

2.1 Definition 

Definition 2.2 Let S 1 C ~2 denote the unit circle. Define the map w:~---+81 by 

() r--+ (cos(), sin ()). We shall use the map w to define local coordinate systems on 

8 1 , the local coordinate being denoted by (). We define the integral of f over 8 1 as 

fs1 f(w(())) d() *' Jg1r f(w(())) d(). 

Definition 2.3 Let G denote the set of lines in ~2 . We define the double covering 

1r: S1 x ~ ---+ G by taking 1r(w,s) E G to be the line in ~2 through sw which is 

perpendicular tow. Note that 1r(w,s) = 1r(-w,-s). It will be convenient to use the 

coordinates ((),s) to refer to the line 1r(w(e),s) E G. We will then write the integral 

of a function g on G as fag((), s) ds d() def frf f~oo g( (), s) ds d(). 

Definition 2.4 For any function g : 8 1 x ~ ---+ ~' define its drop g: G ---+ ~ by 

g(1r(w,s)) def g(w,s) + g(-w,-s). For g: G---+ ~'define the lift of g to S 1 x ~by 

g~ g 0 7r : 8 1 X ~ -t ~. 

Remark 2.5 We are now ready to define the Radon transform. In essence, the 

Radon transform of a function f : ~2 ---+ ~ is the real-valued function on G whose 
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value on a given line l E G is equal to the integral off over l. It is, however, more 

standard to define the Radon transform to be the real-valued function on 5 1 x JR. 

which is the lift of the Radon transform just defined. The resulting Radon transform 

has a redundancy due to the fact that each pointinG is represented by two points in 

5 1 x JR.. While working on 5 1 x JR. is convenient in most (deterministic) contexts, in 

our statistical problem the observations are naturally elements of G and it is awkward 

to represent them as elements of 5 1 X JR.. The major downside of this is that to use 

any of the previously obtained results on the Radon transform, we have to go back 

and forth between the two definitions. We shall refer to the Radon transform which 

gives functions on 5 1 x JR. as the standard Radon transform and the transform which 

gives functions on G simply as the Radon transform. 

Definition· 2.6 We shall be dealing with a number of sets on which there is some 

fixed notion of integration, e.g., the integral on 5 1 defined in clef. 2.2, the integral on G 

defined in clef. 2.3, the usual integrals on JR.d and D, etc. In order to avoid repetition, 

we shall generically denote a set equipped with some fixed notion of integration by 

X. This idea can be made precise by taking X to be a measure space. The reader 

who is unfamiliar with measure spaces will lose little by using the preceding intuitive 

definition of X. 

Definition 2.7 Let X be as in clef. 2.6. Define L1 (X) to be the set of absolutely­

integrable real-valued functions on X. 

Definition 2.8 The Radon transform on L1 (1R. 2
), which we shall denote by R, maps 

f E L 1 (JR. 2) to the function Rf : G --+ JR. whose value at l E G is equal to the integral 

off on l. The standard Radon transform on L1 (1R. 2
), which we shall denote by R, 

maps f E L1 (1R. 2
) to the lift of Rf to 5 1 x JR.. It can be shown that Rj E L1(S1 x JR.) 

[11, p. 168]. It follows at once that Rf E L 1 (G). 
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2.2 The Adjoint 

In this subsection, we will develop the adjoint of R. In the context of medical imaging, 

this operator is commonly referred to as the backprojection operator. 

Definition 2.9 Let X be as in def. 2.6. Define L 00 (X) to be the set of bounded 

real-valued functions on X. 

Proposition 2.10 The map fl* : L=(S1 x ~)--+ £=(~2) given by 

ltg(x) = r g(w(B), X. w(B)) d() Jsl 

forgE £=(S1 x ~) is the adjoint of R: L1 (~2) --+ L 1 (S1 x ~) in the sense that 

r Rf(B,s)g(B,s)dsdB = r f(x)R*g(x)dx J 51 x'!R }fF.2 

for all f E L1 (~2) and g E L00 (S 1 x ~). The map R*: L00 (G)--+ L00 (~2) given by 

R*g(x) = ~R*g(x) 

=fa"' g(O, x · w(O)) dB 

forgE L00 (G) is the adjoint of R: L1 (~2)--+ L1 (G) in the sense that 

1 RJ(O,s)g(O,s)dsdB = { f(x)R*g(x)dx 
G }fF.2 

(2.1) 

Proof. The result for R is given in [11, p. 169]. The result for R follows from this 

by the definitions. • 

We conclude this subsection with a simple identity which relates the adjoin_ts of 

Rand R. 

Lemma 2.11 If g E L00 (S1 x ~) 1 we have the identity 

R* v R-* g= g) 

where g E L00
( G) is defined as in def 2.4. 

/ 
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Proof. The lemma follows by chasing through the definitions. The details may be 

found in [15, lem. 2.1.16]. • 

2.3 L2 Theory 

It is very natural to define the Radon transform as an operator from L 1 (IR 2) to 

L1 (G). However, in our statistical investigations we will often need to consider the 

Radon transform on spaces of square-integrable functions. We start by recalling the 

definition of a Hilbert space, which is a (possibly infinite dimensional) generalization 

of Euclidean space. 

Definition 2.12 Let V be a (real) vector space. An inner product on Vis a function 

V x V--+ IR, which we denote by (x, y) ~--+ (xjy)v, that is symmetric in its arguments, 

separately linear in its arguments, and satisfies Jjxjj~ = (x,x) 2: 0 for all x E V with 

equality if and only if x = 0. The distance between x and y is then defined to be 

llx-yjj. 

Example 2.13 IR d becomes an inner product space by taking the inner product to 

be the usual dot product. 

Definition 2.14 Let V be an inner product space. A sequence { xn} of elements of V 

is said be a Cauchy sequence if limn,m-.oo llxn- Xm llv = 0. (Intuitively, the condition 

means that the Xn stay close to each other as n --+ oo.) The sequence { xn} is said to 

converges to x E V if limn-.oo llxn- xllv = 0. Vis said to be a Hilbert space if every 

Caucb.y sequence in V converges to an element of V. 

Example 2.15 JRd is a Hilbert space (see, e.g., [18, thm. 3.11(c)]). Other important 

examples are the spaces of square-integrable functions introduced in def. 2.16. 
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Definition 2.16 Let X be as in clef. 2.6 and foE L=(X). The space of real-valued 

functions f on X such that 

will be denoted by L2 (X, fo). When fo = 1, we simply write L2(X). L2 (X, fo) is a 

Hilbert space when equipped with the inner product 

(Jig)£2(X,Jo) def L f(x)g(x)fo(x) dx 

(see, e.g., [5, thm. 5.2.1]). 

Remark 2.17 Iff E L2 (X, f 0 ), then the Cauchy-Schwarz inequality [3, thm. 1.1.4] 

implies that the function L2 (X, fo) --+ JR. defined by g t--t (Jig)P(XJo) is continuous. 

We shall make frequent use of this fact. 

Definition 2.18 Define r to be the subset of G consisting of lines whose distance 

from the origin is ~ 1, i.e., lines with s coordinate of magnitude ~ 1. 

Definition 2.19 Let p ~ q be 1, 2, or oo. It is frequently convenient to consider 

a function in Lq(D) as a function in LP(JR.2) by defining it to be zero outside D. 

Similarly, it is frequently convenient to consider a function in Lq(IR.2) as a function 

in LP(D) by restriction. To avoid confusion, we introduce some notation for this. If 

f E Lq(D), we define '-Lq(D),LP(!'J.2)!E LP(JR.2
) to agree with fonD and equal 0 outside 

D. Iff E Lq(IR.2), we define 7rLq(JF.2),LP(D)iE LP(D) to be the restriction off to D. 

We make similar definitions for Lq(f) and LP(G). 

Definition 2.20 We define T: L2 (D) --+ L2 (f) by 

In words, T f is obtained by considering f as an element of L1 (1R. 2
), taking the Radon 

transform and scaling (giving a function in L1 (G)), and restricting the result to 
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r. That the definition makes sense, and, in fact, T is continuous, can be see from 

the stronger result that R : L 2 (D) -+ L2(f, (1 - s2)-112) is a continuous map [17, 

thm~ II.l.6]. 

We now turn our attention to the adjoint of T. 

Definition 2.21 The adjoint operator of T : L 2 (D) -+ L2 (f) is defined to be the 

unique continuous linear operator T*: L2 (r) -+ L2 (D) such that (JIT*g)£2(D) = 

(T flg)ucr) for all f E L 2 (D) and g E L2 (r) [3, sec. II.2]. 

Remark 2.22 In def. 2.20, we were able to obtain the Radon transform on L 2 (D) 

from the Radon transform on L1 (1~2) since any square-integrable function on D is 

absolutely integrable. In the case of the adjoint operator, we cannot simply obtain 

T* from R* since the set of square integrable functions on r strictly contains the 

bounded functions on r and R* is only defined on the latter. However, it turns out 

that a square-integrable function on r can be approximated arbitrarily closely by a 

bounded function and thus T* can be obtained essentially by a continuous extension of 

~R*. The following definition formalizes this idea of arbitrarily closed approximation. 

Definition 2.23 Let L be a linear subspace of a Hilbert space H. L is said to be 

dense in H if for each x E L there exists a sequence { xn} in L which converges to 

x. A continuous function on a Hilbert space is clearly determined by its value on a 

dense subspace. 

Remark 2.24 All the notation should not distract the reader from the point of the 

next proposition, which is that T* is essentially the scaled backprojection operator 

.lR*. 
7r 

Proposition 2.25 The adjoint T* : L 2 (f) -+ L 2 (D) is given by the unique continu­

ous extension of ;7rL=(JPl.2),£2{D) oR* o L£=(r),L=(G) : L 00 (f)-+ U>O(D) to L 2 (f). 
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Proof. Let f E L2 (D) and g E vx)(f). Then 

(fl]:_7rLoo(J.i1l.2),£2(D) 0 R* 0 {,Loo(r),Loo(G)9)£2(D) 
7r . 

so 

= ~ k f(x)7rLoo(R2),£2(D) oR* o f.,Loo(r),Loo(G)g(x) dx 

= ~ k.
2 

f.,£2(D),Ll(R2) 0 j(x)R* 0 f.,Loo(r),Loo(G)9(x) dx 

= ~fa Rf.,L2(D),Ll(R2) 0 J( fJ, S )f.,Loo(r),Loo(G)9( (), S) ds d() 

= ~ £ 1fU(R2),£2(D) 0 R 0 f.,£2(D),Ll(L"J.2)!( ()' s )g( e' s) ds d() 

= .£ T j(fJ, s)g(fJ,s) ds d() 

, = (T Jig )L2(r)' 

T * 1 R* g = ;7rLoo(m_2),L2(D) o 0 f.,Loo(r),Loo(G) 

on L00 (f). Since L00 (f) is dense in L2 (f), the result follows. 

2.4 Inversion 

We will now develop an inversion formula for the Radon transform. 

19 

Definition 2.26 Let X be as in clef. 2.6. Define C00 (X) to be the set of smooth, 

i.e., infinitely differentiable, functions on X. 

Definition 2.27 The Schwartz space S(IR.d) is defined to be the subspace of C00 (IR.d) 

consisting of functions f such that 

is finite for all m, k E N [23, ch. 10, ex. IV]. Intuitively, S(IR.d) is the set of smooth 

functions that, along with their derivatives, rapidly approach 0 as lxl --+ oo. The 

Fourier transform F: S(JRd) --+ S(IR.d) is denoted by f ~ }, where j is defined by 

}(~) ~f r e-i21rx•ej(x)dx 
}m_d 
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[23, p. 268, clef. 25.1]. The Schwartz space S(G) is defined to be the subspace of 

coo (G) consisting of functions g such that 

is finite for all m, k E N, cf. [10, eq. 2.10]. 

Remark 2.28 The use of the circumflex to denote the Fourier transform conflicts 

with its use in denoting an estimate of an unknown quantity. Since both notations are 

quite standard, we shall just endure this ambiguity. It should be clear from context 

which meaning is intended. 

Definition 2.29 We define the Riesz potential operator J-1 for functions f E S(JRd) 

by 

u-1 f) A(~) ~f 2rrl~lf(~) (2.2) 

( cf., [21, sec. V.1]). For f E S(JRd), it is shown in lem. A.1 below that J-1 f E C 00 (JRd). 

For functions on S1 x lR and G, we define J- 1 to act on the second, or "s" variable. 

Remark 2.30 In the context of medical imaging, J- 1 acting on functions on S1 x lR 

or G is the "ramp filter" in the "filtered-backprojection" algorithm. 

We are now ready to give the inversion formula for the Radon transform. 

Theorem 2.31 Let cP E S(JR2
). Then 

(recall that J-1 acts on the second or "s" variable of functions on G). 

Proof. The inversion formula for the standard Radon transform, 
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is proved in [17, p. 18, thm. 2.1]. From this, using lem. 2.11, it follows that 

.J:_ R* u-l R<P r 
471" 

.J:_ R* 1-1 R<jy. • 
271" 

21 

Remark 2.32 Thm. 2.31 is just the "filtered backprojection" algorithm in medical 

imaging. The Radon transform of </Y, R<P, is ramp-filtered (I-1
) and backprojected 

( R*) to recover <P. 
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3 MVU Linear Estimators 

In order to develop some intuition for the problem, we start by considering a restricted 

class of estimators, the so-called linear estimators, for smooth functionals. We shall 

construct estimators which are MVU within this restricted class, which we term MVU 

linear estimators. In sec. 4, we shall see that these MVU linear estimators turn out 

to be MVU estimators in the class of all estimators. 

3.1 The Planar-Imaging Problem 

We start by considering the estimation o{~(J) given n independent, identically dis­

tributed (i.i.d.) observations distributed according to j, i.e., the planar-imaging prob­

lem. For this problem, there is an obvious estimator for ~(f). Indeed, note that ¢(!) 

is the expected value of the random variable constructed by evaluating the function cp 

at a random sample distributed according to f. Thus an obvious estimate for~(!) is ' 

the sample mean of the derived observations obtained by evaluating the function cp at 

the original observations. We can write this estimator as (x11 ... , xn) ~---+ ~ I:Z:1 cp(xi), 

where Xi is the ith observation. 

Definition 3.1 Let v E L2 (D). We define the linear estimator generated by v to be 

the function given by (xb ... , xn) 1--+ n-1 I:Z:1 v(xi)· 

We shall now show that the estimator generated by cp is in fact the MVU linear 

estimator. 

Remark 3.2 It is useful to describe the variance of the estimator generated by v by 

embedding v in L 2 (D, f 0 ). This is the motivation for introducing the weighted L2 

space L2 (X, fo) in def. 2.16. When fo in clef. 2.16 is a p.d.f. on the probability space 

X, the weighting of the integrals in def. 2.16 corresponds to a probabilistic weighting. 

The space L2 (X, fo) corresponds to the space of random functions on X with finite 

second moment when X is distributed according to f 0 . 
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Proposition 3.3 Let fo E P and v E L 2 (D). Then the linear estimator generated 

by v has mean v(f0 ) and variance 

at f 0 . The variance is finite since v E L2(D, fo) if and only if v E L2 (D). 

Proof. At f 0 , the linear estimator generated by v has mean 

and variance 

fv v(x)fo(x) dx 

v(fo) 

r ... r [.!. t v(xi)- v(Jo)] 2 fo(xt) ... fo(xn) dxt ... dxn 
Jv Jv n i=t 

= { · · · { {.!. t[v(xi) - v(Jo)]} 2 fo(Xt) · · · fo(Xn) dx1 · · · dxn 
Jv Jv n i=t 

= n-2 
/, •.• /, [t v(xi) - v(Jo)]2 fo(xt) ... fo(xn) dxl ... dxn 

D D i=l 

= n-1 fv[v(x)- v(Jo)] 2 fo(x) dx 

= n-1{k v 2 (x)fo(x) dx- [v(f0 )]
2

} 

= n-
1{llvlli2(DJo)- [v(Jo)]2

}. 

The condition fo E P implies that v E L2(D) if and only if v E L2 (D, f 0 ). It follows 

that both llvlli_2(D,/o) and v(Jo) are finite. • 

Remark 3.4 The condition v E L2 (D) is clearly a necessary and sufficient for the 

variance of an estimate of the form (x~: ... , Xn) 1---+ ~ .Li=t v(xi) to exist at fo E P. 

The next proposition shows that ¢ is the only function in L2 (D) that generates 

an unbiased estimator.· 

Proposition 3.5 Let v E L 2 (D) and suppose the linear estimator generated by v is 

an unbiased estimator of¢(!)) i.e.) v(f) = J;(J) for all f E P. Then v = ¢. 
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Proof. Since v and¢ are linear functions on L 2 (D), they must agree on the linear 

span of P. A routine argument shows that the linear span of P is dense in L 2 (D). 

(It is well-known that the step functions are dense in L2 (D) (see, e.g., [8, prop. 6.7]). 

Now all the step functions are in the linear span of P except those taking a value of 0. 

But it is clear that step functions taking a value of 0 can be approximated arbitrarily 

closely in L2 (D) by a function in the linear span of P). Since v and¢ are continuous, 

the result follows. • 

To s1,1mmarize: 

Theorem 3.6 The estimator generated by </; is the unique MVU linear estimator for 

the planar-imaging problem. Its variance at fo is 

Proof. Combine props. 3.3 and 3.5. • 

We shall see in sec. 4.1 that the estimator generated by cjJ is actually a uniformly 

MVU estimator for ¢(!) in the class of all estimators. 

3.2 The ECT Problem 

We now turn our attention to the construction of MVU linear estimators for the ECT 

problem. 

Definition 3. 7 Let fu denote the uniform distribution on D, i.e., fu is the constant 

function 1/Jr on D. Define gu= T fu· 

Definition 3.8 Let 1/; E L 2 (f,gu)· We define the linear estimator generated by 1/; to 

be the function rn -t IR given by (it, ... , ln) 1---l- n-1 L:i:,1 1/;(li)· 
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Proposition 3.9 Let foE P and 'ljJ E L 2 (f,gu)· Then the linear estimator generated 

by '1/; has mean J;(T fo) and variance 

n-1 (£ 'l/; 2 (B,s)Tfo(B,s)dsd()- [J;(Tfo)] 2
). 

at fo. The variance is finite since '1/; E L 2 (f,Tfo) if and only if'lj; E L 2 (f,gu)· 

Proof. Essentially the same as the proof of prop. 3.3. • 

Remark 3.10 The condition '1/; E L 2 (f,gu) is clearly necessary and sufficient for the 

variance of an estimate of the form (11 , ... , ln) .- ~ :Li=1.'1j;(li) to exist at foE P. 

Our next goal is to find a criterion for an element of L 2 (f,gu) to generate an 

unbiased estimator. The desired result is given by prop. 3.16. In the interim, we shall 

define the operator Tfu and see that the condition Tju 'ljJ = ¢given in prop. 3.16 has 

the intuitive content that '1/J backprojects to ¢. 

Since we are working in L 2 (f,gu), we need to reformulate T as an operator T1,. 

whose range is L2 (f,gu)· The next definition does this in slightly greater generality. 

Definition 3.11 For fo E P, define the linear operator T10 : L2 (D) -+ L2 (f, T fo) by 

f.- ft. It is shown in [17, thm. II.l.6] that Tf,. is continuous, from which it easily 

follows that Tfo is continuous. 

Remark 3.12 TJ0 f(O,s) is just the likelihood ratio of the observation (O,s) under 

the statistical hypotheses f and fo. 

The ~ext proposition shows that the adjoint operator Tju : L2 (f,gu) -+ L2 (D) is 

just the continuous extension of T*. Its intuitive content is that Tj" is just the back­

projection operator. (The situation is analogous to the one discussed in rem. 2.22.) 

Proposition 3.13 The adjoint of Tfo : L2 (D) -+ L2 (f, T fo) is given by the unique 

continuous extension ofT* : L2 (f) -+ L2 (D) to L2 (f, T f 0 ). 
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Proof. Let f E L2 (D) and g E L2 (f). Then 

{ Tf(O,s) 
Jr T fo(O, s)g(O, s)T f 0(0, s) ds d() 

1 T f(O, s)g(O, s) ds dO 

(T fl9)£2(r) 

(!IT*g)u(D)· 

Since L2 (r) is dense in L2 (f, T f 0 ), the result follows. • 

Corollary 3.14 If foE P, then Tj
0 

= Tj.,. 

Proof. By prop. 3.13, Tj
0 

and Tj., agree on the dense subset L2 (f). • 

Corollary 3.15 Let¢> E S(IR2), foE P, and '1/J E L2 (f,gu)· Then Tj
0

'1/J = ¢> if and 

only if Tj., '1/J = ¢>. • 

Proposition 3.16 Let ¢> E S(IR2) and 'ljJ E L2 (f,gu)· Then the linear estimator 

generated by 'ljJ is unbiased if and only if Tj,. 'ljJ = ¢. 

Proof. Suppose Tj,. 'ljJ = ¢ and f E P. Then, by the definition of the adjoint, 

~(Tf) 1 '1/J(O,s)Tf(B,s)dsdB 

{ Tf(B,s) 
Jr '1/J( (), S) T fu( (}' s )T fu ( B, s) ds dB 

('1/J, TJ.,f)L2(r,9 .,) 

(Tj., '1/J, f)L2(D) 

( c/J, f)L2(D) 

~(!). 

for all f E L2 (D), in particular for all f E P. Conversely, suppose ~(T f)=~(!) for 

all f E P. Since ~ and ~ are linear operators, ~(T f) = ~(!) for all f in the linear 
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span of P. Since the linear span of Pis dense in L2 (D), it follows that ~(T f) =~(f) 

for all f E L2 (D). This says that T*</> = 'lj;. The result now follows from prop. 3.13 . 

• 
Intuitively, prop. 3.16 says that a function 'lj; on r generates an unbiased linear 

estimator if and only if it backprojects to </>, i.e., if Tju 'lj; = </>. We are therefore lead 

to investigate the existence and uniqueness of solutions to the equation Tju 'lj; = </>. 

We start by answering the existence question in the affirmative. 

Definition 3.17 For</> E S(JR2
), define F</> E C 00 (G) by F</> clef v-1 R</> (cf.lem. A.1). 

Proposition 3.18 Let</> E S. Then TjuF</> = </>. 

Proof. By props. 3.13, 2.25, and 2.31, 

T*F</> fu T* F</> 

~ R* F</> 
7r 

</>. • 

Remark 3.19 The standard approach to quantifying the fraction of activity in a 

ROI may be termed the "filtered backprojection and integration" algorithm, i.e., one 

estimates the image by an estimate j using the filtered backprojection algorithm 

and computes the integral of j over the ROI. Since this algorithm is usually imple­

mented using a discrete version of the Radon transform, it does not fit precisely into 

our framework. However, we shall give a heuristic argument to the effect that this 

standard procedure is essentially the linear estimator generated by F</>. 

The idea of filtered backprojection is to replace the quantity R</> in the inversion 

formula given in thm. 2.31 with a smooth approximation to the observations. Let 

w E S( G) be an approximate delta function in the second variable, i.e., for fixed 

(), w( (), s) as a function of s approximates a delta function. Let 9n be the smooth 

function on G obtained by convolving the sum of n point masses of mass n-1 at 
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the observations l~, ... , ln, so that 9n is a smooth approximation to the empirical 

distribution generated by the observations. (The convolution is taken with respect 

to the second variable only.) Then the filtered-backprojection estimate, j, of f is 

lR* J-1g and 2 n 

¢>(}) ~~2 4;(x)R*I- 1gn(x)dx 

~ fo7r i: R4;(B,s)I-1gn(B,s)dsd() 

~ fo7r i: Rqy((), 77)(I-1gn)"((), 77) d77 d() 

~ r 100 

Rqy( (), 77 )§n ( (), 77) 1771 d77 d() 
2 Jo -oo 

~ fo7r i: (I -l R4; )" ( (), 77 )gn ( (), 77) d77 d() 

~ fo7r i: I- 1R4;(B,s)gn(B,s)dsd() 

17r i: F4;(B,s)gn(B,s)dsd() 

( F c/> )"(gn), 

where the overbar indicates complex conjugate and third equality follows from the 

Plancherel theorem (see, e.g., [8, thm. 8.29]). In the limit as 9n approaches a delta 

function in the second variable, this quantity will approach the estimator generated 

by Fe/>. A discrete version of this argument may be found in [12]. 

Prop. 3.18 establishes the existence of an unbiased linear estimator. The next 

proposition addresses its uniqueness. 

Definition 3.20 If A is a linear operator, let N(A) denote its nullspace, i.e., the set 

of vectors x such that Ax = 0. 

Proposition 3.21 Let¢ E S. Then '1/J E L2 (f,gu) satisfies Tju'I/J =¢if and only if 

'ljJ E Fc/>+N(TjJ. 

Proof. If Tt '1/J = ¢,then Tju ('1/J- Fe/>) = 0, so '1/J- F¢ E N(TtJ- Conversely, if 

'ljJ- Fe/> E N(TjJ, then Tju 'ljJ = cf>. • 
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Intuitively, prop. 3.21 says that the functions which generate unbiased linear es­

timators form an affine linear space obtained by adding functions which backproject 

to 0 to Fcp. Thus the uniqueness question boils down to whether or not there ex­

ist nonzero functions on r that backproject to 0. The next proposition shows that 

this question is equivalent to whether or not TJ,.L2 (D) is dense in L2 (f, T fo), i.e., 

whether or not any function on r can be approximated arbitrarily closely by the 

Radon transform of a function on D. 

Definition 3.22 Let L be a linear subspace of a Hilbert space H. The closure of L, 

which we denote by L, is the subspace of H consisting of elements f such that there 

exists a sequence in L converging to f. It is obvious that L s;;; L (consider constant 

sequences); the point is that a sequence {fn} s;;; L may converge to an f f/:. L. By 

definition, L is dense in L. 

Definition 3.23 Let H be a Hilbert space and x, y E H. Then x is said to be 

orthogonal toy if (xly)H = 0. If Lis a subspace of H, then the subspace of H whose 

elements are orthogonal to every element of L is termed the orthogonal complement 

to Land denoted by L.J... We note the identity (L.J..).J.. = L [3, cor. 1.2.9]. 

Proposition 3.24 Let fo E P. Then 

Proof. This is a special case of the following general fact. If A : H ----+ ]{ is 

a continuous linear operator from a Hilbert space H to a Hilbert space ]{, then 

N(A*) = AH.J.. (see, e.g., [3, sees. I.2, II.2]). (This is just the Hilbert space analogue of 

the familiar fact from linear algebra that the range space of a real matrix is orthogonal 

to the nulls pace of its transpose.) • 

Corollary 3.25 N(Tj
0

) = {0} if and only ifTJ0 L2 (D) is dense in L2 (f, T fa). 
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{0}. 

Conversely, if N(Tj
0

) = {0}, then Tt0 L2 (D)j_ = {0}, so 

Tt0 L2 (D) [TJ0 L2 (D)j_] j_ 

{O}j_ 

L 2 (f, Tfa). • 

30 

Intuitively, prop. 3.24 tells us that the generators of unbiased linear estimators 

differ by functions that are orthogonal to the range of the Radon transform. In sec. 5, 

we shall see that T1uL2 (D)j_ is infinite dimensional, implying there is an infinite­

dimensional space of unbiased linear estimators. In the remainder of this section, 

we shall consider, in a somewhat abstract manner, the construction of MVU linear 

estimators for the ECT problem. It turns out that the MVU linear estimator is 

generated by the projection of any '1/J E L 2 (f, 9u) that generates an unbiased estimator 

onto T10 L2 (D). 

Definition 3.26 Let L be a subspace of a Hilbert space H. L is said to be closed 

if L = L. If L is closed and g E H, there is a unique element PL9E L, termed the 

projection of g onto L, such that 

[8, thm. 5.24], i.e., PL9 is the element of L that is closest to g. It has the property 

g- pzg E Lj_. Thus if g' E L, 

(3.1) 

We also have the formulas 

g = PL9 + PLJ-9 
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and 

Theorem 3.27 Let fo E P and ¢; E S(IR 2). Suppose '1/J E L2 (f, T fo) satisfies Tj
0 

'1/J = 
¢;. Then the estimator generated by Pr

10
£2(D) '1/J is an MVU linear estimator for J(f) 

at fo in the ECT problem. Its variance is 

(3.2) 

at fo. 

Proof. We first note that Pr
10

£2(D) '1/J generates a unbiased estimator since '1/J -

Pr
10

£2(D)'l/J E TJ0 L 2(D)J.. and hence '1/J- Pr
10

£2(D)'l/J is in the nullspace of Tj
0

• Now 

suppose '1/J' E L2 (f, T fo) generates an unbiased estimate of J(f). Then Tj
0
('1/J'- '1/J) = 

0, so '1/J'- '1/J is in the nullspace of Tj
0 

and hence orthogonal to T10 L 2 (D). By eq. 3.1, 

it follows that Pr
10

£2(D) '1/J' = Pr
10

£2(D) '1/J. Thus 

11Pr10£2(D) 'I/JIIL2(1,Tfo) + 11Pr
10

L2(D).t 'I/JIIL2(1,Tio) 

> 11Pr10L2(D) '1/J II L2(1,TJo) · • 

In effect, the unbiasedness condition determines the component of the generator 

of any unbiased linear estimator in the range of the Radon transform, but allows the 

component in the orthogonal complement to. be arbitrary. The variance is minimized 

by setting the component in the orthogonal complement to be 0. 

Remark 3.28 In sec. 4, we shall see that the estimator constructed in thm. 3.27 is 

an MVU estimator in the class of all estimators. However, since the minimizing '1/J 

will change as a function of f 0 , such an estimator can no longer be a uniformly MVU 

estimator. 

Remark 3.29 From the above, '1/J E L2 (f, fu) generates an unbiased estimator if and 

only if J;(T f) = J(f) for all f E P. This says that the functional generated by ¢;on 
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P is the same as the functional generated by 'ljJ on TP. This idea can be expressed 

by saying that 'ljJ is an observation-domain representation of </J. 

Remark 3.30 Under the assumption that f E P, the above theory extends to any 

c/> E c=(I~?). Indeed, for any </J E c=(JR2
) one can find a </J' E S(J~_2) that is equal to 

<PonD (cf. [8, lem 8.10]) and thus generates the same functional on Pas </J. 
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4 MVU Estimators 

In this section, we will show that the MVU linear estimators constructed in sec. 3 are 

actually MVU estimators in the class of all estimators. 

4.1 Uniformly MVU Estimators for Planar Imaging 

In this subsection, we will prove the claim made in sec. 3 that the linear estima­

tor generated by cP is an uniformly MVU estimator for ~(f) in the planar-imaging 

problem. 

Theorem 4.1 Let cP E 5(~2). The estimator generated by cP is an uniformly MVU 

estimator for ~(f) in the planar-imaging problem. 

Proof. Let foE P be given. For itl < supxED cP(x)- ~(fo), define ft: D---+ IR by 

ft = {1 + t[cP- ~(fo)]} fo. 

Using the fact that 

k[cP(x)- ~(fo)]fodx = 0, ( 4.1 )" 

it is clear that theft E P. Consider the one-dimensional subproblem of estimating 

~Ut) from n i.i.d. observations distributed according toft for itl < SUPxED lcP(x)­

'~(fo)l. The Cramer-Rao inequality [13, art. 399D) states that the variance of any 

unbiased estimator of ~(Jt) at fo is bounded below by 

The denominator of this expression is commonly referred to as the Fisher information 

fort at t = 0. We have 

[cP(x)- ~(Jo)]fo(x) I 
ft(x) t=o 

cP(x)- J>Uo), 

.. -, 
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and hence the Fisher information at t = 0 is equal to 

Again using eq. 4.1, we also have 

Ot b 4>(x){1 + t[<J>(x)- ~(Jo)]}fodxlt=O 

In 4>(x)[¢(x)- ~(Jo)]fo(x) dx 

114>11l2(D,J0)- [~(Jo)] 2 • 

34 

It follows that the variance of an unbiased estimator of ~(Jt) at fo must be 2:: 

n-1 {114>11l2(D)- [~(Ja)] 2 }. By thm. 3.6, the linear estimator generated by¢ is unbi­

ased and achieves this lower bound. Since fa E P was arbitrary, we conclude that 

the estimator generated by 4> is an uniformly MVU estimator for ¢(!). • 

4.2 MVU Estimators for ECT 

In this subsection, we will show that the MVU linear estimator constructed in sec. 3.2 

is an MVU estimator for the ECT problem. 

Theorem 4.2 Let fo E P; g0 = T fo; and 4> E S(IR2
). The estimator generated by 

'lj; def Pr,
0

L 2 (D)F4> is an MVU estimator for ~(f) at fo in the ECT problem. 

Proof. The proof is analogous to that of thm. 4.1 in that the Cramer-Rq,o in-

equality is applied to one-dimensional subproblems to show that the variance of any 

unbiased estimator cannot be less than that of the MVU linear estimator. In thm. 4.1, 

we considered perturbations of fa in the direction <J>(x)- 4>(!0 ). In the ECT problem, 

we consider perturbations of go (approximately) in the direction Py
10

L2(D)F¢- ,(;;(go). 

For this to make sense, the first step is to show that Pr,
0
L2(D)F¢- -J;(g0 ) E Tj0 L6(D). 

We start by noting that constant functions are in T10L2(D), since T10f 0 = 1. It 

follows that Pr,
0
L2(D)F4>- ;p(go) E TJ0 L2 (D). Let L6(D) and L6(f,ga) denote the 
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subspaces of L2 (D) and L2 (f,g0 ), respectively, whose elements h satisfy fD h(x) dx = 

0 and frh(s,O)go(s,O)dsdO = 0. Then Pr,oL2(D)Fcp- ~(go) E TJ0 L2 (D) nL5(f,go), 

since Pr,
0
L2(D)Fcp generated an unbiased linear estimator. We claim that TJ0 L2 (D) n 

L5(f,go) ~ Tj0 L6(D). To prove the claim, let f E L2 (D). Then 

k f(x) dx k J(x)T*l(x) dx 

£r!(B,s)dsd8 

£ TJ0 f(O, s)go ds dO. 

(4.2) 

Thus iff E L2 (D)\L5(D), then T1of tf. L5(f,g0 ). This says that TJ0 L2 (D) n 
L5(f,go) ~ TJ0 L5(D). Now suppose g E TJ0 L2 (D) n L5(f,go). Then there exists 

a sequence {gn} in Tj0 L2 (D) such that gn -+ g in L2 (f,go). Since g E L6(f,go), 

limn-+oofrgn(B,s)go(B,s)dsdO = 0. We can write each gn as TJofn for some fn E 

L2 (D). By eq. 4.2, limn ..... oof fn(x)dx = 0. Consider the sequence {fn- fDfn(x)dx} 

in L5(D). We have 

lim TJoUn- r fn(x) dx] 
n ..... oo }D lim TJofn - lim TJo r fn (X) dx n-+oo n-+oo } D 

lim gn- T1o lim { fn(x) dx n->oo n ..... oo }D 

g, 

so g E T1oL'5(D). This prove the claim that T10 L2 (D) n L5(f,g0 ) ~ TJ0 L6(D). From 

the claim, we can now conclude that Pr,
0

L 2 (D)Fcp- ~(go) E TJ0 L6(D). 

Let E > 0 be given. Since Pr,o£2(D)Fcp- ~(go) E TJ0 L6(D), we can choose TJ E 

L5(D) such that IITJ0 TJ-Pr,0£2(D)Fcp-~(go)IIL2(r,90 ) < c/2. Now the simple functions, 

i.e., functions taking only a finite number of values, are dense in L5(D) [2, p. 52]. 

Using this fact and the fact that Tfo is continuous, one may assume without loss of 

generality that TJ is a simple function. For ltl < supxED lry(x)l, define gt E TP by 

gt = T(f0 +try). Consider the one-dimensional subproblem of estimating (Fcp)"(gt) 

from n i.i.d. observations distributed according to gt. (Note that, defining ft = fo+try, 

this is equivalent to the problem of estimating ~(Jt).) We will now compute the Fisher 
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information for the estimation oft at t = 0. We have 

Ot log gt lt=O - Otgt I 
gt t=O 

T1J 
Tfo 

Tfo1J 

36 

Thus the Fisher information for the estimation oft is equal to niiTJ01JIIi2(r,go) at t = 0. 

Now 

Ot ( F 4>) . (gt ) I t=O 

= Ot 1r F¢>(0, s )T[fo( 0, s) + i1J(O, s )] ds dBit=o 

= 1r Fc/>(B,s)Try(B,s)dsdO 

= 1r F 4>( B, s )TJ0 1J( B, s )go((), s) ds d(} 

= fr[Fcf>(B,s)- ~(go)]TJ0rt(O,s)go(O,s) dsd() + ~(g0) 

= £ Pr
10

£2(D) [Fe/>((), s) - ~(go)]TJ01J( 0, s )go( B, s) ds d() + ~(g0 ) 

= £[pr
10

L2(D)Fcf>(O, s)- ~(go)][py10£2(D)F4>- ~(go)]go(O, s) ds d() 

+ lr[pTtoL2(D)Fcf>(0, s)- ~(go)] 
X {TJ0((0, s) - [py

10
L2(D)F¢>- ~(go)]}go(B, s) ds d() 

2: i1Pr
10

L2(D)F4>- ~(go)llh(r,9o) 

-11Pr
10

£2(D)F4>- ~(go) llu(r,go) IITJo((B, s) - Pr
10

£2(D)F4>- ~(go) IIL2(r,9o) 

> 11Pr10L~(D)F4>- ~(go)llu(r,go)(i1Pr10u(D)F¢>- ~(go)llu(r,9o)- c/2) 

(the first inequality follows from the Cauchy-Schwarz inequality). It follows from the 

Cramer-Rao inequality [13, art. 389D] that the variance of an unbiased estimator of 

(Fcf>)"(gt) at go must be at least 

[8t(F 4> )"(gt) lt=oF 
nliTJo(iihw,9o) 

> 11Pr
10

U(D)F4>- ~(go)iii2(r,90)(11P~10u(n)F4>- ~(go)IIP(r,go)- c/2? 

- n(i1Pr
10

L2(D)F4>- ?f}(go)IIL2(r,90) + c/2)2 
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Since E > 0 was arbitrary, we conclude that the variance of an unbiased estimator 

of (F¢>)"(gt) at go must be 2:: n-1 11Pr
10

£2(D)F¢>- -J,(go)lli2(r,ga)· The unbiased line~r 

estimator constructed in thm. 3.27 achieves this lower bound. • 

Remark 4.3 Unlike the estimator in thm. 4.1, the MVU estimator in thm. 4.2 de­

pends on f 0 . It is thus not a uniformly MVU estimator. 
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5 Construction of Projection Operators 

In sec. 4.2, we saw that the linear estimator generated by 'l/J<t>Jo clef Pr
10

£2(D)F<P is an 

MVU estimator for ¢(!) at fo in the ECT problem. In this section, we will express 

the projection operator Pr
10

£2(D) in a concrete way that is suitable for numerical 

calculations. 

We start in sec. 5.1 by considering the special case where fo is the uniform dis­

tribution on D. It turns out that the analysis of this special case provides useful 

building blocks for the analysis of the general case, which is carried out in sec. 5.2. 

5.1 The Uniform Distribution 

Definition 5.1 Let fu and 9u be as in def. 3. 7. Explicitly, 9u ( (}, s) = ; 2 J1 - s2 

(cf. (4, sec. 2.5, ex. 4], (14, sec. 2.1]). For future reference, we note that the marginal 

distribution of the "s" variable is given by the probability density ~J1- s2 on (-1, 1). 

We shall denote this probability density by Pu· 

Definition 5.2 A subset of a Hilbert space H is said to be orthonormal if each of 

its elements have norm 1 and distinct elements are orthogonal to each other. An 

orthonormal subset is said to be an orthonormal basis· if its linear span in dense in 

H. If {xi} is an orthonormal basis for a Hilbert space H, then each x E H can be 

expressed as x = Li(xijx)HXi and IJxJih = Li(xijx)7.J. 

Definition 5.3 Let Z, N, and N+ denote the sets of integers, nonnegative integers, 

and positive integers, respectively. FormE N, define the functions Um: [~1, 1] --r JR. 

by 

U ( 
n) clef sin((m + 1)B) 

mCOSu- . l'l • 
Sill u 

The Um are called the Chebyshev polynomials of the second kind [4, sec. 7.6) [14, 

sec. 2). They form an orthonormal basis for £ 2 ([-1, 1), Pu) [4, app. C.2). As the name 

implies, the Um are indeed polynomials, the first three are 1, 2s, and 4s2 - 1. We 
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extend the functions Um to 5 1 X JR. by the formula Um ( (), s) def Um ( s). For l E ~+ and 

m E N, define the functions az,m : 5 1 x JR. -+ JR. and bz,m : 5 1 x JR. -+ JR. by 

az,m(O, s) clef hUm (s) cos(W), 

and 

bz,m(O,s) ~ vfiUm(s)sin(lO). 

Definition 5.4 If g(O,s) is an even function on 5 1 x JR, i.e., g(-0,-s) = g(O,s), it 

can be viewed in a natural way as a function on G given by the formula g( (), s). In 

particular, since Um is even when m is even and az,m and bz,m are even when l + m is 

even, we shall view Um, az,m, and bz,m as being defined on r by the formulas given in 

clef. 5.3 when m and l + m are even, respectively. 

Definition 5.5 Define 

Bu = {Um: mE 2N} U {az,m,bl,m: l E N+,m E l +2N} 

and 

B~ = {az,m, bz,m: lEN+, m .E {l mod 2, l mod 2 + 2, ... , l- 2} }. 

Proposition 5.6 Bu and B~ are orthonormal bases for T1,L2 (D) and its orthogonal 

complement in L 2 (f, T fu), respectively. 

Proof. For l E Z and m E N, define the functions cz,m: 5 1 x [-1, 1] -+ C (C 

denotes the set of complex numbers) by 

( ) 
def ( ) ile Cz,m 0, s = Um s e . 

Note that Cz,m is even (odd) when lm- ll is even (odd). An orthonormal basis for 

T1,.L2 (D) C L2 (f,gu) is given by Cz,m with l E Z and m E Ill + 2N [4, sec. 7.6] [14, 

sec. 2.3], where the Cz,m are interpreted as functions on r per clef. 5.4. 
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Since we are dealing with (real) probability densities and integral functionals gen­

erated .by real-valued functions, it is convenient to replace the above basis with one 

consisting of real-valued functions. Applying the standard procedure for converting a 

complex orthonormal basis to a real orthonormal basis to { cz,m : l E N, m E l + 2N} 

yields Bu, which proves the first assertion. 

To prove the second assertion, we will show that an orthonormal basis for L2 (f, gu) 

is given by 

BuUB~ = {Um: mE 2N} U {az,m,bt,m: l E N+,m E l mod 2+2N}. 

We start by noting that, since { y'iiUm : m E N} is an orthonormal basis for 

L2 ([-1,1),;2 .J1-s2 ) and {Jk,*cos(le),~sin(ZO): lEN+} is an orthonormal 

basis for L2 (S1
), an orthonormal basis for L2 (S1 x [-1, 1],gu) is given by 

{~Um: mEN} U {~az,m, ~bt,m: l E N+,m EN}. 

If '1/J E L 2 (f,gu), then 

"" "" -2 -2 ) + ~ ~ (az,ml'l/J)p(Slx(-l,l],§u) + (bz,ml'l/J)p(Slx[-l,l],§u) 
lEN+ mEimod2+2N 

( L (Uml'l/J)i2(r,gu) (5.1) 
mE2N 
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where the fourth equality follows since Um is even (odd) when l +m is even (odd) and 

az,m and bz,m are even (odd) when l + m is even (odd). Since BuUB~ is easily verified 

to be an orthonormal subset of L2 (f,gu), it is an orthonormal basis for L2 (f,gu)· 

Combining this fact with the first assertion gives the second assertion. • 

Having established that Bu is an orthonormal basis for T1 .... L 2 (D), it IS now 

straightforward to express Pr,
0

£2(D) in terms of this basis. 

Corollary 5.7 The MVU estimator at fu for the ECT problem is generated by 

(5.2) 

+ L L (az,mlF¢ )£2(1,9 .... )al,m + (bz,mlF¢ )L2(r,9 .... )bt,m· 
IEN+mEI+2N 

Its variance at fu is given by 

n-l ( L (UmJF¢ )i2(r,gu) 
mE2N+ 

(5.3) 

+ L L (az,mJF¢ )h(l,gu) + (bz,mJF¢ )i2(r,gu)) , 
IEl'!+mEI+2l'l 

where 

(gJF<P)u(r,g,.) = 2
2 f"j1 

g(B,s)F¢(B,s)J1- s2 dsd8. • (5.4) 
rr lo -1 

We noted in rem. 3.19 that the estimator generated by F¢ roughly corresponds to 

applying the filtered-backprojection algorithm and taking a weighed integral of the 

result. We shall therefore refer to it as the standard algorithm. It is interesting to 

compare the performance of the standard algorithm with that of the MVU estimator 
I 

generated by Pr,u£2(D)F¢. 

Corollary 5.8 The variance of the standard algorithm at fu is given by 

n-l ( L (Um JF¢ )i2(r,gu) 
mE2N+ 

+ L L (az,mJF¢ )i2'(r,gu) + (bz,mJF¢ )i2(r,g,.))' · 
lEN+ mEimod2+2N 
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The difference in variance at fu between the standard algorithm and the MVU esti-

mator is 

(5.5) 

We conclude this section by showing there is an important special case where the 

standard algorithm coincides with the MVU algorithm. 

Definition 5.9 A function </>: IR 2 --+ IRis said to be radial if it can be written as a 

function of lxl alone, i.e., if </>(xi)= ¢(x2) for all X1,X2 E IR2 such that lx1l = lx2l· 

Proposition 5.10 Suppose cf> E S(IR2
) is radial. Then Prr~~.L2(D)Fcf> = F<f;. Moreover, 

Prfv.L2(D)F<P depends only on s, i.e., Prfv.L2(D)Fcf>(Obs) = Prfv.L2(D)Fcf>(fJ2,s) for all ()b 

fJ2, s E JR. 

Proof. It is not difficult to verify that F cf> is independent of () and can be writ-

ten as an even function of s. It follows that, for l + m E 2N+, the inner product 

(az,miFcf> )P(r,gu) reduces to 

2 17f 11 2 cos(lfJ)d() Um(s)F<f;(s)~h-s2 ds=0. 
n o -1 

Similarly, (bz,miF<P )L2(r,gu) = 0. Eq. 5.2 thus reduces to 

(5.6) 
mE2P:! 

Fe/>, 

where the last line follows since the set of functions {Urn; mE 2N} is an orthonormal 

basis for the subspace of even functions in L 2 ([-l, l),pu)· • 

Corollary 5.11 Suppose cf> E S(IR2
) is radial. The estimator generated by F<f; is an 

MVU estimator for ¢(!) at fu in the ECT problem. Its variance at fu is given by 

(5.7) 
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5.2 The General Case 

Remark 5.12 Given a countable, linearly-independent subset of a Hilbert space, 

there.is a standard procedure, the Gram-Schmidt procedure, for constructing an or­

thonormal subset with the same linear span [3, 1.4.6]. We shall refer to this procedure 

as orthonormalizing. 

Proposition 5.13 An orthonormal basis for TJ0 L 2 (D) is obtained by orthonormal­

izing the set of functions {~5~g;}9jEBu in L 2 (f, T fo). 

Proof. Defining the multiplication operator MI:.l.E.. : L2 (f, T fu) ---+ L2 (f, T fo) by 
Tfo 

g r-t ~f,u g, it is clear that we can decompose Tfo into the composition M T..bJ.. Tfu. Since 
o Tfo 

MT..bJ.. is continuous, the linear span of {~f,ugj}9 EBu is dense in TJ0 L 2 (D). Orthonor-
Tfo o J 

malizing this set thus gives an orthonormal basis for TJ0 L2 (D). 

Remark 5.14 Let {ru} be a orthonormal basis for TfuL2 (D), which may be con­

structed according to prop. 5.13. Then Pr,
0
L2(D)'lj; and 11Pr,0 L2(D)'lj;ll~fo£2(D) are given 

by the formulas 
00 

Pr, P(D)'lj; = _L('l/Jiru)r, P(v{U 
0 j=l 0 

and 

One issue encountered with the use of these formulas in numerical calculation is that 

one can only compute a finite number of terms and it is difficult to assess how many 

terms are necessary. This issue may be addressed by constructed a basis for the 
=-~....,..........,..J.. 

orthogonal complement of TJ0 L2(D) . 

Proposition 5.15 An orthonormal basis for TJ0 L 2 (D)..l.. is obtained by orthonormal­

izing the set of functions B~ in L 2 (f, T f 0). 
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Proof. 
-=:::--::-:,...,.......,--:-·1. 

.N(TjJ. An orthonormal basis for TJ0 L 2 (D) is therefore obtained by orthonormal-

izing B~ in L2 (f, T fo). • 

Remark 5.16 We are now in a position to outline a numerical approach to the 

calculation of Pr,
0

L2 (D)'Ij; and 11Pr,o£2(D)'I/JIIi2(r,TJo)" Orthonormal bases for TJ0 L 2(D) 

and TJ0 L 2 (D)J. are given by props. 5.13 and 5.15. Together they form a basis for 

L2 (f, T f 0 ). One can then expand '1/; in terms of this basis. To check whether one has 

computed a sufficient number of terms, one can comparing the squared L2 (f, T fo) 

norm of the expansion with ll'lfJIIi2(r,TJo)' which can be computed by numerical inte­

gration. 
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6 Gaussian Functionals 

In this section, we shall consider the special case where the integral functional is 

generated by a Gaussian p.d.f.. For brevity, we shall refer to such functionals as 

Gaussian functionals. In sec. 6.1, we shall see that an observation-domain represen­

tation of Gaussian functionals can be given explicitly in terms of special functions. 

In sec. 6.2, we specialize to the case of radial Gaussian functionals. 

6.1 General Gaussian Functionals 

Definition 6.1 Let 
~( . b· ) def ~ f(a + k)/f(a) zk 

a, 'z t:o f(b + k)/f(b) k! 

denote Kummer's confluent hypergeometric function [19], where, in this equation, f 

denotes the gamma function. 

Proposition 6.2 Let epa,aE S(IR2
) be given by the Gaussian p.d.f 

A.. ( ) def _1_ -Jx-aJ2 /2a2 

'f/a a X - 2 . 2 e 
' 7r(7 

with mean a E lR 2 and covariance CJ
2 I. Then the observation-domain representation 

F epa,a is given by 

Proof. Rep is giyen by 

Rep(B,s) = _1_e-(s-a·w(B))2/2a2 

~(7 

[4, sec. 3.5, eq. 5.3] and the Fourier transform of Rep with respect to the second 

variable is given by 
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[8, prop. 8.24]. Thus, by clef. 3.17, 

~(I-1T c/>a,o) ~ ( (}, () 

1f I (I ( Rc/>a,o) ~ ( (}, () (6.2) 

where (Fc/>a,o) ~ denotes the Fourier transform of Fc/>a,o with respect to the second 

variable. The next task is to take the inverse Fourier transform of the above equation 

with respect to the second variable. First suppose that a · w( B) = 0. By symmetry, 

we then have 

which expresses Fc/>a,o in terms of a Fourier cosine transform. Using the Fourier cosine 

transform identity 

roo 2 1 Jo xe-ax cos(xy) dx = 
2
a <J?(1; 1/2; -y2 /4a) 

[7, eq. 1.4(14)], we get 

If a· w(B) # 0, then the result for a· w(B) = 0 and standard results on the effect of 

translation on the Fourier transform (see, e.g., [8, thm. 8.22]) give 

1 2 2 Fc/>a,o(B, s) = - 2 <I>(1; 1/2; -(s-a· w(B)) /20" ). 
27fO" 

Eq. 6.1 now follows by applying the Kummer transformation identity <I>( a, b, z) 

ez<P(b- a; b; -z) [19, eq. 13.1.27] [6, eq. 6.4.7] to the last equation. • 
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Remark 6.3 Defining the function Xo- : lR -+ lR by 

we can write 

FcPa,a(8,s)(8, s) = Xa-(s- a· w(8)). 

Thus for each fixed (), F cPa,a as a function of s is a translate of the function X a-. 

Example 6.4 In fig. 1, we illustrate the function Xo- for (J = 0.1. fig. 1 

Example 6.5 In fig. 2, the graph on the upper left shows the zero-mean Gaussian fig. 2 

p.d.f. with (J = 0.1, i.e., cPo,O.I· The graph on the upper right shows the observation­

domain representation FcPo,o.1 of cPo,o.1, obtained using eq. 6.1. The lower haif of fig. 1 

is similar to the upper half, except that the Gaussian p.d.f. is centered at a = (1, 0) 

instead of at the origin. Fig. 3 is identical to fig. 2 except that (J = 0.5 instead of fig. 3 

(J = 0.1. 

Remark 6.6 By inserting the result of prop. 6.2 into cor. 5.7, we can now explicitly 

compute the MVU estimator for Gaussian functionals at the uniform distribution 

along with its variance. Since the inner products in eqs. 5.2 and 5.3 are not available 

in closed fo~m, it is necessary to evaluate them numerically. This comes down· to 

evaluating a two-dimensional integral numerically, cf. eq. 5.4. It is useful to start 

by computing the expansion given in eq. 5.1. One can evaluate the left-hand side of 

this equation numerically and then verify that the right-hand side converges to the 

left-hand side. This provides a check on the accuracy of the numerical integrations 

and allows one to determine how many terms of the expansions in eqs. 5.2 and 5.3 

are needed to achieve a given level of accuracy. 

Example 6. 7 We consider the estimation of the functional generated by a Gaussian 

p.d.f. cP centered at a = (1, 0) with (J = 0.5. (This was illustrated at the )Jottom of 

fig. 3.) The standard estimator is generated by FcP(t,o),a-, which is shown at the top of 
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fig. 4. The MVU estimator at fu is generated by PrtuL2(D)F¢(l,O),a, which is illustrated fig. 4 

in the middle of fig. 4. The difference F cf>(l,o),a- Prfu£2(D)F ¢(I,O),a 1 which backprojects 

to 0, is illustrated at the bottom of fig. 4. -In this particular case, the variance of the 

standard estimator is 0.087n-1 while the variance of the MVU estimator is 0.066n-1
. 

Thus, in this case, the variance of the standard estimator is more than 30% higher 

than that of the MVU estimator. 

6.2 Radial Gaussian Functionals 

Remark 6.8 MVU estimators for radial Gaussian functionals at the uniform distri-

bution along with their variance can be computed by inserting the result of prop. 6.2 

into cor. 5.11. Numerical evaluation of these quantities is much easier than in the 

nonradial case since no numerical integration is necessary to compute the estimator 

and its variance can be computed by evaluating a single one-dimensional integral 

numerically. 

Example 6.9 Fig. 5 shows the variance of MVU estimators for a radial Gaussian 

functional given 106 observations evaluated at the uniform distribution as a function of 

CJ. The lower curve is for the planar-imaging problem. It was obtained by numerically 

evaluating the formula given in thm. 4.1. The upper curve is for the ECT problem. 

It was obtained by numerically evaluating the formula given in cor. 5.11. 

For radial Gaussian functionals and the uniform distribution, the asymptotic be­

havior as CJ --+ 0 can be described very simply. 

Proposition 6.10 Let cf>a be a zero-mean Gaussian p.d.f with covariance matrix CJ
2 I 

and fu the uniform density on D. Asymptotically as CJ --+ 0, the variance of the MVU 

estimator for ~(f) at fu is given by 1/47r2 CJ2n in the planar imaging problem and 

1/87r312
CJ3n in the ECT problem. 
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Proof. Routine calculations show that 

and 

_1_ r e-lxl2/2o-2 dx 
2?T2o-2 Jlxl:$1 

.!:_(1- e-1/2o-2) 
?T 

k q}(x)fu(x) dx 
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It follows from thm. 4.1 that the variance of the MVU estimator for the planar-imaging 

problem is given by 

which is clearly asymptotic to 1/4?T2o-2n in the limit as o- -+ 0. Using thm. 4.2 and 

cor. 5.11, the variance of the MVU estimator for the ECT problem is given by 

-1 [IIF"' 112 1 ( · -1;2u2 )2] n 'f'u £2(r,T !u) - ?T2 1 - e . (6.3) 

It is shown below in lem. A.2 that IIF</>uiiL2(r,TJu) is asymptotic to 1/8?T3
/

2o-3 in the 

limit as o--+ 0. It follows that variance of the MVU estimator for the ECT problem 

is asymptotic to 1/8?T312a-3 . • 

Example 6.11 Fig. 6 shows the result of inserting the approximation 

into the expression for the variance of the MVU estimator given by eq. 6.3. The 

approximation is shown in the upper curve, while the true value is shown in the lower 

curve. We see that the approximation is very accurate in the region o- < 0.1. 

Remark 6.12 For radial Gaussian functionals, the MVU estimator at fu coincides 

with the standard estimator. We now present an example that shows this estimator 

can be very suboptimal at fo =f fu· 
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Example 6.13 Let <P be radial Gaussian with <7 = 0.5. Then the MVU estimator at 

fu is generated by F<P and, by ex. 6.11, its variance at fu is~ 0.087n-1 . Now suppose 

that fo is highly concentrated about the point (0, 0.63) E D. Then g0 = T fo is 

highly concentrated about the curve () f--+ ( (), 0.63 sin()) and we can approximate the 

integral frg((),s)g0 ((),s)dsd() by ~J; g((),0.63sin())d(). Using this approximation, 

the variance of the estimator generated by F<P at fo is~ 0.04683n- 1
. From prop. 5.15, 

the function a2,o/lla2,oiiL2(r,g0 ) is a unit vector of Tf0 L 2(D/. The squared inner 

product of this function with F<P in L2 (f,g0 ) is ~ 0.04594, which implies that the 

variance of the MVU estimator at fo is at most 0.00089n-1
. Thus in this, admittedly 

extreme, example, the variance of the MVU estimator is less than the variance of the 

standard estimator by a factor of more than 50. 



7 EXTENSION OF THE MODEL 51 

7 Extension of the Model 

The model of ECT given in sec. 1.1 and analyzed in this paper is very idealized. 

However, the general approach can be extended to more realistic models. Of course, 

extending the model will introduce varying degrees of additional mathematical com­

plications. In this section, we will briefly illustrate a relatively simple extension of 

the model to include the effects of photon attenuation and detector nonhomogeneity. 

Again, we motivate our model by the physicat problem of PET. 

In PET, some of the emitted photons are absorbed by the subject and thus not 

detected. It can be shown that the fraction of photons pairs traveling along a given 

line which are not absorbed is independent of the position of the positron emission 

which gave rise to them [20, p. 416]. That is, the number of observed photon pairs 

observed along a given line ( 0, s) is proportional to 1( 0, s )T f( 0, s), where 1( 0, s) is 

the fraction of photon pairs traveling along ( 0, s) which are not absorbed. Thus the 

probability density of the observations is given by 

y f ( O ) clef 1 ( 0, s) T f ( 0, s) 
'

8
- fri(O,s)TJ(O,s)dsdO. 

(7.1) 

Note that the normalizing factor fri(B,s)Tf(O,s) dsd() is the expected value of the 

fraction of positron emissions whose photon pairs are detected. For simplicity, we will 

henceforth assume that 1 is positive on f. 

The approach in this paper is based on observation-domain representations of 

smooth functionals as was done in prop. 3.16 for the transformation T. To get a 

similar result for the transformation Y, we solve eq. 7.1 for Tj, obtaining 

lr 
Yj(O,s) 

Tj(O,s) = I(O,s)Tf(O,s)dsdO (B ) . 
r . 1 ,s 

(7.2) 

Since fr T f( 0, s) ds dO = 1, it follows that 

{ y j ( 0' s) ds dO = 1 
lr 1(0,s) fri(O,s)TJ(O,s)dsd(). 

Inserting this relation into eq. 7.2 gives 

Tj(O s) = Yj(O,s) 
' (() ) r YJ(6,s) d d(). 

I 'S J[' -y(6,s) S 
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( 

We now write 

r <P(x)f(x)dx }m,_2 ~ k
2
T*I- 1T<P(x)f(x)dx 

~ 1 I- 1T<P(fJ,s)Tj(fJ,s) dsdfJ 

~ ( f Yj(fJ,s) dsdfJ)-
1 

f 1-
1
T<P(fJ,s)Yj(fJ,s)dsdfJ. 

2 lr 1(fJ,s) lr 1(fJ,s) 
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-1 . 

We now see that ~ (Jr ~~~~)) ds dfJ) 1-~T¢> is an observation-domain representation 

of the functional generated by <P for the transformation Y except for the complica­

tion that the normalizing factor fr Y~~~~)) ds dfJ depends on the unknown distribution 

f. There are two approaches to dealing with this. One approach is to note that 

fr T~~~~)) ds dfJ can generally be estimated with a high degree of certainty (an obvious 

estimate is ~ ~i=1,- 1 
( li)) and therefore can be taken as a known constant. The other 

approach is to rephrase the problem to one of estimating the functional generated 

by fr ~~~~)) ds dfJ-1 · </Y, for which ~ I-~Tp is an observation-domain representation. 

Since the factor fr ~~~~)) ds d() is independent of </Y, this will not change the ratios of 

the various functionals being estimated, which is generally the main point at issue. 

(E.g., if we think of the functionals as approximating pixels, the effect would be a 

scale factor applied to the image.) In either c'ase, having obtained the observation­

domain representation of the functional, the extension of our approach to this model 

is now straightforward. It is evident that detector nonhomogeneity effects may be 

incorporated into the function 1 and thus be subsumed under the same mathematical 

model. 
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8 Discussion 

The results in this paper give best-possible lower bounds on the variance of unbiased 

estimation of smooth functionals in the planar imaging and ECT problems. They 

can be used as a benchmark in assessing the performance of image reconstruction 

and quantification algorithms. Appropriately generalized, they can also be used as a 

design tool for assessing the performance that is achievable by new imaging devices. 

One attractive feature of the approach taken here is that the resulting bounds may 

be applied to parametric reconstruction algorithms, regardless of how the image is 

parametrized. E.g.' if the estimate of the image is represented by j (X) = E7=1 aibi (X)' 

where the ai are parameter estimates and the bi are basis functions, one can compare 

the variance ofthe implied estimate of¢(!), i.e., ~(f) def I::~l ai¢(bi), with the bound. 

The numerical results given in ex. 6. 7 show that, at least in some cases, the MVU 

estimator for J>(f) may have significantly less variance than the estimator generated 

by Fcjy. Since, as mentioned in rem. 3.19, the latter estimator corresponds roughly to 

the standard algorithm used in medical imaging practice, the results suggest that some 

improvement of the standard estimator may be possible. More extensive evaluation of 

the bound should help delineate the conditions under which significant improvement 

over the standard algorithm is possible. 

It should be 'emphasized that the MVU estimators for the ECT problem con­

structed in this paper are only minimum variance at particular points fo E P. There 

is no guarantee that will perform well for all f E P. Nevertheless, they suggest an 

heuristic appwach to constructing algorithms which will perform well at all f E P. 

The idea is that, given a sufficient number of observations, one can construct a good 
A A 

auxiliary estimate f of f and then apply the MVU estimator at f. We are currently 

investigating this issue. 
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A Supporting Mathematical Results 

In this appendix, we collect the statements and proofs of some supporting results that 

were used in the body of this work. 

Proof. For s > 0, let Hs(IR.d) denote the subspace of L2(JR.d) whose elements f 

have a Fourier transform satisfying 

< 00. 

Hs(JR.d) is termed the Sobolev space of orders. For each k E N, the Sobolev embedding 

theorem states that any function in Hs(JR.d) for s > k+d/2 is k-times differentiable [8, 

thm. 8.54]. Now the Fourier transform of a function in S(~d) is in S(JR.d) [8, cor. 8.23]. 

Let s > 0 and f E S(JR.d) be given. Since j E S(JR.d), there exists c > 0 such that 

on JR.d. It follows that 

< oo, 
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hence J-1f E Hs(~d). Since s > 0 was arbitrary, 1t follows from the Sobolev embed­

ding theorem that J-1f is k-times differentiable for all kEN, i.e., J-1j E c=(~d) . 

• 
Lemma A.2 Let <Pa denote the zero-mean Gaussian p.d.j. with covariance matrix 

e7
2l. The limiting behavior ofiiF<Paiii2(L,Tfo) as e7---+ 0 is described by 

(A.1) 

where 

' (A.2) 

Proof. Starting with clef. 3.17 and using eq. 6.2, we obtain 

fo7r j_: [F<Pa(O, s )] 2 ds dO 

fo7r j_:[(F<Par(e,()] 2 d(de 

7r2 r 1= (2e-47r2a2(2 d( dO 
Jo -oo 

27r3 loco (2e-47r2a2(2 d( dO 

?T'l/2 

16CJ3 

[9, 3.461.2], which gives eq. A.2. To prove eq. A.1, we will prove that 

Let c > 0 be given. Since J1 - s2 is a continuous function at s = 0, we can choose 

0 < 08 < 1 such that iJ1 - s2 - 11 < c/2 if lsi < Os. Then, writing 

I11F</Yalli2(1,Tfu)- ~IIF</Yalli2(G)I 
;2I.IF</Yalli_2(G) 

J; J2 1 (F<Pa ?(0, s) iJ1- s2
- 11 ds dO+ J; ~sl>l (F<Pa )2 (0, s) ds dO 

IIF<Palli2(G) 
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we see that it suffices to prove that 

(A.3) 

Using the expansion 

which is valid for x > 0 [19, eq. 13.1.4], and eq. 6.1, there exists a constant c such 

that 

IF~(7(B, s )I 

It follows that 

J; ~si>s(F~(7) 2 (B,s)dsd() 

IIF ~(711i2,(G) 

from which eq. A.3 easily follows. • 

[l+c(72 /82 ]2 f7' r -4 d d() < 411"2 Jo Jisi<S s s 
IIF~(711h(G) 

160"3 [1 + C0"2 I 82]28-5 
'JT"l/2 l07T" 
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Figure 1: The function Xo- evaluated for <7 = 0.1 
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Figure 2: Gaussian functionals and their observation-domain representa­
tions. Gaussian p.d.f.s are shown on the left and their respective observation­
domain representations are shown on the right. The upper pair is for a radial 
Gaussian p.d.f., while the lower pair is for a Gaussian p.d.f. centered at (1,0). 
For both pairs, a= 0.1. 
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Figure 3: Gaussian functionals and their observation-domain representations. 
Everything is as in fig. 1, except that CJ = 0.5. 
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Figure 4: The functions which generate the standand and MVU estimators 
·are shown in the top and middle, respectively. Their difference is shown at 
the bottom. 
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VARIANCE 

Figure 5: Variance of MVU estimator for radial Gaussian functionals at the 
uniform distribution with 106 photon pairs (lower curve is for planar imaging, 
upper curve is for ECT). 
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VARIANCE 

Figure 6: Approximation to the variance of MVU estimator for radial Gaus­
sian functionals at the uniform distribution with 106 photon pairs (lower 
curve is the true value, upper curve is the approximation). 
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